JP2012195910A - 検波回路 - Google Patents

検波回路 Download PDF

Info

Publication number
JP2012195910A
JP2012195910A JP2011060334A JP2011060334A JP2012195910A JP 2012195910 A JP2012195910 A JP 2012195910A JP 2011060334 A JP2011060334 A JP 2011060334A JP 2011060334 A JP2011060334 A JP 2011060334A JP 2012195910 A JP2012195910 A JP 2012195910A
Authority
JP
Japan
Prior art keywords
current
circuit
diode
calibration
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011060334A
Other languages
English (en)
Other versions
JP5621673B2 (ja
Inventor
Hiroyuki Nakamoto
裕之 中本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Semiconductor Ltd
Original Assignee
Fujitsu Semiconductor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Semiconductor Ltd filed Critical Fujitsu Semiconductor Ltd
Priority to JP2011060334A priority Critical patent/JP5621673B2/ja
Priority to US13/405,968 priority patent/US8604836B2/en
Priority to CN201410191542.1A priority patent/CN104007311B/zh
Priority to CN201210079122.5A priority patent/CN102692541B/zh
Publication of JP2012195910A publication Critical patent/JP2012195910A/ja
Priority to US13/919,107 priority patent/US8604837B2/en
Application granted granted Critical
Publication of JP5621673B2 publication Critical patent/JP5621673B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R21/00Arrangements for measuring electric power or power factor
    • G01R21/10Arrangements for measuring electric power or power factor by using square-law characteristics of circuit elements, e.g. diodes, to measure power absorbed by loads of known impedance
    • G01R21/12Arrangements for measuring electric power or power factor by using square-law characteristics of circuit elements, e.g. diodes, to measure power absorbed by loads of known impedance in circuits having distributed constants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R21/00Arrangements for measuring electric power or power factor
    • G01R21/14Compensating for temperature change
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • G01R35/005Calibrating; Standards or reference devices, e.g. voltage or resistance standards, "golden" references

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Amplifiers (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

【課題】電力値を高精度に検出する検波回路を提供する。
【解決手段】検波回路は,アノードに交流信号が入力されると共に定電圧が供給される第1のダイオードと,アノードに前記定電圧が供給される第2のダイオードと,第1のダイオードに流れる第1の電流と,第2のダイオードに流れる第2の電流との差電流を生成する差電流生成回路とを有する。
【選択図】図5

