JPH0773882A - Secondary battery - Google Patents

Secondary battery

Info

Publication number
JPH0773882A
JPH0773882A JP5252070A JP25207093A JPH0773882A JP H0773882 A JPH0773882 A JP H0773882A JP 5252070 A JP5252070 A JP 5252070A JP 25207093 A JP25207093 A JP 25207093A JP H0773882 A JPH0773882 A JP H0773882A
Authority
JP
Japan
Prior art keywords
lithium
battery
limn
positive electrode
composite oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5252070A
Other languages
Japanese (ja)
Inventor
Toru Nagaura
亨 永浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HAIBARU KK
Original Assignee
HAIBARU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HAIBARU KK filed Critical HAIBARU KK
Priority to JP5252070A priority Critical patent/JPH0773882A/en
Publication of JPH0773882A publication Critical patent/JPH0773882A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To manufacture lithium-containing manganese composite oxide excellent in a cycle characteristic by again mixing MnO2 of high purity obtained by acid treatment of LiMn2O4 with a lithium compound, followed by a heat treatment for synthesizing. CONSTITUTION:Manganese dioxide on the market is subjected to a heat treatment, and is mixed with a predetermined quantity of lithium nitrate, followed by a heat treatment, thus obtaining LiMn2O4. The resultant LiMn2O4 is oxidized with sulfuric acid or the like, and then, the precipitate is recovered, thereby obtaining MnO2 of high purity. The resultant MnO2 is mixed with a predetermined quantity of lithium nitrate, followed by a heat treatment, thus composing LiMn2O4. Use of the resultant lithium containing manganese composite oxide of spinel crystal structure as a positive electrode active material can improve a cycle characteristic of a non-aqueous electrolyte secondary battery.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、非水電解液二次電池
の性能改善に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improving the performance of a non-aqueous electrolyte secondary battery.

【0002】[0002]

