JP2012195082A - Method for manufacturing positive electrode active material for lithium ion secondary battery - Google Patents

Method for manufacturing positive electrode active material for lithium ion secondary battery Download PDF

Info

Publication number
JP2012195082A
JP2012195082A JP2011056631A JP2011056631A JP2012195082A JP 2012195082 A JP2012195082 A JP 2012195082A JP 2011056631 A JP2011056631 A JP 2011056631A JP 2011056631 A JP2011056631 A JP 2011056631A JP 2012195082 A JP2012195082 A JP 2012195082A
Authority
JP
Japan
Prior art keywords
lithium
active material
positive electrode
secondary battery
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011056631A
Other languages
Japanese (ja)
Other versions
JP5516463B2 (en
Inventor
Akiko Shima
晃子 島
Naoto Yasuda
直人 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2011056631A priority Critical patent/JP5516463B2/en
Publication of JP2012195082A publication Critical patent/JP2012195082A/en
Application granted granted Critical
Publication of JP5516463B2 publication Critical patent/JP5516463B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a positive electrode active material for a lithium ion secondary battery capable of inhibiting the reduction in battery capacity associated with the activation of the positive electrode active material.SOLUTION: The method for manufacturing a positive electrode active material for a lithium ion secondary battery comprises: an acid treatment step in which an active material represented by the composition formula: xLiMO(1-x)LiMO, where Mrepresents one or more kinds of metallic elements necessarily containing tetravalent manganese, Mrepresents one or more kinds of metallic elements, 0≤x<1, and Li may be partly replaced by hydrogen, is brought into contact with an acid solution; and a lithium compensation step in which the active material having undergone the acid treatment is brought into contact with a lithium solution containing a lithium compound.

Description

本発明は、リチウムマンガン系複合酸化物を正極活物質とするリチウムイオン二次電池用正極活物質の製造方法に関する。   The present invention relates to a method for producing a positive electrode active material for a lithium ion secondary battery using a lithium manganese based composite oxide as a positive electrode active material.

近年、携帯電話やノート型パソコンなどのポータブル電子機器の発達や、電気自動車の実用化などに伴い、小型軽量でかつ高容量の二次電池が必要とされている。この要望に応える高容量二次電池としては、正極材料としてコバルト酸リチウム(LiCoO)、負極材料として炭素系材料、を用いた非水二次電池が商品化されている。このような非水二次電池はエネルギー密度が高く、小型化および軽量化が図れることから、幅広い分野で電源としての使用が注目されている。しかしながら、LiCoOは希少金属であるCoを原料として製造されるため、今後、資源不足が深刻化すると予想される。さらに、Coは高価であり、価格変動も大きいため、安価で供給の安定している正極材料の開発が望まれている。 In recent years, along with the development of portable electronic devices such as mobile phones and notebook computers, and the practical application of electric vehicles, secondary batteries with small and light weight and high capacity are required. As a high-capacity secondary battery that meets this demand, a non-aqueous secondary battery using lithium cobalt oxide (LiCoO 2 ) as a positive electrode material and a carbon-based material as a negative electrode material has been commercialized. Such a non-aqueous secondary battery has a high energy density and can be reduced in size and weight, and therefore has attracted attention as a power source in a wide range of fields. However, since LiCoO 2 is manufactured using Co, which is a rare metal, as a raw material, it is expected that a shortage of resources will become serious in the future. Furthermore, since Co is expensive and has a large price fluctuation, development of a positive electrode material that is inexpensive and stable in supply is desired.

そこで、構成元素の価格が安価で、供給が安定しているマンガン(Mn)を基本組成に含むリチウムマンガン酸化物系の複合酸化物の使用が有望視されている。その中でも、4価のマンガンイオンからなり、充放電の際にマンガン溶出の原因となる3価のマンガンイオンを含まないLiMnOという物質が注目されている。LiMnOは、今まで充放電不可能と考えられてきたが、最近の研究では高電位まで充電することにより充放電可能なことが見出され、LiMnOとLiMO(Mは遷移金属元素)との固溶体であるxLiMnO・(1−x)LiMO(0<x≦1)の開発が盛んに行われている。なお、LiMnOは、一般式Li(Li0.33Mn0.67)Oとも書き表すことが可能であり、LiMOと同じ結晶構造に属するとされている。そのため、xLiMnO・(1−x)LiMOは、Li1.33―yMn0.67−zy+z(0≦y<0.33、0≦z<0.67)とも記載される場合がある。 Therefore, the use of a lithium manganese oxide-based composite oxide containing manganese (Mn), whose constituent elements are inexpensive and whose supply is stable, is considered promising. Among them, a substance called Li 2 MnO 3 that is composed of tetravalent manganese ions and does not contain trivalent manganese ions that cause manganese elution at the time of charge and discharge has attracted attention. Li 2 MnO 3 has been considered to be impossible to charge and discharge until now, but recent research has found that it can be charged and discharged by charging to a high potential, and Li 2 MnO 3 and LiMO 2 (M is Development of xLi 2 MnO 3. (1-x) LiMO 2 (0 <x ≦ 1), which is a solid solution with a transition metal element), has been actively conducted. Note that Li 2 MnO 3 can also be expressed as a general formula Li (Li 0.33 Mn 0.67 ) O 2 and belongs to the same crystal structure as LiMO 2 . Therefore, xLi 2 MnO 3. (1-x) LiMO 2 is Li 1.33-y Mn 0.67-z M y + z O 2 (0 ≦ y <0.33, 0 ≦ z <0.67) May be described.

しかしながら、これらLiMnOおよびLiMnOを含む固溶体活物質はサイクル特性に関して更なる改善が必要とされている。 However, solid solution active materials containing these Li 2 MnO 3 and Li 2 MnO 3 are required to be further improved with respect to cycle characteristics.

例えば、これらLiMnOを含む層状岩塩構造のリチウムマンガン系複合酸化物を正極活物質として用いた二次電池を使用する際には、使用に先立ち活性化と呼ばれる不可逆容量を伴う充電をする必要がある。しかし、リチウムマンガン系複合酸化物の活性化にはLi対極電位で4.5V以上の高電圧で充電を行う必要があり、電解液の分解によるガス発生や正極活物質表面に高抵抗皮膜の形成などサイクル特性に悪影響を与えるといった問題があった。 For example, when a secondary battery using a lithium manganese composite oxide having a layered rock salt structure containing Li 2 MnO 3 as a positive electrode active material is used, the battery is charged with an irreversible capacity called activation prior to use. There is a need. However, to activate the lithium manganese composite oxide, it is necessary to charge at a high voltage of 4.5 V or more at the Li counter electrode potential. Gas generation due to decomposition of the electrolyte and formation of a high resistance film on the surface of the positive electrode active material There was a problem of adversely affecting the cycle characteristics.

一方、充電時に正極活物質で起こるLi脱離と同じ反応を化学的に起こす方法として、非特許文献1,2に、リチウムマンガン系複合酸化物に酸処理を施すことが提案されている。また、特許文献1,2には、リチウムマンガン系複合酸化物LiMnOを出発原料として、塩酸、硫酸などの酸を使用して化学的にLiイオンを脱離させる手法が開示されており、また特許文献3には、リチウムマンガン系複合酸化物Li1+x(Mn1―y1−xを硝酸水溶液中で攪拌することにより酸処理を施し、水洗後に熱処理を行うことで、正極活物質としてのLi1+x−a(Mn1―y1−x2±b(0<a<0.3、0<b<0.1、0<x<0.4、0<y≦1、0.95<1+x−a<1.15、Mは遷移金属)を得る手法が示されている。 On the other hand, as a method for chemically causing the same reaction as Li elimination occurring in the positive electrode active material during charging, Non-Patent Documents 1 and 2 propose that an acid treatment is performed on a lithium manganese composite oxide. Patent Documents 1 and 2 disclose a method of chemically desorbing Li ions using lithium manganese-based composite oxide LiMnO 2 as a starting material and using an acid such as hydrochloric acid or sulfuric acid. Patent Document 3, acid-treated by stirring the lithium manganese composite oxide Li 1 + x (Mn y M 1-y) 1-x O 2 in an aqueous solution of nitric acid, by performing heat treatment after washing with water, the cathode Li as an active material 1 + x-a (Mn y M 1-y) 1-x O 2 ± b (0 <a <0.3,0 <b <0.1,0 <x <0.4,0 < A method for obtaining y ≦ 1, 0.95 <1 + xa <1.15, M is a transition metal) is shown.