Description

本発明は,検波回路に関する。
検波回路は,高周波信号(RF信号)などの交流信号の電力を検出する回路であり,たとえば,携帯通信端末などに設けられるパワーアンプの出力電力を検出する回路として,使用されている。電力検波回路は,たとえば,ダイオードを用いて高周波信号の包絡線検波を行う。このような回路は,高周波信号をダイオードに印加し,ダイオードの閾値電圧を超えた電圧を整流して電流に変換し,整流された交流(AC)電流を抵抗と容量の回路で直流(DC)電圧に変換する。
しかし,通常のダイオードの閾値電圧は,温度の影響によって変化するので,単純にダイオードのみを用いて電力検波する場合には,電力検波回路の出力レベルが変動してしまう。
このようなダイオードの閾値電圧の変動の影響をなくした電力検波器が特許文献1に提案されている。この電力検波器は,入力された高周波信号を2つのダイオードのアノードに分配すると共に,それぞれのダイオードにバイアス回路からバイアス電流を供給し,ダイオードに並列に設けた負荷抵抗に直流電圧を発生させ,ダイオードに印加された高周波信号に応じて変化する電圧を,インダクタを介して差動アンプに入力する。差動アンプは,それぞれのダイオードに印加された高周波信号に応じて変化する2つの差電圧を出力する。
特許文献1に提案された検波回路は,高周波信号をあらかじめ決められた電力分配比で分配された2つの差電圧を演算するため,差動アンプの出力電圧が高周波信号の電力レベルとして検出され,温度変化によってダイオードの閾値電圧が変化しても,ダイオードの閾値電圧のばらつきは差電圧では相殺されるので,閾値電圧のばらつきの影響をなくすことができる。
特開2005−142955号公報
しかしながら,上記の電力検波器は,差動アンプを使用している。差動アンプは,製造ばらつきによる電圧オフセットを有するので,差電圧の検出精度には限界がある。また,差動アンプの特性である出力コモンモードやゲインは,電源電圧の変化により変動しやすく,電源変動により差動アンプの出力電位が変動して検出精度の低下を招く。
そこで,本発明の目的は,検出精度を高めた検波回路を提供することにある。
検波回路の第1の側面は,アノードに交流信号が入力されると共に定電圧が供給される第1のダイオードと,
アノードに前記定電圧が供給される第2のダイオードと,
前記第1のダイオードに流れる第1の電流と,前記第2のダイオードに流れる第2の電流との差電流を生成する差電流生成回路とを有する。
第1の側面によれば,高精度に電力を検出することができる。
ダイオードを用いた電力検波回路の動作を示す図である。 本実施の形態の電力検波回路の適用例を示す図である。 第1の実施の形態における電力検波回路である。 図3の電力検波回路の通常動作を説明する図である。 第1の実施の形態における電力検波回路を示す詳細図である。 誤差電流が発生している場合の電力検波回路の入出力特性のシミュレーション結果を示す図である。 キャリブレーション制御回路16による最適なカレントミラー比を探索する制御シーケンスを示す図である。 第1の実施の形態における電力検波回路の変形例1を示す図である。 第1の実施の形態における電力検波回路の変形例2を示す図である。 第1の実施の形態における電力検波回路の変形例3を示す図である。 第1の実施の形態における電力検波回路の変形例3を示す図である。 第1の実施の形態における電力検波回路の変形例3を示す図である。 第1の実施の形態における変形例4を示す図である。 変形例4のキャリブレーション回路の動作を示すタイミングチャートである。 第2の実施の形態における電力検波回路の図である。
図1は,ダイオードを用いた電力検波回路の動作を示す図である。この電力検波回路では,電力検波したい交流信号である高周波信号を入力端子RFINに供給し,高周波信号がダイオードD1の閾値電圧を超える電圧のときにダイオードD1が導通して電流が発生する。そして,その整流された電流が容量C1により平滑化され,抵抗R1によりDC電圧に変換される。高周波信号が図中aのように高い電力を有する場合は,出力端子の電圧VOUTは高くなり,図中bのように低い電力を有する場合は,出力端子の電圧VOUTは低くなる。これが,ダイオードD1と,抵抗R1及び容量C1とによる,包絡線検波回路である。
たとえば,電力検出したいパワーアンプの出力をダイオードD1のアノードにカップリングすることで,パワーアンプの出力電力を検出することができる。
ただし,前述の通り,ダイオードD1の閾値電圧は,温度により変動するので,この閾値電圧の変動により出力電圧が変動し,検出電力の精度が低下する。
図2は,本実施の形態の電力検波回路の適用例を示す図である。この適用例では,増幅器10内のパワーアンプPAの出力OUTの電力が,電力検波回路12により検出され,出力電圧VOUTとして出力される。電力検波回路12は,後述する電力検波の回路と,そのキャリブレーションを行うキャリブレーション回路14とを有する。キャリブレーション回路14は,内蔵するキャリブレーション制御回路16により電力検波回路のキャリブレーション動作を行う。
また,電力検波制御回路18は,電源投入時や,パワーアンプPAが高周波信号を出力していない時などのキャリブレーションに適したタイミングのとき,リセットパルスResetのHレベルによりキャリブレーション回路14をリセットし,リセットパルスResetのLレベルによるリセット解除後に,トリガ信号TriggerのHレベルでキャリブレーション動作を開始させる。クロックCLKは,キャリブレーション動作の同期クロックである。
次に,本実施の形態における電力検波回路について説明する。
[第1の実施の形態]
図3は,第1の実施の形態における電力検波回路である。図3の電力検波回路は,交流信号である高周波信号が入力端子RFINの入力容量CIを介して供給される第1のダイオードD1を有する入力回路20と,第2のダイオードD2を有する基準回路22とを有する。入力容量CIは,入力端子RFINに印加される高周波信号のDC成分をカットし,AC成分のみを第1のダイオードD1のアノードに印加する。すなわち,ノードn1には高周波信号のAC成分が印加されることになる。第1のダイオードD1は,ノードn1に印加されるAC成分を整流するダイオードであり,第2のダイオードD2は,ダイオードの閾値電圧の変動を補償する補償用ダイオードである。両ダイオードD1,D2は,PN接合などを有する一方向性素子である。
また,第1,第2のダイオードD1,D2のアノードの端子n1,n2には,電源電圧や一定のバイアス電圧であるDC電圧VBが第1,第2の抵抗RP,RRを介して印加される。第1の抵抗RPは,前述のAC成分が印加される端子n1にDC電圧VBを供給するための抵抗である。第1の抵抗RPに対応して,基準回路22にも第2の抵抗RRが設けられている。
そして,第1のダイオードD1のカソードには,容量C1と第3の抵抗R1とを含む平滑化回路が設けられている。この第3の抵抗R1は,抵抗値によって電流量を調整することも可能である。それに対応して,第2のダイオードD2のカソードにも,入力回路20に接続した素子と等しい第4の抵抗R2と容量C2が設けられている。ただし,第2のダイオードD2にはAC成分が印加されないので,容量C2は必ずしも必要ないが,入力回路20とのバランス上設けられている。
入力回路20の抵抗R1には,交流信号である高周波信号のAC成分を整流し平滑化した電流IACと,DC電圧VBにより常時流れる電流IDCとの和IAC+IDCが流れる。電流IACは,ダイオードD1で整流されC1,R1で平滑化された直流電流である。一方,基準回路22の抵抗R2には,DC電圧VBにより常時電流IDCが流れる。抵抗RP,RRと,抵抗R1,R2は,それぞれ等しい値に設計するため,両回路20,22の電流IDCはほぼ等しくなる。
DC電圧VBの供給ノードには,デカップリング容量CCが設けられ,入力端子RFINに供給される高周波信号のAC成分が供給ノードに伝搬してDC電圧が変動しないようにされている。
