JP2008264749A - Seawater desalination device - Google Patents

Seawater desalination device Download PDF

Info

Publication number
JP2008264749A
JP2008264749A JP2007131042A JP2007131042A JP2008264749A JP 2008264749 A JP2008264749 A JP 2008264749A JP 2007131042 A JP2007131042 A JP 2007131042A JP 2007131042 A JP2007131042 A JP 2007131042A JP 2008264749 A JP2008264749 A JP 2008264749A
Authority
JP
Japan
Prior art keywords
seawater
water
evaporation chamber
fresh water
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007131042A
Other languages
Japanese (ja)
Inventor
Nobuaki Debari
宣明 出張
Takayuki Endo
敞于 遠藤
Ryutaro Matsushima
龍太郎 松島
Hiroyasu Debari
浩康 出張
Noriaki Debari
法明 出張
Akiyoshi Debari
明美 出張
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KANKYO GIJUTSU SOGO KENKYUSHO
KANKYO GIJUTSU SOGO KENKYUSHO KK
Original Assignee
KANKYO GIJUTSU SOGO KENKYUSHO
KANKYO GIJUTSU SOGO KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KANKYO GIJUTSU SOGO KENKYUSHO, KANKYO GIJUTSU SOGO KENKYUSHO KK filed Critical KANKYO GIJUTSU SOGO KENKYUSHO
Priority to JP2007131042A priority Critical patent/JP2008264749A/en
Publication of JP2008264749A publication Critical patent/JP2008264749A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Physical Water Treatments (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Nozzles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To inexpensively provide a seawater desalination device which can efficiently remove salts from seawater, and is less in the energy input amount of evaporating and condensing seawater. <P>SOLUTION: Heated and pressurized seawater is atomized from a spray nozzle provided at the lower part of an evaporation chamber on the middle side of a duplex tube installed in the vertical direction in a decompressed vacuum atmosphere while being circulated to the upper direction, by centrifugal force, as salts are separated, it is evaporated and made to flow into a condensation chamber at the outside, fresh water is sprayed from water spray nozzles provided at the tip part and intermediate part of the condensation chamber in a multistage, and gas-liquid contact is caused, so as to be droplets. Further, while sprinkling water, it is contacted with a cooling tube, thus is perfectly condensed, so as to be fresh water. The fresh water made to overflow from the storage face is discharged to the outside from a water sealing trap tube. Cooled gas subjected to the gas-water separation is circulated to an evaporation chamber, and is heated by a heating coil tube, thus evaporation is promoted. Crystal salts stored in the lower part of the evaporation chamber are discharged simultaneously with the inside air with an ejector pump provided at the outside, so as to be a vacuum atmosphere, and the seawater is made continuously fresh. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、減圧法と蒸発法を用い海水から真水を得るための海水淡水化に関し、特に、温度差を利用して効率よく淡水化が行える海水淡水化装置に関するものである。  The present invention relates to seawater desalination for obtaining fresh water from seawater using a decompression method and an evaporation method, and more particularly to a seawater desalination apparatus that can efficiently desalinate using a temperature difference.

海水から淡水を得る海水淡水化方法としては、蒸発法、逆浸透法、冷凍法、透過気化法及び電気透析法などの様々な方法がある。海水を加熱して減圧雰囲気で蒸発させて水蒸気とし、冷やして凝縮し淡水を造水する海水淡水化装置が従来から多く用いられていた。  As seawater desalination methods for obtaining fresh water from seawater, there are various methods such as an evaporation method, a reverse osmosis method, a freezing method, a pervaporation method, and an electrodialysis method. Conventionally, seawater desalination apparatuses that heat seawater and evaporate it in a reduced-pressure atmosphere to form water vapor, cool and condense, and produce fresh water have been widely used.

その処理方法の一つとして、減圧雰囲気で海水をスプレ−噴射して蒸発させ、冷却して凝縮し淡水を造水する海水淡水化装置が知られている(例えば、特許文献1参照。)。然し乍ら、この海水淡水化装置は、個々に設けた蒸発器や凝縮器とドレンセパレ−タ−などを複雑な配管によって接続しているため、熱損失が多く、装置製作費も高額となるため、低コストで淡水化させるための大幅な改良や技術改善が要求されていた。  As one of the processing methods, there is known a seawater desalination apparatus that sprays and evaporates seawater in a reduced-pressure atmosphere, cools and condenses to produce fresh water (see, for example, Patent Document 1). However, this seawater desalination system is connected to the evaporators and condensers and drain separators provided individually by complicated piping, so there is a lot of heat loss and the equipment production cost is high. Significant improvements and technical improvements for desalination at cost were required.

又、海水をタンク内で電気ヒ−タ−と熱電素子で加熱し、減圧雰囲気の中で蒸発させ、熱電素子で冷やした冷却液を循環させて水蒸気を凝縮させる海水淡水化装置が知られている(例えば、特許文献2参照。)。然し乍ら、この海水淡水化方法は実験用装置であり、海水タンク下部を熱電素子で水平に区画し、上側で海水を加熱し、下側の吸熱部で冷却液を造るためエネルギ−効率も悪く、大量に海水を淡水化させることが困難であった。  Also known is a seawater desalination device that heats seawater in a tank with an electric heater and a thermoelectric element, evaporates it in a reduced pressure atmosphere, circulates a cooling liquid cooled by the thermoelectric element, and condenses water vapor. (For example, refer to Patent Document 2). However, this seawater desalination method is an experimental device, and the lower part of the seawater tank is horizontally partitioned by thermoelectric elements, the seawater is heated on the upper side, and the cooling liquid is produced at the lower endothermic part, so that the energy efficiency is also poor, It was difficult to desalinate seawater in large quantities.

又、中空円筒の中に塩水を満たし下部に封水した調整室を設けて減圧した内部に、海水をスプレ−フラッシュして蒸発させ凝集する海水淡水化装置が知られている(例えば、特許文献3参照。)。然し乍ら、この海水淡水化装置は、減圧効率が悪く、装置も複雑で熱損失も多く、低コストで海水を淡水化させることが困難であった。  Also, there is known a seawater desalination apparatus in which a regulation chamber filled with salt water in a hollow cylinder and sealed at the bottom is provided and the pressure is reduced and the seawater is sprayed and flashed to evaporate and condense. 3). However, this seawater desalination apparatus has poor decompression efficiency, the apparatus is complicated and heat loss is large, and it is difficult to desalinate seawater at low cost.

更に、真空ポンプを使用することなくエゼクタ−を用いた減圧雰囲気の中で海水を淡水化させる装置が知られている(例えば、特許文献4参照。)。然し乍ら、この海水淡水化装置は、夫々の蒸発装置、凝集器、抽水タンクをポンプを用いて配管で結ぶため装置も大型となりエネルギ−コストも悪く、大量に海水を淡水化させることが困難であった。  Furthermore, an apparatus for desalinating seawater in a reduced-pressure atmosphere using an ejector without using a vacuum pump is known (for example, see Patent Document 4). However, since this seawater desalination apparatus connects the respective evaporators, agglomerators, and extraction tanks with a pipe using a pump, the apparatus becomes large and the energy cost is low, and it is difficult to desalinate a large amount of seawater. It was.

更に又、複数個の平板状のヒ−トパイプ素子を縦方向で平行に配置した蒸留装置が知られている(例えば、特許文献5参照。)。然し乍ら、この方法はパイプ素子の中間部を仕切部材で区画し上部で加熱し下部で凝縮させるため構造も複雑で、多数のヒ−トパイプ素子を必要とするためその大幅な改善が要求されていた。  Furthermore, a distillation apparatus is known in which a plurality of flat heat pipe elements are arranged in parallel in the vertical direction (see, for example, Patent Document 5). However, in this method, the intermediate part of the pipe element is partitioned by a partition member, heated at the upper part and condensed at the lower part, the structure is complicated, and a large number of heat pipe elements are required. .

その他、超音波素子により海水から霧を発生させ、サイクロン機能をもった凝集室で液化するものが知られている(例えば、特許文献6参照。)。然し乍ら、この蒸留装置では熱交換効率が悪く、装置も複雑で製作費も高額となりその改善が求められていた。  In addition, there is known one in which mist is generated from seawater by an ultrasonic element and liquefied in a coagulation chamber having a cyclone function (for example, see Patent Document 6). However, in this distillation apparatus, the heat exchange efficiency is poor, the apparatus is complicated, the production cost is high, and the improvement has been demanded.

特許第2878296号公報Japanese Patent No. 2878296 特開平10−230246号公報JP-A-10-230246 再公表特許WO2004/069370号公報Republished patent WO2004 / 069370 特開2002−254066号公報JP 2002-254066 A 特開平11−316094号公報JP 11-316094 A 特開2005−131543号公報JP 2005-131543 A

以上述べた如く、減圧法による従来公知の海水淡水化装置では、減圧した蒸発室内に海水のみ供給して蒸発作用を行わせているため、減圧容器内の海水が蒸発潜熱により次第に冷やされるため、飽和水蒸気圧が次第に低下し真空ポンプの負荷が増え、併せて淡水化能力が低下するため造水効率が悪くその改善が要求されていた。  As described above, in the known seawater desalination apparatus using the decompression method, only seawater is supplied into the decompressed evaporation chamber to perform the evaporation action, so the seawater in the decompression vessel is gradually cooled by the latent heat of evaporation. Since the saturated water vapor pressure gradually decreased and the load on the vacuum pump increased, and the desalination capacity decreased at the same time, the water production efficiency was poor, and its improvement was required.

又、スプレ−フラッシュによる淡水化方法では、蒸発に多大のエネルギ−を必要とする真空蒸発部と凝縮器が別個の構造が多く、接続管路が複雑なためエネルギ−ロスも多く、淡水化装置の製造価格と造水コストが大幅にアップするなどの様々な問題があった。  Further, in the desalination method using spray flash, the vacuum evaporation section and the condenser that require a large amount of energy for evaporation have many separate structures, and the connecting pipe is complicated, so that there is also a lot of energy loss. There were various problems such as a significant increase in production price and water production cost.

逆浸透膜法による造水は装置自体も高価であり、水を選択的に通す逆浸透膜を用いて、海水を加圧して逆浸透膜の反対側から淡水を回収する方法であり、海水を浸透圧以上の圧力まで加圧するための動力費、目詰まりで交換する逆浸透膜の交換費が高額となり、更にその廃棄費も必要で、造水コストが大幅にアップする問題があった。  Water production by the reverse osmosis membrane method is expensive in itself, and is a method of collecting fresh water from the opposite side of the reverse osmosis membrane by pressurizing seawater using a reverse osmosis membrane that selectively passes water. The power cost for pressurizing to a pressure higher than the osmotic pressure and the replacement cost for the reverse osmosis membrane to be replaced due to clogging are high, and the disposal cost is also required, which causes a problem of drastic increase in water production cost.

以上の課題を解決するため本発明はなされたものであり、減圧法を用いて燃料費や消費電力を削減して省エネルギ−化と造水効率の向上を図り、低価格かつ低運転エネルギ−による従来にない低造水コストの海水淡水化装置を提供することを目的とする。  The present invention has been made in order to solve the above-described problems. The fuel pressure and the power consumption are reduced by using the decompression method so as to save energy and improve the water production efficiency. An object of the present invention is to provide a seawater desalination apparatus with a low water production cost that has not been achieved in the past.