特開2004−59379号公報JP 2004-59379 A 特開2007−77018号公報JP 2007-77018 A 特開2009−4285号公報JP 2009-4285 A 特表平11−506721号公報Japanese National Patent Publication No. 11-506721 特開平07−073882号公報Japanese Patent Application Laid-Open No. 07-073882

Journal of the Electrochemical Society, 153, (6)A1186-A1192(2006)Journal of the Electrochemical Society, 153, (6) A1186-A1192 (2006) Journal of the Electrochemical Society, 157, (11)A1177-A1182(2010)Journal of the Electrochemical Society, 157, (11) A1177-A1182 (2010)

上記各種文献に開示された技術をLiMnO含有リチウムマンガン系複合酸化物に応用すれば、LiMnO含有リチウムマンガン系複合酸化物で必要とされる高電圧までの充電による活性化の段階を省ける事が予想される。しかし、その場合、酸性水溶液で処理したときに、リチウムマンガン系複合酸化物中のリチウムが、酸性水溶液中のプロトンと交換して、リチウムが酸性素溶液中に流出してしまう。このため、リチウムマンガン系複合酸化物中のリチウム含有量が減少し、電池容量の低下を招く要因となる。 By applying the various documents to the technique disclosed in Li 2 MnO 3 lithium-manganese-based composite oxide containing, for activation by charging to a high voltage required in Li 2 MnO 3 lithium-manganese-based composite oxide containing It is expected that the stage can be omitted. However, in that case, when the treatment is performed with an acidic aqueous solution, lithium in the lithium manganese composite oxide is exchanged for protons in the acidic aqueous solution, and lithium flows out into the acidic elementary solution. For this reason, the lithium content in the lithium manganese composite oxide decreases, which causes a decrease in battery capacity.

特許文献4、5には、二酸化マンガンにリチウム化合物を混合し、熱処理をしてリチウム含有マンガン複合酸化物を得ることが開示されている。しかし、この技術は、二酸化マンガン中のイオン交換可能な水素がLiイオンで置換するものである。上記の層状岩塩構造をもつリチウムマンガン系複合酸化物とは、対象となる酸化物が相違するため、特許文献4,5の技術をそのまま上記リチウムマンガン系複合酸化物のリチウム補填に適用できない。   Patent Documents 4 and 5 disclose that a lithium compound is mixed with manganese dioxide and heat-treated to obtain a lithium-containing manganese composite oxide. However, this technique replaces ion-exchangeable hydrogen in manganese dioxide with Li ions. Since the target oxide is different from the lithium manganese composite oxide having the layered rock salt structure, the techniques of Patent Documents 4 and 5 cannot be applied to the lithium supplementation of the lithium manganese composite oxide as they are.

本発明はかかる事情に鑑みてなされたものであり、正極活物質の活性化による電池容量の低減を抑えることができるリチウムイオン二次電池用正極活物質の製造方法を提供することを課題とする。   This invention is made | formed in view of this situation, and makes it a subject to provide the manufacturing method of the positive electrode active material for lithium ion secondary batteries which can suppress the reduction | decrease of the battery capacity by activation of a positive electrode active material. .

(1)本発明のリチウムイオン二次電池用正極活物質の製造方法は、組成式:xLi・(1−x)LiM(Mは4価のマンガンを必須とする一種以上の金属元素、Mは1種以上の金属元素、0<x≦1、Liはその一部が水素で置換されていてもよい。)で表される活物質に酸溶液を接触させる酸処理工程と、酸処理を施した前記活物質にリチウム化合物を含むリチウム溶液を接触させるリチウム補填工程とを含むことを特徴とする。 (1) The method for producing a positive electrode active material for a lithium ion secondary battery of the present invention has a composition formula: xLi 2 M 1 O 3. (1-x) LiM 2 O 2 (M 1 is essentially tetravalent manganese. One or more metal elements, M 2 is one or more metal elements, 0 <x ≦ 1, and Li may be partially substituted with hydrogen.) An acid treatment step to be carried out, and a lithium supplementation step in which a lithium solution containing a lithium compound is brought into contact with the acid-treated active material.

上記構成によれば、活物質に酸溶液を接触させている。このため、活物質であるxLiMnO・(1−x)LiMOの中から、LiOが引き抜かれて、活物質が活性化される。 According to the said structure, the acid solution is made to contact the active material. Therefore, Li 2 O is extracted from the active material xLi 2 MnO 3. (1-x) LiMO 2 to activate the active material.

活物質を酸溶液に接触させることで、活物質の中からLiイオンがLiOとして引き抜かれるため、そのままでは電池容量が低下する。 By bringing the active material into contact with the acid solution, Li ions are extracted as Li 2 O from the active material, so that the battery capacity is reduced as it is.

そこで、本発明では、酸溶液を接触させた活物質に、リチウム化合物を含むリチウム溶液を接触させている。このため、活性化された活物質に、Liイオンが補填されて、電池容量が増加する。   Therefore, in the present invention, a lithium solution containing a lithium compound is brought into contact with the active material in contact with the acid solution. For this reason, Li ion is supplemented to the activated active material, and battery capacity increases.

(2)前記酸溶液は、硫酸水溶液、硝酸水溶液、及び硫酸アンモニウム水溶液のいずれか1種からなることが好ましい。この場合には、活物質が十分に活性化される。   (2) The acid solution is preferably composed of any one of an aqueous sulfuric acid solution, an aqueous nitric acid solution, and an aqueous ammonium sulfate solution. In this case, the active material is sufficiently activated.

(3)前記リチウム化合物は、水酸化リチウム及び硝酸リチウムの少なくとも1種を含むことが好ましい。この場合には、活性化された活物質にLiイオンが十分に補填され、電池容量が増加する。   (3) It is preferable that the said lithium compound contains at least 1 sort (s) of lithium hydroxide and lithium nitrate. In this case, Li ions are sufficiently supplemented to the activated active material, and the battery capacity is increased.

(4)前記リチウム化合物が水酸化リチウムであって、前記リチウム溶液中の前記水酸化リチウムの濃度は、0.1モル/L(M)以上5M以下であることが好ましい。この場合には、活性化された活物質にLiイオンが十分に補填され、電池容量が増加する。   (4) It is preferable that the lithium compound is lithium hydroxide, and the concentration of the lithium hydroxide in the lithium solution is 0.1 mol / L (M) or more and 5 M or less. In this case, Li ions are sufficiently supplemented to the activated active material, and the battery capacity is increased.

(5)前記酸処理工程において、前記活物質に酸溶液を接触させることで前記活物質からLiOが引き抜かれることが好ましい。この場合には、活物質が効果的に活性化される。 (5) In the acid treatment step, it is preferable that Li 2 O be extracted from the active material by bringing an acid solution into contact with the active material. In this case, the active material is effectively activated.

本発明のリチウムイオン二次電池の製造方法によれば、活物質に酸溶液を接触させた後に、リチウム溶液に接触させている。このため、活物質が活性化されて、電池として使用可能となるだけでなく、リチウム補填工程でLiイオンが補填されて、二次電池の容量が増加する。   According to the method for manufacturing a lithium ion secondary battery of the present invention, the acid solution is brought into contact with the active material and then brought into contact with the lithium solution. Therefore, the active material is activated and can be used as a battery, and Li ions are supplemented in the lithium supplementation process, thereby increasing the capacity of the secondary battery.

正極に試料1、2を用い、負極に金属リチウムを用いた二次電池の充放電曲線を示す図である。It is a figure which shows the charging / discharging curve of the secondary battery which used the samples 1 and 2 for the positive electrode, and used metallic lithium for the negative electrode. 正極に試料1、2を用い、負極に炭素を用いた二次電池の充放電曲線を示す図である。It is a figure which shows the charging / discharging curve of the secondary battery which used the samples 1 and 2 for the positive electrode, and used carbon for the negative electrode. 正極に試料1〜4を用い、負極に金属リチウムを用いた二次電池の充放電曲線を示す図である。It is a figure which shows the charging / discharging curve of the secondary battery which used the samples 1-4 for the positive electrode and used metallic lithium for the negative electrode. 正極に試料1〜4を用い、負極に炭素を用いた二次電池の充放電曲線を示す図である。It is a figure which shows the charging / discharging curve of the secondary battery which used the samples 1-4 for the positive electrode and used carbon for the negative electrode. 正極に試料2,5を用い、負極に炭素を用いた二次電池の充放電曲線を示す図である。It is a figure which shows the charging / discharging curve of the secondary battery which used the samples 2 and 5 for the positive electrode and used carbon for the negative electrode. 正極に試料2,5,6を用い、負極に炭素を用いた二次電池の充放電曲線を示す図である。It is a figure which shows the charging / discharging curve of the secondary battery which used sample 2,5,6 for the positive electrode and used carbon for the negative electrode. 正極に試料1、2,5,7を用い、負極に金属リチウムを用いた二次電池の充放電曲線を示す図である。It is a figure which shows the charging / discharging curve of the secondary battery which used sample 1,2,5,7 for the positive electrode and used metallic lithium for the negative electrode. 正極に試料1、2,5,7を用い、負極に炭素を用いた二次電池の充放電曲線を示す図である。It is a figure which shows the charging / discharging curve of the secondary battery which used sample 1,2,5,7 for the positive electrode and used carbon for the negative electrode.