【従来の技術】電子機器の小型化、軽量化が進められる
中、その電源として高エネルギー密度の二次電池の要望
がさらに強まっている。その要望に答えるべく、非水電
解液二次電池は高エネルギー密度電池としての可能性の
高さから、その実用化が試みられた。中でも、負極に金
属リチウムを使用し、正極にリチウム含有マンガン複合
酸化物を使用する非水電解液二次電池がかなり有望と思
われた。しかし金属リチウム負極が充放電の繰り返しに
よりパウダー化して著しくその性能が劣化したり、また
金属リチウムがデンドライトに析出し内部ショートを引
起したりするため、実用的なサイクル寿命に問題があ
り、今だ実用化は難しい。そこで最近、リチウム金属負
極に代えてカーボンへのリチウムイオンの出入りを利用
するカーボン電極を負極とする非水電解液二次電池が開
発中である。この電池は本発明者等によってリチウムイ
オン二次電池と名付けて、1990年(雑誌Progr
ess in Batteries & Solar
Cells,Vol.9、P.209)に初めて紹介さ
れたもので代表的には正極材料にLiCoOを用い、
負極には炭素質材料が使用される。現在では電池業界、
学会でも次世代の二次電池“リチウムイオン二次電池”
と言われて注目を集めている。実際、200Wh/l程
のエネルギー密度を持つリチウムイオン二次電池は既に
少量実用され始めている。既存のニッケルカドミウム電
池のエネルギー密度は100〜150Wh/lであり、
リチウムイオン二次電池のエネルギー密度は既存の電池
のそれをはるかに上回るものである。さらにリチウムイ
オン二次電池の特長は高寿命の点にもある。カーボン負
極は、充電においては電極中のカーボンヘリチウムイオ
ンがドープされ、放電ではそのカーボンからリチウムイ
オンが脱ドープされるだけで、カーボン自身は充放電に
際して大きな結晶構造の変化を伴わないので、極めて安
定した充放電特性を示し、充放電に伴う特性劣化が少な
く、具体的には1000回以上の充放電の繰り返しも可
能である。しかし最大の欠点は既存の電池に比べ原材料
費が非常に高いことである。特に正極材料にLiCoO
を用い、負極に炭素質材料を使用した上述のリチウム
イオン電池は高価なコバルトと特殊な炭素材料を使用す
るため原材料費が極めて高くなる。既存のニッケルカド
ミウム電池はエネルギー密度においては100〜150
Wh/lでリチウムイオン電池の50〜70%である
が、材料費においては20〜30%以下である。そこで
リチウムイオン電池も正極活物質を安価な材料(例えば
LiMn)に代え、200Wh/l程度のエネル
ギー密度を達成できれば、既存のニッケルカドミウム電
池に代わり、広い用途にリチウムイオン二次電池が使用
されることになる。カーボン負極と組み合わせて、リチ
ウムイオン電池を構成できる正極材料はリチウムコバル
ト複合酸化物(LiCoO)の他にはリチウムニッケ
ル複合酸化物(LiNiO)およびリチウムマンガン
複合酸化物(LiMn)があり、安価な材料とい
う点ではLiMnが魅力的である。しかしLiM
を正極材料としてLiCoOと置き換えるだ
けでは、,エネルギー密度において170Wh/l程の
ものが達成されるに過ぎない。これまではリチウムイオ
ン二次電池のカーボン負極に適した炭素質材料として
は、種々の有機化合物の熱分解、又は焼成炭化により得
られる炭素材料であって、その炭素材料の調整には熱履
歴温度条件が重要と言われ、あまり熱履歴温度が低いと
炭化が充分でなく、少なくとも800℃以上であると言
われ、又熱履歴温度の上限が更に重要で、2400℃以
上の温度では結晶成長が進み過ぎ、電池特性が著しく損
なわれると言われていた。つまり性能の良い炭素材料
は、ある程度の乱造構造を有した擬黒鉛材料であると考
えられ、高結晶性の黒鉛材料は黒鉛表面で電解液が分解
し、リチウムイオンのインターカレーション反応は進み
にくいと報告されていた。ところが極最近の研究成果
は、適切な電解液を選べば、むしろ2400℃以上で熱
処理された、より黒鉛化の進んだ炭素材料、もしくは黒
鉛そのものを負極炭素材料として用いる方が、より平坦
で、高い放電電圧を持つリチウムイオン二次電池と成る
ことが判ってきた(公開特平4−115457)。従っ
て、その負極材料として黒鉛質材料を使用すれば、正極
材料として安価なLiMnを使用しても、エネル
ギー密度の点でも200Wh/lを越えるリチウムイオ
ン二次電池となる可能性がある。ところが、炭素材料を
負極に使用するリチウムイオン二次電池はサイクル特性
が良好なはずにもかかかわらず、正極材料としてLiM
を使用したリチウムイオン二次電池のサイクル
特性は、必ずしもよくないことが分かった。スピネル型
リチウム含有マンガン複合酸化物(LiMn)の
最も代表的な従来の合成方法では、マンガン化合物とし
ては市販の二酸化マンガンを使用し、これに炭酸リチウ
ムや硝酸リチウムなどのリチウム塩を混合し、600〜
800℃で焼成して合成する。二酸化マンガンは乾電池
用の用途に大量に製造され、高純度品として電解二酸化
マンガン(EMD)や化学合成二酸化マンガン(CM
D)が安価な価格で市販されているので、安価なLiM
を作る上では、合成出発材料として好都合な材
料と言える。しかし従来の方法で調整したLiMn
を使用したリチウムイオン二次電池ではサイクル寿命
が短く、充放電を50〜100サイクル程度行うと電池
の容量はほぼ初期の容量の半分にまで劣化してしまう。
この劣化の原因は定かでないが、LiCoOを使用す
るリチウムイオン二次電池はサイクル特性に優れている
わけで、原因は正極材料のLiMnに関係してい
ることはほぼ明らかである。これまでにはこのサイクル
特性を改善するため、充放電サイクルに伴いLiMn
の結晶が崩壊するためではないかとの仮定の基に、
結晶の安定性を高める目的で、Mnの一部をMn以外の
いろいろな元素(例えばCo、Cr、Ni、Ta、Zn
等)で置き換えたリチウム含有マンガン複合酸化物が提
案(公開特平4−141954)されたが、実用的サイ
クル寿命(300〜500サイクル)迄には至っていな
い。
2. Description of the Related Art As electronic devices are becoming smaller and lighter, there is a growing demand for high energy density secondary batteries as their power sources. In order to meet the demand, non-aqueous electrolyte secondary batteries have been attempted to be put into practical use because of their high potential as high energy density batteries. Above all, a non-aqueous electrolyte secondary battery using metallic lithium for the negative electrode and a lithium-containing manganese composite oxide for the positive electrode seemed to be quite promising. However, there is a problem in practical cycle life because the metallic lithium negative electrode becomes powdered by repeated charge and discharge and its performance is significantly deteriorated, and metallic lithium deposits on dendrites and causes an internal short circuit. Practical application is difficult. Therefore, recently, a non-aqueous electrolyte secondary battery having a negative electrode of a carbon electrode that utilizes the inflow / outflow of lithium ions from / to carbon instead of the lithium metal negative electrode is under development. This battery was named a lithium-ion secondary battery by the present inventors and was named in 1990 (Magazine Progr
ess in Batteries & Solar
Cells, Vol. 9, P.I. 209) for the first time, typically using LiCoO 2 as the positive electrode material,
A carbonaceous material is used for the negative electrode. Now in the battery industry,
Next Generation Secondary Battery "Lithium Ion Secondary Battery" at Academic Society
It is said that it is attracting attention. In fact, a small amount of lithium ion secondary batteries having an energy density of about 200 Wh / l have already been put into practical use. The energy density of existing nickel-cadmium batteries is 100-150 Wh / l,
The energy density of lithium-ion secondary batteries is much higher than that of existing batteries. Another feature of lithium-ion secondary batteries is their long life. The carbon negative electrode is extremely stable because the carbon helium ion in the electrode is doped during charging and the lithium ion is undoped from the carbon during discharging, and the carbon itself does not undergo a large change in crystal structure during charging and discharging. The charging / discharging characteristics are shown, there is little deterioration of the characteristics due to charging / discharging, and specifically, the charging / discharging can be repeated 1000 times or more. However, the biggest drawback is that the raw material cost is much higher than that of existing batteries. Especially for the positive electrode material LiCoO