本発明は上記の目的を達成するために、減圧した真空雰囲気で縦方向に設置した二重管中側の蒸発室下側の央部に設けた噴射ノズルから、加熱し加圧した海水を上向に噴霧して蒸発させ、内管の上部の網目孔より外側の凝縮室に流入させ、凝縮室の頂部と中間部で多段に設置した撒水ノズルより淡水を撒水し気液接触しながら水滴とし、更に冷却管で残りの水蒸気を完全に凝縮させて淡水を製造し、気水分離網を介して気体を内管下部の鎧孔より蒸発室の中に循環させたものである。  In order to achieve the above-mentioned object, the present invention is configured to raise heated and pressurized seawater from an injection nozzle provided at the center of the lower side of the evaporation chamber on the middle side of the double pipe installed in the vertical direction in a reduced-pressure vacuum atmosphere. The water is sprayed in the direction of the water and evaporated to flow into the condensation chamber outside the upper mesh hole of the inner pipe. Further, the remaining water vapor is completely condensed in the cooling pipe to produce fresh water, and the gas is circulated into the evaporation chamber from the armor hole in the lower part of the inner pipe through the air / water separation network.

第2の課題解決手段は、減圧した真空雰囲気で蒸発室内の下部に加熱コイル管を配置して蒸発室の内部を加熱し、中心部の噴射ノズルから外周に絶縁コイルを巻いた誘導ディフュ−ザ−の中に加圧した海水41を噴射し、周囲から噴射量の3倍乃至4倍の加熱空気を吸引して電場処理しながら霧化し、上方向に旋回させながら噴霧して海水の霧から塩類の分離と蒸発を促進させたものである。  A second problem solving means is an induction diffuser in which a heating coil tube is arranged in the lower part of the evaporation chamber in a reduced vacuum atmosphere to heat the inside of the evaporation chamber, and an insulating coil is wound around the outer periphery from the spray nozzle in the center. -Injecting pressurized seawater 41 into the inside, sucking heated air of 3 to 4 times the injection amount from the surroundings, atomizing while treating with electric field, spraying while turning upward, and spraying from the seawater mist It promotes salt separation and evaporation.

第3の課題解決手段は、蒸発室の内部に集水リングを多段に設置し、噴射ノズルから上向に噴霧した海水が減圧加湿雰囲気で蒸発し、内管壁面に付着して結露し水滴となって流下した淡水を集水リングで受水して貯留し、貯留水面より溢れた淡水は内管壁面を貫通して接続されたPトラップ管を介して凝縮室内に供給して淡水化を促進させたものである。  The third problem solving means is that water collecting rings are installed in multiple stages inside the evaporation chamber, and the seawater sprayed upward from the spray nozzle evaporates in a reduced pressure humidified atmosphere, adheres to the inner pipe wall surface, condenses, and drops of water. The fresh water that flows down is received and stored by the water collecting ring, and fresh water overflowing from the stored water surface is supplied to the condensing chamber through a P trap pipe connected through the inner pipe wall surface to promote desalination. It has been made.

第4の課題解決手段は、凝縮室内の頂部と中間部で多段に設置した、撒水ノズルから下向のディフュ−ザ−の中に淡水を撒水して水滴とし、周囲の水蒸気を吸引して冷却し、撒水量の3倍乃至4倍の下降気流をディフュ−ザ−で発生させ、更に冷却管にも撒水ノズルより淡水を撒水して残りの水蒸気を完全に冷却管で冷やして凝縮させたものである。  The fourth problem-solving means is to cool fresh water by pouring fresh water into a diffuser that is installed in multiple stages at the top and middle of the condensing chamber and facing downward from the water-spraying nozzle. Then, a downdraft of 3 to 4 times the amount of drowning is generated by the diffuser, and fresh water is drowned into the cooling pipe from the dripping nozzle, and the remaining water vapor is completely cooled and condensed by the cooling pipe. It is.

第5の課題解決手段は、蒸発室内に設置した最下段の集水リングの直下にリングヘッダ−を設置し、内管壁面に付着した結晶塩類を一定時間毎にリングヘッダ−下側に設けた撒水ノズルから、淡水貯留タンクから撒水ポンプを介して供給された淡水を撒水しながら洗い落とし、蒸発室下部の分離塩水貯留タンクに分離塩水とし貯留したものである。  The fifth problem solving means is that a ring header is installed immediately below the lowermost water collecting ring installed in the evaporation chamber, and crystal salts adhering to the inner pipe wall surface are provided on the lower side of the ring header at regular intervals. The fresh water supplied from the fresh water storage tank through the fresh water pump is washed off from the fresh water nozzle and stored as separated salt water in the separated salt water storage tank below the evaporation chamber.

第6の課題解決手段は、蒸発室の下部に設けた遠心式噴霧装置により、加熱した海水を駆動モ−タ−により回転するアトマイジングカップに供給し、周囲の加熱した空気を羽根車で吸引しアトマイジングカップの中央部で混合させることで霧化し、上方向に旋回させながら噴霧して海水の霧から塩類の分離と蒸発を促進させたものである。  A sixth problem solving means is to supply heated seawater to an atomizing cup rotated by a driving motor by a centrifugal spraying device provided at the lower part of the evaporation chamber, and suck the surrounding heated air with an impeller. It is atomized by mixing at the center of the atomizing cup and sprayed while swirling upward to promote separation and evaporation of salts from seawater mist.

第7の課題解決手段は、蒸発室及び凝縮室の内部に、波長がUV−C253,7nmの殺菌線を放射する紫外線殺菌灯を紫外線の透過が良い高純度の石英ガラス保護管に内装して設置し、噴霧した海水に含まれるサルモネラ菌、病原性大腸菌O−157やレジオネラ菌などの他、カビ類を紫外線殺菌灯の暴露により殺菌処理させたものである。  The seventh problem-solving means is that an ultraviolet germicidal lamp that emits germicidal radiation having a wavelength of UV-C253, 7 nm is installed inside a vaporizing chamber and a condensing chamber in a high-purity quartz glass protective tube that transmits ultraviolet light. In addition to Salmonella, pathogenic Escherichia coli O-157, Legionella, and the like contained in the installed and sprayed seawater, molds are sterilized by exposure to an ultraviolet germicidal lamp.

第8の課題解決手段は、蒸発室の下部に設けた磁気噴射ノズルから、加圧した海水に磁気の印加による電磁処理でクラスタ−が小さくなり表面張力が低下して界面活性作用が高まることで、海水中の塩類の分離と蒸発を促進させたものである。  The eighth problem-solving means is that the surface treatment action is increased by reducing the surface tension by reducing the cluster by electromagnetic treatment by applying magnetism to the pressurized seawater from the magnetic spray nozzle provided in the lower part of the evaporation chamber. , Which promotes the separation and evaporation of salts in seawater.

第9の課題解決手段は、減圧した真空雰囲気で二重管の蒸発室内に噴霧した海水の蒸発を促進させるために熱電素子の加熱部を露出し、一方凝縮室内の蒸発した水蒸気の凝縮を促進させるために熱電素子の冷却部を露出させた熱電素子を内管に設置して、直流電流を印加して加熱と冷却を同時に行うことで海水の淡水化を促進させたものである。  The ninth problem solving means exposes the heating part of the thermoelectric element in order to promote the evaporation of seawater sprayed in the evaporation chamber of the double pipe in a reduced vacuum atmosphere, while promoting the condensation of the evaporated water vapor in the condensation chamber. In order to achieve this, the thermoelectric element in which the cooling portion of the thermoelectric element is exposed is installed in the inner tube, and the heating and cooling are simultaneously performed by applying a direct current to promote seawater desalination.

第10の課題解決手段は、蒸発室の内管壁面に付着した結晶塩類を、淡水を撒水して内管壁面から洗い落として分離塩水貯留タンクに貯留させ、分離塩水貯留タンクの底部に超音波発振器を設置して、超音波発振器で海水より分離した水を蒸発室9内に噴霧して蒸発させることで分離塩水を濃縮し、溢れた分離塩水を濃縮塩水排出管から排出して海水の淡水化を促進するものである。  According to a tenth problem solving means, the crystalline salt adhering to the inner tube wall surface of the evaporation chamber is flushed with fresh water, washed off from the inner tube wall surface and stored in the separated salt water storage tank, and an ultrasonic oscillator is placed at the bottom of the separated salt water storage tank. The water separated from the seawater by the ultrasonic oscillator is sprayed into the evaporation chamber 9 and evaporated to concentrate the separated salt water, and the overflowed separated salt water is discharged from the concentrated salt water discharge pipe to desalinate the seawater. Is to promote.

第1の課題解決手段による作用は次の通りである。即ち、減圧した真空雰囲気で縦方向に設置した二重管3内側の蒸発室9下部に設けた噴射ノズル20から海水41を上方向に噴射し霧散させて蒸発させ、内管7上部の網目孔15から外側の凝縮室8の中に流入させて、凝縮室8の頂部と中間部で多段に設置した撒水ノズル21より淡水43を撒水し気液接触させながら冷却管22で凝縮して淡水43を造水し、気水分離網17を介して分離した気体を内管7下部の鎧孔14より蒸発室9の中に循環させることによりエネルギ−の消費を削減して効率よく海水を淡水化するという効果を発揮する。  The operation of the first problem solving means is as follows. That is, the seawater 41 is jetted upward from a spray nozzle 20 provided in the lower part of the evaporation chamber 9 inside the double pipe 3 installed in the vertical direction in a reduced vacuum atmosphere to be sprayed and evaporated to form a mesh hole in the upper part of the inner pipe 7. 15 is allowed to flow into the outer condensing chamber 8, and fresh water 43 is submerged from the submerged nozzles 21 installed in multiple stages at the top and middle of the condensing chamber 8 and condensed in the cooling pipe 22 while being brought into gas-liquid contact with the fresh water 43. The water separated through the air / water separation network 17 is circulated into the evaporation chamber 9 through the armor hole 14 below the inner pipe 7 to reduce energy consumption and efficiently desalinate the seawater. The effect of doing.

第2の課題解決手段による作用は、蒸発室9下部に加熱コイル管31を配置して蒸発室9内を加熱し、中心部の噴射ノズル20から外周に絶縁コイル67を巻いた誘導ディフュ−ザ−53の中に加圧した海水41を噴射し、周囲から噴射量の3倍乃至4倍の加熱空気を吸引して電場処理しながら霧化し、上方向に旋回させながら噴霧して海水41の霧から塩類の分離と蒸発を促進させて淡水化することができる。  The action of the second problem solving means is that an induction diffuser in which a heating coil tube 31 is arranged at the lower part of the evaporation chamber 9 to heat the inside of the evaporation chamber 9 and an insulating coil 67 is wound around the outer periphery from the injection nozzle 20 at the center. -53 injecting pressurized seawater 41, sucking heated air that is 3 to 4 times the injection amount from the surrounding area, atomizing while treating with electric field, spraying while turning upward, It can be desalinated by promoting salt separation and evaporation from the mist.