さらに,電力検波回路は,入力回路20が生成する電流IAC+IDCと基準回路22が生成する電流IDCとの差電流IACをノードn3に生成する差電流生成回路24と,差電流IACの大きさを電圧に変換して出力端子OUTに出力する出力回路26とを有する。出力回路26は,出力抵抗ROを有する。
上記の差電流生成回路24は,入力回路20の電流IAC+IDCをノードn4にコピーする第1のカレントミラー回路CM1と,基準回路22の電流IDCをノードn3にコピーする第2のカレントミラー回路CM2と,ノードn4の電流IAC+IDCをノードn3側にコピーする第3のカレントミラー回路CM3とを有する。第1のカレントミラー回路CM1は,NチャネルMOS(NMOS)トランジスタN10と,そのNMOSトランジスタN10のドレインとゲートに,ゲートが共通に接続されドレインがノードn4に接続されたNMOSトランジスタN11,N12,N13とを有する。トランジスタN10と,トランジスタN11,N12,N13の組み合わせのトランジスタチャネル幅に応じたカレントミラー比で,電流がコピーされる。
第2のカレントミラー回路CM2は,基準回路22に接続されたNMOSトランジスタN20と,そのNMOSトランジスタN20のドレインとゲートに,ゲートが接続されたトランジスタN21とを有する。このカレントミラー回路CM2でも,トランジスタN20,N21のトランジスタチャネル幅に応じたカレントミラー比で電流がコピーされる。第3のカレントミラー回路CM3は,電源電圧VDDに接続されたPチャネルMOS(PMOS)トランジスタP30,P31からなり,ノードn4の電流IAC+IDCをP30,P31のトランジスタチャネル幅に応じたカレントミラー比でトランジスタP31側にコピーする。
ノードn3に着目すると,PMOSトランジスタP31からはコピーされた電流IAC+IDCが供給され,NMOSトランジスタN21へはコピーされた電流IDCが流れるため,その差電流IACが出力回路26に流れる。出力回路26は,差電流IACを出力抵抗ROで電圧に変換し,変換された電圧を出力端子OUTから出力する。
つまり,この電力検波回路は,整流用のダイオードD1と補償用のダイオードD2による検出信号の差を差動増幅器ではなく,差電流生成回路24により生成している。この差電流生成回路24は,カレントミラー回路を有し,差動増幅器を有していない。従って,差動増幅器のオフセット電圧や出力電位の変動の問題がない。
さらに,電力検波回路は,入力回路20からコピーされる電流IDCと,基準回路22からコピーされる電流IDCとがノードn3で等しくなるように校正するキャリブレーション回路14を有する。すなわち,キャリブレーション回路14は,ノードn3に生成される差電流が正しく電流IACのみになるように,両側からの電流IDCが等しくなるようにいずれかのカレントミラー回路のカレントミラー比を校正する。
図3の電力検波回路において,出力回路26とキャリブレーション回路14とを,ノードn4側に設けても良い。その場合は,第3のカレントミラー回路CM3のトランジスタP31のドレインをトランジスタP30,P31のゲートに接続して,ノードn3側の電流IDCをトランジスタP30側にコピーする必要がある。そして,ノードn4に,入力回路20の電流IAC+IDCと基準回路22の電流IDCの差電流が生成される。
(1)通常動作時(入力端子RFINに交流信号である高周波信号が入力された時の動作)
まず,図3の電力検波回路の通常動作である電力検波の動作を説明する。図4は,図3の電力検波回路の通常動作を説明する図である。図4の横軸は時間t,縦軸は電圧Vであり,入力回路20内のノードn1の印加電圧VB+RFINとダイオードD1の閾値電圧Vthとの関係が示されている。図中入力端子RFINに印加される高周波信号のAC成分がRFINで示されている。
第1のダイオードD1のアノードのノードn1には,第1の抵抗RPを介してDC電圧VBと,入力容量CIを介して入力RFINから供給される高周波信号のAC電圧(RFIN)とが印加される。つまり,電圧VB+RFINが印加される。この電圧がダイオードD1の閾値Vthを超えるときにダイオードがオンし,整流電流を生成する。そして,第1のダイオードD1により整流された電流は,容量C1と第3の抵抗R1とによってDC電流に変換される。これにより,ダイオードD1には,DC電圧VBにより定常的に流れる電流IDCと,AC電圧に依存して流れる電流IACの和電流IDC+IACが流れる。
一方,第2のダイオードD2のアノードのノードn2には,DC電圧VBが第2の抵抗RRを介して印加されているので,第1のダイオードD1に定常的に流れる電流IDCと同じ電流IDCが,第4の抵抗R2に流れる。
両抵抗R1,R2にそれぞれ流れる電流IDC+IAC,IDCを,差電流検出回路24内のNMOSトランジスタによる第1,第2のカレントミラー回路CM1,CM2によって各々カレントミラーし,さらに,PMOSトランジスタによる第3のカレントミラー回路CM3により,ノードn4の電流IAC+IDCを,トランジスタP31にカレントミラーする。そして,第3のカレントミラー回路CM3のトランジスタP31のドレインと,第2のカレントミラー回路CM2のトランジスタN21のドレインとを,ノードn3で接続することによって,それらの差電流IACがノードn3に生成される。この差電流IACが,出力回路26内の出力抵抗ROに流れ,差電流量IACに比例した出力電位が出力端子OUTに生成される。
プロセス変動や温度変動によって第1,第2のダイオードD1の閾値電圧が変化すると,それらに流れる電流の絶対値が変化して,抵抗R1に流れる電流がIAC+IDC+ΔI,同様に抵抗R2に流れる電流がIDC+ΔIに変化する。その場合でも,差電流生成回路24に含まれるカレントミラー回路CM1,CM2,CM3によって差電流IAC(=IAC+IDC+ΔI−IDC−ΔI)のみを出力抵抗ROに流すことができるので,閾値電圧の変動に起因する電流変化ΔIを相殺することができる。そして,差電流IACは,入力される高周波信号の電力に依存して変化するので,出力回路26は,入力交流信号の電力に対して単調に増減する出力電位を出力端子OUTに生成することができる。
(2)誤差発生時(ダイオードD1,D2間の製造ばらつきやカレントミラー誤差が発生した時)
次に,ダイオードD1,D2の相対ばらつきや,カレントミラー回路の電流コピー誤差によって誤差電流またはオフセット電流が生じた場合の動作について説明する。このような誤差電流が発生すると,出力回路26に入力される差電流IACに誤差電流が混入し,入力高周波信号の電力に対応した正確な電流IACを出力できなくなる。したがって,このような誤差電流をゼロにするキャリブレーション機能が必要になる。
図5は,第1の実施の形態における電力検波回路を示す詳細図である。図5を参照して,誤差電流発生時の動作を説明する。この誤差電流ΔIは,入力端子RFINに交流信号が入力されていない入力ゼロの状態において,最終的な差電流を得るノードn3に流れる電流のうち,PMOSトランジスタP31に流れる電流がIDC+ΔI,NMOSトランジスタN21に流れる電流がIDCになったモデルで説明できる。
すなわち,上記のモデルでは,ダイオードの相対誤差やカレントミラーのコピー誤差を全てまとめて誤差電流ΔIとして表現している。この時,ノードn3から出力抵抗ROには誤差電流ΔIが流れる。ΔI>0の場合,出力電位OUT=RO・ΔI となり,オフセット電圧を生じる。例えば,RO=10kΩ,ΔI=1μAの時,オフセット電位は10mVとなる。また,ΔI<0の場合は,出力抵抗ROに流れる電流はゼロであるため,出力電位OUT=0Vとなる。ただし,図5に示したキャリブレーション回路14には,電流源Iを設けて,出力抵抗ROにはI±ΔIが流れるようにしている。この動作については後述する。