In the above-mentioned lithium-ion battery in which No. 2 is used and a carbonaceous material is used for the negative electrode, since expensive cobalt and a special carbon material are used, the raw material cost becomes extremely high. The existing nickel-cadmium battery has an energy density of 100-150.
It is 50 to 70% of the lithium ion battery in Wh / l, but the material cost is 20 to 30% or less. Therefore, if a positive electrode active material of a lithium ion battery is replaced with an inexpensive material (for example, LiMn 2 O 4 ), and an energy density of about 200 Wh / l can be achieved, a lithium ion secondary battery can be widely used instead of the existing nickel cadmium battery. Will be used. In addition to the lithium cobalt composite oxide (LiCoO 2 ), lithium nickel composite oxide (LiNiO 2 ) and lithium manganese composite oxide (LiMn 2 O 4 ) are the positive electrode materials that can be combined with the carbon negative electrode to form a lithium ion battery. Therefore, LiMn 2 O 4 is attractive in terms of an inexpensive material. But LiM
Only by replacing n 2 O 4 with LiCoO 2 as a positive electrode material, an energy density of about 170 Wh / l can be achieved. Until now, the carbonaceous material suitable for the carbon negative electrode of the lithium-ion secondary battery has been a carbon material obtained by thermal decomposition of various organic compounds or carbonization by firing, and the thermal history temperature is adjusted to adjust the carbon material. It is said that the conditions are important, carbonization is not sufficient if the heat history temperature is too low, and it is said that the temperature is at least 800 ° C or higher. Further, the upper limit of the heat history temperature is more important, and crystal growth occurs at a temperature of 2400 ° C or higher. It was said that the battery characteristics would be significantly impaired if it proceeded too much. In other words, a carbon material with good performance is considered to be a pseudo-graphite material having a certain degree of disordered structure, and in a highly crystalline graphite material, the electrolytic solution decomposes on the graphite surface, and the intercalation reaction of lithium ions is difficult to proceed. Was reported. However, the most recent research result is that if an appropriate electrolytic solution is selected, it is even flatter to use a more graphitized carbon material that has been heat treated at 2400 ° C or higher, or graphite itself as the negative electrode carbon material. It has been found that the lithium ion secondary battery has a high discharge voltage (Japanese Patent Publication No. 4-115457). Therefore, if a graphite material is used as the negative electrode material, even if inexpensive LiMn 2 O 4 is used as the positive electrode material, the lithium ion secondary battery may exceed 200 Wh / l in terms of energy density. . However, the lithium-ion secondary battery using a carbon material for the negative electrode should have good cycle characteristics, but it should not be used as a positive electrode material for LiM.
It was found that the cycle characteristics of the lithium ion secondary battery using n 2 O 4 were not always good. In the most typical conventional synthesis method of spinel-type lithium-containing manganese composite oxide (LiMn 2 O 4 ), commercially available manganese dioxide is used as a manganese compound, and a lithium salt such as lithium carbonate or lithium nitrate is mixed with this. And 600 ~
Synthesize by firing at 800 ° C. Manganese dioxide is manufactured in large quantities for use in dry batteries, and as highly pure products, electrolytic manganese dioxide (EMD) and chemically synthesized manganese dioxide (CM).
D) is commercially available at a low price, so it is cheap LiM
In making n 2 O 4 , it can be said that it is a convenient material as a synthetic starting material. However, LiMn 2 O prepared by the conventional method
The lithium ion secondary battery using No. 4 has a short cycle life, and the capacity of the battery deteriorates to almost half the initial capacity after 50 to 100 cycles of charging and discharging.
Although the cause of this deterioration is not clear, it is almost clear that the lithium ion secondary battery using LiCoO 2 has excellent cycle characteristics, and the cause is related to LiMn 2 O 4 of the positive electrode material. In order to improve this cycle characteristic, LiMn 2
Based on the hypothesis that the crystal of O 4 may collapse,
For the purpose of improving the crystal stability, a part of Mn is replaced with various elements other than Mn (for example, Co, Cr, Ni, Ta, Zn).
, Etc., a lithium-containing manganese composite oxide has been proposed (Japanese Patent Publication No. 4-141954), but it has not reached the practical cycle life (300 to 500 cycles).