本発明のリチウムイオン二次電池用正極活物質の製造方法は、酸処理工程と、リチウム補填工程とを有する。   The manufacturing method of the positive electrode active material for lithium ion secondary batteries of this invention has an acid treatment process and a lithium supplementation process.

(1)酸処理工程
酸処理工程では、組成式:xLi・(1−x)LiM(Mは4価のマンガンを必須とする一種以上の金属元素、Mは1種以上の金属元素、0<x≦1、Liはその一部が水素で置換されていてもよい。)で表される活物質に、酸溶液を接触させる。
(1) In the acid treatment step acid treatment step, the composition formula: xLi 2 M 1 O 3 · (1-x) LiM 2 O 2 (M 1 is tetravalent manganese least one metallic element as essential, M 2 Is one or more metal elements, 0 <x ≦ 1, and a part of Li may be replaced with hydrogen.) An acid solution is brought into contact with the active material.

活物質は、xLiと(1−x)LiMとからなる固溶体である。LiとLiMとは、いずれも層状岩塩構造(α−NaFeO型)を有する。Liは電池容量が大きく、LiMは電池のサイクル特性に優れるといわれている。LiとLiMとの双方を含むLi−LiMは、電池容量が大きく、且つ電池のサイクル特性に優れている。 The active material is a solid solution composed of xLi 2 M 1 O 3 and (1-x) LiM 2 O 2 . Li 2 M 1 O 3 and LiM 2 O 2 both have a layered rock salt structure (α-NaFeO 2 type). Li 2 M 1 O 3 has a large battery capacity, and LiM 2 O 2 is said to have excellent battery cycle characteristics. Li 2 M 1 O 3 —LiM 2 O 2 containing both Li 2 M 1 O 3 and LiM 2 O 2 has a large battery capacity and excellent battery cycle characteristics.

Liは、一般式Li(Li0.33 0.67)Oとも書き表すことが可能であり、LiMと同じ層状結晶構造に属するとされている。そのため、xLi・(1−x)LiMは、Li1.33―x 0.67−y x+y(Mは、4価のMnを必須とする1種以上の金属元素、Mは金属元素、0≦x≦0.33、0≦y<0.67)とも記載される場合がある。 Li 2 M 1 O 3 can also be expressed as a general formula Li (Li 0.33 M 1 0.67 ) O 2 and is said to belong to the same layered crystal structure as LiM 2 O 2 . Therefore, xLi 2 M 1 O 3. (1-x) LiM 2 O 2 is Li 1.33-x M 1 0.67-y M 2 x + y O 2 (M 1 is essential for tetravalent Mn. One or more metal elements, M 2 may be described as a metal element, 0 ≦ x ≦ 0.33, 0 ≦ y <0.67).

Liの中のMは、4価のMnを必須とする。Mは、ほとんどが4価のMnであるのが好ましいが、50%未満更には80%未満が他の金属元素で置換されていてもよい。Mを構成し得る、Mn以外の他の金属元素としては、例えば、電極材料とした場合の充放電可能な容量の観点から、Ni、Al、Co、Fe、Mg、Tiから選ばれる少なくとも1種であることが好ましい。 M 1 in the li 2 M 1 O 3 is an essential component tetravalent Mn. Most of M 1 is preferably tetravalent Mn, but less than 50% or even less than 80% may be substituted with another metal element. The metal element other than Mn that can constitute M 2 is, for example, at least one selected from Ni, Al, Co, Fe, Mg, and Ti from the viewpoint of chargeable / dischargeable capacity when an electrode material is used. Preferably it is a seed.

なお、不可避的に生じるLi、Ni、M、M又はOの欠損により、上記組成式からわずかにずれた複合酸化物も含む。したがって、上記Mの平均酸化数は、4価から若干ずれてもよく、3.8〜4.2価まで許容される。 Note that composite oxides slightly deviating from the above composition formula due to defects of Li, Ni, M 1 , M 2, or O that are inevitably generated are also included. Therefore, the average oxidation number of the M 1 may be slightly shifted from the tetravalent, it is allowed to 3.8 to 4.2 valence.

LiMの中のMは、金属元素であり、例えば、Ni、Al、Mn、Co、Fe、Mg、Tiの少なくとも1種であることが好ましい。 M 2 in LiM 2 O 2 is a metal element, and is preferably at least one of Ni, Al, Mn, Co, Fe, Mg, and Ti, for example.

の酸化数は、3価となるとよい。Mが複数の金属元素からなる場合には、Mを構成する金属元素の平均酸化数が3価となるとよい。3価の元素としては、Ni、Co、Al、Mg、Fe、Snがある。MがMnとNiとからなる場合には、Mnは4価となり、Niは2価となって、MとしてのMnとNiとは同じモル数含まれる。 The oxidation number of M 2 is preferably trivalent. When M 2 is composed of a plurality of metal elements, the average oxidation number of the metal elements constituting M 2 is preferably trivalent. Examples of the trivalent element include Ni, Co, Al, Mg, Fe, and Sn. When M 2 consists of Mn and Ni, Mn becomes tetravalent, Ni becomes divalent, and Mn and Ni as M 2 are included in the same number of moles.

なお、不可避的に生じるLi、M、M又はOの欠損により、上記組成式からわずかにずれた複合酸化物も含む。したがって、Mの酸化数は、3価から若干ずれてもよく、2.8〜3.2価まで許容される。 Note that composite oxides slightly deviating from the above composition formula due to unavoidable loss of Li, M 1 , M 2 or O are also included. Accordingly, the oxidation number of M 2 may be slightly shifted from trivalent, it is allowed to 2.8 to 3.2 valence.

Li及びLiMに含まれるLiは、その一部が水素(H)で置換されていてもよい。例えば、Liは、原子比で60%以下さらには45%以下がHに置換されていてもよい。 A part of Li contained in Li 2 M 1 O 3 and LiM 2 O 2 may be substituted with hydrogen (H). For example, in Li, 60% or less, further 45% or less in atomic ratio may be substituted with H.

組成式xLi・(1―x)LiMで表される複合酸化物を基本組成とし、層状岩塩構造をもつリチウムニッケル系複合酸化物としては、例えば、組成式のxが1である場合には、Liとなり、組成式のxが0.5の場合には、Li・LiMとなる。 A composite oxide represented by a composition formula xLi 2 M 1 O 3 · (1-x) LiM 2 O 2 is used as a basic composition, and a lithium nickel-based composite oxide having a layered rock salt structure includes, for example, x in the composition formula When Li is 1, Li 2 M 1 O 3 is obtained, and when x in the composition formula is 0.5, Li 2 M 1 O 3 .LiM 2 O 2 is obtained.

Liとしては、たとえば、LiMnO、LiMn1/3Ni1/3Co1/3、LiMn1/2Ni1/2などを挙げることができる。Li・LiMとしては、例えば、LiMnO・LiNiO、LiMnO・LiMn1/3Ni1/3Co1/3、LiMnO・LiMn1/2Ni1/2などを挙げることができる。 Examples of Li 2 M 1 O 3 include Li 2 MnO 3 , LiMn 1/3 Ni 1/3 Co 1/3 O 2 , and LiMn 1/2 Ni 1/2 O 2 . The Li 2 M 1 O 3 · LiM 2 O 2, for example, Li 2 MnO 3 · LiNiO 2 , Li 2 MnO 3 · LiMn 1/3 Ni 1/3 Co 1/3 O 2, Li 2 MnO 3 · LiMn ½ Ni ½ O 2 and the like can be mentioned.

上記に列挙した複合酸化物の構成元素であるNi、Mn、Coの一部は、他の金属元素で置換されていてもよい。得られる複合酸化物全体としては、例示した酸化物を基本組成とすればよく、不可避的に生じる金属元素又は酸素の欠損により、上記組成式からわずかに外れていても良い。   A part of Ni, Mn, and Co, which are constituent elements of the composite oxides listed above, may be substituted with other metal elements. The obtained composite oxide as a whole may have the basic composition as the exemplified oxide, and may slightly deviate from the above composition formula due to unavoidable metal element or oxygen deficiency.

、Mの中のLiは、原子比で60%以下さらには45%以下がHに置換されてもよい。 Li in M 1 and M 2 may be substituted with H in an atomic ratio of 60% or less, further 45% or less.