図6は,誤差電流が発生している場合の電力検波回路の入出力特性のシミュレーション結果を示す図である。上述した入力端子RFINの入力がゼロの状態を約-20dBmと仮定し,誤差電流ΔIによるオフセット電位として±10mVの誤差が生じている場合のシミュレーション結果である。誤差が発生している場合は,特に入力パワーRFINの小さい領域(例えば-10dBm以下)において大きな影響を受け,誤差のない±0mVの点線波形に対して実線の出力電位OUTは大きくずれている。したがって,図6中の矢印のようにキャリブレーションにより誤差をゼロにする必要がある。
(3)キャリブレーション動作(誤差を低減させる動作)
前述の通り,ダイオードの相対的なばらつきやカレントミラー誤差によって生じる誤差電流を低減させるために,本実施の形態の電力検波回路は,キャリブレーション回路を有する。図5のキャリブレーション回路は,定電流Iを出力抵抗ROに供給する電流源と,基準電位を発生する定電流I’及び抵抗RO’と,その差電圧の大小を比較する比較器28と,比較器の結果によってスイッチング制御を行いカレントミラー回路CM1のカレントミラー比を調整するキャリブレーション制御部16とを有する。
入力端子RFINへの交流信号の入力がゼロの状態では,キャリブレーション回路14の比較器28のプラス入力端子には,出力抵抗ROにノードn3からの誤差電流ΔIと定電流Iの和電流が流れるため,電圧(I+ΔI)・ROが印加される。また,比較器28のマイナス入力端子には,基準電圧I’・RO’が印加される。抵抗RO=RO’,定電流I=I’となるように設定されているので,誤差電流ΔIがゼロでない場合には,比較器のプラス入力端子の電圧は,電圧±ΔI・ROだけ基準電圧I・RO(=I’・RO’)からずれている。したがって,比較器28の出力をモニタすることによって,誤差電流ΔIの符号を検出することができる。すなわち,比較器出力=Highの場合はΔI>0,Lowの場合はΔI<0である。
キャリブレーション制御回路16は,比較結果の符号に基づいてカレントミラー回路CM1のカレントミラー比を変更し,誤差電流ΔIが0に近づく最適なミラー比に設定するための制御を行う。たとえば,キャリブレーション制御回路16が,電源投入時に一度キャリブレーションを実施してカレントミラー回路CM1のカレントミラー比を設定し,その設定状態で電力検波回路が通常動作を行うことで,誤差電流の影響を抑制またはなくすことができる。さらに,このキャリブレーション動作は,図2のパワーアンプを搭載した通信端末が,時分割通信(TDD)における通信を行っていないトランジッション・ギャップ(transition gap)等に代表される期間,すなわち高周波入力がゼロになる期間を利用して実施することも可能である。このようなキャリブレーションを実施すれば,電力検波の通常動作中の温度変化や電源電圧変化によって誤差電流ΔIが電源投入時からずれてしまった場合でも,誤差電流ΔIを0に近づけて最適な状態に戻すことができる。
図7は,キャリブレーション制御回路16による最適なカレントミラー比を探索する制御シーケンスを示す図である。図5に示したとおり,キャリブレーション制御回路16は,誤差電流ΔIの符号に対応する比較器28の出力に基づいて,カレントミラー回路CM1のカレントミラー比調整用のNMOSトランジスタN12,N13,N14のゲートに設けられたスイッチSW0,SW1,SW2を制御するnビットの制御コードS16を生成する。
今,入力回路20の抵抗R1に流れる電流のミラー電流,すなわちノードn3に対してPMOSトランジスタP31から流れる電流を整流電流,基準回路22の抵抗R2に流れる電流のミラー電流,すなわちノードn3からNMOSトランジスタN21に流れる電流を基準電流と呼ぶ。
図7には,バイナリサーチによって適切なカレントミラー比を自動的に探索する制御例が示されている。図7(A)は,キャリブレーション制御回路16のステートマシンを示している。図中のjは,カレントミラー比の設定回数を示し,今ここで,制御コードS16のビット数をn=3,キャリブレーション前の誤差電流の符号はΔI>0とする。最初の設定j=1では,制御コードS16はデフォルトの設定,すなわちカレントミラー比調整用のトランジスタN14,N13,N12のスイッチSW2,SW1,SW0を図示されるようにオン,オフ,オフに制御するコードS16=100になっている。
このスイッチがオンとは,カレントミラー調整用のトランジスタのゲートをミラー元のトランジスタN11と共通に並列接続することを意味し,また,スイッチがオフとは,調整用トランジスタのゲートをグランドVSSにクリップすることを意味する。また,調整用トランジスタN14,N13,N12は,スイッチSW2によってm=2個,SW1によってm=2個,SW0によってm=2個に制御されるように, ON/OFFする個数が2の補数で重み付けされている。したがって,3ビットの制御コードの自由な組み合わせで,調整用トランジスタの合計チャネル幅をm=1〜7に可変することができる。
たとえば,制御コードS16が000の場合は,全てのスイッチSW2,SW1,SW0がオフになり,ノードn4側のNMOSトランジスタの合計チャネル幅が小さくなり,ノードn4にコピーされる電流が小さくなる。逆に,制御コードS16が111の場合は,全てのスイッチSW2,SW1,SW0がオンになり,ノードn4側のNMOSトランジスタの合計チャネル幅が大きくなり,ノードn4にコピーされる電流が大きくなる。
図7(B)は,カレントミラー比と比較器28の入力電位(I±ΔI)・RO,I’・RO’の関係を示す。初回の設定j=1では,カレントミラー比はSW2,SW1,SW0=100(=4)の設定である(S1)。この設定では,オフセット電流ΔI>0を前提としているので,比較器の入力電圧の関係は,(I+ΔI)・RO>I’・RO’である。したがって,比較器の比較結果はHigh(図7(B)の判定+)である。
この比較結果によりΔI>0が判明したので,それに基づいて,キャリブレーション制御回路16は,誤差電流ΔIを小さくするように制御コードS16の設定値を変える。つまり,誤差電流ΔIを小さくするためには,PMOSトランジスタP31側の整流電流を減らすか,NMOSトランジスタN21側の基準電流を増やせばよい。図5の例ではカレントミラー回路CM1のカレントミラー比が制御されるので,整流電流を減らす制御になる。そのほうが低消費電流化できる。
図7(A)に示されるように,比較器の判定(S2)が+の場合は,設定を「現在の設定-2n‐j」にする。すなわち設定回数j=1の時は4−2(3−1)=0にするため,制御コードS16をSW2,SW1,SW0=000(=0)に変更する(S3)。
変更後の設定回数j=2での設定コード000(=0)においては,カレントミラー調整用トランジスタN14,N13,N12が全てオフになり,図7(B)に示すように比較器28のプラス入力電圧(I±ΔI)・ROは,マイナス入力電圧である基準電圧I’・RO’よりも低くなる。その結果,比較器の比較結果はLow(判定−)である。この結果から誤差電流の符号はΔI<0となり,PMOSトランジスタP31側の整流電流を減らしすぎたことが判明する。そのため,キャリブレーション制御回路16は,今度は誤差電流ΔIをもう少し増やすように,制御コードの設定値を0+2(3−2)=2,すなわち制御コードS16をSW2,SW1,SW0=010(=2)に変更する(S3)。
変更後の設定回数j=3での設定コード010(=2)において,同様の比較器の判定を行い,Low(判定−)を得る。まだΔI<0であり,整流電流が小さいことがわかったため,キャリブレーション制御回路16は,制御コードS16の設定値を2+2(3−3)=3,すなわち制御コードをSW2,SW1,SW0=011(=3)に変更する(S3)。この時,設定回数jは制御コードのビット数n=3となり(S4),キャリブレーション制御回路16によるキャリブレーション制御は終了する。