【0003】[0003]

【発明が解決しようとする課題】本発明はリチウム含有
マンガン複合酸化物を主たる正極活物質とする非水電解
液二次電池のサイクル特性の改善に関するもので、特に
サイクル特性の良好なリチウム含有マンガン複合酸化物
を提供しようとするものである。
SUMMARY OF THE INVENTION The present invention relates to improvement of cycle characteristics of a non-aqueous electrolyte secondary battery containing a lithium-containing manganese composite oxide as a main positive electrode active material, and particularly to lithium-containing manganese having good cycle characteristics. It is intended to provide a composite oxide.

【0004】[0004]

【課題を解決するための手段】課題解決の手段は、一度
従来の方法で合成したLiMnを酸処理して得ら
れたMnOに、再びリチウム化合物を混合し熱処理を
して合成したリチウム含有マンガン複合酸化物を正極活
物質とする。
Means solving the problems SUMMARY OF THE INVENTION is the MnO 2 obtained by LiMn 2 O 4 acid treatment synthesized in one conventional method, was synthesized by mixing heat-treating the lithium compound again A lithium-containing manganese composite oxide is used as the positive electrode active material.

【0005】[0005]

【作用】LiMnはスピネル構造を有する立方晶
の結晶構造であり、これを正極活物質とした電池では、
充電により結晶からLiイオンが抜き取られ、また放電
によりLiが再び結晶中に入る。しかし充放電のサイク
ルを繰り返した後のLiMnをx線回折で調べる
と、充放電サイクルに伴い結晶性が低下していると言わ
れ、そのためサイクルに伴い電池容量が低下し、充分な
サイクル寿命が得られないのではないかと考えられてい
る。本発明では、まずLiMnよりMnOを作
る。LiMnを例えば硫酸酸性溶液で処理すると
次の反応により、MnOが生成する。 2LiMn+2HSO →LiSO+3
MnO+MnSO+2HO LiMn中に含まれたマンガンの低級酸化物等の
不純物はこの酸処理で溶液中に溶けるため、高純度のM
nOが生成する。本発明によるサイクル特性改善の理
由は定かでないが、LiMnを酸処理して得られ
た高純度なMnOに再びリチウム化合物を混合し、熱
処理をして合成したリチウム含有マンガン複合酸化物
(LiMn)は、マンガンの低級酸化物等の不純
物混入が少なくなり、結晶の歪みが少なくなり、結晶の
安定性が増し、充放電サイクル特性の大幅な改善が見ら
れるものと考えられる。
LiMn 2 O 4 has a cubic crystal structure having a spinel structure, and in a battery using this as a positive electrode active material,
Li ions are extracted from the crystal by charging, and Li enters the crystal again by discharging. However, when LiMn 2 O 4 after repeating the charge / discharge cycle was examined by x-ray diffraction, it was said that the crystallinity decreased with the charge / discharge cycle, and therefore the battery capacity decreased with the cycle, and the It is considered that the cycle life cannot be obtained. In the present invention, first, MnO 2 is made from LiMn 2 O 4 . When LiMn 2 O 4 is treated with, for example, a sulfuric acid acidic solution, MnO 2 is produced by the following reaction. 2LiMn 2 O 4 + 2H 2 SO 4 → Li 2 SO 4 +3
Impurities such as lower oxides of manganese contained in MnO 2 + MnSO 4 + 2H 2 O LiMn 2 O 4 are dissolved in the solution by this acid treatment, so that high-purity M
nO 2 is produced. Although the reason for the improvement of the cycle characteristics according to the present invention is not clear, a lithium-containing manganese composite oxide synthesized by mixing a lithium compound again with high-purity MnO 2 obtained by treating LiMn 2 O 4 with an acid and performing heat treatment. (LiMn 2 O 4 ) is considered to have less impurities such as lower oxides of manganese, less crystal distortion, increased crystal stability, and significantly improved charge / discharge cycle characteristics. .

【0006】[0006]

【実施例】以下、実施例により本発明をさらに詳しく説
明する。
The present invention will be described in more detail with reference to the following examples.

【0007】従来の方法によるLiMnの合成 市販の二酸化マンガン(三井金属製EMD(TAD−
I))を390℃で4時間熱処理をし、熱処理物に硝酸
リチウム(LiNO)を原子比でMn:Li=1:
0.51で混合し磁製容器に納め、電気炉中に入れ75
0℃まで昇温し、この温度に保持して24時間の熱処理
をして、LiMn試料(H)を合成した。
Synthesis of LiMn 2 O 4 by a conventional method Commercially available manganese dioxide (EMD (TAD-
I)) is heat-treated at 390 ° C. for 4 hours, and lithium nitrate (LiNO 3 ) is added to the heat-treated product in an atomic ratio of Mn: Li = 1:
Mix at 0.51 and put in a porcelain container, put in an electric furnace 75
The temperature was raised to 0 ° C., the temperature was maintained at this temperature, and heat treatment was performed for 24 hours to synthesize a LiMn 2 O 4 sample (H).

【0008】LiMnの酸処理 上記LiMn試料(H)を0.5モルの硫酸溶液
中で12時間撹拌して、沈殿物を濾過、水洗乾燥してM
nO試料(G)を調整した。
[0008] Acid treatment of LiMn 2 O 4 the LiMn 2 O 4 sample (H) and stirred for 12 hours at 0.5 molar sulfuric acid solution, the precipitate filtered, washed with water dried M
A nO 2 sample (G) was prepared.