活物質に酸溶液を接触させると、以下の反応式(1)に示すように、活物質からLiOが引き抜かれる。
xLi・(1−x)LiM → xLi2−y3−y/2・(1−x)LiM+y/2LiO・・・・(1)
(0<x≦1、0<y<2)
引き抜かれたLiOは、Liイオンとして酸溶液の中に溶出し、プラズマ発光分光分析(ICP)によりLi量が増加したことにより確認できる。
When the acid solution is brought into contact with the active material, Li 2 O is extracted from the active material as shown in the following reaction formula (1).
xLi 2 M 1 O 3 · ( 1-x) LiM 2 O 2 → xLi 2-y M 1 O 3-y / 2 · (1-x) LiM 2 O 2 + y / 2Li 2 O ···· (1 )
(0 <x ≦ 1, 0 <y <2)
The extracted Li 2 O is eluted into the acid solution as Li ions, and can be confirmed by an increase in the amount of Li by plasma emission spectroscopic analysis (ICP).

酸溶液は、硫酸水溶液、硝酸水溶液、及び硫酸アンモニウム水溶液のいずれか1種からなることが好ましい。この中、硫酸水溶液がよい。活物質に硫酸水溶液を接触させた場合の反応式を以下の式に示す。   The acid solution is preferably composed of any one of an aqueous sulfuric acid solution, an aqueous nitric acid solution, and an aqueous ammonium sulfate solution. Among these, a sulfuric acid aqueous solution is preferable. The reaction formula when the active material is brought into contact with the sulfuric acid aqueous solution is shown in the following formula.

xLi・(1−x)LiM + HSO → xLi2―y・(1−x)LiM + LiSO…(2)
xLi2―y・(1−x)LiM → xLi2−y3−y/2・(1−x)LiM+1/2 HO…(3)
酸溶液の中に含まれる酸、塩などの酸生成物の濃度は、酸生成物の種類によって若干相違するが、おおよそ、0.01M以上5M以下であることが好ましい。硫酸水溶液の中の酸生成物の濃度が0.01M未満の場合には、活物質が活性化されにくくなるおそれがあり、5Mを超える場合には、活物質の構造変化が起こるおそれがある。
xLi 2 M 1 O 3 · ( 1-x) LiM 2 O 2 + H 2 SO 4 → xLi 2-y H y M 1 O 3 · (1-x) LiM 2 O 2 + LiSO 4 ... (2)
xLi 2-y H y M 1 O 3 · (1-x) LiM 2 O 2 → xLi 2-y M 1 O 3-y / 2 · (1-x) LiM 2 O 2 +1/2 H 2 O ... (3)
The concentration of the acid product such as acid and salt contained in the acid solution is slightly different depending on the type of the acid product, but is preferably about 0.01 M or more and 5 M or less. When the concentration of the acid product in the sulfuric acid aqueous solution is less than 0.01M, the active material may be hardly activated, and when it exceeds 5M, the structure of the active material may change.

酸溶液が硫酸水溶液である場合、硫酸水溶液の中の硫酸の濃度は、0.01M以上5M以下であることが好ましく、更には0.1M以上2M以下であることが望ましい。硫酸水溶液の中の硫酸の濃度が0.01M未満の場合には、活物質が活性化されにくくなるおそれがあり、5Mを超える場合には、活物質の構造変化が起こるおそれがある。   When the acid solution is an aqueous sulfuric acid solution, the concentration of sulfuric acid in the aqueous sulfuric acid solution is preferably 0.01 M or more and 5 M or less, and more preferably 0.1 M or more and 2 M or less. When the concentration of sulfuric acid in the aqueous sulfuric acid solution is less than 0.01M, the active material may be difficult to activate, and when it exceeds 5M, the structure of the active material may change.

酸溶液が硫酸アンモニウム水溶液である場合、硫酸アンモニウム水溶液の中の硫酸アンモニウムの濃度は、0.01M以上5M以下であることが好ましく、更には0.05M以上1M以下であることが望ましい。硫酸アンモニウム水溶液の中の硫酸アンモニウムの濃度が0.01M未満の場合には、活物質が活性化されにくくなるおそれがあり、5Mを超える場合には、活物質の構造変化が起こるおそれがある。   When the acid solution is an aqueous ammonium sulfate solution, the concentration of ammonium sulfate in the aqueous ammonium sulfate solution is preferably 0.01 M or more and 5 M or less, and more preferably 0.05 M or more and 1 M or less. When the concentration of ammonium sulfate in the aqueous ammonium sulfate solution is less than 0.01M, the active material may be difficult to activate, and when it exceeds 5M, the structure of the active material may change.

酸溶液が硝酸水溶液である場合、硝酸水溶液の中の硝酸の濃度は、0.01M以上5M以下であることが好ましく、更には0.1M以上2M以下であることが望ましい。硝酸水溶液の中の硝酸の濃度が0.01M未満の場合には、活物質が活性化されにくくなるおそれがあり、5Mを超える場合には、活物質の構造変化が起こるおそれがある。   When the acid solution is an aqueous nitric acid solution, the concentration of nitric acid in the aqueous nitric acid solution is preferably 0.01 M or more and 5 M or less, and more preferably 0.1 M or more and 2 M or less. If the concentration of nitric acid in the aqueous nitric acid solution is less than 0.01M, the active material may be less likely to be activated, and if it exceeds 5M, the structure of the active material may change.

(2)リチウム補填工程
リチウム補填工程では、酸処理を施した活物質に、リチウム化合物を含むリチウム溶液を接触させる。すると、プロトン交換により酸処理を施した上記式(1)の活物質xLi2−y3−y/2・(1−x)LiMに、Liイオンが導入される。Liイオンが導入されたことにより、電池容量の増加が見られる。
(2) Lithium filling step In the lithium filling step, a lithium solution containing a lithium compound is brought into contact with the acid-treated active material. Then, the active material xLi 2-y M 1 O 3 -y / 2 · (1-x) LiM 2 O 2 in the formula was subjected to acid treatment by proton exchange (1), Li ions are introduced. An increase in battery capacity is observed due to the introduction of Li ions.

リチウム化合物としては、Liイオンを溶媒中に溶出し得るリチウム化合物を用いることがよい。かかるリチウム化合物としては、水酸化リチウム、リチウム塩などを用いるとよい。リチウム塩としては、例えば、水酸化リチウム、硝酸リチウムなどを用いるとよい。リチウム溶液の溶媒としては、水が好ましい。   As the lithium compound, it is preferable to use a lithium compound capable of eluting Li ions into the solvent. As such a lithium compound, lithium hydroxide, a lithium salt, or the like may be used. For example, lithium hydroxide or lithium nitrate may be used as the lithium salt. As a solvent of the lithium solution, water is preferable.

xLi2−y3−y/2・(1−x)LiM自体がアルカリ性であるため、強アルカリ下で、リチウム塩又はLiイオンを導入しやすい。このため、Liイオンを導入しやすいリチウム溶液の条件としては、例えば、リチウム化合物の濃度が高いこと、リチウム化合物のpHが高いこと、リチウム化合物の溶解度が高いことがよい。 For xLi 2-y M 1 O 3 -y / 2 · (1-x) LiM 2 O 2 itself is alkaline, strongly alkaline under easily introduce lithium salt or Li ions. For this reason, as conditions of the lithium solution in which Li ions are easily introduced, for example, the concentration of the lithium compound is high, the pH of the lithium compound is high, and the solubility of the lithium compound is high.

リチウム溶液中のリチウム化合物の濃度は、0.1M以上5M以下であることが好ましく、更には1M以上3M以下であることが好ましい。リチウム溶液中のリチウム化合物の濃度が0.1M未満の場合には、Liイオンの補填が起こりにくいおそれがあり、5Mを超える場合には、活物質の構造変化が起こるおそれがある。   The concentration of the lithium compound in the lithium solution is preferably from 0.1 M to 5 M, and more preferably from 1 M to 3 M. When the concentration of the lithium compound in the lithium solution is less than 0.1M, Li ion supplementation may be difficult, and when it exceeds 5M, the structure of the active material may change.

例えば、リチウム化合物が水酸化リチウム(LiOH/HO)である場合には、水酸化リチウムは、アルカリ性が高いため、Liイオンを活物質に導入しやすい。硝酸リチウムなどは水に対する溶解度が高いが、中性のため、Liイオンの活物質への導入性は水酸化リチウムに比べて高くない。 For example, when the lithium compound is lithium hydroxide (LiOH / H 2 O), lithium hydroxide has high alkalinity, and thus it is easy to introduce Li ions into the active material. Lithium nitrate or the like has high solubility in water, but since it is neutral, the ability to introduce Li ions into the active material is not as high as that of lithium hydroxide.

例えば、リチウム化合物が水酸化リチウムである場合には、リチウム溶液中の水酸化リチウムの濃度は、0.1M以上5M以下であることが好ましく、更には1M以上3M以下であることが好ましい。リチウム溶液中の水酸化リチウムの濃度が0.1M未満の場合には、Liイオンの補填が起こりにくいおそれがあり、5Mを超える場合には、活物質の構造変化が起こるおそれがある。   For example, when the lithium compound is lithium hydroxide, the concentration of lithium hydroxide in the lithium solution is preferably from 0.1 M to 5 M, and more preferably from 1 M to 3 M. If the concentration of lithium hydroxide in the lithium solution is less than 0.1M, Li ion supplementation may be difficult, and if it exceeds 5M, the structure of the active material may change.