以上のとおり,キャリブレーション動作によりカレントミラー比の設定値がデフォルトの100(=4)から011(=3)へと変更され,ノードn4側のNMOSトランジスタの合計チャネル幅が小さく変えられ,誤差電流ΔIがゼロに近づくように変更される。その結果,PMOSトランジスタP31側の整流電流を,NMOSトランジスタN21側の基準電流により近づけるように制御することができる。その結果,電力検波回路の入出力特性を,図6に示すように理想的な特性(破線)に対してオフセットの小さい,より線形性がよい特性へと調整することができる。このようなバイナリサーチ制御は,制御ビット数nの回数だけ上位ビットから順に比較を行い,比較結果に基づいて下位ビットの設定を順に変更するため,小規模なロジック回路で実現できる。
なお,図5において,カレントミラー比を調整するためのNMOSトランジスタを,NMOSトランジスタN10側に並列に設けても良い。その場合は,NMOSトランジスタN10側のトランジスタの数を増やすと,ノードn4側にコピーされる電流が小さくなり,逆に減らすと電流が大きくなる。
[第1の実施の形態の変形例]
図8は,第1の実施の形態における電力検波回路の変形例1を示す図である。この変形例1では,カレントミラー回路CM2のカレントミラー比を調整する。そのために,カレントミラー回路CM2のNMOSトランジスタN21に並列に,調整用トランジスタN22,N23を設け,それらのゲートのスイッチSW0,SW1をキャリブレーション回路14内の制御回路の制御コードS16によりオン,オフ制御する。これにより,トランジスタN21側の基準電流の大きさが調節される。キャリブレーション方法は,前述と同じである。なお,調整用トランジスタN22,N23は,図5と同様に2の累乗のチャネル幅に設定されていることが望ましい。また,調整用トランジスタは,図5と同様に3個であってもよい。さらに,調整用トランジスタは,トランジスタN20に並列に設けても良い。
図9は,第1の実施の形態における電力検波回路の変形例2を示す図である。この変形例2では,整流電流と基準電流の両方を調節する。すなわち,カレントミラー回路CM1のカレントミラー比を調節して整流電流を調節し,カレントミラー回路CM2のカレントミラー比を調節して基準電流を調節する。両方を調節することでカレントミラー比の調整分解能を高めより細かく制御することができ,誤差電流の低減精度を高めることができる。
変形例2のキャリブレーション方法では,整流電流側のカレントミラー回路CM1のカレントミラー比を調節した後に,基準電流側のカレントミラー回路CM2のカレントミラー比を調整するなど,各カレントミラー比の調整を独立して行う。つまり,キャリブレーション回路14は,制御コードS16-1を最初に設定し,その後制御コードS16-2を設定する。
また,たとえば,カレントミラー回路CM1側の調整用トランジスタN12,N13のトランジスタチャネル幅を,カレントミラー回路CM2側の調整用トランジスタN22,N23より大きく,たとえば2倍にする。その場合,整流電流側のカレントミラー比で誤差電流を粗調整し,基準電流側のカレントミラー比で誤差電流を微調整することができるため,誤差電流の低減精度,及び誤差補正が可能な範囲を高められる。 図10,図11,図12は,第1の実施の形態における電力検波回路の変形例3を示す図である。図3,図8,図9では,NMOSトランジスタの合計チャネル幅を調整してカレントミラー回路CM1,CM2のカレントミラー比を調整したのに対して,図10,図11,図12では,PMOSトランジスタの合計チャネル幅を調整してカレントミラー回路CM3のカレントミラー比を調整する。
図10では,トランジスタP30に調整用トランジスタP32,P33を並列に設け,それらのスイッチを制御コードで制御する。図11では,トランジスタP31に調整用トランジスタP34,P35を並列に設け,それらのスイッチを制御コードで制御する。そして,図12では,トランジスタP30,P31の両方に調整用トランジスタP32,P33,P34,P35を設け,それらのスイッチを制御コードで別々に制御する。
一般的に,カレントミラー回路のトランジスタのチャネル幅は,NMOSトランジスタよりもPMOSトランジスタを大きく設定することが多い。PMOSトランジスタの方が単位トランジスタチャネル幅に対してトランジスタ個数を多く設計できるため,カレントミラー比の設定,比率をより柔軟に,細かく設定することが容易になり,調整分解能が上がり,より高精度に誤差電流を低減することができる可能性がある。
図13は,第1の実施の形態における変形例4を示す図である。図5では,キャリブレーション回路14は,出力抵抗R0側の電圧と基準抵抗RO’側の電圧とを比較する比較器28を有していたが,図13の変形例4では,キャリブレーション回路14内の比較器が,インバータ30を有し,基準電圧を生成する抵抗RO’側の回路はない。
すなわち,キャリブレーション回路14は,基準電流源IとスイッチSW3,SW4,SW5,容量C3,及びインバータ30を有している。スイッチSW3は既知の周波数を有するシステムクロックCLKに同期してオン,オフが制御され,オンの期間中に基準電流Iを容量C3に流す。
図14は,変形例4のキャリブレーション回路の動作を示すタイミングチャートである。最初に,スイッチSW4,SW5をオフにして,スイッチSW3を例えば4クロック周期だけオンにする。それにより,基準電流Iが,誤差電流ΔIとは無関係に全て容量C3に流れる。容量C3の片側端子の電位をV1とおくと,以下の式(1)になる。
V1 = I・t/C3 (1)
つまり,電圧V1は既知の電流I,時間(クロックCLKの4周期)t,容量値C3により一定値に定まる。この電位V1を予めインバータ30の閾値と同じ電位になるように設定しておく。
例えば,インバータ30の閾値が1.6Vであり,システムクロックCLKが25MHzであれば,I=10μA,スイッチSW3を4クロック周期の間オンさせ,t=160ns,C3=1pFに設定すれば,電圧V1は,V1=1.6Vに設定できる。
その後,スイッチSW3をオフにし,スイッチSW5をオンにすると,誤差電流ΔIの電流に相当する電荷が容量C3に充電,または容量C3から放電される。そのため,インバータ30の閾値に設定されていた電位V1が変化し,インバータ30の出力は,ΔI>0の場合はLowに,ΔI<0の場合はHighに変化する。このように,インバータ30は,比較器28と同等の比較機能を有する。すなわち,図5のキャリブレーション回路の基準電位I’・RO’を設けなくても,インバータ30の出力をモニタすることによって誤差電流ΔIの符号がわかるため,図5よりも小規模な回路にできる。
最適なカレントミラー比の設定値の探索方法については,図5と同様である。キャリブレーションション動作終了後は,スイッチSW4,SW5をオンにし,スイッチSW3をオフにして,通常動作モードになる。これらのスイッチSW3〜SW5の一連の制御は,SW0〜SW2のカレントミラー比の制御と同様に,キャリブレーション制御回路16が行う。
[第2の実施の形態]
図15は,第2の実施の形態における電力検波回路の図である。この電力検波回路は,第1の実施の形態と同様に,入力回路20と基準回路22とを設け,両ダイオードD1,D2に生成される電流の差IACを,差電流生成回路24でノードn3に生成し,その差電流IACを出力抵抗ROに流して,その電圧を出力端子OUTから出力する。
一方,この電力検波回路は,キャリブレーション回路14が誤差電流ΔIの符号を監視しながら,基準回路22内の定電圧VBを供給する第2の抵抗RRの抵抗値を調整する。または,第2の抵抗RRに加えて,第4の抵抗R2も調整してもよい。または,第2の抵抗RRに代えて,第4の抵抗R2だけを調整するようにしてもよい。いずれの調整でも,第4の抵抗R2に流れる基準電流を可変調整することができるため,基準電流の調節により誤差電流ΔIの調節が可能になる。
第2の実施の形態では,可変抵抗RRの抵抗値を調整する。この場合は,微小抵抗の数をスイッチで選択する回路にすることで容易に可変抵抗が実現できるので,抵抗値の調整,すなわち,基準電流の微調整をより細かく行うことができ,誤差電流を高精度にゼロに近づけることができる。
さらに,第1の実施の形態で示したカレントミラー回路内の複数個の調整用のトランジスタとそのスイッチ群が必要なくなるため,回路規模を小さくすることができる。