【0009】LiMnの再合成 上記調整のMnO試料(G)に硝酸リチウム(LiN
)を原子比でMn:Li=1:0.51で混合して
磁製容器に納め、電気炉中に入れ750℃まで昇温し、
この温度に保持して24時間の熱処理をして、LiMn
試料(F)を合成した。尚予備実験の結果、二酸
化マンガンへのリチウム化合物の混合比率が原子比でL
i/Mn<0.5では未反応のマンガン酸化物が生成し
好ましくない。
Resynthesis of LiMn 2 O 4 MnO 2 sample (G) prepared as described above was charged with lithium nitrate (LiN
O 3 ) was mixed at an atomic ratio of Mn: Li = 1: 0.51 and placed in a porcelain container, put in an electric furnace and heated to 750 ° C.,
It is kept at this temperature and heat-treated for 24 hours to obtain LiMn.
A 2 O 4 sample (F) was synthesized. As a result of the preliminary experiment, the mixing ratio of the lithium compound to manganese dioxide was L in atomic ratio.
When i / Mn <0.5, unreacted manganese oxide is produced, which is not preferable.

【0010】図2を参照しながら本発明の具体的な電池
について説明する。本発明を実施するための発電要素で
ある電池素子は次のようにして用意した。まず2800
℃で熱処理を施したメソカーボンマイクロビーズ(BE
T比表面積=0.8m/g、d002=3.37Å)
の90重量部に結着剤としてポリフッ化ビニリデン(P
VDF)10重量部を加え、溶剤であるN−メチル−2
−ピロリドンと湿式混合してスラリー(ペースト状)に
した。そしてこのスラリーを集電体となる厚さ0.01
mmの銅箔の両面に均一に塗布し、乾燥後ローラープレ
ス機で加圧成型して帯状の負極(1)を作成した。再合
成して調整した前記LiMn試料(F)88重量
部に導電剤としてアセチレンブラック3重量部とグラフ
ァイト4重量部を、結合剤としてポリフッ化ビニリデン
5重量部と共に混合し、溶剤であるN−メチル−2−ピ
ロリドンと湿式混合してペーストにする。このペースト
を正極集電体となる厚さ0.02mmのアルミニウム箔
の両面に均一に塗布し、乾燥後ローラープレス機で加圧
成型して帯状の正極(2)を作成した。続いて負極
(1)と正極(2)をその間に多孔質ポリプロピレン製
セパレータ(3)を挟んでロール状に巻き上げて、平均
外径15.7mmの巻回体で電池素子を作成する。次に
ニッケルメッキを施した鉄製の電池缶(4)の底部に絶
縁板(5)を設置し、上記電池素子を収納する。電池素
子より取り出した負極リード(6)を上記電池缶の底に
溶接し、電池缶の中に電解液として1モル/リットルの
LiClOを溶解したエチレンカーボネイト(EC)
とジエチルカーボネート(DEC)の混合溶液を注入す
る。その後、電池素子の上部にも絶縁板(5)を設置
し、ガスケット(7)を嵌め、防爆弁(8)を図2に示
すように電池内部に設置する。電池素子より取り出した
正極リード(9)はこの防爆弁に電解液を注入する前に
溶接しておく。防爆弁の上には正極外部端子となる閉塞
蓋体(10)を重ね、電池缶の縁をかしめて、図2に示
す電池構造で外径16.5mm、高さ65mmの電池
(A)を作成した。
A specific battery of the present invention will be described with reference to FIG. A battery element which is a power generation element for carrying out the present invention was prepared as follows. First 2800
Mesocarbon microbeads (BE
T specific surface area = 0.8 m 2 / g, d 002 = 3.37 Å)
90 parts by weight of polyvinylidene fluoride (P
VDF) 10 parts by weight is added, and the solvent is N-methyl-2.
Wet mixed with pyrrolidone to form a slurry (paste). Then, this slurry is used as a current collector in a thickness of 0.01
mm copper foil was evenly applied on both sides, dried and pressure-molded with a roller press machine to prepare a strip-shaped negative electrode (1). 88 parts by weight of the LiMn 2 O 4 sample (F) prepared by resynthesis were mixed with 3 parts by weight of acetylene black as a conductive agent and 4 parts by weight of graphite together with 5 parts by weight of polyvinylidene fluoride as a binder, and the mixture was used as a solvent. Wet mix with N-methyl-2-pyrrolidone to form a paste. This paste was evenly applied to both sides of a 0.02 mm-thick aluminum foil serving as a positive electrode current collector, dried, and then pressure-molded with a roller press to form a strip-shaped positive electrode (2). Subsequently, the negative electrode (1) and the positive electrode (2) are wound into a roll with a porous polypropylene separator (3) sandwiched between them to form a battery element with a wound body having an average outer diameter of 15.7 mm. Next, the insulating plate (5) is placed on the bottom of the nickel-plated iron battery can (4) to house the battery element. Ethylene carbonate (EC) in which the negative electrode lead (6) taken out from the battery element was welded to the bottom of the battery can and 1 mol / liter of LiClO 4 was dissolved as an electrolytic solution in the battery can.
And a mixed solution of diethyl carbonate (DEC) is injected. Then, the insulating plate (5) is also installed on the upper part of the battery element, the gasket (7) is fitted, and the explosion-proof valve (8) is installed inside the battery as shown in FIG. The positive electrode lead (9) taken out from the battery element is welded before injecting the electrolytic solution into this explosion-proof valve. On the explosion-proof valve, a closing lid (10) serving as a positive electrode external terminal is overlaid, the edge of the battery can is caulked, and a battery (A) having an outer diameter of 16.5 mm and a height of 65 mm is formed with the battery structure shown in FIG. Created.

