JP6619832B2 - Oxide positive electrode active material for lithium ion battery, method for producing precursor of oxide positive electrode active material for lithium ion battery, method for producing oxide positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery - Google Patents

Oxide positive electrode active material for lithium ion battery, method for producing precursor of oxide positive electrode active material for lithium ion battery, method for producing oxide positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery Download PDF

Info

Publication number
JP6619832B2
JP6619832B2 JP2018044544A JP2018044544A JP6619832B2 JP 6619832 B2 JP6619832 B2 JP 6619832B2 JP 2018044544 A JP2018044544 A JP 2018044544A JP 2018044544 A JP2018044544 A JP 2018044544A JP 6619832 B2 JP6619832 B2 JP 6619832B2
Authority
JP
Japan
Prior art keywords
positive electrode
lithium ion
active material
electrode active
ion battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018044544A
Other languages
Japanese (ja)
Other versions
JP2019160523A (en
Inventor
保大 川橋
保大 川橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2018044544A priority Critical patent/JP6619832B2/en
Priority to KR1020180142653A priority patent/KR102142335B1/en
Publication of JP2019160523A publication Critical patent/JP2019160523A/en
Application granted granted Critical
Publication of JP6619832B2 publication Critical patent/JP6619832B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、リチウムイオン電池用酸化物系正極活物質、リチウムイオン電池用酸化物系正極活物質の前駆体の製造方法、リチウムイオン電池用酸化物系正極活物質の製造方法、リチウムイオン電池用正極及びリチウムイオン電池に関する。   The present invention relates to an oxide-based positive electrode active material for a lithium ion battery, a method for producing a precursor of an oxide-based positive electrode active material for a lithium ion battery, a method for producing an oxide-based positive electrode active material for a lithium ion battery, and a lithium ion battery The present invention relates to a positive electrode and a lithium ion battery.

リチウムイオン二次電池の正極活物質には、一般にリチウム含有遷移金属酸化物が用いられている。具体的には、層状化合物コバルト酸リチウム(LiCoO2)、層状化合物ニッケル酸リチウム(LiNiO2)、スピネル化合物マンガン酸リチウム(LiMn24)等であり、特性改善(高容量化、サイクル特性、保存特性、内部抵抗低減、レート特性)や安全性向上のためにこれらを複合化すること(ブレンド、造粒等)が進められている。車載用やロードレベリング用といった大型用途におけるリチウムイオン二次電池には、これまでの携帯電話用やパソコン用とは異なった特性が求められている。 Lithium-containing transition metal oxides are generally used as the positive electrode active material for lithium ion secondary batteries. Specifically, the layered compound lithium cobaltate (LiCoO 2 ), the layered compound lithium nickelate (LiNiO 2 ), the spinel compound lithium manganate (LiMn 2 O 4 ), etc., improved characteristics (higher capacity, cycle characteristics, Combining them (blending, granulation, etc.) to improve storage characteristics, internal resistance reduction, rate characteristics) and safety is being promoted. Lithium ion secondary batteries for large-scale applications such as in-vehicle use and load leveling are required to have different characteristics from those of conventional mobile phones and personal computers.

そこで、特にロードレベリング用などの長期にわたって平坦な放電曲線が求められる用途において、Liリッチ、Mnリッチ、あるいは固溶体正極活物質等とよばれる、Li2MnO3−Li(Ni,Co,Mn)O2で表示される組成式の正極活物質が検討され始めている。このLi2MnO3とLi(Ni,Co,Mn)O2の割合を種々に変化させることで、200mAh/g以上の放電容量を持つ正極活物質を製造することができることが知られている(例えば、特許文献1など)。 Therefore, Li 2 MnO 3 —Li (Ni, Co, Mn) O called Li-rich, Mn-rich, or solid solution positive electrode active material or the like is particularly used in applications requiring a flat discharge curve over a long period of time, such as for load leveling. A positive electrode active material having a composition formula represented by 2 has been studied. It is known that a positive electrode active material having a discharge capacity of 200 mAh / g or more can be produced by variously changing the ratio of Li 2 MnO 3 and Li (Ni, Co, Mn) O 2 ( For example, Patent Document 1).

特開2013−161621号公報JP 2013-161621 A

この固溶体正極活物質は、従来正極活物質内でのLiイオン伝導が飽和状態であったと考えられる層状化合物にLi2MnO3を複合化することで、正極活物質内のLiイオン伝導を促進し、以って従来の層状化合物にないレベルで平坦な放電曲線かつ高容量を実現しようというものである。しかし、このLi2MnO3複合化により、遷移金属に対するLiのモル比(以降、Li/Me比と記す)がどうしても高くなるため、焼成時に炭酸リチウム等のリチウム源を多く仕込む必要があった。例えば、特許文献1では、1.2程度の高いLi/Me比となっている。このような場合、焼成時にうまく全部のLiがリチウム複合酸化物となればよいが、現実的にはそうではなく、特にLiリッチのような物質は必ず焼成後でも炭酸リチウムや水酸化リチウムの形態でリチウム複合酸化物に取り込まれていないリチウム源(以降、アルカリと記す)が残留してしまっていた。 This solid solution positive electrode active material promotes Li ion conduction in the positive electrode active material by combining Li 2 MnO 3 with a layered compound that is thought to have been saturated in Li ion conduction in the conventional positive electrode active material. Thus, it is intended to realize a flat discharge curve and a high capacity at a level not found in conventional layered compounds. However, this Li 2 MnO 3 complexation inevitably increases the molar ratio of Li to the transition metal (hereinafter referred to as Li / Me ratio), so that it is necessary to charge a large amount of lithium source such as lithium carbonate during firing. For example, in Patent Document 1, the Li / Me ratio is as high as about 1.2. In such a case, it is sufficient that all Li is successfully converted into a lithium composite oxide at the time of firing. However, in reality, this is not the case. In particular, a material such as Li-rich is always in the form of lithium carbonate or lithium hydroxide even after firing. Thus, a lithium source (hereinafter referred to as alkali) that was not taken into the lithium composite oxide remained.

また、Li2MnO3複合化によってどうしても電子伝導性が落ちてしまうので、特許文献1では遷移金属前駆体として炭酸塩を選択している。これにより、焼成後に一次粒子の小さい正極材となることで、電解液との界面が多くなってスムーズな電極反応を実現して200mAh/gの放電容量を確保することができる。この際、タップ密度が低くなることは避けられず、従って、エネルギー密度:(電極密度)×(放電容量)が小さくなる。例えば、Li(Ni,Co,Mn)O2においてNiを比較的多く含む材料も200mAh/gを達成できるが、通常の車載・動力用途で水酸化物の遷移金属前駆体を使用したとしても十分電子伝導性を確保できるため、結果としてエネルギー密度:(電極密度)×(放電容量)が良好となる。これに対して、Liリッチでは、上述の通り、タップ密度が低くなることからエネルギー密度:(電極密度)×(放電容量)も低くなり、これを向上させるためにさらなる放電容量の改善が求められていた。 In addition, since the electronic conductivity is inevitably lowered by the Li 2 MnO 3 composite, in Patent Document 1, carbonate is selected as the transition metal precursor. Thereby, it becomes a positive electrode material with small primary particles after firing, so that the interface with the electrolytic solution is increased, a smooth electrode reaction is realized, and a discharge capacity of 200 mAh / g can be secured. At this time, it is inevitable that the tap density is reduced, and therefore, energy density: (electrode density) × (discharge capacity) is reduced. For example, a material containing a relatively large amount of Ni in Li (Ni, Co, Mn) O 2 can achieve 200 mAh / g. However, even if a transition metal precursor of hydroxide is used in a normal vehicle-mounted / power application, it is sufficient. Since electron conductivity can be ensured, as a result, energy density: (electrode density) × (discharge capacity) is improved. On the other hand, in Li-rich, as described above, since the tap density is low, energy density: (electrode density) × (discharge capacity) is also low, and in order to improve this, further improvement of discharge capacity is required. It was.

そのための手段として、Mnの量を増やすと、Li/Me比の量も増加させることができ、放電容量を増やすことができると予想されたが、その分アルカリが増加してしまい、この点から放電容量には上限がある、或いは放電容量を上げようとしても電極作製時にゲル化する可能性が高いと言われていた。   As a means for this, it was expected that increasing the amount of Mn could increase the amount of Li / Me ratio and increase the discharge capacity, but the alkali increased accordingly, and from this point It has been said that there is an upper limit to the discharge capacity, or even if an attempt is made to increase the discharge capacity, there is a high possibility of gelation during electrode preparation.

特許文献1では、その固溶体正極活物質の製造において、遷移金属水溶液に、アンモニア水を滴下してpHを7に調節し、その後、炭酸ナトリウムを添加するようなプロセスが開示されている。この方法は簡便であり、かつ容易に焼成後に微細一次粒子を作ることができるが、例えば250mAh/gの放電容量を確保しようとすると、Li/Me比を1.5程度で仕込まねばならず、アルカリが1質量%を超え、電極作製時にゲル化するため放電容量が低下し、良好な放電容量を得ることは困難であった。   Patent Document 1 discloses a process in which ammonia water is dropped into a transition metal aqueous solution to adjust pH to 7 and then sodium carbonate is added in the production of the solid solution positive electrode active material. This method is simple and can easily produce fine primary particles after firing. For example, if a discharge capacity of 250 mAh / g is to be secured, the Li / Me ratio must be charged at about 1.5, Since alkali exceeded 1 mass% and it gelatinized at the time of electrode production, discharge capacity fell and it was difficult to obtain favorable discharge capacity.

そこで、本発明は、Li比率が高い組成であっても低アルカリ量と高いエネルギー密度を両立できる酸化物系正極活物質を提供することを課題とする。   Then, this invention makes it a subject to provide the oxide type positive electrode active material which can make a low alkali amount and high energy density compatible, even if it is a composition with high Li ratio.

