WO2016067497A1 - Method for regenerating lithium composite oxide, lithium composite oxide, electrochemical device and lithium ion secondary battery - Google Patents

Method for regenerating lithium composite oxide, lithium composite oxide, electrochemical device and lithium ion secondary battery Download PDF

Info

Publication number
WO2016067497A1
WO2016067497A1 PCT/JP2015/003935 JP2015003935W WO2016067497A1 WO 2016067497 A1 WO2016067497 A1 WO 2016067497A1 JP 2015003935 W JP2015003935 W JP 2015003935W WO 2016067497 A1 WO2016067497 A1 WO 2016067497A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
lithium composite
composite oxide
negative electrode
active material
Prior art date
Application number
PCT/JP2015/003935
Other languages
French (fr)
Japanese (ja)
Inventor
粟野 英和
博道 加茂
貴一 廣瀬
吉川 博樹
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Publication of WO2016067497A1 publication Critical patent/WO2016067497A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the present invention relates to a method for regenerating a lithium composite oxide, a lithium composite oxide, an electrochemical device, and a lithium ion secondary battery.
  • This secondary battery is not limited to a small electronic device, but is also considered to be applied to a large-sized electronic device represented by an automobile or the like, or an electric power storage system represented by a house.
  • lithium ion secondary batteries are highly expected because they are small and easy to increase in capacity. This is because an energy density higher than that of a lead battery or a nickel cadmium battery can be obtained.
  • the lithium ion secondary battery includes an electrolyte solution together with a positive electrode, a negative electrode, and a separator.
  • the positive electrode and the negative electrode include a positive electrode active material and a negative electrode active material related to the charge / discharge reaction.
  • a lithium composite oxide which is a positive electrode material having a hexagonal layered rock salt structure belonging to the space group R-3m and containing a transition metal which is a rare metal such as cobalt or nickel, is used as a positive electrode active material.
  • Non-aqueous electrolyte secondary batteries used have been proposed.
  • the lithium composite oxide used for the positive electrode contains a large amount of transition metals such as cobalt, which is a rare metal, and thus is one of the factors that increase the material cost of lithium ion secondary batteries. Furthermore, taking into account that about 20% of cobalt resources are currently used in the battery industry, if lithium composite oxides containing a large amount of transition metals such as cobalt, which is a rare metal, are consumed as they are, It is considered difficult to respond to future demand for secondary batteries.
  • Japanese Patent No. 3425206 Japanese Patent Laid-Open No. 10-330855 JP-A-11-054159 JP 2012-072488 A Japanese Patent Laid-Open No. 2007-122885 JP-A-10-287864 JP 2004-2104025 A
  • the positive electrode active material containing a transition metal is limited by resources such as cobalt, which is a rare metal, there is a problem that the price of a lithium ion secondary battery containing such a positive electrode active material is high. It was.
  • regeneration of the lithium composite oxide is indispensable.
  • the used lithium composite oxide once used for charging / discharging is generally synthesized by being redissolved to obtain a hydroxide and then mixed with a lithium compound.
  • this method has a problem in that the production cost increases because lithium and transition metal must be separately recovered and regenerated.
  • impurities such as sodium are further added, which increases the surface resistance of the positive electrode active material, making it difficult to obtain sufficient charge / discharge capacity. There was a problem of being.
  • a high-capacity negative electrode containing a negative electrode active material typified by silicon oxide requires a large amount of positive electrode material, and thus needs for regeneration of the positive electrode are increasing.
  • Various studies have been made on a lithium ion secondary battery or a positive electrode material for an electrolytic cell suitable for a high capacity negative electrode. In order to improve the characteristics of the entire battery, it is very important to develop a positive electrode material having good compatibility with a high capacity negative electrode containing a negative electrode active material typified by silicon oxide.
  • the present inventors have found that the regenerated positive electrode material has a good compatibility with a high capacity negative electrode containing a negative electrode active material typified by silicon oxide, which is said to have slightly increased resistance and low charge / discharge efficiency. Found.
  • the lithium-cobalt composite oxide produced by the conventional method purchases precursors such as cobalt oxide and cobalt hydroxide, or nickel-cobalt-manganese hydroxide coprecipitate, mixes with the lithium compound, and performs firing. Get a composite.
  • cobalt has many resource limitations and is a rare metal, so the price fluctuated greatly when purchased.
  • As a method for recovering a valuable metal such as cobalt from a lithium ion battery having the above-described structure for example, dry processing or incineration processing as described in Patent Document 1 and Patent Document 2 is often performed.
  • the method of leaching a valuable metal from the positive electrode active material of the lithium ion battery which consists of complex oxide comprised with the transition metal containing manganese proposed by patent document 4 is the said positive electrode in the aqueous solution which added the sulfuric acid.
  • the first step of dissolving the soluble component in the sulfuric acid solution of the active material and the solid solution after the first step hydrogen peroxide is added to the sulfuric acid leaching slurry solution and remains in the sulfuric acid leaching slurry.
  • a second step of further leaching unleached components is also regenerates the rare metal by eluting it with an acid, so that there are many impurities and the manufacturing cost increases.
  • Patent Document 5 in order to efficiently separate and recover valuable metals such as Li, Ni, Co and the like from a used lithium ion battery without performing a dry process such as heating and incineration, the pH is from 0 to 3.0.
  • a method for separating and recovering the positive electrode active material from the positive electrode substrate and separating and recovering it as a solid has been proposed by immersing and stirring in a sulfuric acid aqueous solution of the above. There is concern about the dissolution of the metal component, and the amount of impurities increases, which is not preferable in terms of characteristics.
  • the present invention has been made in view of the above problems, and can regenerate a lithium composite oxide having an excellent charge / discharge capacity at a low cost when used as a positive electrode active material of an electrochemical device.
  • An object of the present invention is to provide a method for regenerating lithium composite oxide.
  • the present invention provides a step of preparing a lithium composite precursor in which lithium is partially extracted electrochemically or chemically, and a lithium composite precursor from which lithium is partially extracted. And a step of reacting the compound.
  • a method for regenerating a lithium composite oxide is provided.
  • the step of reacting includes a step of mixing and reacting the lithium composite precursor from which the lithium has been partially extracted and the lithium compound, and performing a reaction.
  • a method of reacting a lithium compound with a lithium composite precursor from which lithium has been partially extracted a method in which a lithium composite precursor from which lithium has been partially extracted and the lithium compound is mixed and fired is preferably used. it can.
  • the step of reacting preferably includes a step of mixing the lithium composite precursor from which the lithium is partially extracted and the lithium compound, and causing a hydrothermal reaction.
  • a method for reacting a lithium compound with a lithium composite precursor from which lithium has been partially extracted a method in which a lithium composite precursor from which lithium has been partially extracted and the lithium compound are mixed and subjected to a hydrothermal reaction is also preferably used. be able to.
  • the lithium composite precursor from which a part of the lithium has been extracted is represented by the following general formula (1): Li 1-x Co 1-z M z O 2 (0 ⁇ x ⁇ 1, 0 ⁇ z ⁇ 1). ⁇ ⁇ (1) (wherein M represents one or more metal elements selected from the group consisting of Mn, Ni, Fe, V, Cr, Al, Nb, Ti, Cu, and Zn).
  • the lithium composite oxide obtained by the reaction step is represented by the following general formula (2): Li 1-y Co 1-z M z O 2 (0 ⁇ y ⁇ x, 0 ⁇ z ⁇ 1) (2) (wherein M represents one or more metal elements selected from the group consisting of Mn, Ni, Fe, V, Cr, Al, Nb, Ti, Cu, and Zn). It can be an oxide.
  • the lithium composite precursor from which lithium is partially extracted and the lithium composite oxide obtained by the reaction as described above it has a better charge / discharge capacity when used as a positive electrode active material for electrochemical devices. Such a lithium composite oxide can be regenerated.
  • the lithium composite precursor from which a part of the lithium has been extracted is represented by the following general formula (3): Li 1-x Fe 1-z M z PO 4 (0 ⁇ x ⁇ 1, 0 ⁇ z ⁇ 1). .. (3) (wherein M represents one or more metal elements selected from the group consisting of Co, Mn, Ni, V, Cr, Al, Nb, Ti, Cu, and Zn).
  • the lithium composite oxide obtained by the step of reacting with a phosphorus composite oxide is expressed by the following general formula (4): Li 1-y Fe 1-z M z PO 4 (0 ⁇ y ⁇ x, 0 ⁇ z ⁇ 1) (4) (wherein M represents one or more metal elements selected from the group consisting of Co, Mn, Ni, V, Cr, Al, Nb, Ti, Cu, and Zn). Lithium iron phosphorus composite oxide.
  • the lithium composite precursor from which lithium is partially extracted and the lithium composite oxide obtained by the reaction as described above it has a better charge / discharge capacity when used as a positive electrode active material for electrochemical devices. Such a lithium composite oxide can be regenerated.
  • the lithium composite precursor from which a part of the lithium was extracted is represented by the following general formula (5): Li 3-x V 2-z M z (PO 4 ) 3 (0 ⁇ x ⁇ 3, 0 ⁇ z ⁇ 2) ... (5) (wherein, M represents one or more metal elements selected from the group consisting of Co, Mn, Ni, Fe, Cr, Al, Nb, Ti, Cu, and Zn).
  • the lithium composite oxide obtained by the above-mentioned reaction step using the lithium vanadium phosphorus composite oxide is represented by the following general formula (6): Li 3-y V 2-z M z (PO 4 ) 3 (0 ⁇ y ⁇ x, 0 ⁇ z ⁇ 2) (6) (wherein M is one or more metal elements selected from the group consisting of Co, Mn, Ni, Fe, Cr, Al, Nb, Ti, Cu, and Zn) Lithium vanadium phosphorus complex oxide represented by the following formula:
  • the lithium composite precursor from which lithium is partially extracted and the lithium composite oxide obtained by the reaction as described above it has a better charge / discharge capacity when used as a positive electrode active material for electrochemical devices. Such a lithium composite oxide can be regenerated.
  • lithium composite precursors can be used as the lithium composite precursor.
  • the present invention can be applied even when two or more lithium composite precursors are used as the lithium composite precursor.
  • the composition of the regenerated lithium composite oxide can be adjusted.
  • a lithium composite oxide obtained by the step of preparing and containing the carbon as the lithium composite precursor contains the carbon contained in the lithium composite precursor.
  • the step of reacting includes a step of reacting the lithium composite precursor and a carbon compound, and the lithium composite oxide obtained by the step of reacting contains carbon.
  • the lithium composite oxide after the reaction contain carbon, a lithium composite oxide having a more excellent charge / discharge capacity when used as a positive electrode active material of an electrochemical device is regenerated. be able to.
  • the present invention also provides a lithium composite oxide regenerated by the above method.
  • Such a lithium composite oxide can be manufactured at low cost while having excellent charge / discharge capacity when used as a positive electrode active material of an electrochemical device.
  • the present invention also provides a negative electrode comprising a negative electrode active material layer containing negative electrode active material particles having a charge / discharge efficiency of 80% or less when used as a negative electrode active material for an electrochemical device, and the negative electrode current collector,
  • an electrochemical device comprising a positive electrode active material layer containing the lithium composite oxide and a positive electrode comprising a positive electrode current collector.
  • Such an electrochemical device can be manufactured at low cost while having excellent charge / discharge capacity.
  • the present invention also includes a negative electrode active material layer containing negative electrode active material particles containing silicon oxide represented by a composition formula of SiO x (0.5 ⁇ x ⁇ 1.6) and a negative electrode current collector.
  • a negative electrode active material layer containing negative electrode active material particles containing silicon oxide represented by a composition formula of SiO x (0.5 ⁇ x ⁇ 1.6) and a negative electrode current collector.
  • an electrochemical device comprising a negative electrode, and a positive electrode comprising a positive electrode active material layer containing the lithium composite oxide and a positive electrode current collector.
  • Such an electrochemical device can be manufactured at low cost while having excellent charge / discharge capacity.
  • the present invention also provides a negative electrode comprising a negative electrode active material layer containing negative electrode active material particles having a charge / discharge efficiency of 80% or less when used as a negative electrode active material of a lithium ion secondary battery, and a negative electrode current collector.
  • a lithium ion secondary battery comprising a positive electrode active material layer containing the above lithium composite oxide and a positive electrode comprising a positive electrode current collector is provided.
  • Such a lithium ion secondary battery can be manufactured at low cost while having excellent charge / discharge capacity.
  • the present invention also includes a negative electrode active material layer containing negative electrode active material particles containing silicon oxide represented by a composition formula of SiO x (0.5 ⁇ x ⁇ 1.6) and a negative electrode current collector.
  • a lithium ion secondary battery comprising a negative electrode, and a positive electrode comprising a positive electrode active material layer containing the lithium composite oxide and a positive electrode current collector.
  • Such a lithium ion secondary battery can be manufactured at low cost while having excellent charge / discharge capacity.
  • a lithium composite oxide having excellent charge / discharge capacity when used as a positive electrode active material of an electrochemical device is regenerated at low cost. be able to.
  • the lithium composite oxide of the present invention can be manufactured at low cost while having excellent charge / discharge capacity when used as a positive electrode active material of an electrochemical device.
  • the electrochemical device of the present invention can be manufactured at low cost while having excellent charge / discharge capacity.
  • the lithium ion secondary battery of the present invention can be manufactured at low cost while having excellent charge / discharge capacity.
  • the present inventors have provided a method for regenerating a lithium composite oxide that can regenerate a lithium composite oxide having excellent charge / discharge capacity when used as a positive electrode active material for an electrochemical device at a low cost.
  • a lithium compound is reacted with a lithium composite precursor from which lithium is partially extracted electrochemically or chemically, so that it has an excellent charge / discharge capacity when used as a positive electrode active material of an electrochemical device.
  • the present inventors have found that a lithium composite oxide can be regenerated at a low cost.
  • a lithium composite precursor from which lithium is partially extracted electrochemically or chemically is prepared (see step S11 in FIG. 1). Specifically, the lithium composite precursor from which lithium is partially extracted electrochemically is charged or discharged in a pellet form without being mounted on the current collector, or mounted on the current collector. And those charged and discharged in a state after being coated with an organic solvent such as N-methylpyrrolidone and applied on a current collector.
  • the lithium composite precursor from which a part of the lithium is chemically extracted is specifically, a lithium that has been removed by immersion in various acidic liquids, or a lithium that has been baked at a high temperature and volatilized. , Etc.
  • the lithium composite precursor from which lithium has been extracted electrochemically or chemically may be obtained by dissolving it using an organic solvent from the used electrode after charge / discharge, or by electrochemical charge / discharge.
  • lithium may be extracted from powder or pellets, lithium extracted by charging / discharging in the state of a coin battery or charging / discharging using an electrolytic cell is preferable because it can be easily taken out and regenerated. If a lithium composite precursor from which lithium is partially removed is used, since lithium remains partially, it is easier to produce a lithium composite oxide than when a coprecipitate hydroxide raw material is used. The amount of the lithium compound used can be reduced, and the lithium composite oxide can be produced at low cost.
  • the lithium composite precursor partially extracted with lithium is reacted with a lithium compound (see step S12 in FIG. 1).
  • the lithium compound include lithium carbonate, lithium hydroxide / monohydrate, lithium oxide, lithium oxalate, lithium acetate, and lithium phosphate, and lithium hydroxide / monohydrate is preferable. This is because lithium hydroxide monohydrate is highly reactive and easy to handle.
  • step S12 of FIG. 1 it is preferable to react with the lithium compound by mixing the lithium composite precursor from which lithium is partially extracted and the lithium compound, and performing firing.
  • the calcination temperature is 100 to 550 ° C., preferably 100 to 500 ° C.
  • the calcination time is 30 minutes to 5 hours, preferably 2 to 5 hours.
  • the baking temperature is 600 to 1100 ° C., preferably 600 to 1000 ° C., more preferably 600 to 800 ° C.
  • the baking time is 1 to 50 hours, preferably 2 to 15 hours, more preferably 2 ⁇ 8 hours.
  • the above firing may be performed in any atmosphere, for example, in the air, in an inert atmosphere, in an oxygen atmosphere, etc., but since the lithium composite precursor already contains oxygen, it should be performed in a nitrogen atmosphere. Is preferred.
  • step S12 of FIG. 1 it is also preferable that the lithium composite precursor from which lithium is partially extracted and the lithium compound are mixed and reacted with the lithium compound by a hydrothermal reaction.
  • various methods may be used in combination in step S12 of FIG.
  • two or more methods such as firing, hydrothermal treatment, increasing the number of firings, pellet molding and firing can be used in combination.
  • a lithium composite precursor from which lithium is partially extracted is represented by the following general formula (1): Li 1-x Co 1-z M z O 2 (0 ⁇ x ⁇ 1, 0 ⁇ z ⁇ 1) (1) (Wherein M represents one or more metal elements selected from the group consisting of Mn, Ni, Fe, V, Cr, Al, Nb, Ti, Cu, and Zn), and a lithium compound
  • the lithium composite oxide obtained by reacting with the following general formula (2): Li 1-y Co 1-z M z O 2 (0 ⁇ y ⁇ x, 0 ⁇ z ⁇ 1) (2) (Wherein M represents one or more metal elements selected from the group consisting of Mn, Ni, Fe, V, Cr, Al, Nb, Ti, Cu, and Zn) can do.
  • a lithium composite precursor from which lithium is partially extracted is represented by the following general formula (3): Li 1-x Fe 1-z M z PO 4 (0 ⁇ x ⁇ 1, 0 ⁇ z ⁇ 1) (3)
  • M represents one or more metal elements selected from the group consisting of Co, Mn, Ni, V, Cr, Al, Nb, Ti, Cu, and Zn.
  • a lithium composite oxide obtained by reacting with a lithium compound the following general formula (4): Li 1-y Fe 1-z M z PO 4 (0 ⁇ y ⁇ x, 0 ⁇ z ⁇ 1) (4)
  • M represents one or more metal elements selected from the group consisting of Co, Mn, Ni, V, Cr, Al, Nb, Ti, Cu, and Zn.
  • a lithium composite precursor from which lithium is partially extracted is represented by the following general formula (5): Li 3-x V 2-z M z (PO 4 ) 3 (0 ⁇ x ⁇ 3, 0 ⁇ z ⁇ 2) (5)
  • M represents one or more metal elements selected from the group consisting of Co, Mn, Ni, Fe, Cr, Al, Nb, Ti, Cu, and Zn.
  • a lithium composite oxide obtained by reacting with a lithium compound the following general formula (6): Li 3-y V 2-z M z (PO 4 ) 3 (0 ⁇ y ⁇ x, 0 ⁇ z ⁇ 2) (6)