【0011】[0011]

【比較例】以下、本発明の効果を確認するため、従来の
方法で合成したLiMn(H)を正極活物質とす
る電池を実施例と同じ構造で作成した。
Comparative Example In order to confirm the effect of the present invention, a battery using LiMn 2 O 4 (H) synthesized by a conventional method as a positive electrode active material was prepared with the same structure as that of the example.

【0012】従来法によって合成したLiMn
料(H)を正極活物質とした以外は全く実施例と同じに
して、図2に示す実施例の電池と同じ電池構造で電池
(B)を作成した。
A battery (B) having the same battery structure as the battery of the embodiment shown in FIG. 2 was prepared in exactly the same manner as the embodiment except that the LiMn 2 O 4 sample (H) synthesized by the conventional method was used as the positive electrode active material. Created.

【0013】テスト結果 こうして作成した電池(A)と(B)は、いずれも電池
内部の安定化を目的に12時間のエージング期間を経過
させた後、充電電圧を4.2Vに設定し、いずれも8時
間の充電を行い、放電は全ての電池について800mA
の定電流放電にて終止電圧3.OVまで行って、充放電
サイクルテストを行った。その結果、10サイクル時点
の放電容量は実施例による電池も比較例による電池も何
れも約910mAhが得られ、エネルギー密度では約2
40wh/lである。この値は既存のニッケルカドミウ
ム電池のそれの1.5倍以上であるし、現在実用化され
ているコバルトを使用したリチウムイオン二次電池に対
してさえ15%ほど優っている。しかし、図1に示すよ
うに、比較例による電池(B)は充放電のサイクルに伴
って容量がかなり劣化し、50サイクル後には初期の容
量の半分以下となる。これに対し、本発明の実施例によ
る電池(A)では200サイクルを越えても720mA
h以上、エネルギー密度においても190wh/l以上
保持しており、充分実用に供することが出来るリチウム
イオン二次電池と言える。(A)、(B)の電池は使用
した正極活物質のみが異なるわけであり、正極活物質
(LiMn)がサイクルに伴う容量の劣化に大き
く関係していることになる。何れのLiMnもそ
の出発材料は同じMnO(三井金属製EMD/TAD
−I)であり、電池(A)の正極活物質としたLiMn
試料(F)は電池(B)の正極活物質としたLi
Mn試料(H)を酸処理して得たMnOから再
度合成して得たものであり、本発明実施例によるLiM
試料の合成方法が、サイクルに伴う容量劣化の
少ない正極活物質を合成する上で効果的であることが明
白である。本発明によるサイクル特性改善の理由は定か
でないが、LiMnを酸処理して得られた高純度
なMnOに再びリチウム化合物を混合し、熱処理をし
て合成したリチウム含有マンガン複合酸化物は、マンガ
ンの低級酸化物等の不純物混入が少なくなり、結晶の歪
みが少なくなり、結晶の安定性が増し、充放電サイクル
特性の大幅な改善が見られるものと考えられる。本発明
はリチウムとマンガンのみで構成される複合酸化物、つ
まり純粋なLiMnの合成にのみ限定されるもの
ではなく、例えばMnの一部をMn以外の元素で置き換
えたスピネル型結晶構造のリチウム含有マンガン複合酸
化物(LiMMn2−x、但しMはMn以外の元
素)を合成する上でも、置換しようとする元素の酸化物
をリチウム化合物と一緒に、LiMnを酸処理し
て得られたMnOに所定の比に混合して熱処理を施す
ことによって当然適用可能であり、マンガンの低級酸化
物等の不純物混入が少ないLiMMn2−xを合
成することが可能である。また本実施例ではリチウム化
合物としてLiNOを使用してLiMnを合成
したが、本発明はこれに限定されるものではなく、他の
リチウム塩や水酸化リチウム、酸化リチウム等の種々の
リチウム化合物が使用可能である。酸処理を施す前のL
iMnは市販のEMDを使用して従来の方法でを
合成したが、これに限定されるものではなく、CMDや
他のマンガン酸化物を出発材料として合成されたスピネ
ル型結晶構造のLiMnであれば、これを酸処理
してMnOを得ることによって本発明は実施可能であ
る。また本実施例の電池には電解液としてエチレンカー
ボネイト(EC)とジエチルカーボネート(DEC)の
混合溶媒に1モル/リットルのLiClO溶解したも
のを使用したが、他の電解質塩(例えばLiPFやL
iBF等)や他の溶媒(例えばプロピレンカーボネー
ト等)で構成される電解液でも同様な効果が得られる。
Test Results The batteries (A) and (B) thus prepared were each set at a charging voltage of 4.2 V after an aging period of 12 hours had elapsed for the purpose of stabilizing the inside of the battery. Also charged for 8 hours and discharged 800 mA for all batteries
Final voltage by constant current discharge of 3. A charging / discharging cycle test was conducted by going to OV. As a result, the discharge capacity at the time of 10 cycles was about 910 mAh for both the battery according to the example and the battery according to the comparative example, and the energy density was about 2
40 Wh / l. This value is more than 1.5 times that of the existing nickel-cadmium battery, and is 15% better than even the lithium-ion secondary battery using cobalt currently in practical use. However, as shown in FIG. 1, the capacity of the battery (B) according to the comparative example deteriorates considerably with the cycle of charging and discharging, and becomes less than half of the initial capacity after 50 cycles. On the other hand, in the battery (A) according to the embodiment of the present invention, 720 mA was obtained even after 200 cycles.
It is a lithium ion secondary battery that can be sufficiently put into practical use because it holds at least h and at least 190 wh / l in energy density. The batteries of (A) and (B) differ only in the positive electrode active material used, and the positive electrode active material (LiMn 2 O 4 ) is greatly related to the deterioration of capacity with the cycle. The starting materials of all LiMn 2 O 4 are the same MnO 2 (Mitsui Kinzoku EMD / TAD
-I), and LiMn used as the positive electrode active material of the battery (A).
The 2 O 4 sample (F) was used as the positive electrode active material of the battery (B), Li