本発明は一実施形態において、金属組成がLiaNibCocMn1-b-c
(式中、1.40≦a≦1.48、0.16≦b≦0.17、0.16≦c≦0.17である。)
で表され、含有される残留アルカリ量が0.7質量%以下であるリチウムイオン電池用酸化物系正極活物質である。
In one embodiment of the present invention, the metal composition is Li a Ni b Co c Mn 1-bc
(In the formula, 1.40 ≦ a ≦ 1.48, 0.16 ≦ b ≦ 0.17, 0.16 ≦ c ≦ 0.17)
And an oxide-based positive electrode active material for a lithium ion battery having a residual alkali content of 0.7% by mass or less.

本発明のリチウムイオン電池用酸化物系正極活物質は、別の一実施形態において、平均粒径D50が9.0〜14.0μmである。   In another embodiment, the oxide-based positive electrode active material for a lithium ion battery of the present invention has an average particle diameter D50 of 9.0 to 14.0 μm.

本発明のリチウムイオン電池用酸化物系正極活物質は、更に別の一実施形態において、タップ密度が1.4g/cm3以上である。 In yet another embodiment, the oxide-based positive electrode active material for a lithium ion battery of the present invention has a tap density of 1.4 g / cm 3 or more.

本発明は、更に別の一実施形態において、ニッケル塩、コバルト塩、マンガン塩、アンモニア水及び炭酸塩の水溶液を含有する水溶液を反応液とし、前記反応液中のpHを9.6〜10.5、アンモニウムイオン濃度を2.5g/L以下、液温を40〜60℃に制御しながら晶析反応を行う工程を含み、
組成式が(NixCoyMn1-x-y)CO3
(式中、0.16≦x≦0.17、0.16≦y≦0.17である。)で表される、リチウムイオン電池用酸化物系正極活物質の前駆体の製造方法である。
In yet another embodiment of the present invention, an aqueous solution containing an aqueous solution of nickel salt, cobalt salt, manganese salt, aqueous ammonia and carbonate is used as a reaction solution, and the pH in the reaction solution is 9.6-10. 5, including a step of performing a crystallization reaction while controlling the ammonium ion concentration to 2.5 g / L or less and the liquid temperature to 40 to 60 ° C.,
Composition formula (Ni x Co y Mn 1- xy) CO 3
(Wherein, 0.16 ≦ x ≦ 0.17 and 0.16 ≦ y ≦ 0.17). A method for producing a precursor of an oxide-based positive electrode active material for a lithium ion battery. .

本発明のリチウムイオン電池用酸化物系正極活物質の前駆体の製造方法は、別の一実施形態において、前記前駆体の平均粒径D50が7.0〜17.0μmである。   In another embodiment of the method for producing a precursor of an oxide-based positive electrode active material for a lithium ion battery according to the present invention, the precursor has an average particle diameter D50 of 7.0 to 17.0 μm.

本発明は、更に別の一実施形態において、本発明の方法で製造された前記前駆体を、Ni、Co及びMnからなる金属の原子数の和(Me)とリチウムの原子数との比(Li/Me)が1.40〜1.48となるように混合して、リチウム混合物を形成する工程と、
前記リチウム混合物を大気雰囲気中、750〜950℃で焼成する工程と、
を含むリチウムイオン電池用酸化物系正極活物質の製造方法である。
In yet another embodiment of the present invention, the precursor produced by the method of the present invention is obtained by combining the number of metal atoms (Me) made of Ni, Co and Mn with the number of lithium atoms (Me). Li / Me) is mixed to be 1.40 to 1.48 to form a lithium mixture;
Baking the lithium mixture at 750 to 950 ° C. in an air atmosphere;
It is a manufacturing method of the oxide type positive electrode active material for lithium ion batteries containing.

本発明は、更に別の一実施形態において、本発明のリチウムイオン電池用酸化物系正極活物質を備えたリチウムイオン電池用正極である。   In yet another embodiment, the present invention is a positive electrode for a lithium ion battery comprising the oxide-based positive electrode active material for a lithium ion battery of the present invention.

本発明は、更に別の一実施形態において、本発明のリチウムイオン電池用正極を備えたリチウムイオン電池である。   In another embodiment, the present invention is a lithium ion battery provided with the positive electrode for a lithium ion battery of the present invention.

本発明によれば、Li比率が高い組成であっても低アルカリ量と高いエネルギー密度を両立できる酸化物系正極活物質を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, even if it is a composition with a high Li ratio, the oxide type positive electrode active material which can make a low alkali amount and high energy density compatible can be provided.

(リチウムイオン電池用酸化物系正極活物質の構成)
本発明の実施形態に係るリチウムイオン電池用酸化物系正極活物質は、金属組成がLiaNibCocMn1-b-c
(式中、1.40≦a≦1.48、0.16≦b≦0.17、0.16≦c≦0.17である。)
で表され、含有される残留アルカリ量が0.7質量%以下である。
(Configuration of oxide positive electrode active material for lithium ion battery)
An oxide-based positive electrode active material for a lithium ion battery according to an embodiment of the present invention has a metal composition of Li a Ni b Co c Mn 1-bc
(In the formula, 1.40 ≦ a ≦ 1.48, 0.16 ≦ b ≦ 0.17, 0.16 ≦ c ≦ 0.17)
The residual alkali amount contained is 0.7 mass% or less.

本発明の実施形態に係るリチウムイオン電池用酸化物系正極活物質は、組成式においてLiの他の金属(Ni、Co、Mn)の合計に対するモル比が1.40以上1.48以下と高いものであるが、含有される残留アルカリ量を0.7質量%以下に制御することで、低アルカリ量と高いエネルギー密度を両立できる。ここで、「エネルギー密度(mAh/cm3)」とは、(電極密度)×(放電容量)を意味しており、当該エネルギー密度が高いと、通常の電池の蓄電量が増加するという効果以外にも、小型の蓄電池でも大きな電力を溜めこむことができるという効果がある。なお、ここで言う放電容量とは、当該正極活物質を正極に備えたリチウムイオン電池が有する放電容量である。当該エネルギー密度は、540mAh/cm3以上であるのが好ましく、580mAh/cm3以上であるのがより好ましく、600mAh/cm3以上であるのが更により好ましい。 The oxide-based positive electrode active material for a lithium ion battery according to an embodiment of the present invention has a high molar ratio of 1.40 or more and 1.48 or less with respect to the total of other metals (Ni, Co, Mn) of Li in the composition formula. However, it is possible to achieve both a low alkali amount and a high energy density by controlling the residual alkali content to be 0.7% by mass or less. Here, “energy density (mAh / cm 3 )” means (electrode density) × (discharge capacity), and when the energy density is high, other than the effect of increasing the charged amount of a normal battery. In addition, there is an effect that even a small storage battery can store a large amount of electric power. In addition, the discharge capacity said here is the discharge capacity which the lithium ion battery provided with the said positive electrode active material in the positive electrode has. The energy density is preferably at 540mAh / cm 3 or more, more preferably 580mAh / cm 3 or more, still more preferably at 600 mAh / cm 3 or more.

本発明の実施形態に係るリチウムイオン電池用酸化物系正極活物質において、Liの組成が1.40未満では、リチウム量が不足して安定した結晶構造を保持しにくく、1.48を超えると当該正極活物質を用いて作製したリチウムイオン電池の放電容量が低くなるおそれがある。   In the oxide-based positive electrode active material for a lithium ion battery according to the embodiment of the present invention, if the composition of Li is less than 1.40, the amount of lithium is insufficient and it is difficult to maintain a stable crystal structure. There is a possibility that the discharge capacity of a lithium ion battery manufactured using the positive electrode active material may be lowered.

本発明の実施形態に係るリチウムイオン電池用酸化物系正極活物質の平均粒径D50は9.0〜14.0μmであるのが好ましい。このような構成によれば、粉体密度が高いという利点を有し、且つ、電極塗布後のプレス時に金属箔の破損が抑制される。当該平均粒径D50は9.5μm以上であってもよく、10.0μm以上であってもよく、10.5μm以上であってもよい。また、当該平均粒径D50は13.5μm以下であってもよく、13.0μm以下であってもよく、12.5μm以下であってもよく、12.0μm以下であってもよい。   The average particle diameter D50 of the oxide-based positive electrode active material for a lithium ion battery according to the embodiment of the present invention is preferably 9.0 to 14.0 μm. According to such a configuration, there is an advantage that the powder density is high, and breakage of the metal foil is suppressed at the time of pressing after electrode application. The average particle diameter D50 may be 9.5 μm or more, 10.0 μm or more, or 10.5 μm or more. Further, the average particle diameter D50 may be 13.5 μm or less, 13.0 μm or less, 12.5 μm or less, or 12.0 μm or less.

本発明の実施形態に係るリチウムイオン電池用酸化物系正極活物質に含有される残留アルカリ量は0.6質量%以下であるのが好ましく、0.4質量%以下であるのがより好ましく、0.2質量%以下であるのがより好ましい。   The amount of residual alkali contained in the oxide-based positive electrode active material for a lithium ion battery according to the embodiment of the present invention is preferably 0.6% by mass or less, more preferably 0.4% by mass or less, It is more preferably 0.2% by mass or less.

本発明の実施形態に係るリチウムイオン電池用酸化物系正極活物質のタップ密度は1.4g/cm3以上であるのが好ましい。このような構成によれば、体積当たりのエネルギー密度が高い電池を構成することができる。当該タップ密度は1.5g/cm3以上であるのがより好ましく、1.6g/cm3以上であるのが更により好ましい。 The tap density of the oxide-based positive electrode active material for a lithium ion battery according to the embodiment of the present invention is preferably 1.4 g / cm 3 or more. According to such a configuration, a battery having a high energy density per volume can be configured. The tap density is more preferably 1.5 g / cm 3 or more, and still more preferably 1.6 g / cm 3 or more.