  • M represents one or more metal elements selected from the group consisting of Co, Mn, Ni, Fe, Cr, Al, Nb, Ti, Cu, and Zn.
  • the lithium composite precursor two or more lithium composite precursors can be used.
  • the two or more lithium composite precursors include, for example, a composite oxide composed of lithium and a transition metal element, or lithium and a transition metal, in addition to those exemplified in the general formulas (1), (3), and (5). It can also be selected from phosphoric acid compounds having elements. Among these complex oxides, compounds having at least one of nickel, iron, manganese, and cobalt are preferable.
  • the composite oxide having lithium and a transition metal element include lithium cobalt composite oxide Li a CoO 2 (0 ⁇ a ⁇ 1) and lithium nickel composite oxide Li a NiO 2 (0 ⁇ a ⁇ 1).
  • Examples of the phosphate compound having lithium and a transition metal element include a lithium iron phosphate compound (LiFePO 4 ) or a lithium iron manganese phosphate compound Li a Fe 1-c Mn c PO 4 (0 ⁇ a ⁇ 1, 0 ⁇ c ⁇ 1), lithium vanadium phosphate compound Li 3-a V 2 (PO 4 ) 3 (0 ⁇ a ⁇ 3), and the like.
  • the lithium composite oxide obtained by preparing the lithium composite precursor containing carbon and reacting with the lithium compound contains the carbon contained in the lithium composite precursor. It is also preferable that the step of reacting includes a step of reacting the lithium composite precursor and a carbon compound, and the lithium composite oxide obtained by the step of reacting contains carbon. By making the lithium composite oxide after the reaction contain carbon, it is possible to regenerate the lithium composite oxide having a better charge / discharge capacity when used as a positive electrode active material of an electrochemical device.
  • a lithium composite oxide having an excellent charge / discharge capacity when used as a positive electrode active material of an electrochemical device can be regenerated at a low cost. Can do.
  • the lithium composite oxide of the present invention is a lithium composite oxide regenerated by the above-described method for regenerating a lithium composite oxide of the present invention.
  • Such a lithium composite oxide can be manufactured at low cost while having excellent charge / discharge capacity when used as a positive electrode active material of an electrochemical device.
  • the lithium composite oxide can be used as a positive electrode active material for various electrochemical devices (for example, batteries, sensors, electrolytic cells, etc.).
  • electrochemical device refers to a device including an electrode plate material through which an electric current flows, that is, a device that can extract electric energy in general, and includes an electrolytic cell, a primary battery, and a secondary battery. It is a concept that includes.
  • the “secondary battery” is a concept including so-called storage batteries such as lithium ion secondary batteries, nickel hydride batteries, nickel cadmium batteries, and power storage elements such as electric double layer capacitors.
  • the lithium composite oxide is particularly suitable as an electrode material for lithium ion secondary batteries and electrolytic cells.
  • the shape of the electrolytic cell may be any shape as long as it contains an electrode plate material that allows current to flow.
  • the shape of the lithium ion secondary battery can be applied to any of coins, buttons, sheets, cylinders, and square shapes.
  • the use of the lithium ion secondary battery to which the lithium composite oxide of the present invention is applied is not particularly limited. For example, it can be used in notebook computers, laptop computers, pocket word processors, mobile phones, cordless phones, portable CDs, radios, etc. Examples include consumer electronic devices such as electronic devices, automobiles, electric vehicles, and game devices.
  • the positive electrode active material layer contains 50 to 100% by mass of the lithium composite oxide of the present invention. Further, it contains any one or more of positive electrode active materials capable of occluding and releasing lithium ions, and may contain other materials such as binders, conductive assistants, and dispersants depending on the design. Good.
  • the positive electrode has, for example, a positive electrode active material layer on both sides or one side of the current collector.
  • the current collector may be formed of a conductive material such as aluminum, for example.
  • the negative electrode active material is preferably any one of silicon oxides represented by the general formula SiO x (0.5 ⁇ x ⁇ 1.6), or a mixture of two or more thereof.
  • the negative electrode active material layer contains the above negative electrode active material, and may contain other materials such as a binder, a conductive additive, and a dispersant depending on the design.
  • the negative electrode has the same configuration as the positive electrode described above, and has, for example, a negative electrode active material layer on one side or both sides of a current collector. It is preferable that the negative electrode has a larger negative electrode charge capacity than the electric capacity (charge capacity as a battery) obtained from the lithium composite oxide active material agent. This is for suppressing the deposition of lithium metal on the negative electrode.
  • binder for example, any one or more of a polymer material and a synthetic rubber can be used.
  • the polymer material include polyvinylidene fluoride, polyimide, polyamideimide, aramid, polyacrylic acid, lithium polyacrylate, and carboxymethylcellulose.
  • the synthetic rubber is, for example, styrene butadiene rubber, fluorine rubber, ethylene propylene diene, or the like.
  • the lithium composite oxide conductive auxiliary agent and the negative electrode conductive auxiliary agent for example, any one or more of carbon materials such as carbon black, acetylene black, graphite, ketjen black, carbon nanotube, and carbon nanofiber can be used. .
  • Electrode At least a part of the active material layer or the separator is impregnated with a liquid electrolyte (electrolytic solution).
  • This electrolytic solution has an electrolyte salt dissolved in a solvent, and may contain other materials such as additives.
  • the solvent include non-aqueous solvents.
  • the non-aqueous solvent include the following materials. Ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, 1,2-dimethoxyethane or tetrahydrofuran.
  • At least one of ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate is desirable. This is because better characteristics can be obtained. In this case, more advantageous characteristics can be obtained by combining a high viscosity solvent such as ethylene carbonate or propylene carbonate and a low viscosity solvent such as dimethyl carbonate, ethyl methyl carbonate or diethyl carbonate. This is because the dissociation property and ion mobility of the electrolyte salt are improved.
  • the solvent contains at least one of a halogenated chain carbonate or a halogenated cyclic carbonate.
  • a halogenated chain carbonate is a chain carbonate having halogen as a constituent element (at least one hydrogen is replaced by a halogen).
  • the halogenated cyclic carbonate is a cyclic carbonate having halogen as a constituent element (at least one hydrogen is replaced by halogen).
  • the kind of halogen is not particularly limited, but fluorine is more preferable. This is because a film having a higher quality than other halogens is formed. Further, the larger the number of halogens, the more desirable, because the resulting coating is more stable and the decomposition reaction of the electrolyte is reduced.
  • the halogenated chain carbonate include fluoromethyl methyl carbonate and difluoromethyl methyl carbonate.
  • halogenated cyclic carbonate include 4-fluoro-1,3-dioxolane-2-one and 4,5-difluoro-1,3-dioxolane-2-one.
  • the solvent additive contains an unsaturated carbon bond cyclic carbonate. This is because a stable film is formed on the surface of the negative electrode during charging and discharging, and the decomposition reaction of the electrolyte can be suppressed.
  • the unsaturated carbon bond cyclic ester carbonate include vinylene carbonate and vinyl ethylene carbonate.
  • sultone cyclic sulfonate ester
  • sultone include propane sultone and propene sultone.
  • the solvent preferably contains an acid anhydride. This is because the chemical stability of the electrolytic solution is improved.
  • the acid anhydride include propanedisulfonic acid anhydride.
  • the electrolyte salt can contain, for example, any one or more of light metal salts such as lithium salts.
  • the lithium salt include lithium hexafluorophosphate (LiPF 6 ) and lithium tetrafluoroborate (LiBF 4 ).
  • the content of the electrolyte salt is preferably 0.5 mol / kg or more and 2.5 mol / kg or less with respect to the solvent. This is because high ionic conductivity is obtained.
  • the current collector of the electrode is not particularly limited as long as it is an electronic conductor that does not cause a chemical change in the configured lithium ion secondary battery and electrochemical device, but for example, stainless steel, nickel, aluminum, titanium, The surface of calcined carbon, aluminum or stainless steel is surface-treated with carbon, nickel, copper, titanium or silver.
  • the negative electrode is made of copper, in addition to stainless steel, nickel, copper, titanium, aluminum, calcined carbon, etc. Or a surface of stainless steel treated with carbon, nickel, titanium, silver, or the like, or an Al—Cd alloy is used.
  • the separator separates the positive electrode and the negative electrode and allows lithium ions to pass through while preventing current short-circuiting due to both-pole contact.
  • This separator is formed of, for example, a porous film made of synthetic resin or ceramic, and may have a laminated structure in which two or more kinds of porous films are laminated.
  • the synthetic resin include polytetrafluoroethylene, polypropylene, and polyethylene.
  • the electrochemical device of the present invention comprises a negative electrode active material layer containing negative electrode active material particles having a charge / discharge efficiency of 80% or less when used as a negative electrode active material of an electrochemical device, and a negative electrode current collector, A lithium composite oxide having a positive electrode active material layer containing the lithium composite oxide and a positive electrode comprising a positive electrode current collector.
  • the electrochemical device of the present invention includes a negative electrode active material layer containing negative electrode active material particles containing silicon oxide represented by a composition formula of SiO x (0.5 ⁇ x ⁇ 1.6) and a negative electrode current collector.
  • It may be an electrochemical device having a negative electrode composed of a body, and a positive electrode composed of a positive electrode active material layer containing the lithium composite oxide and a positive electrode current collector. Note that the negative electrode and the positive electrode may not include a current collector. Such an electrochemical device can be manufactured at a low cost while having an excellent charge / discharge capacity.
  • the regenerated lithium composite oxide tends to increase the powder resistance.
  • the charge / discharge efficiency decreases. Therefore, when the negative electrode active material particles having a charge / discharge efficiency of 80% or less are used. In view of the balance between the charge and discharge efficiency of the positive electrode and the negative electrode, a stable charge and discharge current is obtained, which is preferable.
  • the lithium secondary battery of the present invention comprises a negative electrode active material layer containing negative electrode active material particles having a charge / discharge efficiency of 80% or less when used as a negative electrode active material of a lithium ion secondary battery, and a negative electrode current collector. And a positive electrode composed of a positive electrode active material layer containing the lithium composite oxide and a positive electrode current collector.
  • the lithium secondary battery of the present invention includes a negative electrode active material layer containing negative electrode active material particles containing silicon oxide represented by a composition formula of SiO x (0.5 ⁇ x ⁇ 1.6), and a negative electrode
  • a lithium ion secondary battery having a negative electrode composed of a current collector and a positive electrode composed of a positive electrode active material layer containing the lithium composite oxide and a positive electrode current collector may be used.
  • the negative electrode and the positive electrode may not include a current collector.
  • Such a lithium secondary battery can be manufactured at a low cost while having an excellent charge / discharge capacity.
  • Example 1 In a button-type coin battery (CR2032), a pellet-shaped lithium composite precursor Li 0.5 CoO 2 with lithium extracted at a constant current was washed with DMC (dimethyl carbonate), and lightly pulverized powder was mixed with lithium carbonate (Li 2 CO 3 ) was mixed so that the equivalent ratio of Li / Co was 1.00 / 1.00. Thereafter, pellets were molded at a pressure of 1 t / cm 2 , fired in the air, cooled, and finely pulverized. The mixture was classified with a sieve having an opening of 75 ⁇ m to produce a lithium composite oxide having a composition of LiCoO 2 .
  • Example 2 In an electrolytic cell, the lithium composite precursor Li 0.5 CoO 2 in the form of a pellet from which lithium was extracted at a constant current was washed with DMC, and lithium carbonate (Li 2 CO 3 ) was mixed with Li / Co in a lightly pulverized powder. The mixture was mixed so that the equivalent ratio was 1.00 / 1.00. Thereafter, the pellet was molded at a pressure of 1 t / cm 2 and fired in the interior, then cooled and finely pulverized. The mixture was classified with a sieve having an opening of 75 ⁇ m to produce a lithium composite oxide having a composition of LiCoO 2 .
  • Li 2 CO 3 lithium carbonate
  • Example 3 In a button-type coin battery (CR2032), a lithium composite precursor Li 0.5 FePO 4 in which lithium was extracted at a constant current was washed with DMC, dried, and lightly pulverized into lithium hydroxide / water Japanese salt (LiOH.H 2 O) was mixed so that the equivalent ratio of Li / Fe was 1.00 / 1.00. After firing in a nitrogen atmosphere, it was cooled and pulverized finely. The mixture was classified with a sieve having an opening of 75 ⁇ m to produce a lithium composite oxide having a composition of LiFePO 4 . The obtained lithium composite oxide LiFePO 4 contained 6.5% of carbon. This carbon is contained in the lithium composite precursor Li 0.5 FePO 4 .
  • Example 4 In an electrolytic cell, the pellet-shaped lithium composite precursor Li 0.5 FePO 4 from which lithium was extracted at a constant current was washed with DMC, dried, and lightly pulverized powder with lithium oxalate (COOLi) 2 as Li / Mixing was performed so that the Fe equivalent ratio was 1.00 / 1.00. After firing in nitrogen, it was cooled and ground finely. The mixture was classified with a sieve having an opening of 75 ⁇ m to produce a lithium composite oxide having a composition of LiFePO 4 . The obtained lithium composite oxide LiFePO 4 contained 5.5% carbon. This carbon is contained in the lithium composite precursor Li 0.5 FePO 4 .
  • COOLi lithium oxalate
  • Example 5 Using a button-type coin battery (CR2032), the lithium composite precursor Li 0.5 Ni 1/3 Co 1/3 Mn 1/3 O 2 in which lithium is extracted at a constant current is washed with DMC and dried. Then, lithium carbonate (Li 2 CO 3 ) was mixed with the lightly pulverized powder so that the equivalent ratio of Li / (Ni + Co + Mn) was 1.00 / 1.00. After firing in the air, it was cooled and crushed finely. The mixture was classified with a sieve having an opening of 75 ⁇ m to produce a lithium composite oxide having a composition of LiNi 1/3 Co 1/3 Mn 1/3 O 2 .
  • Li 2 CO 3 lithium carbonate
  • Example 6 Powder obtained by washing a pellet-shaped lithium composite precursor Li 0.5 Ni 1/3 Co 1/3 Mn 1/3 O 2 with DMC, dried and lightly pulverized in an electrolytic cell, with lithium extracted at a constant current Lithium hydroxide monohydrate (LiOH.H 2 O) was mixed with Li / (Ni + Co + Mn) at an equivalent ratio of 1.00 / 1.00. After firing in the air, it was cooled and crushed finely. The mixture was classified with a sieve having an opening of 75 ⁇ m to produce a lithium composite oxide having a composition of LiNi 1/3 Co 1/3 Mn 1/3 O 2 .
  • LiOH.H 2 O Lithium hydroxide monohydrate
  • Example 7 The lithium composite precursor Li 0.5 Ni 0.5 Mn 0.3 Co 0.2 O 2 in the shape of a pellet from which lithium was extracted with a constant current using a button-type coin battery (CR 2032) was washed with DMC and dried. Then, lithium carbonate (Li 2 CO 3 ) was mixed with the lightly pulverized powder so that the equivalent ratio of Li / (Ni + Co + Mn) was 1.00 / 1.00. After firing in the air, it was cooled and crushed finely. The mixture was classified with a sieve having an opening of 75 ⁇ m to produce a lithium composite oxide having a composition of LiNi 0.5 Mn 0.3 Co 0.2 O 2 .
  • Example 8 In an electrolytic cell, a lithium composite precursor Li 0.5 Ni 0.5 Mn 0.3 Co 0.2 O 2 in the form of a pellet from which lithium was extracted at a constant current was washed with 1 mol / l LiPF 6 and DMC. Then, lithium carbonate (Li 2 CO 3 ) was mixed with the dried and lightly pulverized powder so that the equivalent ratio of Li / (Ni + Co + Mn) was 1.00 / 1.00. After firing in the air, it was cooled and crushed finely. The mixture was classified with a sieve having an opening of 75 ⁇ m to produce a lithium composite oxide having a composition of LiNi 0.5 Mn 0.3 Co 0.2 O 2 .
  • Example 9 The lithium composite precursor Li 1.2 V 2 (PO 4 ) 3 from which lithium was extracted at a constant current with a button-type coin battery (CR 2032) was washed with DMC, dried, and lightly ground into water. Lithium oxide monohydrate (LiOH.H 2 O) was mixed so that the equivalent ratio of Li / V was 1.50 / 1.00. After firing in a nitrogen atmosphere, it was cooled and pulverized finely. The mixture was classified with a sieve having an opening of 75 ⁇ m to produce a lithium composite oxide having a composition of Li 3 V 2 (PO 4 ) 3 . The obtained lithium composite oxide Li 3 V 2 (PO 4 ) 3 contained 3.6% of carbon. This carbon is contained in the lithium composite precursor Li 1.2 V 2 (PO 4 ) 3 .
  • Example 10 In an electrolytic cell, a pellet-shaped lithium composite precursor Li 1.2 V 2 (PO 4 ) 3 from which lithium was extracted at a constant current was washed with 1 mol / l LiPF 6 and DMC, dried, and lightly pulverized. Lithium hydroxide monohydrate (LiOH.H 2 O) was mixed with the powder so that the equivalent ratio of Li / V was 1.50 / 1.00. After firing in a nitrogen atmosphere, it was cooled and pulverized finely. The mixture was classified with a sieve having an opening of 75 ⁇ m to produce a lithium composite oxide having a composition of Li 3 V 2 (PO 4 ) 3 . The obtained lithium composite oxide Li 3 V 2 (PO 4 ) 3 contained 7.1% of carbon. This carbon is contained in the lithium composite precursor Li 1.2 V 2 (PO 4 ) 3 .
  • Example 12 In an electrolytic cell, the lithium composite precursors Li 0.5 Ni 1/3 Co 1/3 Mn 1/3 O 2 and Li 0.5 CoO 2 with lithium extracted with a constant current were washed with DMC. Lithium hydroxide monohydrate (LiOH.H 2 O) was mixed with the dried and lightly pulverized powder so that the equivalent ratio of Li / (Ni + Co + Mn) was 1.00 / 1.00. After firing in the air, it was cooled and crushed finely. The mixture was classified with a sieve having an opening of 75 ⁇ m to produce a lithium composite oxide having a mixed composition of LiCoO 2 and LiNi 1/3 Co 1/3 Mn 1/3 O 2 .
  • LiOH.H 2 O Lithium hydroxide monohydrate
  • Example 13 In a button-type coin battery (CR2032), a lithium composite precursor Li 0.5 FePO 4 in which lithium was extracted at a constant current was washed with DMC, dried, and lightly pulverized into lithium hydroxide / water Japanese salt (LiOH.H 2 O) and sucrose (sucrose: C 12 H 22 O 11 ) were added. The mixture was mixed so that the equivalent ratio of Li / Fe was 1.00 / 1.00. After firing in a nitrogen atmosphere, it was cooled and pulverized finely. The mixture was classified with a sieve having an opening of 75 ⁇ m to produce a lithium composite oxide having a composition of LiFePO 4 . The obtained lithium composite oxide LiFePO 4 contained 5.2% of carbon. This carbon is a mixture of carbon contained in the lithium composite precursor Li 0.5 FePO 4 and carbonized by reduction of sucrose added during mixing.
  • Example 14 The lithium composite precursor Li 1.2 V 2 (PO 4 ) 3 from which lithium was extracted at a constant current with a button-type coin battery (CR 2032) was washed with DMC, dried, and lightly ground into water. Lithium oxide monohydrate (LiOH.H 2 O) and glucose (glucose: C 6 H 12 O 6 ) were mixed. It mixed so that the equivalent ratio of Li / V might be 1.50 / 1.00. After firing in a nitrogen atmosphere, it was cooled and pulverized finely. The mixture was classified with a sieve having an opening of 75 ⁇ m to produce a lithium composite oxide having a composition of Li 3 V 2 (PO 4 ) 3 . The obtained lithium composite oxide Li 3 V 2 (PO 4 ) 3 contained 3.3% of carbon. This carbon is a mixture of carbon contained in the lithium composite precursor Li 1.2 V 2 (PO 4 ) 3 and carbonized by reduction of glucose added during mixing.
  • a lithium composite oxide having an excellent charge / discharge capacity when used as a positive electrode active material of an electrochemical device can be regenerated at low cost.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