リチウム化合物が硝酸リチウムである場合には、リチウム溶液中の硝酸リチウムの濃度は、0.1M以上5M以下であることが好ましく、更には1M以上3M以下であることが好ましい。リチウム溶液中の硝酸リチウムの濃度が0.1M未満の場合には、Liイオンの補填が起こりにくいおそれがあり、5Mを超える場合には、活物質の構造変化が起こるおそれがある。   When the lithium compound is lithium nitrate, the concentration of lithium nitrate in the lithium solution is preferably from 0.1 M to 5 M, and more preferably from 1 M to 3 M. If the concentration of lithium nitrate in the lithium solution is less than 0.1M, Li ion supplementation may be difficult, and if it exceeds 5M, the structure of the active material may change.

リチウム溶液のpHは、アルカリ性であることが好ましく、さらには7.1以上13以下であることが好ましい。pHが7.1以上であると活物質へのLiイオンの補填が起こりやすくなる。   The pH of the lithium solution is preferably alkaline, and more preferably 7.1 or more and 13 or less. When the pH is 7.1 or more, supplementation of Li ions to the active material is likely to occur.

上記で説明した本発明の製造方法により得られる正極活物質は、必要に応じて結着材、導電助剤などとともに、集電体表面を覆って、正極を構成する。この正極は、負極とセパレータと非水電解質とともにリチウムイオン二次電池に用いられる。リチウムイオン二次電池は、非水電解質二次電池の一種で、電解質中のLiイオンが電気伝導を担う二次電池である。リチウムイオン二次電池は、携帯電話、パソコン等の通信機器、情報関連機器の分野の他、自動車の分野においても好適に利用できる。たとえば、このリチウムイオン二次電池を車両に搭載すれば、リチウムイオン二次電池を電気自動車用の電源として使用できる。   The positive electrode active material obtained by the production method of the present invention described above covers the current collector surface together with a binder, a conductive auxiliary agent, etc. as necessary to constitute a positive electrode. This positive electrode is used for a lithium ion secondary battery together with a negative electrode, a separator, and a nonaqueous electrolyte. The lithium ion secondary battery is a kind of non-aqueous electrolyte secondary battery, and is a secondary battery in which Li ions in the electrolyte bear electric conduction. Lithium ion secondary batteries can be suitably used in the field of automobiles in addition to the fields of communication devices and information-related devices such as mobile phones and personal computers. For example, if this lithium ion secondary battery is mounted on a vehicle, the lithium ion secondary battery can be used as a power source for an electric vehicle.

(活物質<試料1>の合成)
以下のように、LiMnO・LiNi1/3Co1/3Mn1/3からなる活物質を溶融塩法で作製した。
(Synthesis of active material <sample 1>)
As described below, an active material made of Li 2 MnO 3 .LiNi 1/3 Co 1/3 Mn 1/3 O 2 was prepared by a molten salt method.

リチウム化合物(溶融塩原料)として0.20molの水酸化リチウム−水和物LiOH・HOと、ニッケル化合物として0.02molのニッケルマンガンコバルト酸化物とを混合して、原料混合物を調製した。原料混合物を坩堝に入れて、700℃の電気炉内に移し、大気中700℃で2時間加熱した。このとき原料混合物は、融解して溶融塩となり、黒色の生成物が沈殿した。 A raw material mixture was prepared by mixing 0.20 mol of lithium hydroxide-hydrate LiOH.H 2 O as a lithium compound (molten salt raw material) and 0.02 mol of nickel manganese cobalt oxide as a nickel compound. The raw material mixture was put in a crucible, transferred into an electric furnace at 700 ° C., and heated in the atmosphere at 700 ° C. for 2 hours. At this time, the raw material mixture melted to form a molten salt, and a black product was precipitated.

溶融塩の入った坩堝を電気炉内で室温まで冷却した後、電気炉から取り出した。溶融塩が十分に冷却されて固化した後、坩堝ごと200mlの蒸留水に浸し、攪拌することで固化した溶融塩を水に溶解した。黒色の生成物は水に対して不溶性であるため、水は黒色の懸濁液となった。黒色の懸濁液を濾過すると、透明な濾液と、濾紙上に黒色の固体の濾物とが得られた。得られた濾物を更に蒸留水で十分に洗浄しながら濾過した。洗浄後の黒色の固体を120℃で12時間、真空乾燥した後、乳鉢と乳棒を用いて粉砕した。得られた黒色粉末についてCuKα線を用いたX線回折(XRD)を測定し、活物質LiMnO・LiNi1/3Co1/3Mn1/3が生成していることが確認された。LiMnO・LiNi1/3Co1/3Mn1/3の組成比は、モル比で、LiMnO:LiNi1/3Co1/3Mn1/3=50:50であった。これを試料1とした。 The crucible containing the molten salt was cooled to room temperature in the electric furnace and then taken out from the electric furnace. After the molten salt was sufficiently cooled and solidified, the crucible was immersed in 200 ml of distilled water, and the molten salt solidified by stirring was dissolved in water. Since the black product was insoluble in water, the water became a black suspension. Filtration of the black suspension gave a clear filtrate and a black solid filtrate on the filter paper. The obtained filtrate was further filtered while thoroughly washing with distilled water. The black solid after washing was vacuum-dried at 120 ° C. for 12 hours and then pulverized using a mortar and pestle. X-ray diffraction (XRD) using CuKα rays was measured for the obtained black powder, and it was confirmed that an active material Li 2 MnO 3 .LiNi 1/3 Co 1/3 Mn 1/3 O 2 was generated. It was done. The composition ratio of Li 2 MnO 3 .LiNi 1/3 Co 1/3 Mn 1/3 O 2 is a molar ratio, Li 2 MnO 3 : LiNi 1/3 Co 1/3 Mn 1/3 O 2 = 50: 50. This was designated as Sample 1.

(活物質への酸処理工程の実施<試料2,3,4>)
上記試料1に、以下の3種類の方法で酸処理工程を施した。
(Implementation of acid treatment process for active material <samples 2, 3, 4>)
The sample 1 was subjected to an acid treatment step by the following three methods.

まず、第1の酸処理工程において、活物質の合成により得られた試料1のLiMnO・LiNi1/3Co1/3Mn1/3(300mg)を、0.1Mの硫酸(HSO)水溶液(5ml)中で室温で一晩混合した。その後、蒸留水を用いて2回水洗を行い、120℃・6時間真空中で乾燥を行った。これを試料2とした。 First, in the first acid treatment step, Li 2 MnO 3 .LiNi 1/3 Co 1/3 Mn 1/3 O 2 (300 mg) of Sample 1 obtained by synthesis of the active material was added to 0.1 M sulfuric acid. Mixed in aqueous (H 2 SO 4 ) solution (5 ml) at room temperature overnight. Thereafter, it was washed twice with distilled water and dried in vacuum at 120 ° C. for 6 hours. This was designated as Sample 2.

第2の酸処理工程において、上記試料1(300mg)を、0.1Mの硝酸(HNO)水溶液(5ml)中で室温で一晩混合した。その後、蒸留水を用いて2回水洗を行い、120℃・6時間真空中で乾燥を行った。これを試料3とした。 In the second acid treatment step, the sample 1 (300 mg) was mixed overnight at room temperature in a 0.1 M nitric acid (HNO 3 ) aqueous solution (5 ml). Thereafter, it was washed twice with distilled water and dried in vacuum at 120 ° C. for 6 hours. This was designated as Sample 3.

第3の酸処理工程において、上記試料1(300mg)を、0.1Mの硫酸アンモニウム((NHSO)水溶液(5ml)中で室温で一晩混合した。その後、蒸留水を用いて2回水洗を行い、120℃・6時間真空中で乾燥を行った。これを試料4とした。 In the third acid treatment step, the sample 1 (300 mg) was mixed overnight in an aqueous 0.1 M ammonium sulfate ((NH 4 ) 2 SO 4 ) solution (5 ml) at room temperature. Thereafter, it was washed twice with distilled water and dried in vacuum at 120 ° C. for 6 hours. This was designated as Sample 4.