第2の実施の形態における電力検波の方法は,第1の実施の形態と同じである。また,キャリブレーション方法も,第1の実施の形態と同様に,交流信号である高周波信号の入力を停止した状態で,ノードn3に発生する誤差電流ΔIの符号を監視しながら,最適な抵抗値を第2の抵抗RRに設定する。
以上説明したとおり,本実施の形態の電力検波回路によれば,2つのダイオードD1,D2により生成される電流の差を,差電流生成回路24により生成し,その差電流から入力信号の電力値を検出することができる。よって,従来例のように差動アンプを使用した場合のオフセット電圧や,電源電圧が変動することによる出力変動の問題がなく,高精度に電力値を検出できる。
また,本実施の形態の電力検波回路によれば,ダイオードからグランドへ直接のパスが無いため,消費電流を低減することができる。
以上の実施の形態をまとめると,次の付記のとおりである。
(付記1)
アノードに交流信号が入力されると共に定電圧が供給される第1のダイオードと,
アノードに前記定電圧が供給される第2のダイオードと,
前記第1のダイオードに流れる第1の電流と,前記第2のダイオードに流れる第2の電流との差電流を生成する差電流生成回路とを有する検波回路。
(付記2)
付記1において,
前記差電流生成回路は,
前記第1のダイオードのカソード側に設けられ前記第1の電流と第1のカレントミラー比の電流値を有する第3の電流を生成する第1のカレントミラー回路と,
前記第2のダイオードのカソード側に設けられ前記第2の電流と第2のカレントミラー比の電流値を有する第4の電流を生成する第2のカレントミラー回路と,
前記第3の電流と第3のカレントミラー比の電流値を有する第5の電流,または,前記第4の電流と前記第3のカレントミラー比の電流値を有する第6の電流を生成する第3のカレントミラー回路と,
前記第5の電流の経路と前記第4の電流の経路とが接続される接続ノードまたは前記第6の電流の経路と前記第3の電流の経路とが接続される接続ノードとを有し,
前記接続ノードに前記差電流が生成される検波回路。
(付記3)
付記2において,
さらに,前記交流信号の入力を停止した状態で,前記差電流が減少する様に,前記第1,第2,第3のカレントミラー比のうち少なくとも一つを可変設定するキャリブレーション回路を有する検波回路。
(付記4)
付記1または2において,
前記定電圧が第1の抵抗を介して前記第1のダイオードのアノードに印加され,第2の抵抗を介して前記第2のダイオードのアノードに印加され,
さらに,前記高周波信号の入力を停止した状態で,前記差電流が減少する様に,前記第2の抵抗の抵抗値を可変設定するキャリブレーション回路を有する検波回路。
(付記5)
付記3または4において,
前記キャリブレーション回路は,前記差電流の符号を検出する比較器と,前記比較器の比較結果に応じて,前記可変設定をするキャリブレーション制御回路とを有する検波回路。
(付記6)
付記5において,
前記キャリブレーション回路は,キャリブレーション用電流が第1のスイッチを介して供給されるキャリブレーション容量と,前記接続ノードと前記キャリブレーション容量との間に設けられた第2のスイッチと,前記接続ノードの電圧を入力するインバータと,前記第1のスイッチがオンされて前記キャリブレーション容量が前記インバータの閾値電圧まで充電された後に前記第1のスイッチがオフされ前記第2のスイッチがオンされて前記差電流が前記キャリブレーション容量に供給された時の前記インバータの出力に応じて,前記可変設定をするキャリブレーション制御回路とを有する検波回路。
(付記7)
付記3において,
前記第1,第2,第3のカレントミラー回路は,ゲートが共通に接続された1対のトランジスタをそれぞれ有し,前記1対のトランジスタのチャネル幅比を可変設定することで前記第1,第2,第3のカレントミラー比の可変設定が行われる検波回路。
(付記8)
付記2において,
前記第1のダイオードのカソードと前記第1のカレントミラー回路との間に設けられた第1の平滑化回路と,
前記第2のダイオードのカソードと前記第2のカレントミラー回路との間に設けられた第2の平滑化回路とを有する検波回路。
(付記9)
付記8において,
前記第1の平滑化回路は,前記第1のダイオードのカソードに接続された第1の平滑化キャパシタと,前記第1のダイオードのカソードと前記第1のカレントミラー回路との間に設けられた第3の抵抗とを有し,
前記第2の平滑化回路は,前記第2のダイオードのカソードに接続された第2の平滑化キャパシタと,前記第2のダイオードのカソードと前記第2のカレントミラー回路との間に設けられた第4の抵抗とを有する検波回路。
(付記10)
付記1乃至9のいずれか一つにおいて
前記差電流の大きさを出力する出力回路を有する検波回路。
(付記11)
付記5において,
前記差電流の大きさを出力する出力回路を有し,
前記出力回路は,前記接続ノードとグランドとの間に設けられた出力抵抗と,前記出力抵抗の電圧を出力する出力端子とを有し,
前記キャリブレーション回路は,前記出力ノードに供給される第1の電流源と,前記第1の電流源と出力抵抗の第1の直列回路に並列に設けられた第2の電流源と基準抵抗の第2の直列回路と,前記出力抵抗と基準抵抗の電圧を比較する比較器と,前記比較器の比較結果に応じて,前記可変設定をするキャリブレーション制御回路とを有する検波回路。
(付記12)
付記10または11において,
前記出力回路は,前記接続ノードとグランドとの間に設けられた出力抵抗と,前記出力抵抗の電圧を出力する出力端子とを有する検波回路。
(付記13)
入力信号に対応する電圧に,バイアス電圧に基づく第1の電圧を加えた電圧を整流する第1の整流回路と,
前記第1の整流回路により整流される電流を検出する第1の電流検出回路と,
前記バイアス電圧に基づく第2の電圧を整流する第2の整流回路と,
前記第2の整流回路により整流される電流を検出する第2の電流検出回路と,
前記第1の電流検出回路で検出される電流と前記第2の電流検出回路で検出される電流との差分を検出する電流差分検出回路と
を有する検波回路。
(付記14)
付記13において
前記第1の電流検出回路,前記第2の電流検出回路及び前記電流差分検出回路は,各々カレントミラー回路を有し,
前記各々のカレントミラー回路の少なくとも何れか一つは,ミラー比が調整可能である検波回路。
(付記15)
付記13または14において
さらに,前記第1の整流回路と前記バイアス電圧を発生する電源との間に接続される第1の抵抗と,
前記第2の整流回路と前記電源との間に接続される第2の抵抗とを有し,
前記第2の抵抗は可変抵抗である検波回路。
(付記16)
付記14において
さらに,前記差分に応じて制御信号を出力する制御回路を有し,
前記制御回路は,前記入力信号が無信号時に,前記差分が減少するように,前記カレントミラー回路の前記ミラー比を調整する検波回路。
(付記17)
付記15において
さらに,前記差分に応じて制御信号を出力する制御回路を有し,
前記制御回路は,前記入力信号が無信号時に,前記差分が減少するように,前記第2の抵抗の抵抗値を調整する検波回路。
(付記18)
付記13乃至17のいずれか一つにおいて
さらに,前記差分を電圧に変換する電流電圧変換回路を有する検波回路。
(付記19)
付記18において
前記制御回路は,前記電流電圧変換回路と前記電源との間に接続される第1の定電流源と,
前記電源に一方の端子が接続される第2の定電流源と,
前記電流電圧変換回路と前記第1の定電流源の接続ノードの電圧及び前記第2の定電流源の他方の端子の電圧を比較する比較器とを有し,
前記制御回路は,前記比較器の出力結果に応じて前記制御信号を出力する検波回路。
D1:第1のダイオード D2:第2のダイオード
RFIN:入力端子 VB:DC電圧,定電圧,バイアス電圧,電源電圧
R1,C1:平滑化回路 R2,C2:平滑化回路
24:差電流生成回路 CM1,CM2,CM3:カレントミラー回路
26:出力回路 14:キャリブレーション回路