(リチウムイオン電池用酸化物系正極活物質の前駆体の製造方法)
本発明の実施形態に係るリチウムイオン電池用酸化物系正極活物質の前駆体は、組成式が(NixCoyMn1-x-y)CO3
(式中、0.16≦x≦0.17、0.16≦y≦0.17である。)で表される。
本発明の実施形態に係るリチウムイオン電池用酸化物系正極活物質の前駆体の製造方法は、ニッケル塩、コバルト塩、マンガン塩、アンモニア水及び炭酸塩の水溶液を含有する水溶液を反応液とし、反応液中のpHを9.6〜10.5、アンモニウムイオン濃度を2.5g/L以下、液温を40〜60℃に制御しながら晶析反応を行う工程を含む。
(Method for producing precursor of oxide-based positive electrode active material for lithium ion battery)
Precursor exemplary oxide-based positive electrode active material for a lithium ion battery according to the embodiment of the present invention, composition formula (Ni x Co y Mn 1- xy) CO 3
(Wherein 0.16 ≦ x ≦ 0.17 and 0.16 ≦ y ≦ 0.17).
The method for producing a precursor of an oxide-based positive electrode active material for a lithium ion battery according to an embodiment of the present invention uses an aqueous solution containing an aqueous solution of nickel salt, cobalt salt, manganese salt, aqueous ammonia and carbonate as a reaction solution, It includes a step of performing a crystallization reaction while controlling the pH in the reaction solution at 9.6 to 10.5, the ammonium ion concentration at 2.5 g / L or less, and the solution temperature at 40 to 60 ° C.

本発明の実施形態に係るリチウムイオン電池用酸化物系正極活物質の前駆体の製造方法は、このように反応液中のpH、アンモニウムイオン濃度、液温を一定の範囲内に制御しながら晶析反応させることを特徴としており、当該方法によって低アルカリ量であり、平均粒径D50が7.0〜17.0μmである重質な前駆体を作製することができる。当該前駆体を使用することで、Li比率が高い組成であっても低アルカリ量と高いエネルギー密度を両立できる酸化物系正極活物質を作製することができる。   The method for producing a precursor of an oxide-based positive electrode active material for a lithium ion battery according to an embodiment of the present invention is thus controlled while controlling the pH, ammonium ion concentration, and liquid temperature in the reaction solution within a certain range. A heavy precursor having a low alkali amount and an average particle diameter D50 of 7.0 to 17.0 μm can be produced by this method. By using the precursor, an oxide-based positive electrode active material that can achieve both a low alkali amount and a high energy density can be produced even with a composition having a high Li ratio.

本発明の実施形態に係るリチウムイオン電池用酸化物系正極活物質の前駆体の製造方法においては、上述のように反応液中のpH、アンモニウムイオン濃度、液温を一定の範囲内に制御しながら晶析反応させるが、そのためには、例えば、(1)ニッケル塩、コバルト塩、マンガン塩の混合水溶液、(2)アンモニア水、(3)炭酸塩の水溶液の3つの原料を、反応槽に同時に少量ずつ連続供給して反応させる。一例を具体的に挙げると、10Lの反応槽に(1)ニッケル塩、コバルト塩、マンガン塩の混合水溶液を0.60L/h、(2)アンモニア水を0.04L/h、(3)炭酸塩の水溶液を1.2L/hで同時に連続供給して晶析反応させてもよい。このように3つの原料を、反応槽に同時に少量ずつ連続供給して反応させることで、反応槽中の反応液のpHとアンモニア濃度の変動が良好に抑制され、反応液中のpHを9.6〜10.5、アンモニウムイオン濃度を2.5g/L以下に制御しやすくなる。   In the method for producing a precursor of an oxide-based positive electrode active material for a lithium ion battery according to an embodiment of the present invention, the pH, ammonium ion concentration, and liquid temperature in the reaction solution are controlled within a certain range as described above. For this purpose, for example, three raw materials, (1) a mixed aqueous solution of nickel salt, cobalt salt, and manganese salt, (2) aqueous ammonia, and (3) an aqueous carbonate solution, are put in a reaction vessel. At the same time, a small amount is continuously fed and reacted. Specifically, in a 10 L reactor, (1) a mixed aqueous solution of nickel salt, cobalt salt and manganese salt is 0.60 L / h, (2) aqueous ammonia is 0.04 L / h, and (3) carbonic acid. An aqueous salt solution may be simultaneously supplied at a rate of 1.2 L / h to cause a crystallization reaction. Thus, by continuously supplying the three raw materials to the reaction tank in small amounts at a time and reacting them, fluctuations in the pH and ammonia concentration of the reaction liquid in the reaction tank are suppressed well, and the pH in the reaction liquid is reduced to 9. It becomes easy to control 6 to 10.5 and ammonium ion concentration to 2.5 g / L or less.

上記(3)の炭酸塩の水溶液は、例えば、炭酸ナトリウム水溶液、炭酸カリウム水溶液、炭酸水素ナトリウム水溶液、炭酸水素カリウム水溶液などの炭酸基の塩を用いた水溶液が挙げられる。   Examples of the aqueous solution of carbonate in (3) above include aqueous solutions using carbonate salts such as aqueous sodium carbonate solution, aqueous potassium carbonate solution, aqueous sodium bicarbonate solution, and aqueous potassium hydrogen carbonate solution.

本発明の実施形態に係るリチウムイオン電池用酸化物系正極活物質の前駆体の製造方法において、反応液中のpHを9.6〜10.5に制御しながら晶析反応を行うが、pHが9.6未満であると生成する前駆体の粒径が大き過ぎて、正極活物質の電極への圧延時に集電箔を突き破るおそれがある。またpHが10.5を超えると、生成する前駆体の粒径が小さくなり過ぎて正極活物質のタップ密度が低下するおそれがある。反応液中のpHは9.8以上であってもよく、10.0以上であってもよく、10.3以下であってもよく、10.1以下であってもよい。   In the method for producing a precursor of an oxide-based positive electrode active material for a lithium ion battery according to an embodiment of the present invention, the crystallization reaction is performed while controlling the pH in the reaction solution to 9.6 to 10.5. Is less than 9.6, the particle size of the precursor produced is too large, and there is a risk of breaking through the current collector foil during rolling of the positive electrode active material to the electrode. Moreover, when pH exceeds 10.5, there exists a possibility that the particle size of the precursor to produce | generate may become small too much and the tap density of a positive electrode active material may fall. The pH in the reaction solution may be 9.8 or more, 10.0 or more, 10.3 or less, or 10.1 or less.

本発明の実施形態に係るリチウムイオン電池用酸化物系正極活物質の前駆体の製造方法において、反応液中のアンモニウムイオン濃度を2.5g/L以下に制御しながら晶析反応を行うが、このような構成によれば、生成する前駆体を使用して作製したリチウムイオン電池用酸化物系正極活物質の残留アルカリ量を0.7質量%以下に制御することができる。反応液中のアンモニウムイオン濃度は2.0g/L以下であることが好ましく、1.5g/L以下であることがより好ましく、1.0g/L以下であることが更により好ましい。   In the method for producing a precursor of an oxide-based positive electrode active material for a lithium ion battery according to an embodiment of the present invention, the crystallization reaction is performed while controlling the ammonium ion concentration in the reaction solution to 2.5 g / L or less. According to such a structure, the residual alkali amount of the oxide type positive electrode active material for lithium ion batteries produced using the produced | generated precursor is controllable to 0.7 mass% or less. The ammonium ion concentration in the reaction solution is preferably 2.0 g / L or less, more preferably 1.5 g / L or less, and even more preferably 1.0 g / L or less.

本発明の実施形態に係るリチウムイオン電池用酸化物系正極活物質の前駆体の製造方法において、反応液の液温を40〜60℃に制御しながら晶析反応を行うが、液温が40℃未満であると生成する前駆体の粒径が小さくなり過ぎて正極活物質のタップ密度が低下するおそれがあり、60℃を超えると装置に不具合が生じるおそれやエネルギーコストの面で不利となるおそれがある。反応液の液温は45℃以上であってもよく、50℃以上であってもよい。また、反応液の温度は55℃以下であってもよい。   In the method for producing a precursor of an oxide-based positive electrode active material for a lithium ion battery according to an embodiment of the present invention, the crystallization reaction is performed while controlling the liquid temperature of the reaction liquid at 40 to 60 ° C. If the temperature is lower than 60 ° C., the particle size of the precursor to be produced becomes too small, and the tap density of the positive electrode active material may be lowered. There is a fear. The liquid temperature of the reaction solution may be 45 ° C. or higher, or 50 ° C. or higher. Further, the temperature of the reaction solution may be 55 ° C. or less.

(リチウムイオン電池用酸化物系正極活物質の製造方法)
本発明の実施形態に係るリチウムイオン電池用酸化物系正極活物質の製造方法は、上述の方法で製造された前駆体を、Ni、Co及びMnからなる金属の原子数の和(Me)とリチウムの原子数との比(Li/Me)が1.40〜1.48となるように混合して、リチウム混合物を形成する工程と、リチウム混合物を大気雰囲気中、750〜950℃で焼成する工程とを含む。当該リチウム混合物を750℃未満で焼成すると前駆体とリチウム化合物が十分に反応しないという問題が生じるおそれがあり、950℃超で焼成すると結晶構造からの酸素の脱離という問題が生じるおそれがある。
(Method for producing oxide-based positive electrode active material for lithium ion battery)
The method for producing an oxide-based positive electrode active material for a lithium ion battery according to an embodiment of the present invention includes a precursor produced by the above-described method and a sum of the number of atoms of metals (Me) made of Ni, Co, and Mn. Mixing so that the ratio (Li / Me) to the number of lithium atoms is 1.40 to 1.48 to form a lithium mixture, and firing the lithium mixture in an air atmosphere at 750 to 950 ° C. Process. If the lithium mixture is baked at a temperature lower than 750 ° C., the precursor and the lithium compound may not be sufficiently reacted. If baked at a temperature higher than 950 ° C., a problem of oxygen desorption from the crystal structure may occur.