Abstract

The present invention is a method for regenerating a lithium composite oxide, which is characterized by comprising: a step for preparing a lithium composite precursor from which some lithium has been electrochemically or chemically extracted; and a step for having the lithium composite precursor, from which some lithium has been extracted, react with a lithium compound. Consequently, the present invention provides a method for regenerating a lithium composite oxide, which is capable of regenerating, at low cost, a lithium composite oxide that enables the achievement of excellent charge/discharge capacity if used as a positive electrode active material of an electrochemical device.

Description

リチウム複合酸化物の再生方法、リチウム複合酸化物、電気化学デバイス、並びに、リチウムイオン二次電池Method for regenerating lithium composite oxide, lithium composite oxide, electrochemical device, and lithium ion secondary battery
 本発明は、リチウム複合酸化物の再生方法、リチウム複合酸化物、電気化学デバイス、並びに、リチウムイオン二次電池に関する。 The present invention relates to a method for regenerating a lithium composite oxide, a lithium composite oxide, an electrochemical device, and a lithium ion secondary battery.
 近年、モバイル端末などに代表される小型の電子機器が広く普及しており、さらなる小型化、軽量化および長寿命化が強く求められている。このような市場要求に対し、特に小型かつ軽量で高エネルギー密度を得ることが可能な二次電池の開発が進められている。この二次電池は、小型の電子機器に限らず、自動車などに代表される大型の電子機器、家屋などに代表される電力貯蔵システムへの適用も検討されている。 In recent years, small electronic devices such as mobile terminals have become widespread, and further downsizing, weight reduction, and long life have been strongly demanded. In response to such market demands, development of secondary batteries capable of obtaining a high energy density, in particular, being small and light is underway. This secondary battery is not limited to a small electronic device, but is also considered to be applied to a large-sized electronic device represented by an automobile or the like, or an electric power storage system represented by a house.
 その中でも、リチウムイオン二次電池は小型かつ高容量化が行いやすく、大いに期待されている。鉛電池、ニッケルカドミウム電池よりも高いエネルギー密度が得られるからである。 Among them, lithium ion secondary batteries are highly expected because they are small and easy to increase in capacity. This is because an energy density higher than that of a lead battery or a nickel cadmium battery can be obtained.
 リチウムイオン二次電池は、正極、負極、及び、セパレータと共に電解液を備えている。この正極、負極は充放電反応に関わる正極活物質、負極活物質を含んでいる。 The lithium ion secondary battery includes an electrolyte solution together with a positive electrode, a negative electrode, and a separator. The positive electrode and the negative electrode include a positive electrode active material and a negative electrode active material related to the charge / discharge reaction.
 従来、空間群R-3mに属する六方晶系の層状岩塩構造を有し、かつ、コバルト、ニッケルのような希少金属である遷移金属が含まれる正極材料であるリチウム複合酸化物を正極活物質として用いた非水電解質二次電池が提案されている。 Conventionally, a lithium composite oxide, which is a positive electrode material having a hexagonal layered rock salt structure belonging to the space group R-3m and containing a transition metal which is a rare metal such as cobalt or nickel, is used as a positive electrode active material. Non-aqueous electrolyte secondary batteries used have been proposed.
 しかしながら、正極に用いられるリチウム複合酸化物は、希少金属であるコバルト等の遷移金属を多く含むために、リチウムイオン二次電池の材料コストを上昇させる要因の一つとなっている。さらに、現在コバルト資源の約20%が電池産業に用いられていることを考慮すれば、現状のまま、希少金属であるコバルト等の遷移金属を多く含むリチウム複合酸化物を消費していけば、今後の二次電池の需要拡大に対応することは困難と考えられる。 However, the lithium composite oxide used for the positive electrode contains a large amount of transition metals such as cobalt, which is a rare metal, and thus is one of the factors that increase the material cost of lithium ion secondary batteries. Furthermore, taking into account that about 20% of cobalt resources are currently used in the battery industry, if lithium composite oxides containing a large amount of transition metals such as cobalt, which is a rare metal, are consumed as they are, It is considered difficult to respond to future demand for secondary batteries.
特許3425206号Japanese Patent No. 3425206 特開平10-330855号公報Japanese Patent Laid-Open No. 10-330855 特開平11-054159号公報JP-A-11-054159 特開2012-072488号公報JP 2012-072488 A 特開2007-122885号公報Japanese Patent Laid-Open No. 2007-122885 特開平10-287864号公報JP-A-10-287864 特開2004-214025号公報JP 2004-2104025 A
 上述のように、遷移金属を含む正極活物質は希少金属であるコバルト等の資源的な制約を受けるため、このような正極活物質を含むリチウムイオン二次電池の価格が高くなるという問題があった。リチウムイオン二次電池を安価にするためには、リチウム複合酸化物の再生が必要不可欠である。しかしながら、一度充放電に使用された使用済のリチウム複合酸化物は、一般的に、再溶解させて水酸化物を得た後、リチウム化合物と混ぜて、合成している。しかしながら、その方法では、リチウムと遷移金属とを別々に回収、再生しなければならず、製造コストが上がってしまうという問題があった。また、このように再生したとしても、沈殿物を合成する際に、ナトリウムの様な不純物がさらに入り、これにより正極活物質の表面抵抗が上がってしまい、十分な充放電容量を得る事が困難であるという問題があった。 As described above, since the positive electrode active material containing a transition metal is limited by resources such as cobalt, which is a rare metal, there is a problem that the price of a lithium ion secondary battery containing such a positive electrode active material is high. It was. In order to reduce the cost of the lithium ion secondary battery, regeneration of the lithium composite oxide is indispensable. However, the used lithium composite oxide once used for charging / discharging is generally synthesized by being redissolved to obtain a hydroxide and then mixed with a lithium compound. However, this method has a problem in that the production cost increases because lithium and transition metal must be separately recovered and regenerated. Moreover, even when regenerated in this way, when synthesizing the precipitate, impurities such as sodium are further added, which increases the surface resistance of the positive electrode active material, making it difficult to obtain sufficient charge / discharge capacity. There was a problem of being.
 コバルトを含んでいる正極材料以外の正極材料においても、コスト競争力を得る事は重要であり、より安価に再生することは重要となってきている。 It is important to obtain cost competitiveness also in positive electrode materials other than the positive electrode material containing cobalt, and it is important to regenerate at a lower cost.
 また、近年、酸化珪素に代表されるような負極活物質を含む高容量の負極を用いたリチウムイオン二次電池の電極構成について、様々な検討が成されてきた。酸化珪素に代表されるような負極活物質を含む高容量の負極は正極材料も多く必要とするため、正極の再生のニーズがより高まってきている。また、高容量の負極に合うリチウムイオン二次電池又は電解槽の正極材料について、様々な検討が成されてきた。電池全体の特性を向上させるためには、酸化珪素に代表されるような負極活物質を含む高容量の負極と相性の良い正極材料を開発する事は非常に重要である。この点において、再生された正極材料は、若干抵抗が上がり、充放電効率が低いと言われている酸化ケイ素に代表される負極活物質を含む高容量の負極と相性が良いことを本発明者らは見出した。 In recent years, various studies have been made on the electrode configuration of a lithium ion secondary battery using a high-capacity negative electrode containing a negative electrode active material typified by silicon oxide. A high-capacity negative electrode containing a negative electrode active material typified by silicon oxide requires a large amount of positive electrode material, and thus needs for regeneration of the positive electrode are increasing. Various studies have been made on a lithium ion secondary battery or a positive electrode material for an electrolytic cell suitable for a high capacity negative electrode. In order to improve the characteristics of the entire battery, it is very important to develop a positive electrode material having good compatibility with a high capacity negative electrode containing a negative electrode active material typified by silicon oxide. In this respect, the present inventors have found that the regenerated positive electrode material has a good compatibility with a high capacity negative electrode containing a negative electrode active material typified by silicon oxide, which is said to have slightly increased resistance and low charge / discharge efficiency. Found.
 従来の方法で製造されるリチウムコバルト複合酸化物は、酸化コバルト、水酸化コバルト等の前駆体、もしくはニッケルコバルトマンガン水酸化物共沈体を購入して、リチウム化合物と混合して、焼成を行い、合成物を得る。ただし、コバルトは資源的な制約も多く、希少金属であることから、購入の際に価格の変動も大きかった。リチウムイオン電池の拡大する需要に対して、使用済みのリチウムイオン電池による環境汚染対策の確立が強く要望され、有価金属を回収して有効利用することが検討されている。上記のような構造を備えたリチウムイオン電池からコバルトのような有価金属を回収する方法としては、例えば特許文献1、特許文献2に記載されるような乾式処理あるいは焼却処理される場合が多い。 The lithium-cobalt composite oxide produced by the conventional method purchases precursors such as cobalt oxide and cobalt hydroxide, or nickel-cobalt-manganese hydroxide coprecipitate, mixes with the lithium compound, and performs firing. Get a composite. However, cobalt has many resource limitations and is a rare metal, so the price fluctuated greatly when purchased. In response to the growing demand for lithium ion batteries, there is a strong demand for the establishment of countermeasures against environmental pollution with used lithium ion batteries, and the recovery and utilization of valuable metals is being studied. As a method for recovering a valuable metal such as cobalt from a lithium ion battery having the above-described structure, for example, dry processing or incineration processing as described in Patent Document 1 and Patent Document 2 is often performed.
 特許文献3で提案されているリチウムコバルト複合酸化物を再生する方法としては、一度コバルトを酸で抽出して、酸化物の原料を用いて、合成しているが、液相でコバルトを抽出しているので、手間がかかり、不純物も多く、再生法としては適切とは言えない。高濃度の酸を用いた浸出には、長時間の加熱処理、酸の使用及び多量の中和剤の使用によるコストの問題がある。 As a method for regenerating the lithium-cobalt composite oxide proposed in Patent Document 3, cobalt is extracted once with an acid and synthesized using an oxide raw material, but cobalt is extracted in a liquid phase. Therefore, it takes time and has many impurities, which is not appropriate as a regeneration method. Leaching with a high concentration of acid has cost problems due to prolonged heat treatment, the use of acid and the use of a large amount of neutralizing agent.
 また、特許文献4で提唱されているマンガンを含む遷移金属で構成された複合酸化物からなるリチウムイオン電池の正極活物質から有価金属を浸出させる方法は、硫酸を添加した水溶液中において、前記正極活物質のうちの硫酸溶液に可溶性の成分を溶解する第1工程と、第1工程の後固液分離せず、硫酸浸出スラリー溶液へ過酸化水素を添加して、硫酸浸出スラリー中に残留する未浸出成分をさらに浸出する第2工程とを含む正極活物質の浸出方法である。しかしながら、この方法も希少金属を酸により溶出させて、再生するものであり、不純物が多く、製造コストが大きくなる。 Moreover, the method of leaching a valuable metal from the positive electrode active material of the lithium ion battery which consists of complex oxide comprised with the transition metal containing manganese proposed by patent document 4 is the said positive electrode in the aqueous solution which added the sulfuric acid. The first step of dissolving the soluble component in the sulfuric acid solution of the active material and the solid solution after the first step, hydrogen peroxide is added to the sulfuric acid leaching slurry solution and remains in the sulfuric acid leaching slurry. And a second step of further leaching unleached components. However, this method also regenerates the rare metal by eluting it with an acid, so that there are many impurities and the manufacturing cost increases.
 さらに、特許文献5では、使用済みのリチウムイオン電池から、加熱・焼却などの乾式処理を行うことなく、Li、Ni、Coなどの有価金属を効率よく分離回収するために、pH0~3.0の硫酸水溶液中で浸漬撹拌することより、正極基板から正極活物質を剥離して固体のまま分離回収する方法が提唱されているが、電池から酸で抽出するということは、集電体からの、金属成分の溶け出しが懸念され、不純物が多くなり、特性的に好ましくない。 Further, in Patent Document 5, in order to efficiently separate and recover valuable metals such as Li, Ni, Co and the like from a used lithium ion battery without performing a dry process such as heating and incineration, the pH is from 0 to 3.0. A method for separating and recovering the positive electrode active material from the positive electrode substrate and separating and recovering it as a solid has been proposed by immersing and stirring in a sulfuric acid aqueous solution of the above. There is concern about the dissolution of the metal component, and the amount of impurities increases, which is not preferable in terms of characteristics.
 また、特許文献6では、リチウムイオン二次電池用正極活物質正極活物質に、鉱酸、又は、鉱酸と過酸化水素との混合液を加えた後、溶出液を分離する第1工程を行い、次いで分離した溶出液に金属抽出剤を含有する有機溶媒と接触させて抽出分離処理を行う第2工程を行い、次いで抽出液有機溶媒相に鉱酸を接触させて逆抽出分離する第3工程を行う方法が提唱されているが、生産性の点から不利である。 Moreover, in patent document 6, after adding a mineral acid or the liquid mixture of a mineral acid and hydrogen peroxide to the positive electrode active material for lithium ion secondary batteries, the 1st process of isolate | separating an eluate is carried out. And then performing a second step in which the separated eluate is contacted with an organic solvent containing a metal extractant to perform extraction and separation treatment, and then the extract organic solvent phase is contacted with a mineral acid to perform reverse extraction separation. A method of performing the process has been proposed, but it is disadvantageous in terms of productivity.
 また、特許文献7では、リチウムイオン電池を構成する正極板に含まれるコバルトを第1の酸性溶媒下で抽出分離する第1の抽出工程と、磁選工程によって選別された磁着物に含まれるコバルトおよび前記第1の酸性溶媒中に浮遊または沈殿する抽出残渣に含まれるコバルトを第2の酸性溶媒下で抽出分離する第2の抽出工程と、を含むリチウムイオン電池内のコバルト回収方法が示されている。しかしながら、この方法は、酸を使うことで、不純物が入りやすく、やはり生産工程が複雑であり、生産コストがかかる上に、上記の方法で再生した場合、充放電容量が元の化合物よりも劣るものになるという問題があった。 Moreover, in patent document 7, the cobalt contained in the 1st extraction process which extracts and separates the cobalt contained in the positive electrode plate which comprises a lithium ion battery under a 1st acidic solvent, and the magnetic deposit selected by the magnetic separation process, and And a second extraction step of extracting and separating cobalt contained in an extraction residue floating or precipitated in the first acidic solvent under a second acidic solvent, and a method for recovering cobalt in a lithium ion battery is shown. Yes. However, in this method, impurities are easily introduced by using an acid, the production process is complicated, the production cost is high, and when regenerated by the above method, the charge / discharge capacity is inferior to that of the original compound. There was a problem of becoming something.
 本発明は、上記問題点に鑑みてなされたものであって、電気化学デバイスの正極活物質として用いたときに優れた充放電容量を有するようなリチウム複合酸化物を低コストで再生することができるリチウム複合酸化物の再生方法を提供することを目的とする。 The present invention has been made in view of the above problems, and can regenerate a lithium composite oxide having an excellent charge / discharge capacity at a low cost when used as a positive electrode active material of an electrochemical device. An object of the present invention is to provide a method for regenerating lithium composite oxide.
 上記目的を達成するために、本発明は、電気化学的又は化学的にリチウムが一部引き抜かれたリチウム複合前駆体を準備する工程と、前記リチウムが一部引き抜かれたリチウム複合前駆体にリチウム化合物を反応させる工程とを含むことを特徴とするリチウム複合酸化物の再生方法を提供する。 In order to achieve the above object, the present invention provides a step of preparing a lithium composite precursor in which lithium is partially extracted electrochemically or chemically, and a lithium composite precursor from which lithium is partially extracted. And a step of reacting the compound. A method for regenerating a lithium composite oxide is provided.
 このように、電気化学的又は化学的にリチウムが一部引き抜かれたリチウム複合前駆体にリチウム化合物を反応させることで、電気化学デバイスの正極活物質として用いたときに優れた充放電容量を有するようなリチウム複合酸化物を低コストで再生することができる。 In this way, by reacting a lithium compound with a lithium composite precursor from which lithium is partially extracted electrochemically or chemically, it has an excellent charge / discharge capacity when used as a positive electrode active material of an electrochemical device. Such a lithium composite oxide can be regenerated at low cost.
 このとき、前記反応させる工程は、前記リチウムが一部引き抜かれたリチウム複合前駆体と前記リチウム化合物とを混合して焼成を行い、反応させる段階を含むことが好ましい。 At this time, it is preferable that the step of reacting includes a step of mixing and reacting the lithium composite precursor from which the lithium has been partially extracted and the lithium compound, and performing a reaction.
 リチウムが一部引き抜かれたリチウム複合前駆体にリチウム化合物を反応させる方法として、リチウムが一部引き抜かれたリチウム複合前駆体と前記リチウム化合物とを混合して焼成を行う方法を好適に用いることができる。 As a method of reacting a lithium compound with a lithium composite precursor from which lithium has been partially extracted, a method in which a lithium composite precursor from which lithium has been partially extracted and the lithium compound is mixed and fired is preferably used. it can.
 このとき、前記反応させる工程は、前記リチウムが一部引き抜かれたリチウム複合前駆体と前記リチウム化合物とを混合して、水熱反応させる段階を含むことも好ましい。 At this time, the step of reacting preferably includes a step of mixing the lithium composite precursor from which the lithium is partially extracted and the lithium compound, and causing a hydrothermal reaction.
 リチウムが一部引き抜かれたリチウム複合前駆体にリチウム化合物を反応させる方法として、リチウムが一部引き抜かれたリチウム複合前駆体と前記リチウム化合物とを混合して、水熱反応させる方法も好適に用いることができる。 As a method for reacting a lithium compound with a lithium composite precursor from which lithium has been partially extracted, a method in which a lithium composite precursor from which lithium has been partially extracted and the lithium compound are mixed and subjected to a hydrothermal reaction is also preferably used. be able to.
 このとき、前記リチウムが一部引き抜かれたリチウム複合前駆体を、下記一般式(1):Li1-xCo1-z(0<x<1、0≦z<1)・・・
(1)(式中、MはMn、Ni、Fe、V、Cr、Al、Nb、Ti、Cu、Znの群から選ばれる1種以上の金属元素を示す。)で表わされる複合酸化物とし、前記反応させる工程により得られるリチウム複合酸化物を、下記一般式(2):Li1-yCo1-z(0≦y<x、0≦z<1)・・・
(2)(式中、MはMn、Ni、Fe、V、Cr、Al、Nb、Ti、Cu、Znの群から選ばれる1種以上の金属元素を示す。)で表わされるリチウムコバルト系複合酸化物とすることができる。
At this time, the lithium composite precursor from which a part of the lithium has been extracted is represented by the following general formula (1): Li 1-x Co 1-z M z O 2 (0 <x <1, 0 ≦ z <1).・ ・
(1) (wherein M represents one or more metal elements selected from the group consisting of Mn, Ni, Fe, V, Cr, Al, Nb, Ti, Cu, and Zn). The lithium composite oxide obtained by the reaction step is represented by the following general formula (2): Li 1-y Co 1-z M z O 2 (0 ≦ y <x, 0 ≦ z <1)
(2) (wherein M represents one or more metal elements selected from the group consisting of Mn, Ni, Fe, V, Cr, Al, Nb, Ti, Cu, and Zn). It can be an oxide.
 リチウムが一部引き抜かれたリチウム複合前駆体、及び、反応により得られるリチウム複合酸化物を上記のものとすることで、電気化学デバイスの正極活物質として用いたときにより優れた充放電容量を有するようなリチウム複合酸化物を再生することができる。 By using the lithium composite precursor from which lithium is partially extracted and the lithium composite oxide obtained by the reaction as described above, it has a better charge / discharge capacity when used as a positive electrode active material for electrochemical devices. Such a lithium composite oxide can be regenerated.