It was obtained by synthesizing Mn 2 O 4 sample (H) again from MnO 2 obtained by acid treatment, and LiM according to the example of the present invention.
It is clear that the method for synthesizing the n 2 O 4 sample is effective in synthesizing the positive electrode active material with less capacity deterioration with cycles. Although the reason for the improvement of the cycle characteristics according to the present invention is not clear, a lithium-containing manganese composite oxide synthesized by mixing a lithium compound again with high-purity MnO 2 obtained by treating LiMn 2 O 4 with an acid and performing heat treatment. It is considered that the mixture of impurities such as lower oxides of manganese is reduced, the strain of the crystal is reduced, the stability of the crystal is increased, and the charge / discharge cycle characteristics are significantly improved. The present invention is not limited to the synthesis of a complex oxide composed of only lithium and manganese, that is, pure LiMn 2 O 4 , and for example, a spinel type crystal structure in which a part of Mn is replaced with an element other than Mn. the lithium-containing manganese composite oxide (LiM x Mn 2-x O 4, where M is an element other than Mn) in order to synthesize, together with a lithium compound oxides of the elements to be substituted, LiMn 2 O 4 It is naturally applicable by mixing MnO 2 obtained by acid treatment with MnO 2 in a predetermined ratio and subjecting it to heat treatment, and LiM x Mn 2-x O 4 containing less impurities such as lower oxides of manganese is synthesized. It is possible to Although LiMn 2 O 4 was synthesized by using LiNO 3 as a lithium compound in this example, the present invention is not limited to this, and various other lithium salts, lithium hydroxide, lithium oxide and the like can be used. Lithium compounds can be used. L before acid treatment
Although iMn 2 O 4 was synthesized by a conventional method using a commercially available EMD, the present invention is not limited to this, and LiMn having a spinel crystal structure synthesized using CMD or another manganese oxide as a starting material is used. In the case of 2 O 4 , the present invention can be implemented by acid-treating this to obtain MnO 2 . In the battery of this embodiment, 1 mol / liter of LiClO 4 dissolved in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) was used as an electrolytic solution, but other electrolyte salts (for example, LiPF 6 and L
Similar effects can be obtained with an electrolytic solution composed of iBF 4 or the like) or another solvent (for example, propylene carbonate or the like).

【0014】[0014]

【発明の効果】リチウム含有マンガン複合酸化物を正極
活物質とするリチウムイオン二次電池はそのサイクル寿
命が短いことが最大の問題点であったが、LiMn
を酸処理して得られた高純度なMnOにリチウム化
合物を混合し、熱処理をして合成したリチウム含有マン
ガン複合酸化物をリチウムイオン二次電池の正極活物質
とすれば、そのサイクル特性は大きく改善される。その
結果、既存の二次電池を充分に上回るエネルギー密度の
リチウムイオン二次電池が安価な材料費で出来、広範囲
な用途に高寿命、高容量の二次電池を提供できるように
なり、その工業的価値は大である。
Lithium-ion secondary battery using lithium-containing manganese composite oxide as a cathode active material according to the present invention is that the cycle life is short is the largest problem, LiMn 2 O
If a lithium compound is mixed with high-purity MnO 2 obtained by treating 4 with an acid and heat-treated to synthesize a lithium-containing manganese composite oxide as a positive electrode active material of a lithium-ion secondary battery, its cycle characteristics are improved. Is greatly improved. As a result, a lithium ion secondary battery with an energy density sufficiently higher than that of existing secondary batteries can be made at a low material cost, and a long-life, high-capacity secondary battery can be provided for a wide range of applications. The target value is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例および比較例における電池のサイクル特
FIG. 1 Cycle characteristics of batteries in Examples and Comparative Examples

【図2】実施例および比較例における電池の構造を示し
た模式的断面図
FIG. 2 is a schematic cross-sectional view showing the structures of batteries in Examples and Comparative Examples.