特許文献1の固溶体正極活物質では、まず核生成を遷移金属水溶液とアンモニア水とで行ない、その後、炭酸ナトリウム水溶液を添加している。この場合、生成する核は比較的小さいものばかりであり、且つ、数も多く生成することから、生成後直ちに不規則に二次粒子に凝集してしまい、そこへ続けて炭酸ナトリウム水溶液を添加していくことにより凝集核がそのいびつな形のまま成長してしまう。このような場合、生成した二次粒子に隙間が多い点では電極反応速度の向上に役立つが、焼成時にリチウム源をそのいびつな前駆体形状に合わせて多く必要とすることになってしまい、結果として、アルカリが多くなってしまう問題が生じることは避けられなかった。これに対して、本発明の実施形態に係る製造方法によれば、ニッケル塩、コバルト塩、マンガン塩、アンモニア水及び炭酸塩の水溶液を含有する水溶液を反応液とし、反応液中のpHを9.6〜10.5、アンモニウムイオン濃度を2.5g/L以下、液温を40〜60℃に制御しながら晶析反応を行うことで前駆体を作製しているため、焼成時に良好に反応する遷移金属の前駆体を作製することができ、これをリチウム源とLi/(Ni+Co+Mn)=1.40〜1.48のモル比で混合して750〜950℃で2〜12時間焼成することで残留アルカリ量が低く、且つ、エネルギー密度の高い酸化物系正極活物質を製造することができる。   In the solid solution positive electrode active material of Patent Document 1, nucleation is first performed with an aqueous transition metal solution and aqueous ammonia, and then an aqueous sodium carbonate solution is added. In this case, since the nuclei to be produced are relatively small and many are produced, they immediately agglomerate into secondary particles immediately after the production, and then an aqueous sodium carbonate solution is added thereto. By doing so, the agglomerated nuclei grow in the irregular shape. In such a case, it is useful for improving the electrode reaction speed in the point that there are many gaps in the generated secondary particles. As a result, it has been unavoidable that the problem of increased alkali occurs. On the other hand, according to the manufacturing method according to the embodiment of the present invention, an aqueous solution containing an aqueous solution of nickel salt, cobalt salt, manganese salt, aqueous ammonia and carbonate is used as a reaction solution, and the pH in the reaction solution is 9. .6 to 10.5, the ammonium ion concentration is 2.5 g / L or less, and the precursor is prepared by performing the crystallization reaction while controlling the liquid temperature at 40 to 60 ° C., so it reacts well during firing. A precursor of a transition metal to be prepared, which is mixed with a lithium source and a molar ratio of Li / (Ni + Co + Mn) = 1.40 to 1.48 and fired at 750 to 950 ° C. for 2 to 12 hours. Thus, an oxide-based positive electrode active material having a low residual alkali amount and high energy density can be produced.

(リチウムイオン電池用正極及びそれを用いたリチウムイオン電池の構成)
本発明の実施形態に係るリチウムイオン電池用正極は、例えば、上述の構成のリチウムイオン電池用酸化物系正極活物質と、導電助剤と、バインダーとを混合して調製した正極合剤をアルミニウム箔等からなる集電体の片面または両面に設けた構造を有している。また、本発明の実施形態に係るリチウムイオン電池は、このような構成のリチウムイオン電池用正極を備えている。また、本発明の実施形態に係るリチウムイオン電池は、液系リチウムイオン電池であってもよく、全固体リチウムイオン電池であってもよい。
(Configuration of positive electrode for lithium ion battery and lithium ion battery using the same)
The positive electrode for a lithium ion battery according to an embodiment of the present invention is, for example, an aluminum positive electrode mixture prepared by mixing an oxide-based positive electrode active material for a lithium ion battery having the above-described configuration, a conductive additive, and a binder. It has a structure provided on one side or both sides of a current collector made of foil or the like. Moreover, the lithium ion battery which concerns on embodiment of this invention is equipped with the positive electrode for lithium ion batteries of such a structure. The lithium ion battery according to the embodiment of the present invention may be a liquid lithium ion battery or an all solid lithium ion battery.

以下、本発明及びその利点をより良く理解するための実施例を提供するが、本発明はこれらの実施例に限られるものではない。   Examples for better understanding of the present invention and its advantages are provided below, but the present invention is not limited to these examples.

以下に示す通り、実施例1〜11及び比較例1〜4にてそれぞれ酸化物系正極活物質を作製し、その平均粒径D50、残留アルカリ量、タップ密度(1500回タップ後の密度)を測定し、さらに当該正極活物質を用いたリチウムイオン電池の放電容量及び電極密度を測定し、(電極密度)×(放電容量)でエネルギー密度を算出した。また、得られた酸化物系正極活物質の粉末をXRD回折にて層状構造であることを確認し、誘導結合プラズマ発光分光分析装置(ICP−OES)及びイオンクロマトグラフ法により、Li、Ni、Mn、Coの含有量を測定した。その分析結果から、当該正極活物質をLiaNibCocMn1-b-cの金属組成で表した場合のa、b、cを求めた。 As shown below, oxide positive electrode active materials were prepared in Examples 1 to 11 and Comparative Examples 1 to 4, respectively, and the average particle diameter D50, the residual alkali amount, and the tap density (density after 1500 taps) Further, the discharge capacity and electrode density of a lithium ion battery using the positive electrode active material were measured, and the energy density was calculated by (electrode density) × (discharge capacity). Moreover, it confirmed that the powder of the obtained oxide type positive electrode active material was a layered structure by XRD diffraction, and Li, Ni, and the like by an inductively coupled plasma emission spectrometer (ICP-OES) and an ion chromatography method. The contents of Mn and Co were measured. From the analysis results, a, b, and c when the positive electrode active material was represented by a metal composition of Li a Ni b Co c Mn 1-bc were determined.

−残留アルカリ量−
残留アルカリ量は、それぞれ生成した正極活物質の粉末1gを純水50mL中に分散し、10分間撹拌してろ過した後、ろ液10mLと純水15mLとの混合液を0.1NのHClで電位差測定して求めた。
-Residual alkali amount-
The amount of residual alkali was determined by dispersing 1 g of the produced positive electrode active material powder in 50 mL of pure water, stirring and filtering for 10 minutes, and then mixing the mixture of 10 mL of filtrate and 15 mL of pure water with 0.1 N HCl. Determined by measuring the potential difference.

−電池特性−
得られた正極活物質を導電材(アセチレンブラック)と、バインダー(ポリフッ化ビニリデン)とを80:10:10の割合で秤量し、バインダーを有機溶媒(N−メチルピロリドン)に溶解したものに、正極活物質と導電材とを混合してスラリー化し、Al箔上に塗布して乾燥後に45kNでプレスして正極とした。続いて、対極をLiとした評価用の2032型コインセルを作製し、電解液に1M−LiPF6をEC−DMC(体積比1:1)に溶解したものを用いて、25℃電池初期特性(充電容量、放電容量、充放電特性)を測定した。なお、充放電条件は、充電条件:CC/CV 4.8V,0.1C、放電条件:CC 0.05C,3Vまでである。
-Battery characteristics-
The obtained positive electrode active material was weighed with a conductive material (acetylene black) and a binder (polyvinylidene fluoride) at a ratio of 80:10:10, and the binder was dissolved in an organic solvent (N-methylpyrrolidone). A positive electrode active material and a conductive material were mixed to form a slurry, applied onto an Al foil, dried, and pressed at 45 kN to obtain a positive electrode. Subsequently, a 2032 type coin cell for evaluation with Li as the counter electrode was prepared, and the initial characteristics of the battery at 25 ° C. (1M-LiPF 6 dissolved in EC-DMC (volume ratio 1: 1) in the electrolytic solution ( Charge capacity, discharge capacity, charge / discharge characteristics) were measured. The charging / discharging conditions are charging conditions: CC / CV 4.8V, 0.1C, discharging conditions: CC 0.05C, 3V.

−電極密度−
上記で作製したAl箔上に塗布して乾燥後に45kNでプレスして正極とした重量から予め測定したAl箔のみの重量を差し引いた重量を電極重量とし、それにマイクロメーターで測定した正極の厚みから予め測定したAl箔分の厚みを引いた厚さを電極厚みとし、求めた電極厚みと電極面積から電極体積を算出した。そして、電極密度を電極重量÷電極体積から算出した。
-Electrode density-
From the weight of the positive electrode measured by a micrometer, the weight obtained by subtracting the weight of only the Al foil measured in advance from the weight of the positive electrode that was applied on the Al foil prepared above and dried and pressed at 45 kN to form a positive electrode was used. The thickness obtained by subtracting the thickness of the Al foil measured in advance was defined as the electrode thickness, and the electrode volume was calculated from the obtained electrode thickness and electrode area. The electrode density was calculated from electrode weight / electrode volume.