 このとき、前記リチウムが一部引き抜かれたリチウム複合前駆体を、下記一般式(3):Li1-xFe1-zPO(0<x<1、0≦z<1)・・・(3)(式中、MはCo、Mn、Ni、V、Cr、Al、Nb、Ti、Cu、Znの群から選ばれる1種以上の金属元素を示す。)で表わされるリチウム鉄リン系複合酸化物とし、前記反応させる工程により得られるリチウム複合酸化物を、下記一般式(4):Li1-yFe1-zPO(0≦y<x、0≦z<1)・・・(4)(式中、MはCo、Mn、Ni、V、Cr、Al、Nb、Ti、Cu、Znの群から選ばれる1種以上の金属元素を示す。)で表わされるリチウム鉄リン系複合酸化物とすることができる。 At this time, the lithium composite precursor from which a part of the lithium has been extracted is represented by the following general formula (3): Li 1-x Fe 1-z M z PO 4 (0 <x <1, 0 ≦ z <1). .. (3) (wherein M represents one or more metal elements selected from the group consisting of Co, Mn, Ni, V, Cr, Al, Nb, Ti, Cu, and Zn). The lithium composite oxide obtained by the step of reacting with a phosphorus composite oxide is expressed by the following general formula (4): Li 1-y Fe 1-z M z PO 4 (0 ≦ y <x, 0 ≦ z < 1) (4) (wherein M represents one or more metal elements selected from the group consisting of Co, Mn, Ni, V, Cr, Al, Nb, Ti, Cu, and Zn). Lithium iron phosphorus composite oxide.
 リチウムが一部引き抜かれたリチウム複合前駆体、及び、反応により得られるリチウム複合酸化物を上記のものとすることで、電気化学デバイスの正極活物質として用いたときにより優れた充放電容量を有するようなリチウム複合酸化物を再生することができる。 By using the lithium composite precursor from which lithium is partially extracted and the lithium composite oxide obtained by the reaction as described above, it has a better charge / discharge capacity when used as a positive electrode active material for electrochemical devices. Such a lithium composite oxide can be regenerated.
 このとき、前記リチウムが一部引き抜かれたリチウム複合前駆体を、下記一般式(5):Li3-x2-z(PO(0<x<3、0≦z<2)・・・(5)(式中、MはCo、Mn、Ni、Fe、Cr、Al、Nb、Ti、Cu、Znの群から選ばれる1種以上の金属元素を示す。)で表わされるリチウムバナジウムリン系複合酸化物とし、前記反応させる工程により得られるリチウム複合酸化物を、下記一般式(6):Li3-y2-z(PO(0≦y<x、0≦z<2)・・・(6)(式中、MはCo、Mn、Ni、Fe、Cr、Al、Nb、Ti、Cu、Znの群から選ばれる1種以上の金属元素を示す。)で表わされるリチウムバナジウムリン系複合酸化物とすることができる。 At this time, the lithium composite precursor from which a part of the lithium was extracted is represented by the following general formula (5): Li 3-x V 2-z M z (PO 4 ) 3 (0 <x <3, 0 ≦ z < 2) ... (5) (wherein, M represents one or more metal elements selected from the group consisting of Co, Mn, Ni, Fe, Cr, Al, Nb, Ti, Cu, and Zn). The lithium composite oxide obtained by the above-mentioned reaction step using the lithium vanadium phosphorus composite oxide is represented by the following general formula (6): Li 3-y V 2-z M z (PO 4 ) 3 (0 ≦ y < x, 0 ≦ z <2) (6) (wherein M is one or more metal elements selected from the group consisting of Co, Mn, Ni, Fe, Cr, Al, Nb, Ti, Cu, and Zn) Lithium vanadium phosphorus complex oxide represented by the following formula:
 リチウムが一部引き抜かれたリチウム複合前駆体、及び、反応により得られるリチウム複合酸化物を上記のものとすることで、電気化学デバイスの正極活物質として用いたときにより優れた充放電容量を有するようなリチウム複合酸化物を再生することができる。 By using the lithium composite precursor from which lithium is partially extracted and the lithium composite oxide obtained by the reaction as described above, it has a better charge / discharge capacity when used as a positive electrode active material for electrochemical devices. Such a lithium composite oxide can be regenerated.
 このとき、前記リチウム複合前駆体として、2種以上のリチウム複合前駆体を用いることができる。 At this time, two or more lithium composite precursors can be used as the lithium composite precursor.
 本発明は、リチウム複合前駆体として、2種以上のリチウム複合前駆体を用いる場合でも適用することができる。この場合、再生されるリチウム複合酸化物の組成を調整することもできる。 The present invention can be applied even when two or more lithium composite precursors are used as the lithium composite precursor. In this case, the composition of the regenerated lithium composite oxide can be adjusted.
 このとき、前記リチウム複合前駆体として炭素を含有するものを準備し、前記反応させる工程により得られるリチウム複合酸化物が、前記リチウム複合前駆体が含有していた炭素を含有していることが好ましい。 At this time, it is preferable that a lithium composite oxide obtained by the step of preparing and containing the carbon as the lithium composite precursor contains the carbon contained in the lithium composite precursor. .
 このとき、前記反応させる工程が前記リチウム複合前駆体と炭素化合物とを反応させる段階を含み、前記反応させる工程により得られるリチウム複合酸化物が、炭素を含有していることも好ましい。 At this time, it is also preferable that the step of reacting includes a step of reacting the lithium composite precursor and a carbon compound, and the lithium composite oxide obtained by the step of reacting contains carbon.
 このように、反応後のリチウム複合酸化物を炭素を含有するものとすることで、電気化学デバイスの正極活物質として用いたときにより優れた充放電容量を有するようなリチウム複合酸化物を再生することができる。 Thus, by making the lithium composite oxide after the reaction contain carbon, a lithium composite oxide having a more excellent charge / discharge capacity when used as a positive electrode active material of an electrochemical device is regenerated. be able to.
 また、本発明は、上記の方法により再生したリチウム複合酸化物を提供する。 The present invention also provides a lithium composite oxide regenerated by the above method.
 このようなリチウム複合酸化物であれば、電気化学デバイスの正極活物質として用いたときに優れた充放電容量を有するものでありながら、低コストで製造することができる。 Such a lithium composite oxide can be manufactured at low cost while having excellent charge / discharge capacity when used as a positive electrode active material of an electrochemical device.
 また、本発明は、電気化学デバイスの負極活物質として用いたときに充放電効率が80%以下である負極活物質粒子を含有する負極活物質層と負極集電体とからなる負極と、上記のリチウム複合酸化物を含む正極活物質層と正極集電体とからなる正極と、を有することを特徴とする電気化学デバイスを提供する。 The present invention also provides a negative electrode comprising a negative electrode active material layer containing negative electrode active material particles having a charge / discharge efficiency of 80% or less when used as a negative electrode active material for an electrochemical device, and the negative electrode current collector, There is provided an electrochemical device comprising a positive electrode active material layer containing the lithium composite oxide and a positive electrode comprising a positive electrode current collector.
 このような電気化学デバイスであれば、優れた充放電容量を有するものでありながら、低コストで製造することができる。 Such an electrochemical device can be manufactured at low cost while having excellent charge / discharge capacity.
 また、本発明は、組成式がSiO(0.5≦x<1.6)で表される酸化珪素を含有する負極活物質粒子を含有する負極活物質層と負極集電体とからなる負極と、上記のリチウム複合酸化物を含む正極活物質層と正極集電体とからなる正極と、を有することを特徴とする電気化学デバイスを提供する。 The present invention also includes a negative electrode active material layer containing negative electrode active material particles containing silicon oxide represented by a composition formula of SiO x (0.5 ≦ x <1.6) and a negative electrode current collector. There is provided an electrochemical device comprising a negative electrode, and a positive electrode comprising a positive electrode active material layer containing the lithium composite oxide and a positive electrode current collector.
 このような電気化学デバイスであれば、優れた充放電容量を有するものでありながら、低コストで製造することができる。 Such an electrochemical device can be manufactured at low cost while having excellent charge / discharge capacity.
 また、本発明は、リチウムイオン二次電池の負極活物質として用いたときに充放電効率が80%以下である負極活物質粒子を含有する負極活物質層と負極集電体とからなる負極と、上記のリチウム複合酸化物を含む正極活物質層と正極集電体とからなる正極とを有することを特徴とするリチウムイオン二次電池を提供する。 The present invention also provides a negative electrode comprising a negative electrode active material layer containing negative electrode active material particles having a charge / discharge efficiency of 80% or less when used as a negative electrode active material of a lithium ion secondary battery, and a negative electrode current collector. A lithium ion secondary battery comprising a positive electrode active material layer containing the above lithium composite oxide and a positive electrode comprising a positive electrode current collector is provided.
 このようなリチウムイオン二次電池であれば、優れた充放電容量を有するものでありながら、低コストで製造することができる。 Such a lithium ion secondary battery can be manufactured at low cost while having excellent charge / discharge capacity.
 また、本発明は、組成式がSiO(0.5≦x<1.6)で表される酸化珪素を含有する負極活物質粒子を含有する負極活物質層と負極集電体とからなる負極と、上記のリチウム複合酸化物を含む正極活物質層と正極集電体とからなる正極と、を有することを特徴とするリチウムイオン二次電池を提供する。 The present invention also includes a negative electrode active material layer containing negative electrode active material particles containing silicon oxide represented by a composition formula of SiO x (0.5 ≦ x <1.6) and a negative electrode current collector. Provided is a lithium ion secondary battery comprising a negative electrode, and a positive electrode comprising a positive electrode active material layer containing the lithium composite oxide and a positive electrode current collector.
 このようなリチウムイオン二次電池であれば、優れた充放電容量を有するものでありながら、低コストで製造することができる。 Such a lithium ion secondary battery can be manufactured at low cost while having excellent charge / discharge capacity.
 以上のように、本発明のリチウム複合酸化物の再生方法によれば、電気化学デバイスの正極活物質として用いたときに優れた充放電容量を有するようなリチウム複合酸化物を低コストで再生することができる。また、本発明のリチウム複合酸化物であれば、電気化学デバイスの正極活物質として用いたときに優れた充放電容量を有するものでありながら、低コストで製造することができる。さらに、本発明の電気化学デバイスであれば、優れた充放電容量を有するものでありながら、低コストで製造することができる。また、本発明のリチウムイオン二次電池であれば、優れた充放電容量を有するものでありながら、低コストで製造することができる。 As described above, according to the method for regenerating a lithium composite oxide of the present invention, a lithium composite oxide having excellent charge / discharge capacity when used as a positive electrode active material of an electrochemical device is regenerated at low cost. be able to. In addition, the lithium composite oxide of the present invention can be manufactured at low cost while having excellent charge / discharge capacity when used as a positive electrode active material of an electrochemical device. Furthermore, the electrochemical device of the present invention can be manufactured at low cost while having excellent charge / discharge capacity. In addition, the lithium ion secondary battery of the present invention can be manufactured at low cost while having excellent charge / discharge capacity.
本発明のリチウム複合酸化物の再生方法のフロー図である。It is a flowchart of the reproduction | regeneration method of lithium composite oxide of this invention.
 以下、本発明について、実施態様の一例として、図を参照しながら詳細に説明するが、本発明はこれに限定されるものではない。 Hereinafter, the present invention will be described in detail as an example of an embodiment with reference to the drawings, but the present invention is not limited thereto.
 前述のように、従来のリチウム複合酸化物の再生方法では、再生したリチウム複合酸化物を電気化学デバイスの正極活物質として用いたときの充放電容量、及び、再生コストの点で改善の余地があった。そこで、本発明者らは、電気化学デバイスの正極活物質として用いたときに優れた充放電容量を有するようなリチウム複合酸化物を低コストで再生することができるリチウム複合酸化物の再生方法について鋭意検討を重ねた。その結果、電気化学的又は化学的にリチウムが一部引き抜かれたリチウム複合前駆体にリチウム化合物を反応させることで、電気化学デバイスの正極活物質として用いたときに優れた充放電容量を有するようなリチウム複合酸化物を低コストで再生することができることを見出し、本発明をなすに至った。 As described above, in the conventional method for regenerating lithium composite oxide, there is room for improvement in terms of charge / discharge capacity and regeneration cost when the regenerated lithium composite oxide is used as a positive electrode active material of an electrochemical device. there were. Accordingly, the present inventors have provided a method for regenerating a lithium composite oxide that can regenerate a lithium composite oxide having excellent charge / discharge capacity when used as a positive electrode active material for an electrochemical device at a low cost. We studied earnestly. As a result, a lithium compound is reacted with a lithium composite precursor from which lithium is partially extracted electrochemically or chemically, so that it has an excellent charge / discharge capacity when used as a positive electrode active material of an electrochemical device. As a result, the present inventors have found that a lithium composite oxide can be regenerated at a low cost.
 まず、図1を参照しながら、本発明のリチウム複合酸化物の再生方法を説明する。 First, the method for regenerating lithium composite oxide according to the present invention will be described with reference to FIG.
 まず、電気化学的又は化学的にリチウムが一部引き抜かれたリチウム複合前駆体を準備する(図1のステップS11を参照)。電気化学的にリチウムが一部引き抜かれたリチウム複合前駆体とは、具体的には、集電体上に搭載されることなくペレット形状で充放電されたもの、集電体上に搭載された状態で充放電されたもの、Nメチルピロリドンの様な有機溶剤で塗料化されて集電体上に塗布された後に充放電されたもの、等である。また、化学的にリチウムが一部引き抜かれたリチウム複合前駆体とは、具体的には、様々な酸性液体に浸漬することによりリチウムが脱離したもの、高温で焼成されてリチウムが揮発したもの、等である。また、電気化学的又は化学的にリチウムが引き抜かれたリチウム複合前駆体は、使用された充放電後の電極から有機溶媒を用いて溶かして取り出したものでもよいし、電気化学的に充放電によって粉体またはペレットから、リチウムを引き抜いたものでもよいが、コイン電池の状態での充放電や電解槽を用いた充放電によって、リチウムを引き抜いたものが、取り出しが容易で、再生しやすく好ましい。一部リチウムが抜けたリチウム複合前駆体を用いれば、リチウムが一部残っているので、共沈体の水酸化物の原料を用いた場合より、リチウム複合酸化物の生成が容易であり、さらに、使用されるリチウム化合物の量が少なくできて、安価にリチウム複合酸化物を製造できる。 First, a lithium composite precursor from which lithium is partially extracted electrochemically or chemically is prepared (see step S11 in FIG. 1). Specifically, the lithium composite precursor from which lithium is partially extracted electrochemically is charged or discharged in a pellet form without being mounted on the current collector, or mounted on the current collector. And those charged and discharged in a state after being coated with an organic solvent such as N-methylpyrrolidone and applied on a current collector. In addition, the lithium composite precursor from which a part of the lithium is chemically extracted is specifically, a lithium that has been removed by immersion in various acidic liquids, or a lithium that has been baked at a high temperature and volatilized. , Etc. Further, the lithium composite precursor from which lithium has been extracted electrochemically or chemically may be obtained by dissolving it using an organic solvent from the used electrode after charge / discharge, or by electrochemical charge / discharge. Although lithium may be extracted from powder or pellets, lithium extracted by charging / discharging in the state of a coin battery or charging / discharging using an electrolytic cell is preferable because it can be easily taken out and regenerated. If a lithium composite precursor from which lithium is partially removed is used, since lithium remains partially, it is easier to produce a lithium composite oxide than when a coprecipitate hydroxide raw material is used. The amount of the lithium compound used can be reduced, and the lithium composite oxide can be produced at low cost.
 次に、リチウムが一部引き抜かれたリチウム複合前駆体をリチウム化合物と反応させる(図1のステップS12を参照)。リチウム化合物は、例えば、炭酸リチウム、水酸化リチウム・一水和物、酸化リチウム、シュウ酸リチウム、酢酸リチウム、リン酸リチウム等が挙げられるが、好ましくは水酸化リチウム・一水和物である。水酸化リチウム・一水和物は反応性に富み、扱いやすいからである。 Next, the lithium composite precursor partially extracted with lithium is reacted with a lithium compound (see step S12 in FIG. 1). Examples of the lithium compound include lithium carbonate, lithium hydroxide / monohydrate, lithium oxide, lithium oxalate, lithium acetate, and lithium phosphate, and lithium hydroxide / monohydrate is preferable. This is because lithium hydroxide monohydrate is highly reactive and easy to handle.
 ここで、図1のステップS12では、リチウムが一部引き抜かれたリチウム複合前駆体とリチウム化合物とを混合して焼成を行うことで、リチウム化合物と反応させることが好ましい。焼成を行う場合、焼成工程の前に仮焼工程を入れるのが好ましい。仮焼温度は100~550℃、好ましくは100~500℃であり、仮焼時間は30分~5時間、好ましくは2~5時間である。上記の焼成工程において、焼成温度は600~1100℃、好ましくは600~1000℃、さらに好ましくは600~800℃であり、焼成時間は1~50時間、好ましくは2~15時間、さらに好ましくは2~8時間である。上記の焼成はどのような雰囲気で行ってもよく、例えば大気中、不活性雰囲気中、酸素雰囲気中等が挙げられるが、リチウム複合前駆体は既に酸素を有しているので、窒素雰囲気で行うことが好ましい。 Here, in step S12 of FIG. 1, it is preferable to react with the lithium compound by mixing the lithium composite precursor from which lithium is partially extracted and the lithium compound, and performing firing. When baking, it is preferable to put a calcination process before a baking process. The calcination temperature is 100 to 550 ° C., preferably 100 to 500 ° C., and the calcination time is 30 minutes to 5 hours, preferably 2 to 5 hours. In the above baking step, the baking temperature is 600 to 1100 ° C., preferably 600 to 1000 ° C., more preferably 600 to 800 ° C., and the baking time is 1 to 50 hours, preferably 2 to 15 hours, more preferably 2 ~ 8 hours. The above firing may be performed in any atmosphere, for example, in the air, in an inert atmosphere, in an oxygen atmosphere, etc., but since the lithium composite precursor already contains oxygen, it should be performed in a nitrogen atmosphere. Is preferred.
 また、図1のステップS12では、リチウムが一部引き抜かれたリチウム複合前駆体とリチウム化合物とを混合して水熱反応させることで、リチウム化合物と反応させることも好ましい。 Further, in step S12 of FIG. 1, it is also preferable that the lithium composite precursor from which lithium is partially extracted and the lithium compound are mixed and reacted with the lithium compound by a hydrothermal reaction.
 さらに、図1のステップS12において、様々な方法を併用してもよい。例えば、焼成を行う、水熱処理を施す、焼成回数を増やす、ペレット成型を行い焼成する、等の2つ以上の方法を併用することができる。 Furthermore, various methods may be used in combination in step S12 of FIG. For example, two or more methods such as firing, hydrothermal treatment, increasing the number of firings, pellet molding and firing can be used in combination.
 リチウムが一部引き抜かれたリチウム複合前駆体を、下記一般式(1):
  Li1-xCo1-z(0<x<1、0≦z<1)   ・・・(1)
(式中、MはMn、Ni、Fe、V、Cr、Al、Nb、Ti、Cu、Znの群から選ばれる1種以上の金属元素を示す。)で表わされる複合酸化物とし、リチウム化合物と反応させることにより得られるリチウム複合酸化物を、下記一般式(2):
  Li1-yCo1-z(0≦y<x、0≦z<1)   ・・・(2)
(式中、MはMn、Ni、Fe、V、Cr、Al、Nb、Ti、Cu、Znの群から選ばれる1種以上の金属元素を示す。)で表わされるリチウムコバルト系複合酸化物とすることができる。リチウムが一部引き抜かれたリチウム複合前駆体、及び、反応により得られるリチウム複合酸化物を上記のものとすることで、電気化学デバイスの正極活物質として用いたときにより優れた充放電容量を有するようなリチウム複合酸化物を再生することができる。
A lithium composite precursor from which lithium is partially extracted is represented by the following general formula (1):
Li 1-x Co 1-z M z O 2 (0 <x <1, 0 ≦ z <1) (1)
(Wherein M represents one or more metal elements selected from the group consisting of Mn, Ni, Fe, V, Cr, Al, Nb, Ti, Cu, and Zn), and a lithium compound The lithium composite oxide obtained by reacting with the following general formula (2):
Li 1-y Co 1-z M z O 2 (0 ≦ y <x, 0 ≦ z <1) (2)
(Wherein M represents one or more metal elements selected from the group consisting of Mn, Ni, Fe, V, Cr, Al, Nb, Ti, Cu, and Zn) can do. By using the lithium composite precursor from which lithium is partially extracted and the lithium composite oxide obtained by the reaction as described above, it has a better charge / discharge capacity when used as a positive electrode active material for electrochemical devices. Such a lithium composite oxide can be regenerated.
 リチウムが一部引き抜かれたリチウム複合前駆体を、下記一般式(3):
  Li1-xFe1-zPO(0<x<1、0≦z<1)  ・・・(3)
(式中、MはCo、Mn、Ni、V、Cr、Al、Nb、Ti、Cu、Znの群から選ばれる1種以上の金属元素を示す。)で表わされるリチウム鉄リン系複合酸化物とし、リチウム化合物と反応させることにより得られるリチウム複合酸化物を、下記一般式(4):
  Li1-yFe1-zPO(0≦y<x、0≦z<1)  ・・・(4)