Claims (10)

  1. アノードに交流信号が入力されると共に定電圧が供給される第1のダイオードと,
    アノードに前記定電圧が供給される第2のダイオードと,
    前記第1のダイオードに流れる第1の電流と,前記第2のダイオードに流れる第2の電流との差電流を生成する差電流生成回路とを有する検波回路。
  2. 請求項1において,
    前記差電流生成回路は,
    前記第1のダイオードのカソード側に設けられ前記第1の電流と第1のカレントミラー比の電流値を有する第3の電流を生成する第1のカレントミラー回路と,
    前記第2のダイオードのカソード側に設けられ前記第2の電流と第2のカレントミラー比の電流値を有する第4の電流を生成する第2のカレントミラー回路と,
    前記第3の電流と第3のカレントミラー比の電流値を有する第5の電流,または,前記第4の電流と前記第3のカレントミラー比の電流値を有する第6の電流を生成する第3のカレントミラー回路と,
    前記第5の電流の経路と前記第4の電流の経路とが接続される接続ノードまたは前記第6の電流の経路と前記第3の電流の経路とが接続される接続ノードとを有し,
    前記接続ノードに前記差電流が生成される検波回路。
  3. 請求項2において,
    さらに,前記交流信号の入力を停止した状態で,前記差電流が減少する様に,前記第1,第2,第3のカレントミラー比のうち少なくとも一つを可変設定するキャリブレーション回路を有する検波回路。
  4. 請求項1または2において,
    前記定電圧が第1の抵抗を介して前記第1のダイオードのアノードに印加され,第2の抵抗を介して前記第2のダイオードのアノードに印加され,
    さらに,前記高周波信号の入力を停止した状態で,前記差電流が減少する様に,前記第2の抵抗の抵抗値を可変設定するキャリブレーション回路を有する検波回路。
  5. 請求項3または4において,
    前記キャリブレーション回路は,前記差電流の符号を検出する比較器と,前記比較器の比較結果に応じて,前記可変設定をするキャリブレーション制御回路とを有する検波回路。
  6. 請求項5において,
    前記キャリブレーション回路は,キャリブレーション用電流が第1のスイッチを介して供給されるキャリブレーション容量と,前記接続ノードと前記キャリブレーション容量との間に設けられた第2のスイッチと,前記接続ノードの電圧を入力するインバータと,前記第1のスイッチがオンされて前記キャリブレーション容量が前記インバータの閾値電圧まで充電された後に前記第1のスイッチがオフされ前記第2のスイッチがオンされて前記差電流が前記キャリブレーション容量に供給された時の前記インバータの出力に応じて,前記可変設定をするキャリブレーション制御回路とを有する検波回路。
  7. 請求項2において,
    前記第1のダイオードのカソードと前記第1のカレントミラー回路との間に設けられた第1の平滑化回路と,
    前記第2のダイオードのカソードと前記第2のカレントミラー回路との間に設けられた第2の平滑化回路とを有する検波回路。
  8. 請求項7において,
    前記第1の平滑化回路は,前記第1のダイオードのカソードに接続された第1の平滑化キャパシタと,前記第1のダイオードのカソードと前記第1のカレントミラー回路との間に設けられた第3の抵抗とを有し,
    前記第2の平滑化回路は,前記第2のダイオードのカソードに接続された第2の平滑化キャパシタと,前記第2のダイオードのカソードと前記第2のカレントミラー回路との間に設けられた第4の抵抗とを有する検波回路。
  9. 請求項1乃至8のいずれか一つにおいて
    さらに,前記差電流の大きさを出力する出力回路を有する検波回路。
  10. 請求項5において,
    前記差電流の大きさを出力する出力回路を有し,
    前記出力回路は,前記接続ノードとグランドとの間に設けられた出力抵抗と,前記出力抵抗の電圧を出力する出力端子とを有し,
    前記キャリブレーション回路は,前記出力ノードに供給される第1の電流源と,前記第1の電流源と出力抵抗の第1の直列回路に並列に設けられた第2の電流源と基準抵抗の第2の直列回路と,前記出力抵抗と基準抵抗の電圧を比較する比較器と,前記比較器の比較結果に応じて,前記可変設定をするキャリブレーション制御回路とを有する検波回路。
JP2011060334A 2011-03-18 2011-03-18 検波回路 Active JP5621673B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011060334A JP5621673B2 (ja) 2011-03-18 2011-03-18 検波回路
US13/405,968 US8604836B2 (en) 2011-03-18 2012-02-27 Detector circuit
CN201410191542.1A CN104007311B (zh) 2011-03-18 2012-03-16 检测器电路
CN201210079122.5A CN102692541B (zh) 2011-03-18 2012-03-16 检测器电路
US13/919,107 US8604837B2 (en) 2011-03-18 2013-06-17 Detector circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011060334A JP5621673B2 (ja) 2011-03-18 2011-03-18 検波回路