第3の課題解決手段による作用は、蒸発室9内の中間部から頂部に多段に設置した集水リング33で、海水が霧化し内管壁面12に付着して水滴となった淡水が流下して集水リング33で受水され、集水リング33に貯留された淡水は内管壁面12を貫通して接続されたPトラップ管29を介して、凝縮室8内に淡水として供給させることができる。  The action of the third problem solving means is that the water collecting ring 33 installed in multiple stages from the middle part to the top part in the evaporation chamber 9 causes the seawater to atomize and adhere to the inner pipe wall surface 12 to flow down the fresh water. The fresh water received by the water collecting ring 33 and stored in the water collecting ring 33 can be supplied as fresh water into the condensing chamber 8 through a P trap pipe 29 that is connected through the inner pipe wall surface 12. it can.

第4の課題解決手段による作用は、凝縮室8内の頂部と中間部で多段に設置した撒水ノズル21から下向のディフュ−ザ−13の中に淡水43を撒水して、周囲の蒸発した海水41を吸引し気液接触させて冷却し、撒水量の3倍乃至4倍の下降気流をディフュ−ザ−13で発生させて、更に冷却管22で冷やすことで完全に凝縮させることができる。  The action of the fourth problem solving means is that fresh water 43 is submerged into the diffuser 13 downward from the submerged nozzle 21 installed in multiple stages at the top and middle in the condensing chamber 8 and the surroundings are evaporated. The seawater 41 is sucked and brought into gas-liquid contact to be cooled, and a descending air flow 3 to 4 times the amount of flooding is generated by the diffuser 13 and further cooled by the cooling pipe 22 to be completely condensed. .

第5の課題解決手段による作用は、蒸発室9中間部に設置した集水リング33の直下にリングヘッダ−10を設置し、内管壁面12に付着した結晶塩類42を一定時間毎にリングヘッダ−10下側の撒水ノズル21から淡水43を撒水して、内管壁面12を洗浄して洗い落とし、蒸発室9下部の分離塩水貯留タンク50に分離塩水51とし貯留させる。  The action of the fifth problem solving means is that the ring header 10 is installed immediately below the water collecting ring 33 installed in the middle part of the evaporation chamber 9 and the crystalline salts 42 adhering to the inner pipe wall surface 12 are removed at regular intervals. -10 Fresh water 43 is submerged from the lower submerged nozzle 21, the inner pipe wall surface 12 is washed and washed off, and the separated salt water storage tank 50 below the evaporation chamber 9 is stored as separated salt water 51.

第6の課題解決手段による作用は、蒸発室9下部に設けた遠心式噴霧装置77により、加熱した海水41を駆動モ−タ−55により回転するアトマイジングカップ79に供給し、周囲の加熱した空気を羽根車56で吸引しアトマイジングカップ79の中央部で混合させることで霧化し、上方向に旋回させながら噴霧して海水41の霧から塩類の分離と蒸発を促進させて淡水化することができる。  The action of the sixth problem solving means is that the heated seawater 41 is supplied to an atomizing cup 79 rotated by a driving motor 55 by a centrifugal spraying device 77 provided at the lower part of the evaporation chamber 9, and the surroundings are heated. Air is sucked with the impeller 56 and mixed in the central portion of the atomizing cup 79 to be atomized and sprayed while swirling upward to promote separation and evaporation of the salt from the mist of the seawater 41 to desalinate. Can do.

第7の課題解決手段による作用は、凝縮室8及び蒸発室9の内部に、波長がUV−C253,7nmの殺菌線を放射する紫外線殺菌灯19を紫外線の透過が良い高純度の石英ガラス保護管58に内装して設置し、噴霧した海水41に含まれる病原性大腸菌O−157やレジオネラ菌などの他、カビ類も紫外線照射により完全に殺菌することができる。  The action of the seventh means for solving the problem is that the ultraviolet germicidal lamp 19 that emits a germicidal line having a wavelength of UV-C253, 7 nm is protected inside the condensing chamber 8 and the evaporation chamber 9 with a high purity quartz glass that transmits ultraviolet light. In addition to pathogenic Escherichia coli O-157 and Legionella contained in the sprayed seawater 41 installed in the tube 58, molds can be completely sterilized by ultraviolet irradiation.

第8の課題解決手段による作用は、蒸発室9下部に設けた磁気噴射ノズル36から、加圧した海水41に磁気の印加による電磁誘導処理で海水41のクラスタ−を活性化させて表面張力を低下させることで、噴霧した海水41の蒸発を促進させることができる。  The action of the eighth problem solving means is to activate the cluster of the seawater 41 by electromagnetic induction treatment by applying magnetism to the pressurized seawater 41 from the magnetic jet nozzle 36 provided at the lower part of the evaporation chamber 9 to increase the surface tension. By lowering, evaporation of the sprayed seawater 41 can be promoted.

第9の課題解決手段による作用は、蒸発室9内に噴霧した海水41を蒸発させる熱電素子68の加熱部72を露出させ、一方凝縮室8内の蒸発した水蒸気を凝縮させる熱電素子68の冷却部73を露出させた熱電素子68を内管7に設置し、直流電流を印加して海水の蒸発と凝縮を同時に行うことにより熱交換を促進させることができる。  The action of the ninth problem solving means is that the heating part 72 of the thermoelectric element 68 that evaporates the seawater 41 sprayed in the evaporation chamber 9 is exposed, while the thermoelectric element 68 that condenses the evaporated water vapor in the condensation chamber 8 is cooled. Heat exchange can be promoted by installing the thermoelectric element 68 with the part 73 exposed in the inner pipe 7 and applying a direct current to simultaneously evaporate and condense seawater.

第10の課題解決手段による作用は、蒸発室9の内管壁面に付着した結晶塩類を淡水を撒水して洗い落として分離塩水貯留タンク50に貯留させ、分離塩水貯留タンク50の底部に超音波発振器52を設置して、貯留され超音波発振器52で分離した水を蒸発室9内に再度噴霧して蒸発させることで分離塩水51を濃縮し、溢れた分離塩水51を濃縮塩水排出管27から排出して海水の淡水化を促進させることができる。  The action of the tenth problem solving means is that crystal salts adhering to the inner tube wall surface of the evaporation chamber 9 are washed off with fresh water, stored in the separated salt water storage tank 50, and an ultrasonic oscillator is placed at the bottom of the separated salt water storage tank 50. 52, the water separated and separated by the ultrasonic oscillator 52 is sprayed again into the evaporation chamber 9 to evaporate it, thereby concentrating the separated salt water 51 and discharging the overflow separated salt water 51 from the concentrated salt water discharge pipe 27. Thus, desalination of seawater can be promoted.

上述したように本発明による海水の淡水化処理装置は、減圧した真空雰囲気で縦方向に設置した二重管の内側を蒸発室と、外側を凝縮室としたことで機密性が図れて装置が簡素化でき、上方向に噴霧することにより蒸発が促進されるためにエネルギ−の移動量も少なく、低ランニングコストで大量の海水を淡水化できる装置が低価格で提供できる。  As described above, the seawater desalination apparatus according to the present invention has an apparatus in which the inside of the double pipe installed in the vertical direction in a decompressed vacuum atmosphere is an evaporation chamber and the outside is a condensing chamber so that confidentiality can be achieved. Since the evaporation can be facilitated by spraying upward, the amount of energy transfer is small, and a device that can desalinate a large amount of seawater at a low running cost can be provided at a low price.

減圧した真空雰囲気で蒸発室下部の加熱コイル管又は熱伝素子により蒸発室内を加熱させ、海水を噴射ノズルから誘導ディフュ−ザ−中に噴射した電場処理と周囲から噴射量の3倍乃至4倍の加熱空気を吸引し回転する上昇気流を発生させて海水の蒸発を促進して凝縮室に流入させ、多段に設置した撒水ノズルから下向のディフュ−ザ−中に撒水して水蒸気を吸引しながら気液接触して凝縮し、更に冷却管で完全に凝縮することができる。  Electric field treatment in which the inside of the evaporation chamber is heated by a heating coil tube or a heat transfer element at the lower part of the evaporation chamber in a decompressed vacuum atmosphere, and seawater is injected into the induction diffuser from the injection nozzle, and the injection quantity from the surroundings is 3 to 4 times The heated air is sucked in to generate a rotating updraft to accelerate the evaporation of seawater and flow into the condensing chamber. Water is sucked into the diffuser in the downward direction from the water-spray nozzles installed in multiple stages. While condensing by gas-liquid contact, it can be completely condensed by a cooling pipe.

蒸発室内に多段に設置した集水リングで、霧化した海水の水蒸気が内管壁面に付着して水滴となった淡水を集水リングで受水して凝縮室に排出することで大幅に淡水化が促進される。更に、内管壁面に付着した結晶塩類を一定時間毎にリングヘッダ−の噴射ノズルから淡水を撒水して洗浄しながら塩水貯留タンクに洗い落として貯留し、タンクに設置した超音波発振器で塩水中の水を蒸発室に噴霧して塩水の濃縮を促進させることができる。  The water collecting rings installed in multiple stages in the evaporation chamber receive drastic water from the atomized seawater adhering to the wall surface of the inner tube to form water droplets. Is promoted. Furthermore, crystal salt adhering to the inner pipe wall surface is washed and stored in a salt water storage tank while washing with fresh water from a ring header spray nozzle at regular intervals, and then stored in a salt water storage tank using an ultrasonic oscillator installed in the tank. Water can be sprayed into the evaporation chamber to facilitate the concentration of brine.

蒸発室下部に設けた遠心式噴霧装置により、加熱した海水を駆動モ−タ−により回転するアトマイジングカップに供給し、周囲の加熱した空気を羽根車で吸引しアトマイジングカップの周囲から上方向に旋回させながら噴霧して蒸発させ淡水化することができる。  The centrifugal spraying device provided at the lower part of the evaporation chamber supplies heated seawater to the rotating atomizing cup that is rotated by the drive motor, and the surrounding heated air is sucked up by the impeller and upwards from the periphery of the atomizing cup. It can be sprayed while being swirled and evaporated to be desalinated.

波長がUV−C253,7nmの殺菌線を放射する紫外線殺菌灯を紫外線の透過が良い高純度の石英ガラス保護管に内装して設置し、紫外線殺菌灯を照射して、噴霧した海水より流入した各種の雑菌や細菌類の増殖を防ぐ他、病原性大腸菌O−157やレジオネラ菌を殺菌処理することで、HACCPに対応した衛生的な淡水を供給することができる。  An ultraviolet germicidal lamp that emits germicidal radiation with a wavelength of UV-C253, 7 nm was installed in a high-purity quartz glass protective tube with good ultraviolet transmission, irradiated with the ultraviolet germicidal lamp, and flowed from the sprayed seawater. In addition to preventing the growth of various bacteria and bacteria, sanitary fresh water corresponding to HACCP can be supplied by sterilizing pathogenic E. coli O-157 and Legionella.

磁気噴射ノズルから、加圧した海水に磁気の印加による電磁誘導を起こし、海水のクラスタ−を活性化させて表面張力を低下させることて海水中の塩類の分離と蒸発を促進させ、低ランニングコストで大量の海水を淡水化処理することができる。  Low magnetic running nozzle promotes the separation and evaporation of salt in seawater by inducing electromagnetic induction by applying magnetism to pressurized seawater and activating seawater clusters to reduce surface tension A large amount of seawater can be desalinated.