(式中、MはCo、Mn、Ni、V、Cr、Al、Nb、Ti、Cu、Znの群から選ばれる1種以上の金属元素を示す。)で表わされるリチウム鉄リン系複合酸化物とすることができる。リチウムが一部引き抜かれたリチウム複合前駆体、及び、反応により得られるリチウム複合酸化物を上記のものとすることで、電気化学デバイスの正極活物質として用いたときにより優れた充放電容量を有するようなリチウム複合酸化物を再生することができる。
A lithium composite precursor from which lithium is partially extracted is represented by the following general formula (3):
Li 1-x Fe 1-z M z PO 4 (0 <x <1, 0 ≦ z <1) (3)
(In the formula, M represents one or more metal elements selected from the group consisting of Co, Mn, Ni, V, Cr, Al, Nb, Ti, Cu, and Zn.) And a lithium composite oxide obtained by reacting with a lithium compound, the following general formula (4):
Li 1-y Fe 1-z M z PO 4 (0 ≦ y <x, 0 ≦ z <1) (4)
(In the formula, M represents one or more metal elements selected from the group consisting of Co, Mn, Ni, V, Cr, Al, Nb, Ti, Cu, and Zn.) It can be. By using the lithium composite precursor from which lithium is partially extracted and the lithium composite oxide obtained by the reaction as described above, it has a better charge / discharge capacity when used as a positive electrode active material for electrochemical devices. Such a lithium composite oxide can be regenerated.
 リチウムが一部引き抜かれたリチウム複合前駆体を、下記一般式(5):
  Li3-x2-z(PO(0<x<3、0≦z<2)・・・(5)
(式中、MはCo、Mn、Ni、Fe、Cr、Al、Nb、Ti、Cu、Znの群から選ばれる1種以上の金属元素を示す。)で表わされるリチウムバナジウムリン系複合酸化物とし、リチウム化合物と反応させることにより得られるリチウム複合酸化物を、下記一般式(6):
  Li3-y2-z(PO(0≦y<x、0≦z<2)・・・(6)
(式中、MはCo、Mn、Ni、Fe、Cr、Al、Nb、Ti、Cu、Znの群から選ばれる1種以上の金属元素を示す。)で表わされるリチウムバナジウムリン系複合酸化物とすることができる。リチウムが一部引き抜かれたリチウム複合前駆体、及び、反応により得られるリチウム複合酸化物を上記のものとすることで、電気化学デバイスの正極活物質として用いたときにより優れた充放電容量を有するようなリチウム複合酸化物を再生することができる。
A lithium composite precursor from which lithium is partially extracted is represented by the following general formula (5):
Li 3-x V 2-z M z (PO 4 ) 3 (0 <x <3, 0 ≦ z <2) (5)
(In the formula, M represents one or more metal elements selected from the group consisting of Co, Mn, Ni, Fe, Cr, Al, Nb, Ti, Cu, and Zn.) And a lithium composite oxide obtained by reacting with a lithium compound, the following general formula (6):
Li 3-y V 2-z M z (PO 4 ) 3 (0 ≦ y <x, 0 ≦ z <2) (6)
(In the formula, M represents one or more metal elements selected from the group consisting of Co, Mn, Ni, Fe, Cr, Al, Nb, Ti, Cu, and Zn.) It can be. By using the lithium composite precursor from which lithium is partially extracted and the lithium composite oxide obtained by the reaction as described above, it has a better charge / discharge capacity when used as a positive electrode active material for electrochemical devices. Such a lithium composite oxide can be regenerated.
 上記のリチウム複合前駆体として、2種以上のリチウム複合前駆体を用いることができる。2種以上のリチウム複合前駆体は、上記一般式(1)、(3)、(5)で例示したものの他に、例えば、リチウムと遷移金属元素からなる複合酸化物、又は、リチウムと遷移金属元素を有するリン酸化合物の中からも選択することができる。これらの複合酸化物の中でもニッケル、鉄、マンガン、コバルトの少なくとも1種以上を有する化合物が好ましい。リチウムと遷移金属元素とを有する複合酸化物としては、例えば、リチウムコバルト複合酸化物LiCoO(0<a<1)、リチウムニッケル複合酸化物LiNiO(0<a<1)が挙げられ、リチウムと遷移金属元素とを有するリン酸化合物としては、例えば、リチウム鉄リン酸化合物(LiFePO)あるいはリチウム鉄マンガンリン酸化合物LiFe1-cMnPO(0<a<1、0<c<1)、リチウムバナジウムリン酸化合物Li3-a(PO(0<a<3)等が挙げられる。 As the lithium composite precursor, two or more lithium composite precursors can be used. The two or more lithium composite precursors include, for example, a composite oxide composed of lithium and a transition metal element, or lithium and a transition metal, in addition to those exemplified in the general formulas (1), (3), and (5). It can also be selected from phosphoric acid compounds having elements. Among these complex oxides, compounds having at least one of nickel, iron, manganese, and cobalt are preferable. Examples of the composite oxide having lithium and a transition metal element include lithium cobalt composite oxide Li a CoO 2 (0 <a <1) and lithium nickel composite oxide Li a NiO 2 (0 <a <1). Examples of the phosphate compound having lithium and a transition metal element include a lithium iron phosphate compound (LiFePO 4 ) or a lithium iron manganese phosphate compound Li a Fe 1-c Mn c PO 4 (0 <a < 1, 0 <c <1), lithium vanadium phosphate compound Li 3-a V 2 (PO 4 ) 3 (0 <a <3), and the like.
 上記のリチウム複合前駆体として炭素を含有するものを準備し、リチウム化合物と反応させて得られるリチウム複合酸化物が、リチウム複合前駆体が含有していた炭素を含有していることが好ましい。上記の反応させる工程が上記のリチウム複合前駆体と炭素化合物とを反応させる段階を含み、上記の反応させる工程により得られるリチウム複合酸化物が、炭素を含有していることも好ましい。反応後のリチウム複合酸化物を炭素を含有するものとすることで、電気化学デバイスの正極活物質として用いたときにより優れた充放電容量を有するようなリチウム複合酸化物を再生することができる。 It is preferable that the lithium composite oxide obtained by preparing the lithium composite precursor containing carbon and reacting with the lithium compound contains the carbon contained in the lithium composite precursor. It is also preferable that the step of reacting includes a step of reacting the lithium composite precursor and a carbon compound, and the lithium composite oxide obtained by the step of reacting contains carbon. By making the lithium composite oxide after the reaction contain carbon, it is possible to regenerate the lithium composite oxide having a better charge / discharge capacity when used as a positive electrode active material of an electrochemical device.
 上記で説明した本発明のリチウム複合酸化物の再生方法によれば、電気化学デバイスの正極活物質として用いたときに優れた充放電容量を有するようなリチウム複合酸化物を低コストで再生することができる。 According to the method for regenerating a lithium composite oxide of the present invention described above, a lithium composite oxide having an excellent charge / discharge capacity when used as a positive electrode active material of an electrochemical device can be regenerated at a low cost. Can do.
 次に、本発明のリチウム複合酸化物について説明する。 Next, the lithium composite oxide of the present invention will be described.
 本発明のリチウム複合酸化物は、上記の本発明のリチウム複合酸化物の再生方法により再生したリチウム複合酸化物である。このようなリチウム複合酸化物であれば、電気化学デバイスの正極活物質として用いたときに優れた充放電容量を有するものでありながら、低コストで製造することができる。 The lithium composite oxide of the present invention is a lithium composite oxide regenerated by the above-described method for regenerating a lithium composite oxide of the present invention. Such a lithium composite oxide can be manufactured at low cost while having excellent charge / discharge capacity when used as a positive electrode active material of an electrochemical device.
 上記のリチウム複合酸化物は、各種の電気化学デバイス(例えば、電池、センサ、電解槽等)の正極活物質として利用することができる。ここで、「電気化学デバイス」とは、電流を流す極板材料を含むデバイス、すなわち、電気エネルギーを取り出し可能なデバイス一般を指す用語であって、電解槽、一次電池、及び、二次電池を含む概念である。また、「二次電池」とは、リチウムイオン二次電池、ニッケル水素電池、ニッケルカドミウム電池等のいわゆる蓄電池ならびに電気二重層キャパシタ等の蓄電素子を包含する概念である。上記のリチウム複合酸化物は、特に、リチウムイオン二次電池、電解槽の電極材として好適である。電解槽の形状はどのような形状でもよく、電流を流す極板材料を含んでいればよい。リチウムイオン二次電池の形状は、コイン、ボタン、シート、シリンダー、角型のいずれにも適用できる。なお、本発明のリチウム複合酸化物が適用されるリチウムイオン二次電池の用途は、特に制限されないが、例えばノートパソコン、ラップトップパソコン、ポケットワープロ、携帯電話、コードレス電話機、ポータブルCD、ラジオなどの電子機器、自動車、電動車両、ゲーム機器などの民生用電子機器などが挙げられる。 The lithium composite oxide can be used as a positive electrode active material for various electrochemical devices (for example, batteries, sensors, electrolytic cells, etc.). Here, the term “electrochemical device” refers to a device including an electrode plate material through which an electric current flows, that is, a device that can extract electric energy in general, and includes an electrolytic cell, a primary battery, and a secondary battery. It is a concept that includes. The “secondary battery” is a concept including so-called storage batteries such as lithium ion secondary batteries, nickel hydride batteries, nickel cadmium batteries, and power storage elements such as electric double layer capacitors. The lithium composite oxide is particularly suitable as an electrode material for lithium ion secondary batteries and electrolytic cells. The shape of the electrolytic cell may be any shape as long as it contains an electrode plate material that allows current to flow. The shape of the lithium ion secondary battery can be applied to any of coins, buttons, sheets, cylinders, and square shapes. The use of the lithium ion secondary battery to which the lithium composite oxide of the present invention is applied is not particularly limited. For example, it can be used in notebook computers, laptop computers, pocket word processors, mobile phones, cordless phones, portable CDs, radios, etc. Examples include consumer electronic devices such as electronic devices, automobiles, electric vehicles, and game devices.
 以下、上記のリチウム複合酸化物が適用される電気化学デバイス、リチウムイオン二次電池の構成要素について説明する。 Hereinafter, components of the electrochemical device and the lithium ion secondary battery to which the lithium composite oxide is applied will be described.
[正極活物質層]
 正極活物質層は、本発明のリチウム複合酸化物を50~100質量%含んでいる。また、リチウムイオンの吸蔵放出可能な正極活物質のいずれか1種又は2種以上を含んでおり、設計に応じて結着剤、導電助剤、分散剤などの他の材料を含んでいてもよい。
[Positive electrode active material layer]
The positive electrode active material layer contains 50 to 100% by mass of the lithium composite oxide of the present invention. Further, it contains any one or more of positive electrode active materials capable of occluding and releasing lithium ions, and may contain other materials such as binders, conductive assistants, and dispersants depending on the design. Good.
[正極]
 正極は、例えば、集電体の両面または片面に正極活物質層を有している。集電体は、例えば、アルミニウムなどの導電性材により形成されているものでも良い。
[Positive electrode]
The positive electrode has, for example, a positive electrode active material layer on both sides or one side of the current collector. The current collector may be formed of a conductive material such as aluminum, for example.
[負極活物質層]
 負極活物質は、一般式SiOx(0.5≦x<1.6)で表される酸化珪素のいずれか、又はこれらのうち2以上の混合物とすることが好ましい。負極活物質層は、上記の負極活物質を含んでおり、設計に応じて結着剤、導電助剤、分散剤などの他の材料を含んでいてもよい。
[Negative electrode active material layer]
The negative electrode active material is preferably any one of silicon oxides represented by the general formula SiO x (0.5 ≦ x <1.6), or a mixture of two or more thereof. The negative electrode active material layer contains the above negative electrode active material, and may contain other materials such as a binder, a conductive additive, and a dispersant depending on the design.
[負極]
 負極は、上記した正極と同様の構成を有し、例えば、集電体の片面もしくは両面に負極活物質層を有している。この負極は、リチウム複合酸化物活物質剤から得られる電気容量(電池として充電容量)に対して、負極充電容量が大きくなる事が好ましい。負極上でのリチウム金属の析出を抑制するためである。
[Negative electrode]
The negative electrode has the same configuration as the positive electrode described above, and has, for example, a negative electrode active material layer on one side or both sides of a current collector. It is preferable that the negative electrode has a larger negative electrode charge capacity than the electric capacity (charge capacity as a battery) obtained from the lithium composite oxide active material agent. This is for suppressing the deposition of lithium metal on the negative electrode.
[結着材]
 結着剤として、例えば高分子材料、合成ゴムなどのいずれか1種類以上を用いることができる。高分子材料は、例えば、ポリフッ化ビニリデン、ポリイミド、ポリアミドイミド、アラミド、ポリアクリル酸、あるいはポリアクリル酸リチウム、カルボキシメチルセルロース等である。合成ゴムは、例えば、スチレンブタジエン系ゴム、フッ素系ゴム、エチレンプロピレンジエン等である。
[Binder]
As the binder, for example, any one or more of a polymer material and a synthetic rubber can be used. Examples of the polymer material include polyvinylidene fluoride, polyimide, polyamideimide, aramid, polyacrylic acid, lithium polyacrylate, and carboxymethylcellulose. The synthetic rubber is, for example, styrene butadiene rubber, fluorine rubber, ethylene propylene diene, or the like.
[導電助剤]
 リチウム複合酸化物導電助剤、負極導電助剤としては、例えば、カーボンブラック、アセチレンブラック、黒鉛、ケチェンブラック、カーボンナノチューブ、カーボンナノファイバーなどの炭素材料のいずれか1種以上を用いることができる。
[Conductive aid]
As the lithium composite oxide conductive auxiliary agent and the negative electrode conductive auxiliary agent, for example, any one or more of carbon materials such as carbon black, acetylene black, graphite, ketjen black, carbon nanotube, and carbon nanofiber can be used. .
[電解液]
 活物質層の少なくとも一部、またはセパレータには液状の電解質(電解液)が含浸されている。この電解液は、溶媒中に電解質塩が溶解されており、添加剤など他の材料を含んでいても良い。溶媒は、例えば非水溶媒が挙げられる。非水溶媒として、例えば次の材料が挙げられる。炭酸エチレン、炭酸プロピレン、炭酸ブチレン、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチル、炭酸メチルプロピル、1,2-ジメトキシエタンあるいはテトラヒドロフランである。その中でも、炭酸エチレン、炭酸プロピレン、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチルのうちの少なくとも1種以上が望ましい。より良い特性が得られるからである。またこの場合、炭酸エチレン、炭酸プロピレンなどの高粘度溶媒と、炭酸ジメチル、炭酸エチルメチル、炭酸ジエチルなどの低粘度溶媒を組み合わせるとより優位な特性を得ることができる。電解質塩の解離性やイオン移動度が向上するためである。
[Electrolyte]
At least a part of the active material layer or the separator is impregnated with a liquid electrolyte (electrolytic solution). This electrolytic solution has an electrolyte salt dissolved in a solvent, and may contain other materials such as additives. Examples of the solvent include non-aqueous solvents. Examples of the non-aqueous solvent include the following materials. Ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, 1,2-dimethoxyethane or tetrahydrofuran. Among these, at least one of ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate is desirable. This is because better characteristics can be obtained. In this case, more advantageous characteristics can be obtained by combining a high viscosity solvent such as ethylene carbonate or propylene carbonate and a low viscosity solvent such as dimethyl carbonate, ethyl methyl carbonate or diethyl carbonate. This is because the dissociation property and ion mobility of the electrolyte salt are improved.
 特に溶媒としてハロゲン化鎖状炭酸エステルまたはハロゲン化環状炭酸エステルのうち少なくとも1種を含んでいることが望ましい。充放電時、特に充電時において負極活物質表面に安定な被膜が形成されるからである。ハロゲン化鎖状炭酸エステルは、ハロゲンを構成元素として有する(少なくとも1つの水素がハロゲンにより置換された)鎖状炭酸エステルである。ハロゲン化環状炭酸エステルは、ハロゲンを構成元素として有する(少なくとも1つの水素がハロゲンにより置換された)環状炭酸エステルである。 In particular, it is desirable that the solvent contains at least one of a halogenated chain carbonate or a halogenated cyclic carbonate. This is because a stable film is formed on the surface of the negative electrode active material during charging / discharging, particularly during charging. The halogenated chain carbonate is a chain carbonate having halogen as a constituent element (at least one hydrogen is replaced by a halogen). The halogenated cyclic carbonate is a cyclic carbonate having halogen as a constituent element (at least one hydrogen is replaced by halogen).
 ハロゲンの種類は特に限定されないが、フッ素がより好ましい。他のハロゲンよりも良質な被膜を形成するからである。またハロゲン数は、多いほど望ましく、これは得られる被膜がより安定的であり、電解液の分解反応が低減されるからである。ハロゲン化鎖状炭酸エステルは、例えば、炭酸フルオロメチルメチル、炭酸ジフルオロメチルメチルなどが挙げられる。ハロゲン化環状炭酸エステルとしては、4-フルオロ-1,3-ジオキソラン-2-オンあるいは4,5-ジフルオロ-1,3-ジオキソラン-2-オンなどが挙げられる。 The kind of halogen is not particularly limited, but fluorine is more preferable. This is because a film having a higher quality than other halogens is formed. Further, the larger the number of halogens, the more desirable, because the resulting coating is more stable and the decomposition reaction of the electrolyte is reduced. Examples of the halogenated chain carbonate include fluoromethyl methyl carbonate and difluoromethyl methyl carbonate. Examples of the halogenated cyclic carbonate include 4-fluoro-1,3-dioxolane-2-one and 4,5-difluoro-1,3-dioxolane-2-one.
 溶媒添加物として、不飽和炭素結合環状炭酸エステルを含んでいることが好ましい。充放電時に負極表面に安定な被膜が形成され、電解液の分解反応が抑制できるからである。不飽和炭素結合環状炭酸エステルとして、例えば炭酸ビニレンまたは炭酸ビニルエチレンなどが挙げられる。また、溶媒添加物として、スルトン(環状スルホン酸エステル)を含んでいることも好ましい。電池の化学的安定性が向上するからである。スルトンとしては、例えば、プロパンスルトン、プロペンスルトンが挙げられる。 It is preferable that the solvent additive contains an unsaturated carbon bond cyclic carbonate. This is because a stable film is formed on the surface of the negative electrode during charging and discharging, and the decomposition reaction of the electrolyte can be suppressed. Examples of the unsaturated carbon bond cyclic ester carbonate include vinylene carbonate and vinyl ethylene carbonate. Moreover, it is also preferable that sultone (cyclic sulfonate ester) is included as a solvent additive. This is because the chemical stability of the battery is improved. Examples of sultone include propane sultone and propene sultone.
 さらに、溶媒は、酸無水物を含んでいることが好ましい。電解液の化学的安定性が向上するからである。酸無水物としては、例えば、プロパンジスルホン酸無水物が挙げられる。 Furthermore, the solvent preferably contains an acid anhydride. This is because the chemical stability of the electrolytic solution is improved. Examples of the acid anhydride include propanedisulfonic acid anhydride.
 電解質塩は、例えば、リチウム塩などの軽金属塩のいずれか1種類以上含むことができる。リチウム塩として、例えば、六フッ化リン酸リチウム(LiPF)、四フッ化ホウ酸リチウム(LiBF)等が挙げられる。電解質塩の含有量は、溶媒に対して0.5mol/kg以上、2.5mol/kg以下であることが好ましい。高いイオン伝導性が得られるからである。 The electrolyte salt can contain, for example, any one or more of light metal salts such as lithium salts. Examples of the lithium salt include lithium hexafluorophosphate (LiPF 6 ) and lithium tetrafluoroborate (LiBF 4 ). The content of the electrolyte salt is preferably 0.5 mol / kg or more and 2.5 mol / kg or less with respect to the solvent. This is because high ionic conductivity is obtained.
[集電体]
 電極の集電体は、構成されたリチウムイオン二次電池、電気化学デバイスにおいて化学変化を起こさない電子伝導体であれば特に制限されるものではないが、例えばステンレス鋼、ニッケル、アルミニウム、チタン、焼成炭素、アルミニウムやステンレス鋼の表面をカーボン、ニッケル、銅、チタンまたは銀で表面処理したものが用いられ、負極にはステンレス鋼、ニッケル、銅、チタン、アルミニウム、焼成炭素などの他に、銅やステンレス鋼の表面をカーボン、ニッケル、チタンまたは銀などで処理したもの、Al-Cd合金などが用いられる。
[Current collector]
The current collector of the electrode is not particularly limited as long as it is an electronic conductor that does not cause a chemical change in the configured lithium ion secondary battery and electrochemical device, but for example, stainless steel, nickel, aluminum, titanium, The surface of calcined carbon, aluminum or stainless steel is surface-treated with carbon, nickel, copper, titanium or silver. The negative electrode is made of copper, in addition to stainless steel, nickel, copper, titanium, aluminum, calcined carbon, etc. Or a surface of stainless steel treated with carbon, nickel, titanium, silver, or the like, or an Al—Cd alloy is used.
[セパレータ]
 セパレータは、正極と負極を隔離し、両極接触に伴う電流短絡を防止しつつ、リチウムイオンを通過させるものである。このセパレータは、例えば、合成樹脂、あるいはセラミックからなる多孔質膜により形成されており、2種以上の多孔質膜が積層された積層構造を有しても良い。合成樹脂として、例えば、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレンなどが挙げられる。
[Separator]
The separator separates the positive electrode and the negative electrode and allows lithium ions to pass through while preventing current short-circuiting due to both-pole contact. This separator is formed of, for example, a porous film made of synthetic resin or ceramic, and may have a laminated structure in which two or more kinds of porous films are laminated. Examples of the synthetic resin include polytetrafluoroethylene, polypropylene, and polyethylene.