Publications (2)

Publication Number Publication Date
JP2012195910A true JP2012195910A (ja) 2012-10-11
JP5621673B2 JP5621673B2 (ja) 2014-11-12

Family

ID=46827973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011060334A Active JP5621673B2 (ja) 2011-03-18 2011-03-18 検波回路

Country Status (3)

Country Link
US (2) US8604836B2 (ja)
JP (1) JP5621673B2 (ja)
CN (2) CN104007311B (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014134489A (ja) * 2013-01-11 2014-07-24 Denso Corp ノイズ検出装置
WO2018025324A1 (ja) * 2016-08-02 2018-02-08 株式会社日立製作所 検波回路

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8624657B2 (en) * 2011-07-28 2014-01-07 Mediatek Singapore Pte. Ltd. Squaring circuit, integrated circuit, wireless communication unit and method therefor
US8847572B2 (en) * 2012-04-13 2014-09-30 Taiwan Semiconductor Manufacturing Co., Ltd. Optimization methodology and apparatus for wide-swing current mirror with wide current range
DE102013202903A1 (de) 2013-02-22 2014-09-11 Rohde & Schwarz Gmbh & Co. Kg Leistungsmessgerät mit interner Kalibrierung von Diodendetektoren
US10389242B2 (en) * 2017-02-01 2019-08-20 Infineon Technologies Austria Ag Voltage and current sensing calibration for switching voltage regulators
CN110703849A (zh) * 2019-10-29 2020-01-17 南开大学 一种低功耗正弦波转方波电路
US11726132B2 (en) 2020-05-28 2023-08-15 The University Of Akron Monitoring power systems utilizing phase locked loop and RF emissions, and high frequency envelope detector for same
CN114077272B (zh) * 2020-08-13 2022-12-23 博通集成电路(上海)股份有限公司 一种射频功率整流器电路
CN114545063B (zh) * 2022-04-22 2022-07-12 苏州贝克微电子股份有限公司 一种高精度区间电流检测电路

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0435510A (ja) * 1990-05-31 1992-02-06 Toko Inc 高周波検波回路
JP2000315927A (ja) * 1999-04-30 2000-11-14 Alps Electric Co Ltd 温度補償を行ったagc回路
JP2002314341A (ja) * 2001-04-18 2002-10-25 Alps Electric Co Ltd 送信器の検波回路
JP2006033185A (ja) * 2004-07-13 2006-02-02 Fujitsu Ltd ダイオード検波回路

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5352368Y2 (ja) * 1972-12-26 1978-12-14
US4362996A (en) * 1980-11-10 1982-12-07 Hewlett-Packard Company Method and means for an accurate wideband peak detector
JP2724996B2 (ja) * 1983-12-20 1998-03-09 パイオニア株式会社 相対位置検出装置
US4689576A (en) * 1985-08-02 1987-08-25 Motorola, Inc. Linearization circuit
US5629639A (en) * 1995-06-07 1997-05-13 Omnipoint Corporation Correlation peak detector
JPH09186526A (ja) 1996-01-08 1997-07-15 Sumitomo Electric Ind Ltd 検波回路
US5796309A (en) * 1996-07-02 1998-08-18 Nippondenso Co., Ltd. Temperature compensated wide dynamic range power detection circuitry for portable RF transmission terminals
US6429638B1 (en) * 2000-08-31 2002-08-06 Nortel Networks Limited N-diode peak detector
JP4742454B2 (ja) * 2001-06-25 2011-08-10 日本テキサス・インスツルメンツ株式会社 レギュレータ回路
US7026882B2 (en) * 2003-09-19 2006-04-11 Stmicroelectronics Sa Time base circuit, oscillator based thereon, and communicating apparatus using said oscillator
JP4220884B2 (ja) 2003-11-07 2009-02-04 三菱電機株式会社 電力検波器
US7689122B2 (en) * 2004-03-05 2010-03-30 Finisar Corporation Polarity-insensitive signal detect circuit for use with any signal sequence
CN201159746Y (zh) * 2008-02-03 2008-12-03 深圳艾科创新微电子有限公司 一种电流检测电路
JP4917567B2 (ja) * 2008-04-17 2012-04-18 ルネサスエレクトロニクス株式会社 起動信号検出回路
US7777552B1 (en) * 2008-04-29 2010-08-17 Analog Devices, Inc. Logarithmic amplifier with RMS post-processing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0435510A (ja) * 1990-05-31 1992-02-06 Toko Inc 高周波検波回路
JP2000315927A (ja) * 1999-04-30 2000-11-14 Alps Electric Co Ltd 温度補償を行ったagc回路
JP2002314341A (ja) * 2001-04-18 2002-10-25 Alps Electric Co Ltd 送信器の検波回路
JP2006033185A (ja) * 2004-07-13 2006-02-02 Fujitsu Ltd ダイオード検波回路

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014134489A (ja) * 2013-01-11 2014-07-24 Denso Corp ノイズ検出装置
WO2018025324A1 (ja) * 2016-08-02 2018-02-08 株式会社日立製作所 検波回路
US10630238B2 (en) 2016-08-02 2020-04-21 Hitachi, Ltd. Detector circuit

Also Published As

Publication number Publication date
US20120235733A1 (en) 2012-09-20
US8604836B2 (en) 2013-12-10
CN104007311B (zh) 2017-05-24
CN102692541A (zh) 2012-09-26
US20130278292A1 (en) 2013-10-24
US8604837B2 (en) 2013-12-10
JP5621673B2 (ja) 2014-11-12
CN102692541B (zh) 2015-03-04
CN104007311A (zh) 2014-08-27

Similar Documents

Publication Publication Date Title
JP5621673B2 (ja) 検波回路
US10627842B2 (en) Lossless current balancing and sharing between paralleled linear voltage regulators
US9785176B2 (en) Small-circuit-scale reference voltage generating circuit
US8274259B2 (en) Method and charge-up circuit capable of adjusting charge-up current
US8278901B2 (en) Switching regulator configured to detect, and compensate for, decrease in output voltage
US8508207B2 (en) Controlling a skew time of switches of a switching regulator
JP7241945B2 (ja) 無線給電装置、及び無線給電装置の電流測定方法
US20080191673A1 (en) Series regulator circuit
CN101694963B (zh) 高精度低电压的电压电流转换电路
US9977446B2 (en) Inverting amplifier receiving negative feedback voltage in voltage regulator
TWI514104B (zh) 用於穩壓器之電流源及其穩壓器
JP6465999B2 (ja) ワイヤレス受電装置
US10879862B2 (en) Transmitter power detection method
KR20060114389A (ko) 파일럿 신호 검출 회로 및 그 회로를 탑재한 반도체 집적회로
US8258828B2 (en) Summation circuit in DC-DC converter
US8350597B2 (en) Low voltage self calibrated CMOS peak detector
US20110187436A1 (en) Integration circuit
JP2010142060A (ja) 電源回路及びその動作制御方法
JP2009182584A (ja) Pll回路
TW202207635A (zh) 信號接收裝置
US20200259463A1 (en) High-speed high-accuracy amplifier and method thereof
TWI837915B (zh) 數位類比轉換器
US20150333621A1 (en) Detector having offset cancellation function, and power factor correction apparatus and power supplying apparatus having the same
JP5493984B2 (ja) Ad変換回路
KR20120127920A (ko) 반도체 집적 회로의 입력 리시버 회로

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140826

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140908

R150 Certificate of patent or registration of utility model

Ref document number: 5621673

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350