発明の実施するための最良の形態BEST MODE FOR CARRYING OUT THE INVENTION

以下、本発明の海水の淡水化方法の実施例を図面に基づいて詳細に説明する。本発明はこれに限定されるものでなく、淡水化される水質の状況や設置する場所の状況に応じて、適宜自由に変更できるものである。  Embodiments of the seawater desalination method of the present invention will be described below in detail with reference to the drawings. This invention is not limited to this, It can change suitably freely according to the condition of the quality of the water desalinated, and the condition of the place to install.

海水の淡水化装置の実施形態は図1のように、架台(図示せず)の上に縦方向に設置した内管7と外管5により構成して密閉された二重管3による海水淡水化装置1は、蒸発室9内の下部に設けた噴射ノズル20から上向きに噴射した海水41の沸点を下げ素早く蒸発させるには二重管3の内部の空気を排出し減圧して真空化する必要がある。そのため、蒸発室9の内で結晶化され落下し濃縮された分離塩水51を外部に排出する濃縮塩水配出管27の先端を、別途に設置した濃塩水タンク(図示せず)の中に引き入れ、内部に設置したエジェクタ−ポンプ(図示せず)がこの濃塩水をエジェクタ−部で排出する時発生する吸引力により二重管3内部の空気を吸引することで減圧した真空化雰囲気にされる。  As shown in FIG. 1, the embodiment of the seawater desalination apparatus is a seawater freshwater comprising a double pipe 3 that is composed of an inner pipe 7 and an outer pipe 5 that are installed vertically on a gantry (not shown) and sealed. In order to lower the boiling point of the seawater 41 jetted upward from the jet nozzle 20 provided in the lower part of the evaporation chamber 9 and quickly evaporate, the gasification apparatus 1 discharges the air inside the double pipe 3 and depressurizes it to make it vacuum. There is a need. Therefore, the tip of the concentrated salt water distribution pipe 27 that discharges the separated salt water 51 that has been crystallized, dropped and concentrated in the evaporation chamber 9 to the outside is drawn into a separately provided concentrated salt water tank (not shown). The vacuum pumping atmosphere is reduced by sucking the air inside the double pipe 3 by the suction force generated when the ejector pump (not shown) installed inside discharges this concentrated salt water at the ejector section. .

二重管3内側の蒸発室9の下部に設けた噴射ノズル20から、別途外部に設置した加熱水タンク(図示せず)に海水41を供給して加熱装置(例えば、加熱バ−ナ−又は電気ヒ−タ−など。)で温度を30℃乃至60℃前後に加熱し、海水供給管24の途中に設置した加圧ポンプ(図示せず)で噴射圧力を0,7MPa乃至1,4MPa前後に加圧して、外部を保温した加熱海水供給管26により蒸発室9の底部より噴射ノズル20に加圧した状態で供給される。  Seawater 41 is supplied from a spray nozzle 20 provided in the lower part of the evaporation chamber 9 inside the double pipe 3 to a heated water tank (not shown) separately installed outside, and a heating device (for example, a heating burner or The temperature is heated to about 30 ° C. to 60 ° C. with an electric heater, etc.), and the injection pressure is about 0.7 MPa to about 1.4 MPa with a pressure pump (not shown) installed in the middle of the seawater supply pipe 24. , And is supplied to the injection nozzle 20 from the bottom of the evaporation chamber 9 by the heated seawater supply pipe 26 that keeps the outside warm.

噴射ノズル20の先端央部に設けた微細な噴射孔から上方向に噴射角度を8度乃至9度(点線で図示した。)前後の狭角度で霧状に噴射された海水41は、蒸発室9の内部を上昇する過程で、減圧された真空状態によるため沸点温度が低下することで急激に蒸発する一方、海水41中の塩類は蒸発室9の内管壁面12に付着して増晶されて重くなると内管壁面12から剥離落下することで海水の水蒸気から除去され、水蒸気は蒸発室9内管7の上端部に設けた網目孔15から凝縮室8の内部に流入させる。  Seawater 41 sprayed in the form of a mist at a narrow angle around 8 to 9 degrees (shown by dotted lines) from a fine injection hole provided at the center of the tip of the injection nozzle 20 is an evaporation chamber. In the process of rising inside 9, the boiling point temperature is lowered due to the reduced vacuum state, so that the salt in seawater 41 adheres to the inner tube wall surface 12 of the evaporation chamber 9 and is crystallized. When it becomes heavier, it peels off from the inner tube wall surface 12 and is removed from the water vapor of the seawater, and the water vapor flows into the condensation chamber 8 from the mesh hole 15 provided at the upper end of the inner tube 7 of the evaporation chamber 9.

蒸発室9内管7の中間部から頂部の間に多段(図示では2段で表示。)に設置した集水リング33で、噴射ノズル20から上向に噴霧された海水41が減圧加湿雰囲気で蒸発して水蒸気となり、その一部が内管壁面12に付着し結露して水滴となり淡水として流下して集水リング33で受水される、集水リング33に貯留された淡水は内管7を貫通して接続されたPトラップ管29の貯水面18まで一旦貯留され、貯水面18より溢れた淡水がPトラップ管29の管末を介して凝縮室8の内部に淡水として排出されることで、海水の淡水化が促進される。  Seawater 41 sprayed upward from the injection nozzle 20 in a multi-stage (shown in the figure as two stages) between the middle part and the top part of the inner pipe 7 of the evaporation chamber 9 is a decompressed humidified atmosphere. The water vapor evaporates, a part of which adheres to the inner pipe wall surface 12 and is condensed to form water droplets and flows down as fresh water and is received by the water collection ring 33. The fresh water stored in the water collection ring 33 is the inner pipe 7. The fresh water that has been temporarily stored up to the water storage surface 18 of the P trap pipe 29 connected through the water and discharged from the water storage surface 18 is discharged as fresh water into the condensation chamber 8 through the end of the P trap pipe 29. Therefore, desalination of seawater is promoted.

凝縮室8の内部に導入された海水41から気化した水蒸気は、凝縮室8下部の淡水貯留タンク48に溜まった淡水43を、外部に設置した撒水ポンプ39を用い吸引して凝縮室8の頂部に設けた撒水ノズル21から下方向に散水して気液接触することで水滴となり下降気流を発生させながら凝縮室8内部を下降する。水滴化されず残った水蒸気は多段に設置した撒水ノズル21で同様に気液接触して液化される。それでも残った水蒸気は冷却管22に接触冷却して完全に液化し淡水となり淡水貯留タンク48に流下貯留される。  The water vapor evaporated from the seawater 41 introduced into the condensing chamber 8 sucks the fresh water 43 accumulated in the fresh water storage tank 48 below the condensing chamber 8 using a submersible pump 39 installed outside, and the top of the condensing chamber 8. The water is sprayed downward from the submerged nozzle 21 provided in the water and comes into contact with the gas and liquid to form water droplets and descend the inside of the condensation chamber 8 while generating a descending airflow. The water vapor remaining without being formed into water droplets is liquefied by gas-liquid contact in the same manner at the submerged nozzles 21 installed in multiple stages. Still, the remaining water vapor is contact-cooled to the cooling pipe 22 to be completely liquefied to become fresh water, which flows down and stored in the fresh water storage tank 48.

冷却管22内の水は、外部に設置した海水タンク(図示せず)内のコイル管で海水と熱交換して水温が10℃乃至15℃前後に冷やされた冷却水として循環ポンプ(図示せず)で冷却管22内を循環する。水蒸気との接触で温まった冷却水は再び海水タンクに戻されてコイル管で冷たい海水と熱交換され冷却水として再循環される。  The water in the cooling pipe 22 is a circulation pump (not shown) as cooling water in which the water temperature is cooled to about 10 ° C. to 15 ° C. by exchanging heat with sea water in a coil pipe in a sea water tank (not shown) installed outside. In the cooling pipe 22. The cooling water warmed by the contact with the water vapor is returned to the seawater tank again, heat exchanged with the cold seawater in the coil tube, and recirculated as cooling water.

蒸発室9と凝縮室8との熱電導を遮断するために施した断熱材11と、外管5との間を流下する淡水43の蒸発室9内部への流入を防止するために設けた、飛散防止フィルタ−16と気水分離網17により淡水と分離された冷気は、内管7の下部に設けた鎧孔14より蒸発室9の中に流入して循環させることで外部空気の流入を最小限に抑えて熱効率良く海水を淡水化させる。  Provided to prevent the inflow of fresh water 43 flowing down between the outer pipe 5 and the heat insulating material 11 applied to block the thermal conduction between the evaporation chamber 9 and the condensation chamber 8 into the evaporation chamber 9; The cold air separated from the fresh water by the anti-scattering filter 16 and the air / water separation network 17 flows into the evaporation chamber 9 through the armor hole 14 provided in the lower part of the inner pipe 7 and circulates, thereby allowing the inflow of external air. Desalin seawater with minimal heat efficiency.

凝縮室8最下部の淡水貯留タンク48に貯えられた淡水43は、外管5の管体に孔を介して外部に設置し逆U字形状に配置された封水トラップ管30の淡水貯留タンク48側の先端口を淡水貯留タンク48底面位置まで配管し、逆U字形の上端部を淡水43の貯水面18位置に配管することで封水を保ち、二重管3外側の封水トラップ管30に上方向に通気管78を接続して大気中に開放させることで、二重管3内に外部から空気の進入を遮断して二重管3の内部の真空を保ちながら、封水トラップ効果により貯水面18を一定の水位を維持して、貯水面18より溢れた淡水43だけが外部に自動的に排出される。  The fresh water 43 stored in the fresh water storage tank 48 at the lowermost part of the condensing chamber 8 is installed outside in the tubular body of the outer pipe 5 through a hole and arranged in an inverted U-shape. 48 is connected to the bottom surface of the fresh water storage tank 48 and the upper end of the inverted U-shape is connected to the water storage surface 18 of the fresh water 43 to keep the sealed water. 30 is connected to the vent pipe 78 in the upward direction and is opened to the atmosphere, thereby blocking the ingress of air into the double pipe 3 from the outside and maintaining the vacuum inside the double pipe 3 while keeping the sealed trap As a result, the water storage surface 18 is maintained at a constant water level, and only the fresh water 43 overflowing from the water storage surface 18 is automatically discharged to the outside.

蒸発室9下部の内部温度を上昇させ海水の蒸発を促進させるには図2のように、二重管3の中側に設けた蒸発室9の下部に加熱コイル管31を配置し、外部に別途設置した加熱水タンク(図示せず)により加熱水の水温を30℃乃至60℃前後に加熱させて加熱コイル管31に供給して加熱する。又同時に、凝縮室8内の冷却管22で凝縮され気水を完全に分離して鎧孔14より流入する冷却された気体を、加熱コイル管31で加熱することで蒸発室9内部の温度が昇温されることと、減圧された真空雰囲気により噴射ノズル20から霧状に噴射した海水41の霧の沸点を下げることの両方で、非常に少ないエネルギ−で水蒸気にさせる。  In order to increase the internal temperature of the lower portion of the evaporation chamber 9 and promote the evaporation of seawater, a heating coil tube 31 is disposed at the lower portion of the evaporation chamber 9 provided inside the double tube 3 as shown in FIG. The water temperature of the heated water is heated to about 30 ° C. to about 60 ° C. by a separately installed heated water tank (not shown) and supplied to the heating coil tube 31 for heating. At the same time, the cooling gas 22 condensed in the cooling pipe 22 in the condensing chamber 8 is completely separated and the cooled gas flowing from the armor hole 14 is heated by the heating coil pipe 31, so that the temperature inside the evaporation chamber 9 is increased. Both by raising the temperature and lowering the boiling point of the mist of the seawater 41 jetted in a mist form from the jet nozzle 20 in a reduced-pressure vacuum atmosphere, steam is generated with very little energy.