(正極活物質<試料5>)
硫酸水溶液で酸処理工程を行った活物質(試料2)に、リチウム補填工程を行った。リチウム補填工程では、酸処理工程を行った活物質(試料2)を1Mの水酸化リチウム水溶液中、室温で一晩混合した。その後、蒸留水で2回水洗を行い、再び120℃中、真空中で6時間乾燥し、目的である正極活物質を得た。これを試料5とした。
(Positive electrode active material <Sample 5>)
An active material (sample 2) that had been subjected to an acid treatment step with an aqueous sulfuric acid solution was subjected to a lithium supplementation step. In the lithium supplementation step, the active material (sample 2) subjected to the acid treatment step was mixed overnight in a 1M lithium hydroxide aqueous solution at room temperature. Thereafter, it was washed twice with distilled water and again dried in a vacuum at 120 ° C. for 6 hours to obtain a target positive electrode active material. This was designated as Sample 5.

(正極活物質<試料6>)
試料5の製造方法のリチウム補填工程の水酸化リチウム水溶液に代えて、1Mの硝酸リチウム水溶液を用いた他は、試料5と同様に正極活物質を作製した。これを試料6とした。
(Positive electrode active material <Sample 6>)
A positive electrode active material was prepared in the same manner as Sample 5 except that a 1M lithium nitrate aqueous solution was used instead of the lithium hydroxide aqueous solution in the lithium filling step of the production method of Sample 5. This was designated as Sample 6.

(正極活物質<試料7>)
試料5の製造方法のリチウム補填工程の1M水酸化リチウム水溶液に代えて、3M水酸化リチウム水溶液を用いた他は、試料5と同様に正極活物質を作製した。これを試料7とした。
(Positive electrode active material <Sample 7>)
A positive electrode active material was prepared in the same manner as Sample 5 except that a 3M lithium hydroxide aqueous solution was used instead of the 1M lithium hydroxide aqueous solution in the lithium supplementation step of the production method of Sample 5. This was designated as Sample 7.

上記試料1〜7の製造方法の特徴について表1に示した。   The characteristics of the production methods of Samples 1 to 7 are shown in Table 1.

Figure 2012195082
Figure 2012195082

(二次電池の作製)
試料1〜7のそれぞれに、質量比で、各試料:ケッチェンブラック:導電性バインダー(TAB)=50:20:30の割合で混合した。導電性バインダー(TAB)は、アセチレンブラック(AB)とポリテトラフルオロエチレン(PETF)とを、AB:PTFE=2:1(質量比)で混合した混合物である。次いで、この混合物を集電体であるアルミニウムメッシュに圧着した。その後、120℃で12時間以上真空乾燥し、電極(正極:φ14mm)とした。正極に対向させる負極は、金属リチウム(φ14mm、厚さ400μm)又は炭素(黒鉛)とした。
(Production of secondary battery)
Each of Samples 1 to 7 was mixed at a mass ratio of each sample: Ketjen black: conductive binder (TAB) = 50: 20: 30. The conductive binder (TAB) is a mixture of acetylene black (AB) and polytetrafluoroethylene (PETF) mixed at AB: PTFE = 2: 1 (mass ratio). Subsequently, this mixture was crimped | bonded to the aluminum mesh which is a collector. Then, it vacuum-dried at 120 degreeC for 12 hours or more, and was set as the electrode (positive electrode: (phi) 14mm). The negative electrode facing the positive electrode was metallic lithium (φ14 mm, thickness 400 μm) or carbon (graphite).

正極および負極の間にセパレータとして厚さ20μmの微孔性ポリエチレンフィルムを挟装して電極体電池とした。この電極体電池を電池ケース(宝泉株式会社製CR2032コインセル)に収容した。また、電池ケースには、エチレンカーボネートとジエチルカーボネートとを1:1(体積比)で混合した混合溶媒にLiPFを1.0mol/Lの濃度で溶解した非水電解質を注入して、二次電池を得た。作製した二次電池は、以下の充放電試験を行い、評価に供した。 A microporous polyethylene film having a thickness of 20 μm was sandwiched between the positive electrode and the negative electrode as a separator to obtain an electrode body battery. This electrode body battery was accommodated in a battery case (CR2032 coin cell manufactured by Hosen Co., Ltd.). In addition, a non-aqueous electrolyte in which LiPF 6 is dissolved at a concentration of 1.0 mol / L is injected into a mixed solvent in which ethylene carbonate and diethyl carbonate are mixed at a ratio of 1: 1 (volume ratio) to the battery case. A battery was obtained. The produced secondary battery was subjected to the following charge / discharge test and subjected to evaluation.

<充放電試験>
作製した各二次電池について、25℃一定温度下において充放電試験を行った。 作製した二次電池の充電は0.2Cのレートで負極に金属リチウムを用いた場合(後述の<評価1>、<評価3>、<評価7>の図7)は4.5V、負極に炭素(黒鉛)を用いた場合(後述の<評価2>、<評価4>、<評価5>、<評価6>、<評価7>の図8)は4.2Vまで定電流充電を行い、その後0.02Cの電流値まで負極が金属リチウムである場合は4.5V、負極が炭素(黒鉛)である場合は4.2Vの一定電圧で充電を行った。放電は2.0Vまで0.2Cのレートで行った。
<Charge / discharge test>
About each produced secondary battery, the charging / discharging test was done under 25 degreeC constant temperature. Charging of the fabricated secondary battery was performed at a rate of 0.2 C, and when using lithium metal for the negative electrode (described later in <Evaluation 1>, <Evaluation 3>, <Evaluation 7> in FIG. 7), 4.5 V was applied to the negative electrode. When carbon (graphite) is used (Fig. 8 of <Evaluation 2>, <Evaluation 4>, <Evaluation 5>, <Evaluation 6>, <Evaluation 7> described later), constant-current charging is performed up to 4.2V. Thereafter, charging was performed at a constant voltage of 4.5 V when the negative electrode was metallic lithium and a constant voltage of 4.2 V when the negative electrode was carbon (graphite) up to a current value of 0.02 C. The discharge was performed at a rate of 0.2 C up to 2.0V.

<評価1>
図1は、正極に試料1、2を用い、負極に金属リチウムを用いた二次電池の充放電曲線を示した。図1において、右上がり曲線が充電曲線であり、右下がり曲線が放電曲線である。試料1の活物質を用いた二次電池の1サイクル目の充放電は(1)、(6)、2サイクル目の充放電は(7)、(2)、3サイクル目の充放電は(5)、(4)で示した。試料2の活物質を用いた二次電池の1サイクル目の充放電は1、6、2サイクル目の充放電は3、4、3サイクル目の充放電は5、2で示した。
<Evaluation 1>
FIG. 1 shows a charge / discharge curve of a secondary battery using Samples 1 and 2 as the positive electrode and metal lithium as the negative electrode. In FIG. 1, a curve rising to the right is a charging curve, and a curve falling to the right is a discharge curve. The charge / discharge at the first cycle of the secondary battery using the active material of Sample 1 is (1), (6), the charge / discharge at the second cycle is (7), (2), and the charge / discharge at the third cycle is ( 5) and (4). The charge / discharge at the first cycle of the secondary battery using the active material of Sample 2 is indicated by 1, 6, the charge / discharge at the second cycle is 3, and the charge / discharge at the third cycle is indicated by 5, 2.

図1の楕円部分に示すように、試料1の酸処理工程前の活物質を用いた二次電池では、1サイクル目の充電のときに、4.5V付近に平坦部(プラトー)が現れている。これはLiMnOの活性化時に現れる曲線である。このことから、酸処理工程前の活物質は、活性化がされていないことがわかる。 As shown in the oval part of FIG. 1, in the secondary battery using the active material of Sample 1 before the acid treatment step, a flat portion (plateau) appears around 4.5 V when charging in the first cycle. Yes. This is a curve that appears when Li 2 MnO 3 is activated. This indicates that the active material before the acid treatment step is not activated.

これに対して、試料2の酸処理工程後の活物質を用いた二次電池では、1サイクル目の充電のときには、4.5V付近に平坦部が見られなかったことから、活物質が活性化されたことがわかる。   On the other hand, in the secondary battery using the active material after the acid treatment step of Sample 2, the active material was active because the flat portion was not seen in the vicinity of 4.5 V when charging in the first cycle. You can see that

<評価2>
図2には、正極に試料1、2を用い、負極に炭素を用いた二次電池の充放電曲線を示した。
<Evaluation 2>
FIG. 2 shows a charge / discharge curve of a secondary battery using Samples 1 and 2 as the positive electrode and carbon as the negative electrode.

酸処理工程後に容量の減少が見られていることから,活物質中のリチウムの溶出により容量が低下していることが確認できる。   Since the capacity decreased after the acid treatment step, it can be confirmed that the capacity decreased due to the elution of lithium in the active material.