 次に、本発明の電気化学デバイスについて説明する。 Next, the electrochemical device of the present invention will be described.
 本発明の電気化学デバイスは、電気化学デバイスの負極活物質として用いたときに充放電効率が80%以下である負極活物質粒子を含有する負極活物質層と負極集電体とからなる負極と、上記のリチウム複合酸化物を含む正極活物質層と正極集電体とからなる正極とを有するリチウム複合酸化物である。また、本発明の電気化学デバイスは、組成式がSiO(0.5≦x<1.6)で表される酸化珪素を含有する負極活物質粒子を含有する負極活物質層と負極集電体とからなる負極と、上記のリチウム複合酸化物を含む正極活物質層と正極集電体とからなる正極と、を有する電気化学デバイスであってもよい。なお、上記の負極及び正極は、集電体を含まない構成としてもよい。このような電気化学デバイスであれば、優れた充放電容量を有するものでありながら、低コストで製造することができる。 The electrochemical device of the present invention comprises a negative electrode active material layer containing negative electrode active material particles having a charge / discharge efficiency of 80% or less when used as a negative electrode active material of an electrochemical device, and a negative electrode current collector, A lithium composite oxide having a positive electrode active material layer containing the lithium composite oxide and a positive electrode comprising a positive electrode current collector. The electrochemical device of the present invention includes a negative electrode active material layer containing negative electrode active material particles containing silicon oxide represented by a composition formula of SiO x (0.5 ≦ x <1.6) and a negative electrode current collector. It may be an electrochemical device having a negative electrode composed of a body, and a positive electrode composed of a positive electrode active material layer containing the lithium composite oxide and a positive electrode current collector. Note that the negative electrode and the positive electrode may not include a current collector. Such an electrochemical device can be manufactured at a low cost while having an excellent charge / discharge capacity.
 再生したリチウム複合酸化物は、粉体抵抗が増加する傾向にあり、粉体抵抗が増加すると充放電効率が減少するので、充放電効率が80%以下である負極活物質粒子を用いた場合に、正極と負極の充放電効率のバランスの点で良く、安定した充放電電流が得られ、好ましい。 The regenerated lithium composite oxide tends to increase the powder resistance. When the powder resistance increases, the charge / discharge efficiency decreases. Therefore, when the negative electrode active material particles having a charge / discharge efficiency of 80% or less are used. In view of the balance between the charge and discharge efficiency of the positive electrode and the negative electrode, a stable charge and discharge current is obtained, which is preferable.
 次に、本発明のリチウム二次電池について説明する。 Next, the lithium secondary battery of the present invention will be described.
 本発明のリチウム二次電池は、リチウムイオン二次電池の負極活物質として用いたときに充放電効率が80%以下である負極活物質粒子を含有する負極活物質層と負極集電体とからなる負極と、上記のリチウム複合酸化物を含む正極活物質層と正極集電体とからなる正極と、を有するリチウムイオン二次電池である。また、本発明のリチウム二次電池は、組成式がSiO(0.5≦x<1.6)で表される酸化珪素を含有する負極活物質粒子を含有する負極活物質層と、負極集電体とからなる負極と、上記のリチウム複合酸化物を含む正極活物質層と正極集電体とからなる正極と、を有するリチウムイオン二次電池であってもよい。なお、上記の負極及び正極は、集電体を含まない構成としてもよい。このようなリチウム二次電池であれば、優れた充放電容量を有するものでありながら、低コストで製造することができる。 The lithium secondary battery of the present invention comprises a negative electrode active material layer containing negative electrode active material particles having a charge / discharge efficiency of 80% or less when used as a negative electrode active material of a lithium ion secondary battery, and a negative electrode current collector. And a positive electrode composed of a positive electrode active material layer containing the lithium composite oxide and a positive electrode current collector. Further, the lithium secondary battery of the present invention includes a negative electrode active material layer containing negative electrode active material particles containing silicon oxide represented by a composition formula of SiO x (0.5 ≦ x <1.6), and a negative electrode A lithium ion secondary battery having a negative electrode composed of a current collector and a positive electrode composed of a positive electrode active material layer containing the lithium composite oxide and a positive electrode current collector may be used. Note that the negative electrode and the positive electrode may not include a current collector. Such a lithium secondary battery can be manufactured at a low cost while having an excellent charge / discharge capacity.
 以下、実施例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
(実施例1)
 ボタン型コイン電池(CR2032)で、一定電流でリチウムを引き抜いたペレット形状のリチウム複合前駆体Li0.5CoOをDMC(ジメチルカーボネート)で洗浄して、軽く粉砕した粉末に炭酸リチウム(LiCO)をLi/Coの当量比が1.00/1.00になるようにして混合した。その後、1t/cmの圧力でペレット成型を行い、大気中で焼成した後、冷却し、細かく粉砕した。目開き75μmの篩で分級し、LiCoOの組成をもつリチウム複合酸化物を製造した。
(Example 1)
In a button-type coin battery (CR2032), a pellet-shaped lithium composite precursor Li 0.5 CoO 2 with lithium extracted at a constant current was washed with DMC (dimethyl carbonate), and lightly pulverized powder was mixed with lithium carbonate (Li 2 CO 3 ) was mixed so that the equivalent ratio of Li / Co was 1.00 / 1.00. Thereafter, pellets were molded at a pressure of 1 t / cm 2 , fired in the air, cooled, and finely pulverized. The mixture was classified with a sieve having an opening of 75 μm to produce a lithium composite oxide having a composition of LiCoO 2 .
(実施例2)
 電解槽にて、一定電流でリチウムを引き抜いたペレット形状のリチウム複合前駆体Li0.5CoOをDMCで洗浄して、軽く粉砕した粉末に炭酸リチウム(LiCO)をLi/Coの当量比が1.00/1.00になるようにして混合した。その後、1t/cmの圧力でペレット成型を行い中で焼成した後、冷却し、細かく粉砕した。目開き75μmの篩で分級し、LiCoOの組成をもつリチウム複合酸化物を製造した。
(Example 2)
In an electrolytic cell, the lithium composite precursor Li 0.5 CoO 2 in the form of a pellet from which lithium was extracted at a constant current was washed with DMC, and lithium carbonate (Li 2 CO 3 ) was mixed with Li / Co in a lightly pulverized powder. The mixture was mixed so that the equivalent ratio was 1.00 / 1.00. Thereafter, the pellet was molded at a pressure of 1 t / cm 2 and fired in the interior, then cooled and finely pulverized. The mixture was classified with a sieve having an opening of 75 μm to produce a lithium composite oxide having a composition of LiCoO 2 .
(実施例3)
 ボタン型コイン電池(CR2032)で、一定電流でリチウムを引き抜いたペレット形状のリチウム複合前駆体Li0.5FePOをDMCで洗浄して、乾燥し、軽く粉砕した粉末に水酸化リチウム・一水和塩(LiOH・HO)をLi/Feの当量比が1.00/1.00になるようにして混合した。窒素雰囲気中で焼成した後、冷却し、細かく粉砕した。目開き75μmの篩で分級し、LiFePOの組成をもつリチウム複合酸化物を製造した。得られたリチウム複合酸化物LiFePOは炭素を6.5%含有していた。この炭素は、リチウム複合前駆体Li0.5FePOに含有されていたものである。
(Example 3)
In a button-type coin battery (CR2032), a lithium composite precursor Li 0.5 FePO 4 in which lithium was extracted at a constant current was washed with DMC, dried, and lightly pulverized into lithium hydroxide / water Japanese salt (LiOH.H 2 O) was mixed so that the equivalent ratio of Li / Fe was 1.00 / 1.00. After firing in a nitrogen atmosphere, it was cooled and pulverized finely. The mixture was classified with a sieve having an opening of 75 μm to produce a lithium composite oxide having a composition of LiFePO 4 . The obtained lithium composite oxide LiFePO 4 contained 6.5% of carbon. This carbon is contained in the lithium composite precursor Li 0.5 FePO 4 .
(実施例4)
 電解槽にて、一定電流でリチウムを引き抜いたペレット形状のリチウム複合前駆体Li0.5FePOをDMCで洗浄して、乾燥し、軽く粉砕した粉末にシュウ酸リチウム(COOLi)をLi/Feの当量比が1.00/1.00になるようにして混合した。窒素中で焼成した後、冷却し、細かく粉砕した。目開き75μmの篩で分級し、LiFePOの組成をもつリチウム複合酸化物を製造した。得られたリチウム複合酸化物LiFePOは炭素を5.5%含有していた。この炭素は、リチウム複合前駆体Li0.5FePOに含有されていたものである。
Example 4
In an electrolytic cell, the pellet-shaped lithium composite precursor Li 0.5 FePO 4 from which lithium was extracted at a constant current was washed with DMC, dried, and lightly pulverized powder with lithium oxalate (COOLi) 2 as Li / Mixing was performed so that the Fe equivalent ratio was 1.00 / 1.00. After firing in nitrogen, it was cooled and ground finely. The mixture was classified with a sieve having an opening of 75 μm to produce a lithium composite oxide having a composition of LiFePO 4 . The obtained lithium composite oxide LiFePO 4 contained 5.5% carbon. This carbon is contained in the lithium composite precursor Li 0.5 FePO 4 .
(実施例5)
 ボタン型コイン電池(CR2032)で、一定電流でリチウムを引き抜いたペレット形状のリチウム複合前駆体Li0.5Ni1/3Co1/3Mn1/3をDMCで洗浄して、乾燥し、軽く粉砕した粉末に炭酸リチウム(LiCO)をLi/(Ni+Co+Mn)の当量比が1.00/1.00になるようにして混合した。大気中で焼成した後、冷却し、細かく粉砕した。目開き75μmの篩で分級し、LiNi1/3Co1/3Mn1/3の組成をもつリチウム複合酸化物を製造した。
(Example 5)
Using a button-type coin battery (CR2032), the lithium composite precursor Li 0.5 Ni 1/3 Co 1/3 Mn 1/3 O 2 in which lithium is extracted at a constant current is washed with DMC and dried. Then, lithium carbonate (Li 2 CO 3 ) was mixed with the lightly pulverized powder so that the equivalent ratio of Li / (Ni + Co + Mn) was 1.00 / 1.00. After firing in the air, it was cooled and crushed finely. The mixture was classified with a sieve having an opening of 75 μm to produce a lithium composite oxide having a composition of LiNi 1/3 Co 1/3 Mn 1/3 O 2 .
(実施例6)
 電解槽にて、一定電流でリチウムを引き抜いたペレット形状のリチウム複合前駆体Li0.5Ni1/3Co1/3Mn1/3をDMCで洗浄して、乾燥し軽く粉砕した粉末に水酸化リチウム・一水和塩(LiOH・HO)をLi/(Ni+Co+Mn)の当量比が1.00/1.00になるようにして混合した。大気中で焼成した後、冷却し、細かく粉砕した。目開き75μmの篩で分級し、LiNi1/3Co1/3Mn1/3の組成をもつリチウム複合酸化物を製造した。
(Example 6)
Powder obtained by washing a pellet-shaped lithium composite precursor Li 0.5 Ni 1/3 Co 1/3 Mn 1/3 O 2 with DMC, dried and lightly pulverized in an electrolytic cell, with lithium extracted at a constant current Lithium hydroxide monohydrate (LiOH.H 2 O) was mixed with Li / (Ni + Co + Mn) at an equivalent ratio of 1.00 / 1.00. After firing in the air, it was cooled and crushed finely. The mixture was classified with a sieve having an opening of 75 μm to produce a lithium composite oxide having a composition of LiNi 1/3 Co 1/3 Mn 1/3 O 2 .
(実施例7)
 ボタン型コイン電池(CR2032)にて一定電流でリチウムを引き抜いたペレット形状のリチウム複合前駆体Li0.5Ni0.5Mn0.3Co0.2をDMCで洗浄して、乾燥し、軽く粉砕した粉末に炭酸リチウム(LiCO)をLi/(Ni+Co+Mn)の当量比が1.00/1.00になるように混合した。大気中で焼成した後、冷却し、細かく粉砕した。目開き75μmの篩で分級し、LiNi0.5Mn0.3Co0.2の組成をもつリチウム複合酸化物を製造した。
(Example 7)
The lithium composite precursor Li 0.5 Ni 0.5 Mn 0.3 Co 0.2 O 2 in the shape of a pellet from which lithium was extracted with a constant current using a button-type coin battery (CR 2032) was washed with DMC and dried. Then, lithium carbonate (Li 2 CO 3 ) was mixed with the lightly pulverized powder so that the equivalent ratio of Li / (Ni + Co + Mn) was 1.00 / 1.00. After firing in the air, it was cooled and crushed finely. The mixture was classified with a sieve having an opening of 75 μm to produce a lithium composite oxide having a composition of LiNi 0.5 Mn 0.3 Co 0.2 O 2 .
(実施例8)
 電解槽にて、一定電流でリチウムを引き抜いたペレット形状のリチウム複合前駆体Li0.5Ni0.5Mn0.3Co0.2を、1mol/lのLiPF、DMCで洗浄して、乾燥し、軽く粉砕した粉末に炭酸リチウム(LiCO)をLi/(Ni+Co+Mn)の当量比が1.00/1.00になるようにして混合した。大気中で焼成した後、冷却し、細かく粉砕した。目開き75μmの篩で分級し、LiNi0.5Mn0.3Co0.2の組成をもつリチウム複合酸化物を製造した。
(Example 8)
In an electrolytic cell, a lithium composite precursor Li 0.5 Ni 0.5 Mn 0.3 Co 0.2 O 2 in the form of a pellet from which lithium was extracted at a constant current was washed with 1 mol / l LiPF 6 and DMC. Then, lithium carbonate (Li 2 CO 3 ) was mixed with the dried and lightly pulverized powder so that the equivalent ratio of Li / (Ni + Co + Mn) was 1.00 / 1.00. After firing in the air, it was cooled and crushed finely. The mixture was classified with a sieve having an opening of 75 μm to produce a lithium composite oxide having a composition of LiNi 0.5 Mn 0.3 Co 0.2 O 2 .
(実施例9)
 ボタン型コイン電池(CR2032)にて一定電流でリチウムを引き抜いたペレット形状のリチウム複合前駆体Li1.2(POをDMCで洗浄して、乾燥し、軽く粉砕した粉末に水酸化リチウム・一水和塩(LiOH・HO)をLi/Vの当量比が1.50/1.00になるように混合した。窒素雰囲気中で焼成した後、冷却し、細かく粉砕した。目開き75μmの篩で分級し、Li(POの組成をもつリチウム複合酸化物を製造した。得られたリチウム複合酸化物Li(POは炭素を3.6%含有していた。この炭素は、リチウム複合前駆体Li1.2(POに含有されたものである。
Example 9
The lithium composite precursor Li 1.2 V 2 (PO 4 ) 3 from which lithium was extracted at a constant current with a button-type coin battery (CR 2032) was washed with DMC, dried, and lightly ground into water. Lithium oxide monohydrate (LiOH.H 2 O) was mixed so that the equivalent ratio of Li / V was 1.50 / 1.00. After firing in a nitrogen atmosphere, it was cooled and pulverized finely. The mixture was classified with a sieve having an opening of 75 μm to produce a lithium composite oxide having a composition of Li 3 V 2 (PO 4 ) 3 . The obtained lithium composite oxide Li 3 V 2 (PO 4 ) 3 contained 3.6% of carbon. This carbon is contained in the lithium composite precursor Li 1.2 V 2 (PO 4 ) 3 .
(実施例10)
 電解槽にて、一定電流でリチウムを引き抜いたペレット形状のリチウム複合前駆体Li1.2(POを、1mol/lのLiPF、DMCで洗浄して、乾燥し、軽く粉砕した粉末に水酸化リチウム・一水和塩(LiOH・HO)をLi/Vの当量比が1.50/1.00になるようにして混合した。窒素雰囲気中で焼成した後、冷却し、細かく粉砕した。目開き75μmの篩で分級し、Li(POの組成をもつリチウム複合酸化物を製造した。得られたリチウム複合酸化物Li(POは炭素を7.1%含有していた。この炭素は、リチウム複合前駆体Li1.2(POに含有されていたものである。
(Example 10)
In an electrolytic cell, a pellet-shaped lithium composite precursor Li 1.2 V 2 (PO 4 ) 3 from which lithium was extracted at a constant current was washed with 1 mol / l LiPF 6 and DMC, dried, and lightly pulverized. Lithium hydroxide monohydrate (LiOH.H 2 O) was mixed with the powder so that the equivalent ratio of Li / V was 1.50 / 1.00. After firing in a nitrogen atmosphere, it was cooled and pulverized finely. The mixture was classified with a sieve having an opening of 75 μm to produce a lithium composite oxide having a composition of Li 3 V 2 (PO 4 ) 3 . The obtained lithium composite oxide Li 3 V 2 (PO 4 ) 3 contained 7.1% of carbon. This carbon is contained in the lithium composite precursor Li 1.2 V 2 (PO 4 ) 3 .
(実施例11)
 ボタン型コイン電池(CR2032)で、一定電流でリチウムを引き抜いたペレット形状のリチウム複合前駆体Li0.5Ni1/3Co1/3Mn1/3とLi0.5CoOを、DMCで洗浄して、乾燥し、軽く粉砕した粉末に炭酸リチウム(LiCO)をLi/(Ni+Co+Mn)の当量比が1.00/1.00になるようにして混合した。大気中で焼成した後、冷却し、細かく粉砕した。目開き75μmの篩で分級し、LiCoOとLiNi1/3Co1/3Mn1/3の混合組成をもつリチウム複合酸化物を製造した。
(Example 11)
Lithium composite precursors Li 0.5 Ni 1/3 Co 1/3 Mn 1/3 O 2 and Li 0.5 CoO 2 in the form of pellets in which lithium is extracted at a constant current using a button-type coin battery (CR 2032), Lithium carbonate (Li 2 CO 3 ) was mixed with the powder obtained by washing with DMC, drying, and lightly pulverization so that the equivalent ratio of Li / (Ni + Co + Mn) was 1.00 / 1.00. After firing in the air, it was cooled and crushed finely. The mixture was classified with a sieve having an opening of 75 μm to produce a lithium composite oxide having a mixed composition of LiCoO 2 and LiNi 1/3 Co 1/3 Mn 1/3 O 2 .
(実施例12)
 電解槽にて、一定電流でリチウムを引き抜いたペレット形状のリチウム複合前駆体Li0.5Ni1/3Co1/3Mn1/3とLi0.5CoOをDMCで洗浄して、乾燥し軽く粉砕した粉末に水酸化リチウム・一水和塩(LiOH・HO)をLi/(Ni+Co+Mn)の当量比が1.00/1.00になるようにして混合した。大気中で焼成した後、冷却し、細かく粉砕した。目開き75μmの篩で分級し、LiCoOとLiNi1/3Co1/3Mn1/3の混合組成をもつリチウム複合酸化物を製造した。
Example 12
In an electrolytic cell, the lithium composite precursors Li 0.5 Ni 1/3 Co 1/3 Mn 1/3 O 2 and Li 0.5 CoO 2 with lithium extracted with a constant current were washed with DMC. Lithium hydroxide monohydrate (LiOH.H 2 O) was mixed with the dried and lightly pulverized powder so that the equivalent ratio of Li / (Ni + Co + Mn) was 1.00 / 1.00. After firing in the air, it was cooled and crushed finely. The mixture was classified with a sieve having an opening of 75 μm to produce a lithium composite oxide having a mixed composition of LiCoO 2 and LiNi 1/3 Co 1/3 Mn 1/3 O 2 .
 (実施例13)
 ボタン型コイン電池(CR2032)で、一定電流でリチウムを引き抜いたペレット形状のリチウム複合前駆体Li0.5FePOをDMCで洗浄して、乾燥し、軽く粉砕した粉末に水酸化リチウム・一水和塩(LiOH・HO)とスクロース(ショ糖:C122211)を添加した。Li/Feの当量比が1.00/1.00になるようにして混合した。窒素雰囲気中で焼成した後、冷却し、細かく粉砕した。目開き75μmの篩で分級し、LiFePOの組成をもつリチウム複合酸化物を製造した。得られたリチウム複合酸化物LiFePOは炭素を5.2%含有していた。この炭素は、リチウム複合前駆体Li0.5FePOに含有されていた炭素と混合時に添加したスクロースが還元されて、炭素化したものの混合物である。
(Example 13)
In a button-type coin battery (CR2032), a lithium composite precursor Li 0.5 FePO 4 in which lithium was extracted at a constant current was washed with DMC, dried, and lightly pulverized into lithium hydroxide / water Japanese salt (LiOH.H 2 O) and sucrose (sucrose: C 12 H 22 O 11 ) were added. The mixture was mixed so that the equivalent ratio of Li / Fe was 1.00 / 1.00. After firing in a nitrogen atmosphere, it was cooled and pulverized finely. The mixture was classified with a sieve having an opening of 75 μm to produce a lithium composite oxide having a composition of LiFePO 4 . The obtained lithium composite oxide LiFePO 4 contained 5.2% of carbon. This carbon is a mixture of carbon contained in the lithium composite precursor Li 0.5 FePO 4 and carbonized by reduction of sucrose added during mixing.
(実施例14)
 ボタン型コイン電池(CR2032)にて一定電流でリチウムを引き抜いたペレット形状のリチウム複合前駆体Li1.2(POをDMCで洗浄して、乾燥し、軽く粉砕した粉末に水酸化リチウム・一水和塩(LiOH・HO)とグルコース(ブドウ糖:C12)を混合した。Li/Vの当量比が1.50/1.00になるように混合した。窒素雰囲気中で焼成した後、冷却し、細かく粉砕した。目開き75μmの篩で分級し、Li(POの組成をもつリチウム複合酸化物を製造した。得られたリチウム複合酸化物Li(POは炭素を3.3%含有していた。この炭素は、リチウム複合前駆体Li1.2(POに含有されていた炭素と混合時に添加したグルコースが還元されて、炭素化したものの混合物である。
(Example 14)
The lithium composite precursor Li 1.2 V 2 (PO 4 ) 3 from which lithium was extracted at a constant current with a button-type coin battery (CR 2032) was washed with DMC, dried, and lightly ground into water. Lithium oxide monohydrate (LiOH.H 2 O) and glucose (glucose: C 6 H 12 O 6 ) were mixed. It mixed so that the equivalent ratio of Li / V might be 1.50 / 1.00. After firing in a nitrogen atmosphere, it was cooled and pulverized finely. The mixture was classified with a sieve having an opening of 75 μm to produce a lithium composite oxide having a composition of Li 3 V 2 (PO 4 ) 3 . The obtained lithium composite oxide Li 3 V 2 (PO 4 ) 3 contained 3.3% of carbon. This carbon is a mixture of carbon contained in the lithium composite precursor Li 1.2 V 2 (PO 4 ) 3 and carbonized by reduction of glucose added during mixing.
 実施例1-14のいずれにおいても、電気化学デバイスの正極活物質として用いたときに優れた充放電容量を有するようなリチウム複合酸化物を低コストで再生することができる。 In any of Examples 1-14, a lithium composite oxide having an excellent charge / discharge capacity when used as a positive electrode active material of an electrochemical device can be regenerated at low cost.
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 Note that the present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