蒸発室9下部中央部に設置した噴射ノズル20に接続した海水供給管24の途中に設置した加圧ポンプ(図示せず)で海水の噴射圧力を0.7MPa乃至1.4MPa前後に加圧し、スプレ−噴射角度を(点線で表示)8°乃至10°前後の狭角度で、外周部に絶縁コイル67を巻いて交流電流を印加して発生した交流電場(例えば、5kV乃至20kVなど。)を付与する誘導ディフュ−ザ−53の中に噴射された海水41の霧は、電場によるファラデ−の電磁誘導に基づき磁力方向と直角に作用するロ−レンツ力により発生した界面活性作用と、減圧された真空雰囲気により沸点温度が低下することに起因する相乗効果により、蒸発室9の内部を旋回上昇する過程で噴射された海水の霧から、塩類物質を遠心分離しながら海水の霧は急激に蒸発して水蒸気となり旋回上昇されながら内管壁面12に付着して水滴となった淡水か蒸発室9内に多段に設置した集水リング33に流下して受水され、集水リング33に溜まった淡水は内管壁面12を貫通して接続されたPトラップ管29を介して、凝縮室8に淡水として供給される。  Pressurizing the seawater injection pressure to around 0.7 MPa to 1.4 MPa with a pressurizing pump (not shown) installed in the middle of the seawater supply pipe 24 connected to the injection nozzle 20 installed in the lower central part of the evaporation chamber 9, An alternating electric field (for example, 5 kV to 20 kV, etc.) generated by applying an alternating current by winding the insulating coil 67 around the outer peripheral portion at a narrow angle of 8 ° to 10 ° (indicated by a dotted line) with a spray injection angle (displayed by a dotted line). The mist of the seawater 41 injected into the induction diffuser 53 to be applied is depressurized and the surface active action generated by the Lorentz force acting perpendicular to the direction of the magnetic force based on the electromagnetic induction of the Faraday by the electric field. Due to the synergistic effect caused by the lowering of the boiling point temperature by the vacuum atmosphere, the seawater mist rapidly abruptly centrifuges the salt substance from the seawater mist jetted in the process of swirling up inside the evaporation chamber 9 Fresh water that has evaporated and turned into water vapor and swirled up and adhered to the inner tube wall surface 12 as water droplets flows down into the water collecting ring 33 installed in multiple stages in the evaporation chamber 9 and is received and collected in the water collecting ring 33. The fresh water is supplied as fresh water to the condensing chamber 8 through a P trap pipe 29 that is connected through the inner pipe wall surface 12.

凝縮室8下部に設けた鎧孔14から凝縮作業により冷却管22で冷却されて流入する気水分離された冷気を、蒸発室9下部に設けた加熱コイル管31で加熱して誘導ディフュ−ザ−53に吸引し、更に、誘導ディフュ−ザ−53により電場を印加することにより沸点温度を下げて噴霧した海水の蒸発を促進させながら、旋回上昇により発生した遠心力により比重の重い塩類物質は内管壁面12に次々と付着した塩類は乾燥されるため結晶化し、集水リング33より上部に旋回上昇した海水の水蒸気は、内管壁面12に付着して水滴となった淡水が流下して集水リング33で受水されて凝縮室8に排出される。結晶塩類は、外部に設置された撒水ポンプ39で淡水43を吸引して淡水供給管25から一定時間毎に電磁バルブ69を開弁させて、集水リング33の下側に設けたリングヘッダ−10の噴射ノズル20から淡水43を噴射して内管壁面12に付着した塩類などの結晶を洗い落とし、蒸発室9下部の分離塩水貯留タンク50に分離塩水51とし貯留される。  The cold air separated from the steam and cooled by the cooling pipe 22 by the condensing operation from the armor hole 14 provided at the lower part of the condensing chamber 8 is heated by the heating coil pipe 31 provided at the lower part of the evaporating chamber 9 to be induced diffuser. The salt material having a high specific gravity is caused by the centrifugal force generated by the swirl rise while the boiling point temperature is lowered by applying an electric field by the induction diffuser 53 to promote evaporation of the sprayed seawater. The salt adhering to the inner pipe wall surface 12 is crystallized because it is dried, and the water vapor of the seawater swirled upwards from the water collection ring 33 flows into the inner pipe wall surface 12 as fresh water. Water is received by the water collection ring 33 and discharged to the condensation chamber 8. The crystalline salt is a ring header provided under the water collecting ring 33 by sucking the fresh water 43 with a submersible pump 39 installed outside and opening the electromagnetic valve 69 from the fresh water supply pipe 25 at regular intervals. Fresh water 43 is sprayed from the 10 injection nozzles 20 to wash away crystals such as salts adhering to the inner tube wall surface 12 and stored as separated salt water 51 in a separated salt water storage tank 50 below the evaporation chamber 9.

凝縮室8の内部に導入された水蒸気は、凝縮室8下部の淡水貯留タンク48に溜まった淡水43を外部に設置した撒水ポンプ39で揚程し、凝縮室8の頂部に設けた撒水ノズル21で下向のディフュ−ザ−13の中に撒水して、周囲の水蒸気を吸引しながら撒水量の3倍乃至4倍の下降気流を発生させ気液接触しながら凝縮して水滴となる。更に凝縮室8の内部で多段に設置された撒水ノズル21からディフュザ−13に淡水43が撒水して気液接触しながら凝縮し最終的に下部に設けた冷却管22で冷やされて完全に凝縮する。  The water vapor introduced into the condensing chamber 8 is pumped by a submersible pump 39 installed outside the fresh water 43 stored in a fresh water storage tank 48 below the condensing chamber 8, and is supplied by a submerged nozzle 21 provided at the top of the condensing chamber 8. Water is poured into the downward diffuser 13 to generate a descending air flow 3 to 4 times the amount of water dripping while sucking the surrounding water vapor, condensing it into gas droplets and condensing into water droplets. Further, fresh water 43 is submerged from the submerged nozzles 21 installed in multiple stages inside the condensing chamber 8 to the diffuser 13 and condensed while contacting with gas and liquid, and finally cooled by the cooling pipe 22 provided at the lower part to be completely condensed. To do.

二重管3内部の空気を排出し減圧して真空雰囲気にするため、蒸発室9の内で結晶化して濃縮された分離塩水51を外部に排出する濃縮塩水配出管27の配管先の先端部を、別途外部に設置した、濃塩水タンク(図示せず。)の底部に配置したエジェクタ−ポンプ(図示せず。)の吸引側に結管されており、エジェクタ−ポンプが濃塩水を吸引して排出時に発生する吸引力により、二重管3の内部の空気を吸引することで真空化される。  In order to discharge the air inside the double pipe 3 and reduce the pressure to a vacuum atmosphere, the tip of the pipe end of the concentrated salt water distribution pipe 27 that discharges the separated salt water 51 crystallized and concentrated in the evaporation chamber 9 to the outside. Is connected to the suction side of an ejector pump (not shown) disposed at the bottom of a concentrated salt water tank (not shown) separately installed outside, and the ejector pump sucks the concentrated salt water. Then, the air inside the double pipe 3 is evacuated by the suction force generated at the time of discharge.

遠心式噴霧装置77による海水噴霧や紫外線殺菌灯19を内装した淡水化装置は図3のように、二重管3内部の蒸発室9の下部に設けた遠心式噴霧装置77では、加熱した海水41を駆動モ−タ−55により回転する中心軸を介して先端部に設けたアトマイジングカップ79に供給し、周囲の加熱コイル管31で加熱された空気を中心軸に軸着した羽根車56で吸引してアトマイジングカップ79の周囲から回転させながら噴出することで旋回運動を与えながら微粒化させ、上方向に噴霧して旋回上昇させながら発生した遠心力により比重の重い塩類物質は内管壁面12に次々と付着して乾燥され結晶化しながら水蒸気から分離させることで海水の淡水化を促進させることができる。  As shown in FIG. 3, the desalination apparatus in which the seawater spray by the centrifugal spraying device 77 and the ultraviolet germicidal lamp 19 are housed is the heated seawater in the centrifugal spraying device 77 provided in the lower part of the evaporation chamber 9 inside the double tube 3. 41 is supplied to an atomizing cup 79 provided at the tip through a central axis rotated by a drive motor 55, and the impeller 56 is attached to the central axis by the air heated by the surrounding heating coil tube 31. The salt material having a high specific gravity is absorbed by the centrifugal force generated by spraying upward and swirling up by spraying it upwards and spraying it while rotating from the periphery of the atomizing cup 79. Desalination of seawater can be promoted by separating from water vapor while adhering to the wall surface 12 one after another and drying and crystallizing.

蒸発室9の下部に加熱コイル管31を配置し、別途設置した加熱水タンク(図示せず)により水温を30℃乃至60℃前後に加熱させた海水を加熱コイル管31に供給すると同時に、凝縮室8内の冷却管22で凝縮され気水を完全に分離して鎧孔14より流入する冷却された気体を、加熱コイル管31で昇温し遠心式噴霧装置77の側面から羽根車56により吸引して回転するアトマイジングカップ79の周囲で海水41と混合させて微粒化させ、減圧された真空雰囲気の蒸発室9の内部で上方向にスプレ−する噴射角度を(図示の点線で表示した。)8°乃至10°前後の狭角度て旋回させながら霧状に噴射させる。  A heating coil pipe 31 is arranged in the lower part of the evaporation chamber 9 and seawater heated to about 30 ° C. to 60 ° C. by a separately installed heating water tank (not shown) is supplied to the heating coil pipe 31 and condensed at the same time. The cooled gas which is condensed in the cooling pipe 22 in the chamber 8 and completely separates the air and water and flows in from the armor hole 14 is heated by the heating coil pipe 31 and is impeller 56 from the side of the centrifugal spray device 77. An injection angle (indicated by a dotted line in the figure) is sprayed upward in the evaporation chamber 9 in a vacuum atmosphere in which the atomized cup 79 is mixed with the seawater 41 around the atomizing cup 79 that is sucked and rotated and atomized. .) It is sprayed in the form of a mist while turning at a narrow angle of around 8 ° to 10 °.

回転上昇による遠心力により比重の重い塩類物質は内管壁面12に付着して加熱されることで結晶化する。蒸発室9の内管壁面12に設けた集水リング33の下側にリングヘッダ−10を設置し、凝縮室8の外部に設置した撒水ポンプ39で淡水43を吸引して淡水供給管25を介して一定時間毎に電磁バルブ69を開弁させて、リングヘッダ−10下側の噴射ノズル20から淡水43を噴射して内管壁面12に付着した塩類の結晶を洗い落とし、蒸発室9下部の分離塩水貯留タンク50に分離塩水51とし貯留される。  The salt substance having a high specific gravity adheres to the inner tube wall surface 12 due to the centrifugal force caused by the rotation and is crystallized by being heated. A ring header-10 is installed below the water collection ring 33 provided on the inner pipe wall surface 12 of the evaporation chamber 9, and fresh water 43 is sucked by a fresh water pump 39 installed outside the condensing chamber 8. The electromagnetic valve 69 is opened at regular intervals, and fresh water 43 is jetted from the jet nozzle 20 below the ring header 10 to wash away the crystals of salts adhering to the inner pipe wall surface 12. Separated salt water 51 is stored in the separated salt water storage tank 50.