(実施例1)
硫酸ニッケル、硫酸コバルトおよび硫酸マンガンの1.5moL/L水溶液をそれぞれ作製し、各水溶液を所定量秤量して、Ni:Co:Mn=0.167:0.167:0.666となるように混合溶液を調整して、撹拌翼を容器内部に設置した反応槽へ送液した。
次に、撹拌翼を稼働させながら、反応槽内の混合液のpHを10.5、アンモニウムイオン濃度2.5g/Lとなるように、アンモニア水と1.3mol/Lの炭酸ナトリウム水溶液を前記混合液中に添加し、晶析法によってNi−Co−Mnの複合炭酸塩を共沈させた。このときの反応槽内の混合液の温度は40℃となるようにウォータージャケットで保温した。
また、反応で生成する共沈物の酸化を防止するために反応槽へ窒素ガスを導入した。反応槽へ導入するガスはヘリウム、ネオン、アルゴン、炭酸ガスなどの酸化を促進しないガスであれば、上記の窒素ガスに限らず使用することができる。
共沈した沈殿物を吸引・濾過した後、純水で水洗して、120℃、12時間の乾燥をした。このようにして作製されたNi−Co−Mn複合炭酸塩化合物粒子の平均粒径D50は7.8μmであった。
次に、複合炭酸塩化合物粒子のNi、Co、Mnからなる金属の原子数の和をMeとした場合、リチウム(Li)原子数との比(Li/Me)が1.44となるように水酸化リチウムと混合して、自動乳鉢で30分間、混合し、混合された紛体をアルミナこう鉢に充填し、マッフル炉で900℃、8時間、大気中で焼成し、酸化物系正極活物質を作製した。当該正極活物質の平均粒径D50は10.0μmであり、残留アルカリ量は0.29質量%と低く、タップ密度は1.5g/ccと高い値であった。
次に、当該正極活物質と、導電材のアセチレンブラックと、バインダーのポリフッ化ビニリデンとを90:5:5の割合で秤量し、バインダーであるポリフッ化ビニリデンを有機溶媒(N−メチルピロリドン)に溶解し、当該正極活物質と導電材と共に混合してスラリー化し、アルミニウム箔上に塗布して乾燥させ、プレス成型して正極を形成した。
次に電池構造体として、負極をLi金属箔として評価用の2032型コインセルを作製し、電解液に1M−LiPF6をEC−DMC(体積比1:1)に溶解したものを用いて、25℃において、充電容量の電池初期特性を測定した。その結果、電池構造体の放電容量は、253mAh/gであり、また、良好なエネルギー密度を示した。
Example 1
A 1.5 mol / L aqueous solution of nickel sulfate, cobalt sulfate, and manganese sulfate was prepared, and a predetermined amount of each aqueous solution was weighed so that Ni: Co: Mn = 0.167: 0.167: 0.666. The mixed solution was adjusted and fed to a reaction vessel in which a stirring blade was installed inside the container.
Next, while operating the stirring blade, the aqueous ammonia and 1.3 mol / L aqueous sodium carbonate solution were added so that the pH of the mixed solution in the reaction vessel was 10.5 and the ammonium ion concentration was 2.5 g / L. Ni-Co-Mn complex carbonate was co-precipitated by crystallization method. At this time, the temperature of the mixed solution in the reaction vessel was kept warm with a water jacket so as to be 40 ° C.
Further, nitrogen gas was introduced into the reaction vessel in order to prevent oxidation of the coprecipitate generated by the reaction. As long as the gas introduced into the reaction tank is a gas that does not promote oxidation, such as helium, neon, argon, carbon dioxide, etc., it can be used without being limited to the nitrogen gas described above.
The coprecipitated precipitate was suctioned and filtered, washed with pure water, and dried at 120 ° C. for 12 hours. The average particle diameter D50 of the Ni—Co—Mn composite carbonate compound particles thus produced was 7.8 μm.
Next, when the sum of the number of atoms of the metal composed of Ni, Co, and Mn in the composite carbonate compound particles is Me, the ratio (Li / Me) to the number of lithium (Li) atoms is 1.44. Mixing with lithium hydroxide, mixing in an automatic mortar for 30 minutes, filling the mixed powder into an alumina mortar, firing in a muffle furnace at 900 ° C. for 8 hours in the air, and oxide-based positive electrode active material Was made. The positive electrode active material had an average particle diameter D50 of 10.0 μm, a residual alkali amount as low as 0.29 mass%, and a tap density as high as 1.5 g / cc.
Next, the positive electrode active material, the conductive material acetylene black, and the binder polyvinylidene fluoride are weighed in a ratio of 90: 5: 5, and the polyvinylidene fluoride binder is used as an organic solvent (N-methylpyrrolidone). It melt | dissolved, mixed with the said positive electrode active material and the electrically conductive material, it was made into a slurry, apply | coated on the aluminum foil, it was made to dry, and it press-molded, and formed the positive electrode.
Next, as a battery structure, a 2032 type coin cell for evaluation was prepared using a negative electrode as a Li metal foil, and 1M-LiPF 6 was dissolved in EC-DMC (volume ratio 1: 1) in an electrolytic solution. The battery initial characteristics of the charge capacity were measured at ° C. As a result, the discharge capacity of the battery structure was 253 mAh / g, and showed a good energy density.

(実施例2)
実施例2は、実施例1における複合炭酸塩化合物粒子と水酸化リチウムとを混合して、マッフル炉での焼成する温度を850℃、8時間、大気中とした以外、実施例1と同様の条件でリチウムイオン電池用酸化物系正極活物質を作製した。その結果、Ni−Co−Mn複合炭酸塩化合物粒子の平均粒径D50は7.8μmであった。また、正極活物質の平均粒径D50は9.4μmであり、残留アルカリ量は0.40質量%と低く、タップ密度は1.4g/ccと高い値であった。
実施例2において作製されたリチウムイオン電池用酸化物系正極活物質による電池構造体の放電容量は、265mAh/gであり、また、良好なエネルギー密度を示した。
(Example 2)
Example 2 is the same as Example 1 except that the composite carbonate compound particles and lithium hydroxide in Example 1 are mixed and the temperature for firing in the muffle furnace is 850 ° C. for 8 hours in the atmosphere. Under the conditions, an oxide-based positive electrode active material for a lithium ion battery was produced. As a result, the average particle diameter D50 of the Ni—Co—Mn composite carbonate compound particles was 7.8 μm. The average particle diameter D50 of the positive electrode active material was 9.4 μm, the residual alkali amount was as low as 0.40 mass%, and the tap density was as high as 1.4 g / cc.
The discharge capacity of the battery structure made of the oxide-based positive electrode active material for a lithium ion battery produced in Example 2 was 265 mAh / g, and showed a good energy density.

(実施例3)
実施例3は、実施例1における複合炭酸塩化合物粒子のNi、Co、Mnからなる金属の原子数の和をMeとした場合、リチウム原子数との比(Li/Me)を1.48とした以外、実施例1と同様の条件でリチウムイオン電池用酸化物系正極活物質を作製した。その結果、Ni−Co−Mn複合炭酸塩化合物粒子の平均粒径D50は7.8μmであった。また、正極活物質の平均粒径D50は9.5μmであり、残留アルカリ量は0.50質量%と低く、タップ密度は1.4g/ccと高い値であった。
実施例3において作製されたリチウムイオン電池用酸化物系正極活物質による電池構造体の放電容量は、250mAh/gであり、また、良好なエネルギー密度を示した。
(Example 3)
In Example 3, when the sum of the number of atoms of the metal composed of Ni, Co, and Mn of the composite carbonate compound particles in Example 1 is Me, the ratio (Li / Me) to the number of lithium atoms is 1.48. An oxide-based positive electrode active material for a lithium ion battery was produced under the same conditions as in Example 1 except that. As a result, the average particle diameter D50 of the Ni—Co—Mn composite carbonate compound particles was 7.8 μm. The average particle diameter D50 of the positive electrode active material was 9.5 μm, the residual alkali amount was as low as 0.50% by mass, and the tap density was as high as 1.4 g / cc.
The discharge capacity of the battery structure made of the oxide-based positive electrode active material for a lithium ion battery produced in Example 3 was 250 mAh / g, and showed a good energy density.

(実施例4)
実施例4は、実施例1における複合炭酸塩化合物粒子のNi、Co、Mnからなる金属の原子数の和をMeとした場合、リチウム原子数との比(Li/Me)を1.48とし、マッフル炉での焼成する温度を850℃とした以外、実施例1と同様の条件でリチウムイオン電池用酸化物系正極活物質を作製した。その結果、Ni−Co−Mn複合炭酸塩化合物粒子の平均粒径D50は7.8μmであった。また、正極活物質の平均粒径D50は9.1μmであり、残留アルカリ量は0.62質量%と低く、タップ密度は1.4g/ccと高い値であった。
実施例4において作製されたリチウムイオン電池用酸化物系正極活物質による電池構造体の放電容量は、257mAh/gであり、また、良好なエネルギー密度を示した。
Example 4
In Example 4, when the sum of the number of atoms of the metal composed of Ni, Co, and Mn of the composite carbonate compound particles in Example 1 is Me, the ratio (Li / Me) to the number of lithium atoms is 1.48. An oxide-based positive electrode active material for a lithium ion battery was produced under the same conditions as in Example 1 except that the temperature for firing in the muffle furnace was 850 ° C. As a result, the average particle diameter D50 of the Ni—Co—Mn composite carbonate compound particles was 7.8 μm. The average particle diameter D50 of the positive electrode active material was 9.1 μm, the residual alkali amount was as low as 0.62% by mass, and the tap density was as high as 1.4 g / cc.
The discharge capacity of the battery structure made of the oxide-based positive electrode active material for a lithium ion battery produced in Example 4 was 257 mAh / g, and showed a good energy density.

(実施例5)
実施例5は、実施例1における複合炭酸塩化合物粒子のNi、Co、Mnからなる金属の原子数の和をMeとした場合、リチウム原子数との比(Li/Me)を1.44とし、マッフル炉での焼成する温度を750℃とした以外、実施例1と同様の条件でリチウムイオン電池用酸化物系正極活物質を作製した。その結果、Ni−Co−Mn複合炭酸塩化合物粒子の平均粒径D50は7.8μmであった。また、正極活物質の平均粒径D50は9.2μmであり、残留アルカリ量は0.55質量%と低く、タップ密度は1.4g/ccと高い値であった。
実施例5において作製されたリチウムイオン電池用酸化物系正極活物質による電池構造体の放電容量は、251mAh/gであり、また、良好なエネルギー密度を示した。
(Example 5)
In Example 5, when the sum of the number of atoms of the metal composed of Ni, Co, and Mn of the composite carbonate compound particle in Example 1 is Me, the ratio (Li / Me) to the number of lithium atoms is 1.44. An oxide-based positive electrode active material for a lithium ion battery was produced under the same conditions as in Example 1 except that the temperature for firing in the muffle furnace was 750 ° C. As a result, the average particle diameter D50 of the Ni—Co—Mn composite carbonate compound particles was 7.8 μm. The average particle diameter D50 of the positive electrode active material was 9.2 μm, the residual alkali amount was as low as 0.55 mass%, and the tap density was as high as 1.4 g / cc.
The discharge capacity of the battery structure made of the oxide-based positive electrode active material for a lithium ion battery produced in Example 5 was 251 mAh / g, and showed a good energy density.