<評価3>
図3には、正極に試料1〜4を用い、負極には金属リチウムを用いた二次電池の充放電曲線を示した。図2に示すように、酸処理を施した活物質(試料2〜4)を用いた二次電池の充電曲線は、酸処理を施していない活物質(試料1)を用いた二次電池よりも、平坦部が少なく、酸処理を施すことにより、活物質の活性化ができていることがわかる。また、酸処理を施した活物質の中でも、硫酸アンモニウムで酸処理を施した試料4が、電池容量の低下が最も小さかった。このように、酸処理を施す酸の種類によって、電池容量が変化することがわかる。
<Evaluation 3>
FIG. 3 shows a charge / discharge curve of a secondary battery in which samples 1 to 4 are used for the positive electrode and metallic lithium is used for the negative electrode. As shown in FIG. 2, the charging curve of the secondary battery using the active material (samples 2 to 4) subjected to the acid treatment is more than that of the secondary battery using the active material (sample 1) not subjected to the acid treatment. However, there are few flat parts, and it turns out that the active material has been activated by performing acid treatment. Further, among the active materials subjected to the acid treatment, the decrease in battery capacity was the smallest in the sample 4 which was subjected to the acid treatment with ammonium sulfate. Thus, it turns out that battery capacity changes with the kind of acid which performs acid treatment.

<評価4>
図4には、正極に試料1〜4を用い、負極には炭素を用いた二次電池の充放電曲線を示した。弱酸である硫酸アンモニウムで処理を行った際はリチウムイオンの溶出が少ないため容量の低下が少なく、硝酸の場合は多くのリチウムイオンの溶出が起こり、かなりの容量低下が見られた。電池容量は、硫酸アンモニウム(試料4)、硫酸(試料2)、硝酸(試料3)の順に、低くなった。
<Evaluation 4>
FIG. 4 shows a charge / discharge curve of a secondary battery in which samples 1 to 4 are used for the positive electrode and carbon is used for the negative electrode. When the treatment was performed with ammonium sulfate, which is a weak acid, the lithium ion elution was small, so that the capacity decrease was small. In the case of nitric acid, a large amount of lithium ion elution occurred, and a considerable capacity decrease was observed. The battery capacity decreased in the order of ammonium sulfate (sample 4), sulfuric acid (sample 2), and nitric acid (sample 3).

<評価5>
図5には、正極に試料2,5を用い、負極には炭素を用いた二次電池の充放電曲線を示した。図5に示すように、活物質にリチウム補填工程を行っていない場合(試料2)よりも、リチウム補填工程を施した場合(試料5)の方が、電池容量が高かった。このことは、水酸化リチウムで活物質のリチウム補填を行うことにより、Liイオンが活物質内に戻り、酸処理工程で活物質に導入された水素が、Liイオンと交換することで活物質内に戻り、電池容量が増加したためであると考えられる。
<Evaluation 5>
FIG. 5 shows a charge / discharge curve of a secondary battery in which samples 2 and 5 were used for the positive electrode and carbon was used for the negative electrode. As shown in FIG. 5, the battery capacity was higher when the lithium supplementation process was performed (sample 5) than when the active material was not subjected to the lithium supplementation process (sample 2). This is because lithium ions are returned to the active material by lithium supplementation of the active material with lithium hydroxide, and hydrogen introduced into the active material in the acid treatment step is exchanged with Li ions for the inside of the active material. This is probably because the battery capacity has increased.

<評価6>
図6には、正極に試料2,5,6を用い、負極には炭素を用いた二次電池の充放電曲線を示した。図6に示すように、酸処理工程のみを施した活物質(試料2)よりも、酸処理工程及び水酸化リチウム水溶液によるリチウム補填工程を行った場合(試料5)の方が、電池容量が高かった。このことは、酸処理工程を施した活物質を水酸化リチウム水溶液で処理することにより、電池容量が回復したことを示す。
<Evaluation 6>
FIG. 6 shows a charge / discharge curve of a secondary battery in which samples 2, 5, and 6 are used for the positive electrode and carbon is used for the negative electrode. As shown in FIG. 6, the battery capacity is higher when the acid treatment step and the lithium supplementation step with the lithium hydroxide aqueous solution (sample 5) are performed than with the active material subjected to only the acid treatment step (sample 2). it was high. This indicates that the battery capacity has been recovered by treating the active material subjected to the acid treatment step with an aqueous lithium hydroxide solution.

酸処理工程後の活物質を硝酸リチウムで処理した場合(試料6)には、酸処理工程のみを行った場合(試料2)よりも電池容量が低かった。これは、活物質に硝酸リチウムで処理すると、前駆体にリチウムの補填が起こるよりも、前駆体からのLiイオンの溶出が優先的に起こったため、電池容量が低下したものと考えられる。   When the active material after the acid treatment step was treated with lithium nitrate (sample 6), the battery capacity was lower than when only the acid treatment step was carried out (sample 2). This is presumably because when the active material was treated with lithium nitrate, lithium ions were eluted from the precursor preferentially rather than lithium supplementation in the precursor, and the battery capacity was reduced.

<評価7>
図7には、正極に試料1、2,5,7を用い、負極には金属リチウムを用いた二次電池の充放電曲線を示した。図8には、正極に試料1、2,5,7を用い、負極には炭素を用いた二次電池の充放電曲線を示した。
<Evaluation 7>
FIG. 7 shows charge / discharge curves of a secondary battery using Samples 1, 2, 5, and 7 for the positive electrode and metallic lithium for the negative electrode. FIG. 8 shows a charge / discharge curve of a secondary battery using Samples 1, 2, 5, and 7 for the positive electrode and carbon for the negative electrode.

図7、図8に示すように、負極に金属リチウムを用いたとき、及び炭素を用いたときのいずれも、酸処理のみを行った場合(試料2)よりも、酸処理及びリチウム補填工程を行った場合(試料5,7)の方が、電池容量は高くなった。しかし、図7の楕円部分で示してあるように、リチウム補填工程で用いる水酸化リチウム水溶液の水酸化リチウム濃度が高い場合(試料7)には、水酸化リチウム濃度が低い場合(試料5)には観測されなかった平坦部が出現した。このことは、水酸化リチウム水溶液中の水酸化リチウム濃度が高くなると、酸処理で一旦活性化された活物質が不活性化されたことを意味する。ゆえに、リチウム溶液中の水酸化リチウムの濃度は、1M以下であることが好ましいといえる。   As shown in FIGS. 7 and 8, the acid treatment and the lithium supplementation process are both performed when the metal lithium is used for the negative electrode and when the carbon is used as compared with the case where only the acid treatment is performed (Sample 2). In the case of performing (Samples 5 and 7), the battery capacity was higher. However, as indicated by the oval portion of FIG. 7, when the lithium hydroxide concentration of the lithium hydroxide aqueous solution used in the lithium supplementation process is high (sample 7), the lithium hydroxide concentration is low (sample 5). A flat part that was not observed appeared. This means that when the lithium hydroxide concentration in the lithium hydroxide aqueous solution is increased, the active material once activated by the acid treatment is inactivated. Therefore, it can be said that the concentration of lithium hydroxide in the lithium solution is preferably 1 M or less.

Claims (5)

組成式:xLi・(1−x)LiM(Mは4価のマンガンを必須とする一種以上の金属元素、Mは1種以上の金属元素、0<x≦1、Liはその一部が水素で置換されていてもよい。)で表される活物質に酸溶液を接触させる酸処理工程と、
酸処理を施した前記活物質にリチウム化合物を含むリチウム溶液を接触させるリチウム補填工程とを含むことを特徴とするリチウムイオン二次電池用正極活物質の製造方法。
Composition formula: xLi 2 M 1 O 3. (1-x) LiM 2 O 2 (M 1 is one or more metal elements essential for tetravalent manganese, M 2 is one or more metal elements, 0 <x ≦ 1, Li may be partially substituted with hydrogen.) An acid treatment step of bringing an acid solution into contact with an active material represented by:
And a lithium filling step in which a lithium solution containing a lithium compound is brought into contact with the acid-treated active material. A method for producing a positive electrode active material for a lithium ion secondary battery.
前記酸溶液は、硫酸水溶液、硝酸水溶液、及び硫酸アンモニウム水溶液のいずれか1種からなる請求項1記載のリチウムイオン二次電池用正極活物質の製造方法。   2. The method for producing a positive electrode active material for a lithium ion secondary battery according to claim 1, wherein the acid solution is one of a sulfuric acid aqueous solution, a nitric acid aqueous solution, and an ammonium sulfate aqueous solution. 前記リチウム化合物は、水酸化リチウム及び硝酸リチウムの少なくとも1種を含む請求項1又は2に記載のリチウムイオン二次電池用正極活物質の製造方法。   The said lithium compound is a manufacturing method of the positive electrode active material for lithium ion secondary batteries of Claim 1 or 2 containing at least 1 sort (s) of lithium hydroxide and lithium nitrate. 前記リチウム化合物が水酸化リチウムであって、前記リチウム溶液中の前記水酸化リチウムの濃度は、0.1モル(M)以上5モル以下である請求項3記載のリチウムイオン二次電池用正極活物質の製造方法。   4. The positive electrode active for a lithium ion secondary battery according to claim 3, wherein the lithium compound is lithium hydroxide, and the concentration of the lithium hydroxide in the lithium solution is 0.1 mol (M) or more and 5 mol or less. A method for producing a substance. 前記酸処理工程において、前記活物質に前記酸溶液を接触させることで前記活物質からLiOが引き抜かれる請求項1〜4のいずれか一項に記載のリチウムイオン二次電池用正極活物質の製造方法。 5. The positive electrode active material for a lithium ion secondary battery according to claim 1, wherein Li 2 O is extracted from the active material by bringing the acid solution into contact with the active material in the acid treatment step. Manufacturing method.
JP2011056631A 2011-03-15 2011-03-15 Method for producing positive electrode active material for lithium ion secondary battery Active JP5516463B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011056631A JP5516463B2 (en) 2011-03-15 2011-03-15 Method for producing positive electrode active material for lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011056631A JP5516463B2 (en) 2011-03-15 2011-03-15 Method for producing positive electrode active material for lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2012195082A true JP2012195082A (en) 2012-10-11
JP5516463B2 JP5516463B2 (en) 2014-06-11