霧状に噴射した海水41に混入するグラム陰性菌やグラム陽性菌、病原性大腸菌の他カビ類などの雑菌類は、二重管3内部の高温多湿の条件により菌類やカビ類及び微生物が増殖する。その増殖を阻止殺菌させるため、波長がUV−C253,7nmの殺菌線を放射する紫外線殺菌灯19(例えば、岩崎電気株式会社、低圧水銀ランプなど。)を紫外線の透過が良い高純度の石英ガラス保護管58に内装して設置し、蒸発室9及び凝縮室8の頂部から垂直に設置した紫外線殺菌灯19により紫外線を照射しサルモネラ菌、病原性大腸菌O−157やレジオネラ菌などを殺菌処理したものである。  As for miscellaneous fungi such as gram-negative bacteria and gram-positive bacteria, pathogenic Escherichia coli and other fungi mixed in the sprayed seawater 41, fungi, fungi and microorganisms grow under conditions of high temperature and humidity inside the double tube 3 To do. In order to prevent and sterilize its growth, an ultraviolet germicidal lamp 19 (for example, Iwasaki Electric Co., Ltd., low-pressure mercury lamp, etc.) that emits germicidal radiation with a wavelength of UV-C253, 7 nm is used for high-purity quartz glass with good ultraviolet transmission Installed in a protective tube 58 and sterilized with Salmonella, pathogenic Escherichia coli O-157, Legionella, etc. by irradiating ultraviolet rays with an ultraviolet germicidal lamp 19 installed vertically from the top of the evaporation chamber 9 and the condensation chamber 8 It is.

紫外線殺菌灯19の波長は限定されたものでなく、例えば波長をUV−C185nmの紫外線を照射するとオゾンが発生するため、蒸発室9内に噴霧した海水41に含まれる藻類臭、カビ臭、硫化水素臭、フエノ−ルなどの臭気はオゾンの分解力で消臭することができる他、各種の細菌類の殺菌処理もできる。  The wavelength of the ultraviolet germicidal lamp 19 is not limited. For example, ozone is generated when an ultraviolet ray having a wavelength of UV-C 185 nm is irradiated. Therefore, algae odor, mold odor, sulfurization contained in the seawater 41 sprayed in the evaporation chamber 9. Odors such as hydrogen odor and phenol can be deodorized by the decomposing power of ozone, and various bacteria can be sterilized.

凝縮室8下部の淡水貯留タンク48に溜まった冷却された淡水43は、外部に設置された撒水ポンプ39を用いて凝縮室8の頂部まで揚程され、頂部に設けた撒水ノズル21から下方向に撒水することで蒸発室9の内部で気化した水蒸気が気液接触して水滴となり下降気流を発生させながら流下する。更に中段部で多段(図示では、1段で表示。)に設けた撒水ノズル21から再度淡水43が撒水されて気液接触されることで水滴となる量が加速される。  The cooled fresh water 43 collected in the fresh water storage tank 48 below the condensing chamber 8 is lifted to the top of the condensing chamber 8 by using a submersible pump 39 installed outside, and downward from the submerged nozzle 21 provided on the top. Water vapor vaporized inside the evaporation chamber 9 by spraying water makes gas-liquid contact to form water droplets and flow down while generating a downdraft. Furthermore, the amount of water droplets is accelerated by fresh water 43 being again submerged and brought into gas-liquid contact from the submerged nozzle 21 provided in multiple stages (shown as one stage in the figure) in the middle stage.

更に、図示では中段部より下位置に設けた冷却管22(長さは特定されたものでなく、淡水化する水質の条件や設置場所に応じて適宜変更できる。)は、外部に設置した冷却水タンク(図示せず)に内装された冷却コイル管により冷却水49の水温を10℃乃至15℃前後に海水41で熱交換されて冷やされた冷却水49を、循環ポンプ(図示せず)により海水タンクから冷却管22に循環させることで、凝縮室8上部及び中段部での撒水により水滴になれず残った水蒸気は、更に冷却管22に接触することにより完全に凝縮されて流下し、凝縮室8最下部の淡水貯留タンク48に貯留される。  Further, in the drawing, the cooling pipe 22 provided below the middle stage (the length is not specified and can be appropriately changed according to the condition of the water quality to be desalinated and the installation location) is a cooling installed outside. The cooling water 49 cooled by the heat exchange of the cooling water 49 with the seawater 41 at a temperature around 10 ° C. to 15 ° C. is cooled by a cooling coil pipe installed in a water tank (not shown). By circulating the water from the seawater tank to the cooling pipe 22, the water vapor remaining without becoming water droplets due to flooding in the upper part and middle part of the condensing chamber 8 is further completely condensed by flowing into the cooling pipe 22 and flows down. It is stored in a fresh water storage tank 48 at the bottom of the condensing chamber 8.

淡水貯留タンク48に貯えられた淡水43は、外管5に設置した逆U字形状の封水トラップ管30の先端口を淡水貯留タンク48底面位置まで配管し、逆U字形の上端部を淡水43の貯水面18の位置に配管することで封水を保ち、淡水貯留タンク48より溢れた淡水43だけが外部に自動的に排出される。  The fresh water 43 stored in the fresh water storage tank 48 is formed by piping the tip end of the inverted U-shaped sealed trap pipe 30 installed in the outer pipe 5 to the position of the bottom surface of the fresh water storage tank 48 and the upper end of the inverted U-shaped fresh water as fresh water. 43 is connected to the water storage surface 18 to keep the sealed water, and only the fresh water 43 overflowing from the fresh water storage tank 48 is automatically discharged to the outside.

磁気噴射ノズル36を用いて海水の淡水化を促進させるには図4のように、蒸発室9下部の中心部に設置した磁気噴射ノズル36から上方向のディフュ−ザ−13の中に、噴射する海水41の温度を30℃乃至60℃前後に加熱し海水供給管24の途中に設置した加圧ポンプ(図示せず)で噴射圧力を0.7MPa乃至1.4MPa前後に加圧して磁気噴射ノズル36に供給すると、磁気噴射ノズル36通過時に磁気で印加された電磁誘導により、海水41中の塩化物イオンの分子間力とゼ−タ電位が変化するために遊離したヒドロキシル・イオンが陽イオン活性物質に変化することで海水41の表面張力が低下するため噴霧した海水41の蒸発を促進させる。  In order to promote desalination of seawater using the magnetic injection nozzle 36, as shown in FIG. 4, the injection is made into the upper diffuser 13 from the magnetic injection nozzle 36 installed at the center of the lower part of the evaporation chamber 9. The temperature of the seawater 41 to be heated is about 30 ° C. to 60 ° C., and the injection pressure is increased to about 0.7 MPa to 1.4 MPa by a pressurizing pump (not shown) installed in the middle of the seawater supply pipe 24 to perform magnetic injection. When supplied to the nozzle 36, due to electromagnetic induction applied magnetically when passing through the magnetic jet nozzle 36, the intermolecular force and zeta potential of chloride ions in the seawater 41 change, so that free hydroxyl ions are cations. Since the surface tension of the seawater 41 is reduced by changing to an active substance, evaporation of the sprayed seawater 41 is promoted.

磁気噴射ノズル36には、強力な1万ガウス前後の磁石(例えば、サマリュウムコバルト磁石、ネオジュウム系希土類鉄合金磁石など。)のN極とS極を交互に配列(図示例では、5段積層しているが段数は任意に変更でき特定されたものではない。)した磁石を向かい合わせて設置し、噴射する海水41の周囲から強力な磁力線を印加して、磁力線方向と直角方向に発生するロ−レンツ力により海水41のクラスタ−を活性化させる。  In the magnetic spray nozzle 36, N poles and S poles of powerful magnets of around 10,000 Gauss (for example, samarium cobalt magnets, neodymium rare earth iron alloy magnets, etc.) are alternately arranged (in the illustrated example, five layers are laminated). However, the number of stages can be changed arbitrarily and is not specified.) Installed magnets facing each other, applying strong magnetic field lines around the seawater 41 to be sprayed, and generating in a direction perpendicular to the direction of the magnetic field lines The cluster of the seawater 41 is activated by the Lorentz force.

磁気噴射ノズル36からスプレ−噴射角度を(点線で表示)8°乃至10°前後の狭角度で霧状に噴射され、減圧された真空状態によることで沸点温度が低下することと、海水41の表面張力が低下し界面活性作用を高めたことに起因して急激に蒸発しながら塩類物質を内管壁面12に付着分離されながら水蒸気となり、蒸発室9上端部に設けた網目孔15から凝縮室8の内部に流入させる。  The spray angle from the magnetic spray nozzle 36 (indicated by a dotted line) is sprayed in the form of a mist at a narrow angle of about 8 ° to 10 °, and the boiling point temperature is lowered due to the reduced vacuum state, and the seawater 41 The salt substance is attached to and separated from the inner tube wall surface 12 while vaporizing abruptly due to the decrease in the surface tension and the increase in the surface active action, resulting in water vapor and the condensation chamber from the mesh hole 15 provided at the upper end of the evaporation chamber 9. 8 is allowed to flow into the interior.

集水リング33より上部に旋回上昇した水蒸気は、内管壁面12に付着して水滴となった淡水が流下して集水リング33で受水されて凝縮室8に排出される。結晶塩類42は、一定時間毎に外部の撒水ポンプ39で淡水43を吸引して、集水リング33の下側に設けたリングヘッダ−10の噴射ノズル20から淡水43を噴射して内管壁面12に付着した塩類の結晶を洗い落とし、蒸発室9下部の分離塩水貯留タンク50に貯留される。  The water vapor swirling upward from the water collection ring 33 is attached to the inner pipe wall surface 12 and the fresh water that has become water droplets flows down, is received by the water collection ring 33, and is discharged into the condensation chamber 8. The crystalline salts 42 suck fresh water 43 by an external water pump 39 at regular intervals, and spray the fresh water 43 from the injection nozzle 20 of the ring header 10 provided below the water collection ring 33 to cause the inner pipe wall surface to The crystals of the salt adhering to 12 are washed away and stored in the separated salt water storage tank 50 below the evaporation chamber 9.

凝縮室8の内部に導入された海水41の水蒸気は、凝縮室8下部の淡水貯留タンク48に溜まった冷却された淡水43が、外部に設置された撒水ポンプ39で凝縮室8の頂部まで揚程され、頂部に設けた撒水ノズル21から下方向のディフュ−ザ−13の中に撒水することで海水41から気化した水蒸気が流入して気液接触し、その一部は水滴となり下降気流を発生させながら流下する。そして中段部に設けた撒水ノズル21から再度撒水され気液接触して凝縮水滴は一層増加する。  The water vapor of the seawater 41 introduced into the condensing chamber 8 is lifted to the top of the condensing chamber 8 by a fresh water pump 39 installed outside the cooled freshwater 43 accumulated in the freshwater storage tank 48 below the condensing chamber 8. Then, the water vapor evaporated from the seawater 41 flows into the diffuser 13 in the downward direction from the submerged nozzle 21 provided at the top, and the water vapor vaporized from the seawater 41 comes into gas-liquid contact, and a part of the water droplets become water droplets to generate a downdraft. And let it flow down. Then, the water is again sprayed from the submerged nozzle 21 provided in the middle part, and the condensed water droplets are further increased by coming into gas-liquid contact.