(実施例6)
実施例6は、実施例1における複合炭酸塩化合物粒子のNi、Co、Mnからなる金属の原子数の和をMeとした場合、リチウム原子数との比(Li/Me)を1.44とし、マッフル炉での焼成する温度を800℃とした以外、実施例1と同様の条件でリチウムイオン電池用酸化物系正極活物質を作製した。その結果、Ni−Co−Mn複合炭酸塩化合物粒子の平均粒径D50は7.8μmであった。また、正極活物質の平均粒径D50は9.4μmであり、残留アルカリ量は0.49質量%と低く、タップ密度は1.4g/ccと高い値であった。
実施例6において作製されたリチウムイオン電池用酸化物系正極活物質による電池構造体の放電容量は、262mAh/gであり、また、良好なエネルギー密度を示した。
(Example 6)
In Example 6, when the sum of the number of atoms of the metal composed of Ni, Co, and Mn of the composite carbonate compound particles in Example 1 is Me, the ratio to the number of lithium atoms (Li / Me) is 1.44. An oxide-based positive electrode active material for a lithium ion battery was produced under the same conditions as in Example 1 except that the temperature for firing in the muffle furnace was 800 ° C. As a result, the average particle diameter D50 of the Ni—Co—Mn composite carbonate compound particles was 7.8 μm. The average particle diameter D50 of the positive electrode active material was 9.4 μm, the residual alkali amount was as low as 0.49 mass%, and the tap density was as high as 1.4 g / cc.
The discharge capacity of the battery structure made of the oxide-based positive electrode active material for a lithium ion battery produced in Example 6 was 262 mAh / g, and showed a good energy density.

(実施例7)
実施例7は、実施例1における共沈反応の各水溶液の混合割合を、Ni:Co:Mn=0.17:0.17:0.66となるように調整し、混合液のpHを9.6、アンモニアを添加することなく、共沈反応槽内の混合液の温度を60℃に変更して、共沈した。このようにして作製されたNi−Co−Mn複合炭酸塩化合物粒子の平均粒径D50は16.1μmであった。次に、複合炭酸塩化合物粒子のNi、Co、Mnからなる金属の原子数の和をMeとした場合、リチウム原子数との比(Li/Me)が1.40となるように水酸化リチウムと混合して、マッフル炉で900℃、8時間、大気中で焼成し、正極活物質を作製した。この正極活物質の平均粒径D50は13.9μmであり、残留アルカリ量は0.32質量%と低く、タップ密度は1.5g/ccと高い値であった。
実施例7において作製されたリチウムイオン電池用酸化物系正極活物質による電池構造体の放電容量は、271mAh/gであり、また、良好なエネルギー密度を示した。
(Example 7)
In Example 7, the mixing ratio of each aqueous solution of the coprecipitation reaction in Example 1 was adjusted to be Ni: Co: Mn = 0.17: 0.17: 0.66, and the pH of the mixed solution was 9 .6, without adding ammonia, the temperature of the mixed solution in the coprecipitation reaction tank was changed to 60 ° C. to perform coprecipitation. The average particle diameter D50 of the Ni—Co—Mn composite carbonate compound particles thus produced was 16.1 μm. Next, when the sum of the number of atoms of the metal composed of Ni, Co, and Mn in the composite carbonate compound particles is Me, the lithium hydroxide is adjusted so that the ratio (Li / Me) to the number of lithium atoms is 1.40. And was fired in the air at 900 ° C. for 8 hours in a muffle furnace to prepare a positive electrode active material. This positive electrode active material had an average particle diameter D50 of 13.9 μm, a residual alkali amount as low as 0.32 mass%, and a tap density as high as 1.5 g / cc.
The discharge capacity of the battery structure made of the oxide-based positive electrode active material for a lithium ion battery produced in Example 7 was 271 mAh / g, and showed a good energy density.

(実施例8)
実施例8は、実施例1における共沈反応の各水溶液の混合割合を、Ni:Co:Mn=0.170:0.170:0.660となるように調整し、混合液のpHを9.6、アンモニアを添加することなく、共沈反応槽内の混合液の温度を60℃に変更して、共沈した。このようにして作製されたNi−Co−Mn複合炭酸塩化合物粒子の平均粒径D50は16.1μmであった。次に、複合炭酸塩化合物粒子のNi、Co、Mnからなる金属の原子数の和をMeとした場合、リチウム原子数との比(Li/Me)が1.40となるように水酸化リチウムと混合して、マッフル炉で850℃、8時間、大気中で焼成し、正極活物質を作製した。この正極活物質の平均粒径D50は12.8μmであり、残留アルカリ量は0.40質量%と低く、タップ密度は1.5g/ccと高い値であった。
実施例8において作製されたリチウムイオン電池用酸化物系正極活物質による電池構造体の放電容量は、275mAh/gであり、また、良好なエネルギー密度を示した。
(Example 8)
In Example 8, the mixing ratio of each aqueous solution in the coprecipitation reaction in Example 1 was adjusted to be Ni: Co: Mn = 0.170: 0.170: 0.660, and the pH of the mixed solution was 9 .6, without adding ammonia, the temperature of the mixed solution in the coprecipitation reaction tank was changed to 60 ° C. to perform coprecipitation. The average particle diameter D50 of the Ni—Co—Mn composite carbonate compound particles thus produced was 16.1 μm. Next, when the sum of the number of atoms of the metal composed of Ni, Co, and Mn of the composite carbonate compound particles is Me, the lithium hydroxide is adjusted so that the ratio (Li / Me) to the number of lithium atoms is 1.40. And baked in a muffle furnace at 850 ° C. for 8 hours in the air to prepare a positive electrode active material. This positive electrode active material had an average particle diameter D50 of 12.8 μm, a residual alkali amount as low as 0.40 mass%, and a tap density as high as 1.5 g / cc.
The discharge capacity of the battery structure made of the oxide-based positive electrode active material for a lithium ion battery produced in Example 8 was 275 mAh / g, and showed a good energy density.

(実施例9)
実施例9は、実施例1における共沈反応の各水溶液の混合割合を、Ni:Co:Mn=0.160:0.160:0.680となるように調整し、混合液のpHを9.6、アンモニアを添加することなく、共沈反応槽内の混合液の温度を60℃に変更して、共沈した。このようにして作製されたNi−Co−Mn複合炭酸塩化合物粒子の平均粒径D50は16.1μmであった。次に、複合炭酸塩化合物粒子のNi、Co、Mnからなる金属の原子数の和をMeとした場合、リチウム原子数との比(Li/Me)が1.44となるように水酸化リチウムと混合して、マッフル炉で900℃、8時間、大気中で焼成し、正極活物質を作製した。この正極活物質の平均粒径D50は13.8μmであり、残留アルカリ量は0.47質量%と低く、タップ密度は1.5g/ccと高い値であった。
実施例9において作製されたリチウムイオン電池用酸化物系正極活物質による電池構造体の放電容量は、261mAh/gであり、また、良好なエネルギー密度を示した。
Example 9
In Example 9, the mixing ratio of each aqueous solution of the coprecipitation reaction in Example 1 was adjusted to be Ni: Co: Mn = 0.160: 0.160: 0.680, and the pH of the mixed solution was 9 .6, without adding ammonia, the temperature of the mixed solution in the coprecipitation reaction tank was changed to 60 ° C. to perform coprecipitation. The average particle diameter D50 of the Ni—Co—Mn composite carbonate compound particles thus produced was 16.1 μm. Next, when the sum of the number of atoms of the metal composed of Ni, Co, and Mn in the composite carbonate compound particles is Me, the lithium hydroxide is adjusted so that the ratio (Li / Me) to the number of lithium atoms is 1.44. And was fired in the air at 900 ° C. for 8 hours in a muffle furnace to prepare a positive electrode active material. This positive electrode active material had an average particle diameter D50 of 13.8 μm, a residual alkali amount as low as 0.47% by mass, and a tap density as high as 1.5 g / cc.
The discharge capacity of the battery structure made of the oxide-based positive electrode active material for a lithium ion battery produced in Example 9 was 261 mAh / g, and showed a good energy density.

(実施例10)
実施例10は、実施例1における共沈反応の各水溶液の混合割合を、Ni:Co:Mn=0.160:0.160:0.680となるように調整し、混合液のpHを9.6、アンモニアを添加することなく、共沈反応槽内の混合液の温度を60℃に変更して、共沈した。このようにして作製されたNi−Co−Mn複合炭酸塩化合物粒子の平均粒径D50は16.1μmであった。次に、複合炭酸塩化合物粒子のNi、Co、Mnからなる金属の原子数の和をMeとした場合、リチウム原子数との比(Li/Me)が1.44となるように水酸化リチウムと混合して、マッフル炉で850℃、8時間、大気中で焼成し、正極活物質を作製した。この正極活物質の平均粒径D50は12.6μmであり、残留アルカリ量は0.46質量%と低く、タップ密度は1.6g/ccと高い値であった。
実施例10において作製されたリチウムイオン電池用酸化物系正極活物質による電池構造体の放電容量は、273mAh/gであり、また、良好なエネルギー密度を示した。
(Example 10)
In Example 10, the mixing ratio of each aqueous solution of the coprecipitation reaction in Example 1 was adjusted to be Ni: Co: Mn = 0.160: 0.160: 0.680, and the pH of the mixed solution was 9 .6, without adding ammonia, the temperature of the mixed solution in the coprecipitation reaction tank was changed to 60 ° C. to perform coprecipitation. The average particle diameter D50 of the Ni—Co—Mn composite carbonate compound particles thus produced was 16.1 μm. Next, when the sum of the number of atoms of the metal composed of Ni, Co, and Mn in the composite carbonate compound particles is Me, the lithium hydroxide is adjusted so that the ratio (Li / Me) to the number of lithium atoms is 1.44. And was fired in the air at 850 ° C. for 8 hours in a muffle furnace to produce a positive electrode active material. This positive electrode active material had an average particle diameter D50 of 12.6 μm, a residual alkali amount as low as 0.46% by mass, and a tap density as high as 1.6 g / cc.
The discharge capacity of the battery structure made of the oxide-based positive electrode active material for a lithium ion battery produced in Example 10 was 273 mAh / g, and showed a good energy density.