Claims (14)

  1.  電気化学的又は化学的にリチウムが一部引き抜かれたリチウム複合前駆体を準備する工程と、
     前記リチウムが一部引き抜かれたリチウム複合前駆体にリチウム化合物を反応させる工程と
    を含むことを特徴とするリチウム複合酸化物の再生方法。
    Preparing a lithium composite precursor from which lithium is partially extracted electrochemically or chemically;
    And a step of reacting a lithium compound with a lithium composite precursor from which a part of the lithium has been extracted.
  2.  前記反応させる工程は、前記リチウムが一部引き抜かれたリチウム複合前駆体と前記リチウム化合物とを混合して焼成を行い、反応させる段階を含むことを特徴とする請求項1記載のリチウム複合酸化物の再生方法。 2. The lithium composite oxide according to claim 1, wherein the reacting step includes a step of mixing and reacting a lithium composite precursor from which a part of the lithium has been extracted and the lithium compound, followed by firing. How to play.
  3.  前記反応させる工程は、前記リチウムが一部引き抜かれたリチウム複合前駆体と前記リチウム化合物とを混合して、水熱反応させる段階を含むことを特徴とする請求項1に記載のリチウム複合酸化物の再生方法。 2. The lithium composite oxide according to claim 1, wherein the reacting step includes a step of mixing a lithium composite precursor from which the lithium has been partially extracted and the lithium compound and causing a hydrothermal reaction. How to play.
  4.  前記リチウムが一部引き抜かれたリチウム複合前駆体が、下記一般式(1):
      Li1-xCo1-z(0<x<1、0≦z<1)   ・・・(1)
    (式中、MはMn、Ni、Fe、V、Cr、Al、Nb、Ti、Cu、Znの群から選ばれる1種以上の金属元素を示す。)で表わされる複合酸化物であり、
     前記反応させる工程により得られるリチウム複合酸化物が、下記一般式(2):
      Li1-yCo1-z(0≦y<x、0≦z<1)   ・・・(2)
    (式中、MはMn、Ni、Fe、V、Cr、Al、Nb、Ti、Cu、Znの群から選ばれる1種以上の金属元素を示す。)で表わされるリチウムコバルト系複合酸化物であることを特徴とする請求項1から請求項3のいずれか1項に記載のリチウム複合酸化物の再生方法。
    The lithium composite precursor from which a part of the lithium has been extracted is represented by the following general formula (1):
    Li 1-x Co 1-z M z O 2 (0 <x <1, 0 ≦ z <1) (1)
    (Wherein M represents one or more metal elements selected from the group consisting of Mn, Ni, Fe, V, Cr, Al, Nb, Ti, Cu, and Zn),
    The lithium composite oxide obtained by the reacting step has the following general formula (2):
    Li 1-y Co 1-z M z O 2 (0 ≦ y <x, 0 ≦ z <1) (2)
    (Wherein, M represents one or more metal elements selected from the group consisting of Mn, Ni, Fe, V, Cr, Al, Nb, Ti, Cu, and Zn). The method for regenerating a lithium composite oxide according to any one of claims 1 to 3, wherein:
  5.  前記リチウムが一部引き抜かれたリチウム複合前駆体が、下記一般式(3):
      Li1-xFe1-zPO(0<x<1、0≦z<1)   ・・・(3)
    (式中、MはCo、Mn、Ni、V、Cr、Al、Nb、Ti、Cu、Znの群から選ばれる1種以上の金属元素を示す。)で表わされるリチウム鉄リン系複合酸化物であり、
     前記反応させる工程により得られるリチウム複合酸化物が、下記一般式(4):
      Li1-yFe1-zPO(0≦y<x、0≦z<1)   ・・・(4)
    (式中、MはCo、Mn、Ni、V、Cr、Al、Nb、Ti、Cu、Znの群から選ばれる1種以上の金属元素を示す。)で表わされるリチウム鉄リン系複合酸化物であることを特徴とする請求項1から請求項3のいずれか1項に記載のリチウム複合酸化物の再生方法。
    The lithium composite precursor from which a part of the lithium has been extracted is represented by the following general formula (3):
    Li 1-x Fe 1-z M z PO 4 (0 <x <1, 0 ≦ z <1) (3)
    (In the formula, M represents one or more metal elements selected from the group consisting of Co, Mn, Ni, V, Cr, Al, Nb, Ti, Cu, and Zn.) And
    The lithium composite oxide obtained by the reacting step has the following general formula (4):
    Li 1-y Fe 1-z M z PO 4 (0 ≦ y <x, 0 ≦ z <1) (4)
    (In the formula, M represents one or more metal elements selected from the group consisting of Co, Mn, Ni, V, Cr, Al, Nb, Ti, Cu, and Zn.) The method for regenerating a lithium composite oxide according to any one of claims 1 to 3, wherein:
  6.  前記リチウムが一部引き抜かれたリチウム複合前駆体が、下記一般式(5):
      Li3-x2-z(PO(0<x<3、0≦z<2) ・・・(5)
    (式中、MはCo、Mn、Ni、Fe、Cr、Al、Nb、Ti、Cu、Znの群から選ばれる1種以上の金属元素を示す。)で表わされるリチウムバナジウムリン系複合酸化物であり、
     前記反応させる工程により得られるリチウム複合酸化物が、下記一般式(6):
      Li3-y2-z(PO(0≦y<x、0≦z<2) ・・・(6)
    (式中、MはCo、Mn、Ni、Fe、Cr、Al、Nb、Ti、Cu、Znの群から選ばれる1種以上の金属元素を示す。)で表わされるリチウムバナジウムリン系複合酸化物であることを特徴とする請求項1から請求項3のいずれか1項に記載のリチウム複合酸化物の再生方法。
    The lithium composite precursor from which a part of the lithium is extracted is represented by the following general formula (5):
    Li 3−x V 2−z M z (PO 4 ) 3 (0 <x <3, 0 ≦ z <2) (5)
    (In the formula, M represents one or more metal elements selected from the group consisting of Co, Mn, Ni, Fe, Cr, Al, Nb, Ti, Cu, and Zn.) And
    The lithium composite oxide obtained by the reacting step has the following general formula (6):
    Li 3-y V 2-z M z (PO 4 ) 3 (0 ≦ y <x, 0 ≦ z <2) (6)
    (In the formula, M represents one or more metal elements selected from the group consisting of Co, Mn, Ni, Fe, Cr, Al, Nb, Ti, Cu, and Zn.) The method for regenerating a lithium composite oxide according to any one of claims 1 to 3, wherein:
  7.  前記リチウム複合前駆体として、2種以上のリチウム複合前駆体を用いることを特徴とする請求項1から請求項6のいずれか1項に記載のリチウム複合酸化物の再生方法。 The method for regenerating a lithium composite oxide according to any one of claims 1 to 6, wherein two or more lithium composite precursors are used as the lithium composite precursor.
  8.  前記リチウム複合前駆体として炭素を含有するものを準備し、
     前記反応させる工程により得られるリチウム複合酸化物が、前記リチウム複合前駆体が含有していた炭素を含有していることを特徴とする請求項1から請求項7のいずれか1項に記載のリチウム複合酸化物の再生方法。
    Prepare a carbon-containing one as the lithium composite precursor,
    8. The lithium according to claim 1, wherein the lithium composite oxide obtained by the reacting step contains carbon contained in the lithium composite precursor. 9. Method for regenerating composite oxide.
  9.  前記反応させる工程が前記リチウム複合前駆体と炭素化合物とを反応させる段階を含み、
     前記反応させる工程により得られるリチウム複合酸化物が、炭素を含有していることを特徴とする請求項1から請求項7のいずれか1項に記載のリチウム複合酸化物の再生方法。
    The step of reacting comprises reacting the lithium composite precursor with a carbon compound;
    The method for regenerating a lithium composite oxide according to any one of claims 1 to 7, wherein the lithium composite oxide obtained by the reacting step contains carbon.
  10.  請求項1から請求項9のいずれか1項に記載の方法により再生したリチウム複合酸化物。 A lithium composite oxide regenerated by the method according to any one of claims 1 to 9.
  11.  電気化学デバイスの負極活物質として用いたときに充放電効率が80%以下である負極活物質粒子を含有する負極活物質層と、負極集電体とからなる負極と、
     請求項10に記載のリチウム複合酸化物を含む正極活物質層と、正極集電体とからなる正極と
    を有することを特徴とする電気化学デバイス。
    A negative electrode active material layer containing negative electrode active material particles having a charge / discharge efficiency of 80% or less when used as a negative electrode active material of an electrochemical device, and a negative electrode comprising a negative electrode current collector,
    An electrochemical device comprising a positive electrode active material layer containing the lithium composite oxide according to claim 10 and a positive electrode comprising a positive electrode current collector.
  12.  組成式がSiO(0.5≦x<1.6)で表される酸化珪素を含有する負極活物質粒子を含有する負極活物質層と、負極集電体とからなる負極と、
     請求項10に記載のリチウム複合酸化物を含む正極活物質層と、正極集電体とからなる正極と
    を有することを特徴とする電気化学デバイス。
    A negative electrode comprising a negative electrode active material layer containing negative electrode active material particles containing silicon oxide represented by SiO x (0.5 ≦ x <1.6), and a negative electrode current collector;
    An electrochemical device comprising a positive electrode active material layer containing the lithium composite oxide according to claim 10 and a positive electrode comprising a positive electrode current collector.
  13.  リチウムイオン二次電池の負極活物質として用いたときに充放電効率が80%以下である負極活物質粒子を含有する負極活物質層と、負極集電体とからなる負極と、
     請求項10に記載のリチウム複合酸化物を含む正極活物質層と、正極集電体とからなる正極と
    を有することを特徴とするリチウムイオン二次電池。
    A negative electrode active material layer containing negative electrode active material particles having a charge / discharge efficiency of 80% or less when used as a negative electrode active material of a lithium ion secondary battery, and a negative electrode comprising a negative electrode current collector,
    A lithium ion secondary battery comprising a positive electrode active material layer containing the lithium composite oxide according to claim 10 and a positive electrode comprising a positive electrode current collector.
  14.  組成式がSiO(0.5≦x<1.6)で表される酸化珪素を含有する負極活物質粒子を含有する負極活物質層と、負極集電体とからなる負極と、
     請求項10に記載のリチウム複合酸化物を含む正極活物質層と、正極集電体とからなる正極と
    を有することを特徴とするリチウムイオン二次電池。
    A negative electrode comprising a negative electrode active material layer containing negative electrode active material particles containing silicon oxide represented by SiO x (0.5 ≦ x <1.6), and a negative electrode current collector;
    A lithium ion secondary battery comprising a positive electrode active material layer containing the lithium composite oxide according to claim 10 and a positive electrode comprising a positive electrode current collector.
PCT/JP2015/003935 2014-10-29 2015-08-05 Method for regenerating lithium composite oxide, lithium composite oxide, electrochemical device and lithium ion secondary battery WO2016067497A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014220199A JP6312576B2 (en) 2014-10-29 2014-10-29 Method for regenerating lithium composite oxide, method for producing electrochemical device, and method for producing lithium ion secondary battery
JP2014-220199 2014-10-29