更に中段より下位置に設けた冷却管22は、外部に設置した海水タンク(図示せず)の中に設置された冷却コイル管(図示せず)により水温を10℃乃至15℃前後に熱交換された冷却水49を、循環ポンプ(図示せず)により冷却管22に循環させることで、凝縮室8上部及び中段部で気液接触により水滴になれず残った水蒸気は、冷却管22に接触することで完全に凝縮されて流下し、凝縮室8最下部の淡水貯留タンク48に貯留される。  Further, the cooling pipe 22 provided at a position below the middle stage heat-exchanges the water temperature to about 10 ° C. to 15 ° C. by a cooling coil pipe (not shown) installed in a seawater tank (not shown) installed outside. By circulating the cooled cooling water 49 to the cooling pipe 22 with a circulation pump (not shown), the remaining water vapor does not become water droplets due to gas-liquid contact at the upper and middle stages of the condensing chamber 8 and contacts the cooling pipe 22. By doing so, it is completely condensed and flows down, and is stored in the fresh water storage tank 48 at the bottom of the condensing chamber 8.

冷却管22の構造は、下側に流入用のリングヘッダ−と上側に流出用のリングヘッダ−を設けたその間に、ステンレス鋼管の二方向に冷却効率を促進させるためのプレ−トフィンを溶接して縦方向に設置したものであるが、その材質や構造は限定されたものでは無く(例えば、銅管、ステンレス製フレキシブルコイル管、チタン製フレキシブルコイル管、フル−テッド管など。)熱交換性能の優れた冷却管を用いることで耐久性と熱交換能力は更に向上するが、製作コストと淡水化する水質条件に応じて、適宜使用する材質や構造を選定して用いることができる。  The cooling pipe 22 has a structure in which a plate fin for promoting cooling efficiency in two directions of the stainless steel pipe is welded between the ring header for inflow on the lower side and the ring header for outflow on the upper side. However, the material and structure are not limited (for example, copper tube, stainless steel flexible coil tube, titanium flexible coil tube, and fluidized tube). Although the durability and heat exchange capability are further improved by using the excellent cooling pipe, materials and structures to be used can be appropriately selected and used according to the production cost and the water quality conditions for desalination.

淡水貯留タンク48に貯えられた淡水43は、外管5を貫通して設置された逆U字形状の封水トラップ管30の先端口を底面位置まで配管し、逆U字形の上端部を淡水43の貯水面18の位置に配管して封水することで蒸発室9の気密が保たれ、淡水貯留タンク48の貯水面18より溢れた淡水43だけが封水トラップ管30を介して外部に自動的に排出される。  The fresh water 43 stored in the fresh water storage tank 48 is formed by piping the tip end of the inverted U-shaped sealed water trap pipe 30 installed through the outer pipe 5 to the bottom surface and setting the upper end of the inverted U-shaped fresh water to the fresh water. 43 is sealed by piping to the water storage surface 18 so that the evaporation chamber 9 is kept airtight, and only the fresh water 43 overflowing from the water storage surface 18 of the fresh water storage tank 48 is exposed to the outside through the water sealing trap tube 30. Automatically discharged.

蒸発室9内に噴霧した海水41の蒸発を促進させるためのペルチェ効果を応用した電子冷却装置(例えば、株式会社高木製作所など、冷却と加熱が同一の装置で同時にできるもの。)熱電素子68で最高加熱温度が200℃の加熱部72を露出して、一方凝縮室8内に蒸発した海水の凝縮を促進させる熱電素子68で最低冷却温度が−30℃冷却部73を露出させた熱電素子68を内管7に図示では3段に設置して9Aで17V前後の直流電流を印加することで、効率良く蒸発室9内は加熱され外側の凝縮室8内を熱電素子68で熱交換できるため太陽光発電パネル(図示せず)などにより発電した直流電流を直接変換することなく印加できるため自然エネルギ−を用いて海水を淡水化することができる。  A thermoelectric device 68 that applies the Peltier effect for promoting the evaporation of the seawater 41 sprayed in the evaporation chamber 9 (for example, one that can be cooled and heated at the same time by the same device, such as Takagi Mfg. Co., Ltd.) A thermoelectric element 68 that exposes the heating section 72 having a maximum heating temperature of 200 ° C. and exposes the cooling section 73 having a minimum cooling temperature of −30 ° C. with a thermoelectric element 68 that promotes condensation of seawater evaporated in the condensation chamber 8. Is installed in three stages in the inner pipe 7 and a direct current of about 17 V is applied at 9A, so that the inside of the evaporation chamber 9 is efficiently heated and the inside of the outer condensing chamber 8 can be heat exchanged by the thermoelectric element 68. Since direct current generated by a photovoltaic power generation panel (not shown) or the like can be applied without direct conversion, seawater can be desalinated using natural energy.

分離塩水貯留タンク50の底部に超音波発振器52を設置して、貯留した分離塩水51中の水を超音波により再度蒸発室9内に噴霧して蒸発させることで分離塩水51を濃縮し、濃縮して溢れた分離塩水51を濃縮塩水排出管27の配管先の先端部を、別途設置した濃塩水タンク(図示せず)の中に配置したエジェクタ−ポンプ(図示せず)に結管して、エジェクタ−ポンプが濃塩水を吸引して排出する時発生する吸引力により、蒸発室9内の分離塩水51を排出すると同時に二重管3の内部の空気を吸引することで真空化させる。  An ultrasonic oscillator 52 is installed at the bottom of the separated salt water storage tank 50, and the separated salt water 51 is concentrated and concentrated by spraying and evaporating the water in the stored separated salt water 51 into the evaporation chamber 9 again by ultrasonic waves. Then, the separated salt water 51 overflowed is connected to the ejector pump (not shown) disposed in the separately provided concentrated salt tank (not shown) at the tip of the pipe of the concentrated salt water discharge pipe 27. Then, the suction force generated when the ejector pump sucks and discharges the concentrated salt water discharges the separated salt water 51 in the evaporation chamber 9 and at the same time sucks the air in the double pipe 3 to make it vacuum.

本発明の淡水化装置の実施例を示す縦断面詳細図である。  It is a longitudinal cross-sectional detail figure which shows the Example of the desalination apparatus of this invention. 本発明の第2実施例を示す縦断面詳細図である。  It is a longitudinal cross-sectional detail drawing which shows 2nd Example of this invention. 本発明の第3実施例を示す縦断面詳細図である。  It is a longitudinal cross-sectional detail drawing which shows 3rd Example of this invention. 本発明の第4実施例を示す縦断面詳細図である。  It is a longitudinal cross-sectional detail drawing which shows 4th Example of this invention.

符号の説明Explanation of symbols

5 外管
8 凝縮室
9 蒸発室
10 リングヘッダ−
12 内管壁面
13 ディフュ−ザ−
14 鎧孔
16 飛散防止フイルタ−
19 紫外線殺菌灯
20 噴射ノズル
21 撒水ノズル
22 冷却管
29 Pトラップ管
31 加熱コイル管
36 磁気噴射ノズル
39 撒水ポンプ
42 結晶塩類
53 誘導ディフュ−ザ−
55 駆動モ−タ−
58 石英ガラス保護管
67 絶縁コイル
77 遠心式噴霧装置
78 通気管
5 Outer tube 8 Condensing chamber 9 Evaporating chamber 10 Ring header
12 Wall surface of inner pipe 13 Diffuser
14 Armor hole 16 Anti-scatter filter
DESCRIPTION OF SYMBOLS 19 Ultraviolet germicidal lamp 20 Injection nozzle 21 Flooding nozzle 22 Cooling pipe 29 P trap pipe 31 Heating coil pipe 36 Magnetic injection nozzle 39 Flooding pump 42 Crystalline salt 53 Induction diffuser
55 Driving motor
58 Quartz glass protective tube 67 Insulation coil 77 Centrifugal spraying device 78 Ventilation tube

Claims (10)