(実施例11)
実施例11は、実施例1における共沈反応の各水溶液の混合割合を、Ni:Co:Mn=0.160:0.160:0.680となるように調整し、混合液のpHを9.6、アンモニアを添加することなく、共沈反応槽内の混合液の温度を60℃に変更して、共沈した。このようにして作製されたNi−Co−Mn複合炭酸塩化合物粒子の平均粒径D50は16.1μmであった。次に、複合炭酸塩化合物粒子のNi、Co、Mnからなる金属の原子数の和をMeとした場合、リチウム原子数との比(Li/Me)が1.40となるように水酸化リチウムと混合して、マッフル炉で950℃、8時間、大気中で焼成し、正極活物質を作製した。この正極活物質の平均粒径D50は13.8μmであり、残留アルカリ量は0.25質量%と低く、タップ密度は1.6g/ccと高い値であった。
実施例11において作製されたリチウムイオン電池用酸化物系正極活物質による電池構造体の放電容量は、255mAh/gであり、また、良好なエネルギー密度を示した。
(Example 11)
In Example 11, the mixing ratio of each aqueous solution of the coprecipitation reaction in Example 1 was adjusted to be Ni: Co: Mn = 0.160: 0.160: 0.680, and the pH of the mixed solution was 9 .6, without adding ammonia, the temperature of the mixed solution in the coprecipitation reaction tank was changed to 60 ° C. to perform coprecipitation. The average particle diameter D50 of the Ni—Co—Mn composite carbonate compound particles thus produced was 16.1 μm. Next, when the sum of the number of atoms of the metal composed of Ni, Co, and Mn in the composite carbonate compound particles is Me, the lithium hydroxide is adjusted so that the ratio (Li / Me) to the number of lithium atoms is 1.40. And was fired in the air at 950 ° C. for 8 hours in a muffle furnace to produce a positive electrode active material. This positive electrode active material had an average particle diameter D50 of 13.8 μm, a residual alkali amount as low as 0.25% by mass, and a tap density as high as 1.6 g / cc.
The discharge capacity of the battery structure made of the oxide-based positive electrode active material for a lithium ion battery produced in Example 11 was 255 mAh / g, and showed a good energy density.

(比較例1)
比較例1は、実施例1における共沈反応においてNi:Co:Mn=0.160:0.160:0.680となるように調整し、混合液のpHを10.1、アンモニアを添加することなく、共沈反応槽内の混合液の温度を40℃として、共沈した。このようにして作製されたNi−Co−Mn複合炭酸塩化合物粒子の平均粒径D50は11.5μmであった。次に、複合炭酸塩化合物粒子のNi、Co、Mnからなる金属の原子数の和をMeとした場合、リチウム原子数との比(Li/Me)が1.20となるように水酸化リチウムと混合して、マッフル炉で850℃、8時間、大気中で焼成し、正極活物質を作製した。この正極活物質の平均粒径D50は9.8μmであり、また、水酸化リチウムの混合比率が小さい分、残留アルカリ量は0.09質量%と低くなり、またリチウム比が低いために結晶性の品質も低下し、タップ密度は1.2g/ccと低くなり、実施例と比較して小さいものであった。
比較例1において作製されたリチウムイオン電池用酸化物系正極活物質による電池構造体の放電容量は、135mAh/gであり、また、良好なエネルギー密度を得ることができなかった。
(Comparative Example 1)
In Comparative Example 1, Ni: Co: Mn = 0.160: 0.160: 0.680 was adjusted in the coprecipitation reaction in Example 1, and the pH of the mixed solution was 10.1 and ammonia was added. Without co-precipitation, the temperature of the mixed solution in the coprecipitation reactor was set to 40 ° C. The average particle diameter D50 of the Ni—Co—Mn composite carbonate compound particles thus produced was 11.5 μm. Next, when the sum of the number of atoms of the metal composed of Ni, Co, and Mn of the composite carbonate compound particle is Me, the lithium hydroxide is adjusted so that the ratio (Li / Me) to the number of lithium atoms is 1.20. And was fired in the air at 850 ° C. for 8 hours in a muffle furnace to produce a positive electrode active material. The average particle diameter D50 of this positive electrode active material is 9.8 μm, and since the mixing ratio of lithium hydroxide is small, the residual alkali amount is as low as 0.09 mass%, and the lithium ratio is low, so that the crystallinity The tap density was as low as 1.2 g / cc, which was small compared to the examples.
The discharge capacity of the battery structure made of the oxide-based positive electrode active material for a lithium ion battery produced in Comparative Example 1 was 135 mAh / g, and a good energy density could not be obtained.

(比較例2)
比較例2は、実施例1における共沈反応においてNi:Co:Mn=0.160:0.160:0.680となるように調整し、混合液のpHを10.1、アンモニアを添加することなく、共沈反応槽内の混合液の温度を40℃として、共沈した。このようにして作製されたNi−Co−Mn複合炭酸塩化合物粒子の平均粒径D50は11.5μmであった。次に、複合炭酸塩化合物粒子のNi、Co、Mnからなる金属の原子数の和をMeとした場合、リチウム原子数との比(Li/Me)が1.52となるように水酸化リチウムと混合して、マッフル炉で850℃、8時間、大気中で焼成し、正極活物質を作製した。この正極活物質の平均粒径D50は9.3μmであり、残留アルカリ量は0.77質量%と高く、またタップ密度は1.4であった。
比較例2において作製されたリチウムイオン電池用酸化物系正極活物質による電池構造体の放電容量は、235mAh/gと低く、残留アルカリ量が多いために電極構造の作製時にリチウムイオン電池用酸化物系正極活物質のゲル化による放電容量の低下が発生したと考えられ、また、良好なエネルギー密度を得ることができなかった。
(Comparative Example 2)
In Comparative Example 2, Ni: Co: Mn = 0.160: 0.160: 0.680 was adjusted in the coprecipitation reaction in Example 1, and the pH of the mixed solution was 10.1 and ammonia was added. Without co-precipitation, the temperature of the mixed solution in the coprecipitation reactor was set to 40 ° C. The average particle diameter D50 of the Ni—Co—Mn composite carbonate compound particles thus produced was 11.5 μm. Next, when the sum of the number of atoms of the metal composed of Ni, Co, and Mn in the composite carbonate compound particles is Me, the lithium hydroxide is adjusted so that the ratio (Li / Me) to the number of lithium atoms is 1.52. And was fired in the air at 850 ° C. for 8 hours in a muffle furnace to produce a positive electrode active material. This positive electrode active material had an average particle diameter D50 of 9.3 μm, a residual alkali amount as high as 0.77% by mass, and a tap density of 1.4.
The discharge capacity of the battery structure made of the oxide-based positive electrode active material for lithium ion battery prepared in Comparative Example 2 is as low as 235 mAh / g, and the amount of residual alkali is large. It is considered that a decrease in discharge capacity due to gelation of the system positive electrode active material occurred, and a good energy density could not be obtained.

(比較例3)
比較例3は、実施例1における共沈反応においてNi:Co:Mn=0.160:0.160:0.680となるように調整し、混合液のpHを10.1、アンモニアを添加することなく、共沈反応槽内の混合液の温度を40℃として、共沈した。このようにして作製されたNi−Co−Mn複合炭酸塩化合物粒子の平均粒径D50は11.5μmであった。次に、複合炭酸塩化合物粒子のNi、Co、Mnからなる金属の原子数の和をMeとした場合、リチウム原子数との比(Li/Me)が1.56となるように水酸化リチウムと混合して、マッフル炉で850℃、8時間、大気中で焼成し、正極活物質を作製した。この正極活物質の平均粒径D50は10.7μmであり、残留アルカリ量は0.86質量%と高く、タップ密度は1.3g/ccであった。
比較例3において作製されたリチウムイオン電池用酸化物系正極活物質による電池構造体の放電容量は、215mAh/gであり、また、良好なエネルギー密度を得ることができなかった。
(Comparative Example 3)
In Comparative Example 3, Ni: Co: Mn = 0.160: 0.160: 0.680 was adjusted in the coprecipitation reaction in Example 1, and the pH of the mixed solution was 10.1 and ammonia was added. Without co-precipitation, the temperature of the mixed solution in the coprecipitation reactor was set to 40 ° C. The average particle diameter D50 of the Ni—Co—Mn composite carbonate compound particles thus produced was 11.5 μm. Next, when the sum of the number of atoms of the metal composed of Ni, Co, and Mn in the composite carbonate compound particles is Me, the lithium hydroxide is adjusted so that the ratio (Li / Me) to the number of lithium atoms is 1.56. And was fired in the air at 850 ° C. for 8 hours in a muffle furnace to produce a positive electrode active material. The positive electrode active material had an average particle diameter D50 of 10.7 μm, a residual alkali amount as high as 0.86% by mass, and a tap density of 1.3 g / cc.
The discharge capacity of the battery structure made of the oxide-based positive electrode active material for a lithium ion battery produced in Comparative Example 3 was 215 mAh / g, and a good energy density could not be obtained.

(比較例4)
比較例4は、実施例1における共沈反応においてNi:Co:Mn=0.160:0.160:0.680となるように調整し、混合液のpHを10.1、アンモニアを添加することなく、共沈反応槽内の混合液の温度を40℃として、共沈した。このようにして作製されたNi−Co−Mn複合炭酸塩化合物粒子の平均粒径D50は11.5μmであった。次に、複合炭酸塩化合物粒子のNi、Co、Mnからなる金属の原子数の和をMeとした場合、リチウム原子数との比(Li/Me)が1.70となるように水酸化リチウムと混合して、マッフル炉で850℃、8時間、大気中で焼成し、正極活物質を作製した。この正極活物質の平均粒径D50は11.5μmであり、残留アルカリ量は1.38質量%と高く、タップ密度は1.4g/ccであった。
比較例4において作製されたリチウムイオン電池用酸化物系正極活物質による電池構造体の放電容量は、189mAh/gであり、また、良好なエネルギー密度を得ることができなかった。
上記実施例1〜11及び比較例1〜4に係る試験条件及び評価結果を表1〜2に示す。
(Comparative Example 4)
In Comparative Example 4, Ni: Co: Mn = 0.160: 0.160: 0.680 was adjusted in the coprecipitation reaction in Example 1, and the pH of the mixed solution was 10.1 and ammonia was added. Without co-precipitation, the temperature of the mixed solution in the coprecipitation reactor was set to 40 ° C. The average particle diameter D50 of the Ni—Co—Mn composite carbonate compound particles thus produced was 11.5 μm. Next, when the sum of the number of atoms of the metal composed of Ni, Co, and Mn in the composite carbonate compound particles is Me, the lithium hydroxide is adjusted so that the ratio (Li / Me) to the number of lithium atoms is 1.70. And was fired in the air at 850 ° C. for 8 hours in a muffle furnace to produce a positive electrode active material. This positive electrode active material had an average particle diameter D50 of 11.5 μm, a residual alkali amount as high as 1.38% by mass, and a tap density of 1.4 g / cc.
The discharge capacity of the battery structure made of the oxide-based positive electrode active material for a lithium ion battery produced in Comparative Example 4 was 189 mAh / g, and a good energy density could not be obtained.
Test conditions and evaluation results according to Examples 1 to 11 and Comparative Examples 1 to 4 are shown in Tables 1 and 2.