Publications (1)

Publication Number Publication Date
WO2016067497A1 true WO2016067497A1 (en) 2016-05-06

Family

ID=55856870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/003935 WO2016067497A1 (en) 2014-10-29 2015-08-05 Method for regenerating lithium composite oxide, lithium composite oxide, electrochemical device and lithium ion secondary battery

Country Status (3)

Country Link
JP (1) JP6312576B2 (en)
TW (1) TWI682037B (en)
WO (1) WO2016067497A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108172922A (en) * 2016-12-07 2018-06-15 北京好风光储能技术有限公司 A kind of recycling method of semisolid lithium battery anode slurry
CN110453071A (en) * 2018-08-06 2019-11-15 南方科技大学 The method and device thereof of metal are recycled from waste lithium cell
JP2020140816A (en) * 2019-02-27 2020-09-03 トヨタ自動車株式会社 Method of separating solid electrolyte and positive electrode active material contained in slurry
CN115448381A (en) * 2022-09-08 2022-12-09 湖南五创循环科技有限公司 Recycling method and recycling device of waste lithium ion battery anode material
WO2023050802A1 (en) * 2021-09-30 2023-04-06 广东邦普循环科技有限公司 Method for separating and recovering valuable metals from waste ternary lithium batteries

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109962311B (en) * 2019-03-12 2021-09-14 南京工业大学 Recovery and reuse of vanadium pentoxide material in lithium ion battery
KR20210145455A (en) * 2020-05-25 2021-12-02 주식회사 엘지에너지솔루션 Reuse method of active material of positive electrode scrap
KR20210147597A (en) * 2020-05-29 2021-12-07 주식회사 엘지에너지솔루션 Reuse method of active material of positive electrode scrap
KR20210158233A (en) * 2020-06-23 2021-12-30 주식회사 엘지에너지솔루션 Reuse method of active material of positive electrode scrap
KR20220001363A (en) * 2020-06-29 2022-01-05 주식회사 엘지에너지솔루션 Reuse method of active material of positive electrode scrap
KR20220005157A (en) * 2020-07-06 2022-01-13 주식회사 엘지에너지솔루션 Reuse method of active material of positive electrode scrap
KR20220025410A (en) 2020-08-24 2022-03-03 주식회사 엘지에너지솔루션 Reuse method of active material of positive electrode scrap
KR20220025406A (en) 2020-08-24 2022-03-03 주식회사 엘지에너지솔루션 Electrode active material recovery device and reuse method of active material of positive electrode scrap
KR20220042663A (en) * 2020-09-28 2022-04-05 주식회사 엘지에너지솔루션 Reuse method of active material of positive electrode scrap
CN112713267A (en) * 2020-12-31 2021-04-27 中南大学 Lithium cobaltate composite material and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090214933A1 (en) * 2008-02-22 2009-08-27 Sloop Steven E Reintroduction of lithium into recycled battery materials
JP2012064557A (en) * 2010-09-20 2012-03-29 Korea Institute Of Science And Technology Method for reprocessing and synthesizing metal oxide positive electrode active material for lithium secondary battery
JP2012186150A (en) * 2011-02-15 2012-09-27 Sumitomo Chemical Co Ltd Method for recovering active material from discarded battery material
JP2012234732A (en) * 2011-05-02 2012-11-29 Asahi Kasei Corp Lithium recovery method
JP2014103019A (en) * 2012-11-21 2014-06-05 Shin Etsu Chem Co Ltd Negative electrode material for power storage device, electrode for power storage device, power storage device and method for manufacturing them

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5121614B2 (en) * 2008-07-18 2013-01-16 株式会社東芝 Battery active material, non-aqueous electrolyte battery and battery pack

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090214933A1 (en) * 2008-02-22 2009-08-27 Sloop Steven E Reintroduction of lithium into recycled battery materials
JP2012064557A (en) * 2010-09-20 2012-03-29 Korea Institute Of Science And Technology Method for reprocessing and synthesizing metal oxide positive electrode active material for lithium secondary battery
JP2012186150A (en) * 2011-02-15 2012-09-27 Sumitomo Chemical Co Ltd Method for recovering active material from discarded battery material
JP2012234732A (en) * 2011-05-02 2012-11-29 Asahi Kasei Corp Lithium recovery method
JP2014103019A (en) * 2012-11-21 2014-06-05 Shin Etsu Chem Co Ltd Negative electrode material for power storage device, electrode for power storage device, power storage device and method for manufacturing them

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108172922A (en) * 2016-12-07 2018-06-15 北京好风光储能技术有限公司 A kind of recycling method of semisolid lithium battery anode slurry
CN110453071A (en) * 2018-08-06 2019-11-15 南方科技大学 The method and device thereof of metal are recycled from waste lithium cell
CN110453071B (en) * 2018-08-06 2021-06-11 南方科技大学 Method and device for recovering metal from waste lithium battery
JP2020140816A (en) * 2019-02-27 2020-09-03 トヨタ自動車株式会社 Method of separating solid electrolyte and positive electrode active material contained in slurry
JP7070468B2 (en) 2019-02-27 2022-05-18 トヨタ自動車株式会社 Method of separating the solid electrolyte contained in the slurry and the positive electrode active material
WO2023050802A1 (en) * 2021-09-30 2023-04-06 广东邦普循环科技有限公司 Method for separating and recovering valuable metals from waste ternary lithium batteries
GB2621294A (en) * 2021-09-30 2024-02-07 Guangdong Brunp Recycling Technology Co Ltd Method for separating and recovering valuable metals from waste ternary lithium batteries
CN115448381A (en) * 2022-09-08 2022-12-09 湖南五创循环科技有限公司 Recycling method and recycling device of waste lithium ion battery anode material
CN115448381B (en) * 2022-09-08 2024-02-27 湖南五创循环科技有限公司 Recycling method and recycling device for waste lithium ion battery anode material

Also Published As

Publication number Publication date
TWI682037B (en) 2020-01-11
TW201631161A (en) 2016-09-01
JP6312576B2 (en) 2018-04-18
JP2016085953A (en) 2016-05-19

Similar Documents

Publication Publication Date Title
JP6312576B2 (en) Method for regenerating lithium composite oxide, method for producing electrochemical device, and method for producing lithium ion secondary battery
US8313721B2 (en) Lithium-oxygen (AIR) electrochemical cells and batteries
JP5152246B2 (en) Cathode active material for lithium ion secondary battery and lithium ion secondary battery
KR20180052565A (en) Divalent metal doping for sodium manganese oxide as cathode material for sodium ion batteries
JP5987401B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and secondary battery
KR20170075596A (en) Positive electrode active material for rechargeable lithium battery, method for menufacturing the same, and rechargeable lithium battery including the same
JPWO2012176471A1 (en) Lithium-containing composite oxide powder and method for producing the same
KR20140111045A (en) Manganese spinel-type lithium transition metal oxide
JP6294219B2 (en) Method for producing lithium cobalt composite oxide
KR20160009015A (en) Positive electrode active material for lithium secondary battery
JP5516463B2 (en) Method for producing positive electrode active material for lithium ion secondary battery
JP6374348B2 (en) Lithium phosphorus-based vanadium composite oxide carbon composite, method for producing the same, lithium ion secondary battery, and electrochemical device
JP4900888B2 (en) Lithium transition metal oxides for lithium batteries
WO2016103558A1 (en) Lithium-phosphorus composite oxide carbon composite, production method therefor, electrochemical device, and lithium ion secondary battery
JP2013060319A (en) Lithium manganese (iv) nickel (iii)-based oxide, positive electrode active material for lithium ion secondary battery containing the oxide, lithium ion secondary battery using the material, and vehicle carrying the battery
WO2014073701A1 (en) Positive electrode active material, lithium battery, and manufacturing method for positive electrode active material
KR100454238B1 (en) composite cathode with MgxNi1-xO for rechargeable Li/S secondary cell, Li/S secondary cell
KR20160009016A (en) Positive electrode active material for lithium secondary battery
JP3610943B2 (en) Nonaqueous electrolyte secondary battery
JP2017004912A (en) Spinel lithium-manganese composite oxide and method for producing the same, and lithium ion secondary battery and electrochemical device
JP2012017255A (en) Lithium transition metal oxide for lithium battery
CN113748540B (en) Electrochemical device and electronic device
JP7192397B2 (en) Lithium-cobalt-manganese composite oxide and lithium secondary battery containing the same
JP4851699B2 (en) Anode active material for non-aqueous electrolyte electrochemical cell and non-aqueous electrolyte electrochemical cell using the same
WO2015019483A1 (en) Positive electrode active material for nonaqueous secondary batteries, positive electrode for nonaqueous secondary batteries using same, and nonaqueous secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15853677

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15853677

Country of ref document: EP

Kind code of ref document: A1