【符号の説明】[Explanation of symbols]

1は負極、2は正極、3はセパレータ、4は電池缶、5
は絶縁板、6は負極リード、7はガスケット、8は防爆
弁、9は負極リード、10は閉塞蓋体である。
1 is a negative electrode, 2 is a positive electrode, 3 is a separator, 4 is a battery can, 5
Is an insulating plate, 6 is a negative electrode lead, 7 is a gasket, 8 is an explosion-proof valve, 9 is a negative electrode lead, and 10 is a closing lid.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】LiMnの酸処理により得られたM
nOに再びリチウム化合物を混合し、熱処理をして合
成することを特徴とするリチウム含有マンガン複合酸化
物の製法。
1. M obtained by acid treatment of LiMn 2 O 4.
A method for producing a lithium-containing manganese composite oxide, which comprises again mixing a lithium compound with nO 2 and performing heat treatment to synthesize.
【請求項2】請求項1記載の製法によるスピネル型結晶
構造のリチウム含有マンガン複合酸化物を正極活物質と
したことを特徴とする非水電解液二次電池。
2. A non-aqueous electrolyte secondary battery, wherein the lithium-containing manganese composite oxide having a spinel type crystal structure according to claim 1 is used as a positive electrode active material.
JP5252070A 1993-08-31 1993-08-31 Secondary battery Pending JPH0773882A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5252070A JPH0773882A (en) 1993-08-31 1993-08-31 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5252070A JPH0773882A (en) 1993-08-31 1993-08-31 Secondary battery

Publications (1)

Publication Number Publication Date
JPH0773882A true JPH0773882A (en) 1995-03-17

Family

ID=17232136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5252070A Pending JPH0773882A (en) 1993-08-31 1993-08-31 Secondary battery

Country Status (1)

Country Link
JP (1) JPH0773882A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0782208A1 (en) * 1995-12-26 1997-07-02 Kureha Kagaku Kogyo Kabushiki Kaisha Binder solution and electrode-forming composition for non-aqueous-type battery
JP2012195082A (en) * 2011-03-15 2012-10-11 Toyota Industries Corp Method for manufacturing positive electrode active material for lithium ion secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0782208A1 (en) * 1995-12-26 1997-07-02 Kureha Kagaku Kogyo Kabushiki Kaisha Binder solution and electrode-forming composition for non-aqueous-type battery
JP2012195082A (en) * 2011-03-15 2012-10-11 Toyota Industries Corp Method for manufacturing positive electrode active material for lithium ion secondary battery

Similar Documents

Publication Publication Date Title
US6159636A (en) Mixtures of lithium manganese oxide spinel as cathode active material
JP3550783B2 (en) Lithium-containing transition metal composite oxide, method for producing the same, and use thereof
US7655358B2 (en) Positive active material composition for rechargeable lithium battery and method of preparing positive electrode using same
EP0720247B1 (en) Manufacturing processes of positive active materials for lithium secondary batteries and lithium secondary batteries comprising the same
US7666551B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery using the same
US5773168A (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
US5720932A (en) Method of producing lithium nickelate which contains cobalt
JPH09330720A (en) Lithium battery
JP2967051B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP2001266876A (en) Positive electrode active material and non-aqueous electrolyte battery and manufacturing method of these
US6274278B1 (en) Gallium doped lithium manganese oxide spinels (LiGaxMn2−xO4) as cathode material for lithium or lithium-ion rechargeable batteries with improved cycling performance
JPH06349493A (en) Secondary battery
JP4052695B2 (en) Lithium secondary battery
EP0831542A1 (en) Method for producing positive active material of lithium secondary battery
JP3219352B2 (en) Non-aqueous electrolyte secondary battery
JP3289256B2 (en) Method for producing positive electrode active material for lithium battery
JPH10302766A (en) Lithium ion secondary battery
JPH0547383A (en) Nonaqueous electrolyte secondary battery and manufacture thereof
JP2979826B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
US6716555B2 (en) Positive active material for secondary battery, process for preparation thereof and non-aqueous secondary battery comprising same
JP3856517B2 (en) Method for producing lithium manganese oxide
JP4165717B2 (en) Lithium secondary battery and manufacturing method thereof
JPH0773882A (en) Secondary battery
JPH04328258A (en) Nonaqueous electrolyte secondary battery
JPH10302795A (en) Non-aqueous electrolytic secondary battery