Figure 0006619832
Figure 0006619832

Figure 0006619832
Figure 0006619832

Claims (8)

金属組成がLiaNibCocMn1-b-c
(式中、1.40≦a≦1.48、0.16≦b≦0.17、0.16≦c≦0.17である。)
で表され、含有される残留アルカリ量が0.7質量%以下であるリチウムイオン電池用酸化物系正極活物質。
The metal composition is Li a Ni b Co c Mn 1-bc
(In the formula, 1.40 ≦ a ≦ 1.48, 0.16 ≦ b ≦ 0.17, 0.16 ≦ c ≦ 0.17)
An oxide-based positive electrode active material for a lithium ion battery, wherein the residual alkali content is 0.7% by mass or less.
平均粒径D50が9.0〜14.0μmである請求項1に記載のリチウムイオン電池用酸化物系正極活物質。   2. The oxide-based positive electrode active material for a lithium ion battery according to claim 1, wherein the average particle diameter D50 is 9.0 to 14.0 μm. タップ密度が1.4g/cm3以上である請求項1又は2に記載のリチウムイオン電池用酸化物系正極活物質。 3. The oxide-based positive electrode active material for a lithium ion battery according to claim 1, wherein the tap density is 1.4 g / cm 3 or more. ニッケル塩、コバルト塩、マンガン塩、アンモニア水及び炭酸塩の水溶液を含有する水溶液を反応液とし、前記反応液中のpHを9.6〜10.5、アンモニウムイオン濃度を2.5g/L以下、液温を40〜60℃に制御しながら晶析反応を行う工程を含み、
組成式が(NixCoyMn1-x-y)CO3
(式中、0.16≦x≦0.17、0.16≦y≦0.17である。)で表される、リチウムイオン電池用酸化物系正極活物質の前駆体の製造方法。
An aqueous solution containing an aqueous solution of nickel salt, cobalt salt, manganese salt, aqueous ammonia and carbonate is used as a reaction solution, the pH in the reaction solution is 9.6 to 10.5, and the ammonium ion concentration is 2.5 g / L or less. , Including a step of performing a crystallization reaction while controlling the liquid temperature at 40 to 60 ° C.,
Composition formula (Ni x Co y Mn 1- xy) CO 3
(In formula, it is 0.16 <= x <= 0.17, 0.16 <= y <= 0.17.) The manufacturing method of the precursor of the oxide type positive electrode active material for lithium ion batteries is represented.
前記前駆体の平均粒径D50が7.0〜17.0μmである請求項4に記載のリチウムイオン電池用酸化物系正極活物質の前駆体の製造方法。   The method for producing a precursor of an oxide-based positive electrode active material for a lithium ion battery according to claim 4, wherein the average particle diameter D50 of the precursor is 7.0 to 17.0 μm. 請求項4又は5に記載の方法で製造された前記前駆体を、Ni、Co及びMnからなる金属の原子数の和(Me)とリチウムの原子数との比(Li/Me)が1.40〜1.48となるように混合して、リチウム混合物を形成する工程と、
前記リチウム混合物を大気雰囲気中、750〜950℃で焼成する工程と、
を含むリチウムイオン電池用酸化物系正極活物質の製造方法。
6. The precursor produced by the method according to claim 4 or 5, wherein the ratio (Li / Me) of the sum of the number of atoms of metal (Me) made of Ni, Co and Mn to the number of atoms of lithium is 1. Mixing to form 40 to 1.48 to form a lithium mixture;
Baking the lithium mixture at 750 to 950 ° C. in an air atmosphere;
The manufacturing method of the oxide type positive electrode active material for lithium ion batteries containing.
請求項1〜3のいずれか一項に記載のリチウムイオン電池用酸化物系正極活物質を備えたリチウムイオン電池用正極。   The positive electrode for lithium ion batteries provided with the oxide type positive electrode active material for lithium ion batteries as described in any one of Claims 1-3. 請求項7に記載のリチウムイオン電池用正極を備えたリチウムイオン電池。   The lithium ion battery provided with the positive electrode for lithium ion batteries of Claim 7.
JP2018044544A 2018-03-12 2018-03-12 Oxide positive electrode active material for lithium ion battery, method for producing precursor of oxide positive electrode active material for lithium ion battery, method for producing oxide positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery Active JP6619832B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018044544A JP6619832B2 (en) 2018-03-12 2018-03-12 Oxide positive electrode active material for lithium ion battery, method for producing precursor of oxide positive electrode active material for lithium ion battery, method for producing oxide positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery
KR1020180142653A KR102142335B1 (en) 2018-03-12 2018-11-19 Oxide based cathode active material for lithium ion battery, method for manufacturing oxide based cathode active material precursor for lithium ion battery, method for manufacturing oxide based cathode active material for lithium ion battery, and lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018044544A JP6619832B2 (en) 2018-03-12 2018-03-12 Oxide positive electrode active material for lithium ion battery, method for producing precursor of oxide positive electrode active material for lithium ion battery, method for producing oxide positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery

Publications (2)

Publication Number Publication Date
JP2019160523A JP2019160523A (en) 2019-09-19
JP6619832B2 true JP6619832B2 (en) 2019-12-11

Family

ID=67996411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018044544A Active JP6619832B2 (en) 2018-03-12 2018-03-12 Oxide positive electrode active material for lithium ion battery, method for producing precursor of oxide positive electrode active material for lithium ion battery, method for producing oxide positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery

Country Status (2)

Country Link
JP (1) JP6619832B2 (en)
KR (1) KR102142335B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111948335A (en) * 2020-06-29 2020-11-17 北京当升材料科技股份有限公司 Method for testing residual alkali content in coated modified cathode material and application thereof
RU220659U1 (en) * 2023-06-30 2023-09-28 Акционерное общество "Энергия" (АО "Энергия") CYLINDRICAL LITHIUM-ION BATTERY WITH A CATHODE BASED ON LITHIUM DIMANGANGE TETRAOXIDE (LiMn2O4)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111430701B (en) * 2019-11-29 2022-10-25 蜂巢能源科技有限公司 Lithium-rich carbonate precursor and preparation method and application thereof
JP7365565B2 (en) * 2020-03-18 2023-10-20 トヨタ自動車株式会社 A positive electrode active material and a secondary battery including the positive electrode active material

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6032457B2 (en) 2012-02-03 2016-11-30 日産自動車株式会社 Solid solution lithium-containing transition metal oxide and lithium ion secondary battery
JP6834986B2 (en) * 2016-01-06 2021-02-24 住友金属鉱山株式会社 Method for manufacturing positive electrode active material precursor for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material precursor for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery Manufacturing method
KR101748999B1 (en) * 2016-08-01 2017-06-20 (주)이엠티 Method for Preparing Cathode Active Material Precursor for Secondary Battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111948335A (en) * 2020-06-29 2020-11-17 北京当升材料科技股份有限公司 Method for testing residual alkali content in coated modified cathode material and application thereof
CN111948335B (en) * 2020-06-29 2021-08-24 北京当升材料科技股份有限公司 Method for testing residual alkali content in coated modified cathode material and application thereof
RU220659U1 (en) * 2023-06-30 2023-09-28 Акционерное общество "Энергия" (АО "Энергия") CYLINDRICAL LITHIUM-ION BATTERY WITH A CATHODE BASED ON LITHIUM DIMANGANGE TETRAOXIDE (LiMn2O4)

Also Published As

Publication number Publication date
JP2019160523A (en) 2019-09-19
KR102142335B1 (en) 2020-08-07
KR20190107555A (en) 2019-09-20

Similar Documents

Publication Publication Date Title
KR101989760B1 (en) Positive electrode active material precursor particulate powder and positive electrode active material particulate powder, and non-aqueous electrolyte secondary battery
JP5614513B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same
US9090481B2 (en) Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
TWI549343B (en) A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery
WO2010113512A1 (en) Positive electrode active material for lithium ion secondary battery, method for producing same, and lithium ion secondary battery
JP6003157B2 (en) Positive electrode active material particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
TWI423507B (en) A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery
JP6340791B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
WO2011108598A1 (en) Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
JP2016115658A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, manufacturing method thereof, and nonaqueous electrolyte secondary battery
KR20160006172A (en) Transition metal composite hydroxide particles, method for producing same, positive electrode active material for non-aqueous electrolyte secondary battery, method for producing same, and non-aqueous electrolyte secondary battery
JP4984593B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP2015072800A (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, manufacturing method thereof, and nonaqueous electrolyte secondary battery arranged by use thereof
JPWO2011108355A1 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP2013206679A (en) Nonaqueous electrolyte secondary battery cathode active material and manufacturing method thereof and secondary battery
WO2019087503A1 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery, and method for producing positive electrode active material for nonaqueous electrolyte secondary batteries
JP6201146B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP7159639B2 (en) Method for producing particles of transition metal composite hydroxide, and method for producing positive electrode active material for lithium ion secondary battery
JP6619832B2 (en) Oxide positive electrode active material for lithium ion battery, method for producing precursor of oxide positive electrode active material for lithium ion battery, method for producing oxide positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery
JP2015153551A (en) Positive electrode active material particle powder, manufacturing method thereof, and nonaqueous electrolyte secondary battery
JP2018067549A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
JP6357978B2 (en) Transition metal composite hydroxide particles and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP5387631B2 (en) Element-substituted lithium manganese composite oxide particulate composition, its production method and its use in secondary batteries
JP5691159B2 (en) Manganese oxyhydroxide, process for producing the same, and lithium manganese composite oxide using the same
JP7192397B2 (en) Lithium-cobalt-manganese composite oxide and lithium secondary battery containing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190607

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190607

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191115

R150 Certificate of patent or registration of utility model

Ref document number: 6619832

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250