減圧した真空雰囲気で縦方向に設置した二重管中側の蒸発室の下部に設けた噴射ノズルから海水を上向に噴霧して蒸発させ、内管上部の網目孔より外側の凝縮室に流入させ、凝縮室の頂部と中間部で多段に設置した撒水ノズルから淡水を撒水して気液接触しながら水滴とし、残りの水蒸気は冷却管で完全に凝縮して淡水を製造し、気水分離網を介して気体を内管下部の鎧孔より蒸発室の中に循環させたことを特徴とする海水の淡水化装置。  Seawater is sprayed upward from the spray nozzle provided in the lower part of the evaporation chamber on the inner side of the double pipe installed in the vertical direction in a decompressed vacuum atmosphere to evaporate and flow into the condensation chamber outside the mesh hole in the upper part of the inner pipe Fresh water is submerged from the submerged nozzles installed in multiple stages at the top and middle of the condensing chamber to form water droplets while making gas-liquid contact, and the remaining water vapor is completely condensed in the cooling pipe to produce fresh water. A seawater desalination apparatus in which a gas is circulated into an evaporation chamber through an armor hole at the bottom of an inner pipe through a net. 蒸発室下部に加熱コイル管を配置して蒸発室内を加熱し、中心部の噴射ノズルから外周に絶縁コイルを巻いた誘導ディフュ−ザ−の中に加圧した海水を噴射し、周囲から噴射量の3倍乃至4倍の加熱空気を吸引して電場処理しながら霧化し、上方向に旋回させながら噴霧して海水の霧から塩類の分離と蒸発を促進させたことを特徴とする海水の淡水化装置。  A heating coil tube is arranged at the lower part of the evaporation chamber to heat the evaporation chamber, and pressurized seawater is injected from an injection nozzle in the center into an induction diffuser in which an insulating coil is wound around the outer periphery. Fresh water of seawater characterized in that it is sprayed while sucking 3 to 4 times heated air and electric field treatment and spraying while rotating upward to promote separation and evaporation of salt from seawater mist Device. 蒸発室内の中間部から頂部に集水リングを多段に設置し、噴射ノズルから上向に噴霧された海水が減圧加湿雰囲気で蒸発し、内管壁面に付着して結露し水滴となって流下した淡水を集水リングで受水して貯留し、貯留水面より溢れた淡水は内管壁面を貫通して接続されたPトラップ管を介して凝縮室内に供給して淡水化を促進したことを特徴とする海水の淡水化装置。  Water collecting rings are installed in multiple stages from the middle to the top of the evaporation chamber, and the seawater sprayed upward from the injection nozzle evaporates in a reduced-pressure humidified atmosphere, adheres to the inner tube wall surface, and condenses to flow down as water droplets. Fresh water is received by the water collection ring and stored, and fresh water overflowing from the stored water surface is supplied into the condensing chamber through a P trap pipe connected through the inner pipe wall surface to promote desalination. Seawater desalination equipment. 凝縮室内の頂部と中間部で多段に設置した撒水ノズルから、下向のディフュ−ザ−の中に、淡水貯留タンクから撒水ポンプを介して供給された淡水を撒水し、周囲の水蒸気を吸引しながら撒水量の3倍乃至4倍の下降気流を発生させ気液接触させながら水滴とし、冷却管にも撒水ノズルより淡水を撒水して残りの水蒸気を完全に凝縮させたことを特徴とする海水の淡水化装置。  The fresh water supplied from the fresh water storage tank via the fresh water pump is poured into the downward diffuser from the fresh water nozzles installed in multiple stages at the top and middle of the condensing chamber, and the surrounding water vapor is sucked in. However, seawater is characterized by generating a downdraft that is 3 to 4 times the amount of drowned water and making water droplets while making gas-liquid contact, and then dripping fresh water into the cooling pipe from the drowning nozzle to completely condense the remaining water vapor. Desalination equipment. 蒸発室内に設置した最下段の集水リングの直下にリングヘッダ−を設置し、内管壁面に付着した結晶塩類を一定時間毎にリングヘッダ−下側に設けた撒水ノズルから、淡水貯留タンクから撒水ポンプを介して供給された淡水を撒水して洗浄しながら洗い落とし、蒸発室下部の分離塩水貯留タンクに分離塩水とし貯留したことを特徴とする海水の淡水化装置。  A ring header is installed directly under the lowermost water collection ring installed in the evaporation chamber, and crystal salts adhering to the inner pipe wall surface are removed from the fresh water storage tank from the flood nozzle provided on the lower side of the ring header at regular intervals. A seawater desalination apparatus characterized in that fresh water supplied via a submergence pump is submerged and washed off while being washed and stored as separated salt water in a separated salt water storage tank below the evaporation chamber. 蒸発室下部に設けた遠心式噴霧装置により、加熱した海水を駆動モ−タ−により回転するアトマイジングカップに供給し、周囲の加熱した空気を羽根車で吸引しアトマイジングカップの中央部で混合させることで霧化し、上方向に旋回させながら噴霧して海水の霧から塩類の分離と蒸発を促進させたことを特徴とする海水の淡水化装置。  The centrifugal spraying device provided at the bottom of the evaporation chamber supplies heated seawater to the rotating atomizing cup that is rotated by the drive motor. The surrounding heated air is sucked by the impeller and mixed in the central part of the atomizing cup. A seawater desalination apparatus characterized by being atomized and sprayed while swirling upward to promote separation and evaporation of salts from seawater mist. 凝縮室及び蒸発室内部に、波長がUV−C253,7nmの殺菌線を放射する紫外線殺菌灯を紫外線の透過が良い高純度の石英ガラス保護管に内装して設置し、噴射した海水に含まれる病原性大腸菌O−157やレジオネラ菌なとの雑菌類他、カビ類を紫外線殺菌灯により照射して処理したことを特徴とする海水の淡水化装置。  Inside the condensing chamber and evaporation chamber, an ultraviolet germicidal lamp that emits germicidal radiation with a wavelength of UV-C253, 7 nm is installed in a high-purity quartz glass protective tube with good ultraviolet transmission, and is contained in the jetted seawater A seawater desalination apparatus characterized by treatment with various germs such as pathogenic Escherichia coli O-157 and Legionella, and other fungi by irradiation with an ultraviolet germicidal lamp. 蒸発室下部に設けた磁気噴射ノズルから、加圧した海水に磁気の印加により海水のクラスタ−を活性化して表面張力を低下させることで、海水の分離と蒸発を促進させたことを特徴とする海水の淡水化装置。  It is characterized in that the separation and evaporation of seawater is promoted by reducing the surface tension by activating the seawater cluster by applying magnetism to the pressurized seawater from the magnetic spray nozzle provided in the lower part of the evaporation chamber. Seawater desalination equipment. 蒸発室内に噴霧した海水を蒸発させる熱電素子の加熱部を露出させ、一方凝縮室内に水蒸気を凝縮させる熱電素子の冷却部を露出させた熱電素子を内管に設置し、直流電流を印加して海水の蒸発と凝縮による熱交換を促進させたことを特徴とする海水の淡水化装置。  The heating part of the thermoelectric element that evaporates the seawater sprayed in the evaporation chamber is exposed, while the thermoelectric element that exposes the cooling part of the thermoelectric element that condenses water vapor in the condensation chamber is installed in the inner tube, and a direct current is applied. A seawater desalination apparatus characterized by promoting heat exchange by evaporation and condensation of seawater. 蒸発室の内管壁面に付着した結晶塩類を洗い落として分離塩水貯留タンクに貯留させ、分離塩水貯留タンクの底部に超音波発振器を設置して、貯留され超音波発振器で分離した水を蒸発室内に噴霧して蒸発させることで分離塩水を濃縮し、溢れた分離塩水を濃縮塩水排出管から排出して海水の淡水化を促進させたことを特徴とする海水の淡水化装置。  Crystal salt adhering to the inner pipe wall of the evaporation chamber is washed off and stored in the separated salt water storage tank, and an ultrasonic oscillator is installed at the bottom of the separated salt water storage tank, and the water separated and separated by the ultrasonic oscillator is placed in the evaporation chamber. A seawater desalination apparatus characterized in that separated salt water is concentrated by spraying and evaporating, and overflowing separated salt water is discharged from a concentrated salt water discharge pipe to promote seawater desalination.
JP2007131042A 2007-04-16 2007-04-16 Seawater desalination device Withdrawn JP2008264749A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007131042A JP2008264749A (en) 2007-04-16 2007-04-16 Seawater desalination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007131042A JP2008264749A (en) 2007-04-16 2007-04-16 Seawater desalination device

Publications (1)

Publication Number Publication Date
JP2008264749A true JP2008264749A (en) 2008-11-06

Family

ID=40045007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007131042A Withdrawn JP2008264749A (en) 2007-04-16 2007-04-16 Seawater desalination device

Country Status (1)

Country Link
JP (1) JP2008264749A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101196837B1 (en) 2009-11-27 2012-11-01 대원열판(주) Apparatus for making fresh water by vacuum evaporation method together with a supersonic vibrator
CN102992425A (en) * 2012-11-20 2013-03-27 钱盘生 Unit component for low-temperature evaporating condensing of waste water
CN103058299A (en) * 2013-01-28 2013-04-24 钱盘生 Integrated low-temperature evaporation condensation unit assembly
RU2553880C2 (en) * 2013-06-05 2015-06-20 Федеральное государственное бюджетное научное учреждение"Всероссийский научно-исследовательский институт электрификации сельского хозяйства" Sea water desalination unit and process
JP2017018944A (en) * 2010-02-10 2017-01-26 ゾレッジ‐ガレトン,アルフレド Method and apparatus for applying plasma particles to liquid and use for disinfecting water
JP2018053502A (en) * 2016-09-28 2018-04-05 月島機械株式会社 Water collection trough and water purification facility with the same
US10113777B2 (en) 2014-11-12 2018-10-30 The University Of Tulsa Ambient water condensing apparatus
EP3623346A1 (en) * 2018-09-14 2020-03-18 Guangzhou Zhonghuanwandai Environmental Engineering Co., Ltd. Desalinization device and method of using the same
CN111974015A (en) * 2020-09-15 2020-11-24 江西臻强新能源有限公司 Negative pressure concentration total heat type evaporation recovery system
CN113526594A (en) * 2021-07-31 2021-10-22 董春 Industrial wastewater desalting and desalting evaporator and desalting method
CN118416509A (en) * 2024-07-04 2024-08-02 天津国投津能发电有限公司 Low-temperature multi-effect seawater desalination device effect body lower part effluent collection device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101196837B1 (en) 2009-11-27 2012-11-01 대원열판(주) Apparatus for making fresh water by vacuum evaporation method together with a supersonic vibrator
JP2017018944A (en) * 2010-02-10 2017-01-26 ゾレッジ‐ガレトン,アルフレド Method and apparatus for applying plasma particles to liquid and use for disinfecting water
CN102992425A (en) * 2012-11-20 2013-03-27 钱盘生 Unit component for low-temperature evaporating condensing of waste water
CN103058299A (en) * 2013-01-28 2013-04-24 钱盘生 Integrated low-temperature evaporation condensation unit assembly
RU2553880C2 (en) * 2013-06-05 2015-06-20 Федеральное государственное бюджетное научное учреждение"Всероссийский научно-исследовательский институт электрификации сельского хозяйства" Sea water desalination unit and process
US10113777B2 (en) 2014-11-12 2018-10-30 The University Of Tulsa Ambient water condensing apparatus
US10443907B1 (en) 2014-11-12 2019-10-15 The University Of Tulsa Ambient water condensing apparatus
JP2018053502A (en) * 2016-09-28 2018-04-05 月島機械株式会社 Water collection trough and water purification facility with the same
EP3623346A1 (en) * 2018-09-14 2020-03-18 Guangzhou Zhonghuanwandai Environmental Engineering Co., Ltd. Desalinization device and method of using the same
CN111974015A (en) * 2020-09-15 2020-11-24 江西臻强新能源有限公司 Negative pressure concentration total heat type evaporation recovery system
CN113526594A (en) * 2021-07-31 2021-10-22 董春 Industrial wastewater desalting and desalting evaporator and desalting method
CN113526594B (en) * 2021-07-31 2023-06-13 环诺能源科技(深圳)有限公司 Industrial wastewater desalination and desalination evaporator and desalination method
CN118416509A (en) * 2024-07-04 2024-08-02 天津国投津能发电有限公司 Low-temperature multi-effect seawater desalination device effect body lower part effluent collection device

Similar Documents

Publication Publication Date Title
JP2008264749A (en) Seawater desalination device
JP2008264748A (en) Seawater desalination device
US9850152B2 (en) System and a process for water descaling
JPH0141107B2 (en)
US10183872B2 (en) Counter circulating liquid processing system by repeatedly re-using thermal energy
KR101361104B1 (en) Water purification system
JP2011167628A (en) Hollow fiber membrane module, membrane distillation type fresh water generator, and membrane distillation type desalination apparatus
JP2009056453A (en) Sea water desalting apparatus
US10954138B2 (en) Liquid purification with film heating
JP2012091108A (en) Vacuum distillation apparatus using solar heat
CN102666393B (en) Distilled water production system
US8273156B2 (en) Method and apparatus for water distillation and recovery
JP2008229424A (en) Vacuum distillation apparatus
US20220135437A1 (en) Rapid evaporation of water for desalination and dewatering using nanobubbles and micro-droplets
US20050115878A1 (en) System for desalinating and purifying seawater and devices for the system
US20040098998A1 (en) Solar thermal system with solar pond and method of maintaining solar pond
EP2229988B1 (en) A device and a method for liquid purification and power generation
CN212864199U (en) High salt mine water evaporation and concentration equipment
KR100465885B1 (en) Graduation system for wastewater
JP2011067786A (en) Method for treating harmful substance-containing waste liquid
WO2008049280A1 (en) A water quality treating equipment
JPH10230246A (en) Seawater desalination device
US20230080050A1 (en) Cooling water management systems and associated methods for using the same
KR20220025336A (en) Seawater Desalination Device applied Dew Condensation
WO2005015008A1 (en) Desalination of sea water

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100706