Family

ID=47086809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011056631A Active JP5516463B2 (en) 2011-03-15 2011-03-15 Method for producing positive electrode active material for lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP5516463B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014170739A (en) * 2013-02-28 2014-09-18 Samsung Sdi Co Ltd Composite positive electrode active material, method of preparing the same, and positive electrode and lithium battery containing the composite positive electrode active material
WO2015083330A1 (en) * 2013-12-02 2015-06-11 株式会社Gsユアサ Positive electrode active substance for lithium secondary cell, electrode for lithium secondary cell, and lithium secondary cell
KR20150088632A (en) * 2014-01-24 2015-08-03 삼성에스디아이 주식회사 Method for manufacturing composite positive active material, composite positive active material obtained thereby, positive electrode and lithium battery containing the material
JP2016042409A (en) * 2014-08-13 2016-03-31 旭化成株式会社 Method for manufacturing lithium-containing metal oxide for lithium ion secondary battery
JP2016056072A (en) * 2014-09-11 2016-04-21 旭化成株式会社 Method for producing lithium-containing metal oxide
JP2016520983A (en) * 2013-07-31 2016-07-14 エルジー・ケム・リミテッド Method for producing positive electrode active material for lithium secondary battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04219320A (en) * 1989-07-28 1992-08-10 Csir Lithium manganese oxide compound
JPH04270125A (en) * 1990-02-19 1992-09-25 Technol Finance Corp Pty Ltd Manganese oxide compound
JPH0773882A (en) * 1993-08-31 1995-03-17 Haibaru:Kk Secondary battery
JPH10270025A (en) * 1997-03-27 1998-10-09 Japan Storage Battery Co Ltd Manufacture of positive electrode active material for nonaqueous electrolyte battery and the battery with the material
JPH11506721A (en) * 1995-06-07 1999-06-15 デュラセル、インコーポレーテッド Improved manganese dioxide for lithium batteries
JP2008511960A (en) * 2004-09-03 2008-04-17 ユーシカゴ・アーゴン・リミテッド・ライアビリティ・カンパニー Manganese oxide composite electrode for lithium battery
JP2012169066A (en) * 2011-02-10 2012-09-06 Asahi Glass Co Ltd Method for producing cathode active material for lithium ion secondary battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04219320A (en) * 1989-07-28 1992-08-10 Csir Lithium manganese oxide compound
JPH04270125A (en) * 1990-02-19 1992-09-25 Technol Finance Corp Pty Ltd Manganese oxide compound
JPH0773882A (en) * 1993-08-31 1995-03-17 Haibaru:Kk Secondary battery
JPH11506721A (en) * 1995-06-07 1999-06-15 デュラセル、インコーポレーテッド Improved manganese dioxide for lithium batteries
JPH10270025A (en) * 1997-03-27 1998-10-09 Japan Storage Battery Co Ltd Manufacture of positive electrode active material for nonaqueous electrolyte battery and the battery with the material
JP2008511960A (en) * 2004-09-03 2008-04-17 ユーシカゴ・アーゴン・リミテッド・ライアビリティ・カンパニー Manganese oxide composite electrode for lithium battery
JP2012169066A (en) * 2011-02-10 2012-09-06 Asahi Glass Co Ltd Method for producing cathode active material for lithium ion secondary battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014170739A (en) * 2013-02-28 2014-09-18 Samsung Sdi Co Ltd Composite positive electrode active material, method of preparing the same, and positive electrode and lithium battery containing the composite positive electrode active material
JP2016520983A (en) * 2013-07-31 2016-07-14 エルジー・ケム・リミテッド Method for producing positive electrode active material for lithium secondary battery
US10008720B2 (en) 2013-07-31 2018-06-26 Lg Chem, Ltd. Method of preparing positive electrode active material for lithium secondary batteries
WO2015083330A1 (en) * 2013-12-02 2015-06-11 株式会社Gsユアサ Positive electrode active substance for lithium secondary cell, electrode for lithium secondary cell, and lithium secondary cell
CN105794026A (en) * 2013-12-02 2016-07-20 株式会社杰士汤浅国际 Positive electrode active substance for lithium secondary cell, electrode for lithium secondary cell, and lithium secondary cell
JPWO2015083330A1 (en) * 2013-12-02 2017-03-16 株式会社Gsユアサ Positive electrode active material for lithium secondary battery, electrode for lithium secondary battery, and lithium secondary battery
US10044036B2 (en) 2013-12-02 2018-08-07 Gs Yuasa International Ltd. Positive active material for lithium secondary battery, electrode for lithium secondary battery and lithium secondary battery
KR20150088632A (en) * 2014-01-24 2015-08-03 삼성에스디아이 주식회사 Method for manufacturing composite positive active material, composite positive active material obtained thereby, positive electrode and lithium battery containing the material
KR102152367B1 (en) * 2014-01-24 2020-09-04 삼성에스디아이 주식회사 Method for manufacturing composite positive active material, composite positive active material obtained thereby, positive electrode and lithium battery containing the material
JP2016042409A (en) * 2014-08-13 2016-03-31 旭化成株式会社 Method for manufacturing lithium-containing metal oxide for lithium ion secondary battery
JP2016056072A (en) * 2014-09-11 2016-04-21 旭化成株式会社 Method for producing lithium-containing metal oxide

Also Published As

Publication number Publication date
JP5516463B2 (en) 2014-06-11

Similar Documents

Publication Publication Date Title
US8313721B2 (en) Lithium-oxygen (AIR) electrochemical cells and batteries
KR100449073B1 (en) Cathode material for lithium secondary batteries and method for manufacturing the Same
JP6201277B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
KR20170075596A (en) Positive electrode active material for rechargeable lithium battery, method for menufacturing the same, and rechargeable lithium battery including the same
JP5987401B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and secondary battery
WO2016067497A1 (en) Method for regenerating lithium composite oxide, lithium composite oxide, electrochemical device and lithium ion secondary battery
JP5114998B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
KR20120017004A (en) Positive electrode materials combining high safety and high power in a li rechargeable battery
KR20070117827A (en) Positive active material for a lithium secondary battery, method of preparing thereof, and lithium secondary battery comprising the same
JP2016103477A (en) Positive electrode material for sodium secondary battery
JP5516463B2 (en) Method for producing positive electrode active material for lithium ion secondary battery
WO2012124242A1 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing same, and non-aqueous electrolyte secondary battery using same
CN111466047A (en) Positive electrode active material for lithium ion secondary battery, method for producing positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
JP2021048137A (en) Cathode active material for lithium secondary battery
KR101013938B1 (en) Positive active material for rechargeable lithium battery, method for preparing same, and rechargeable lithium battery using same
JP5109447B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP6083556B2 (en) Cathode active material for sodium ion secondary battery
JP6619832B2 (en) Oxide positive electrode active material for lithium ion battery, method for producing precursor of oxide positive electrode active material for lithium ion battery, method for producing oxide positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery
JPH1064516A (en) Lithium battery
JPH09259863A (en) Nonaqueous electrolyte secondary battery and its manufacture
US9966602B2 (en) Metal cyanometallates
JP2013060319A (en) Lithium manganese (iv) nickel (iii)-based oxide, positive electrode active material for lithium ion secondary battery containing the oxide, lithium ion secondary battery using the material, and vehicle carrying the battery
JP3547575B2 (en) Lithium iron oxide, method for producing the same, and lithium battery
WO2016103558A1 (en) Lithium-phosphorus composite oxide carbon composite, production method therefor, electrochemical device, and lithium ion secondary battery
KR102016156B1 (en) Precursor for secondary battery cathode active material, preparing method thereof and preparing method of cathode active materials for secondary battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140317