JP2012188708A - 金属ナノ粒子及びそれを含む造影剤 - Google Patents

金属ナノ粒子及びそれを含む造影剤 Download PDF

Info

Publication number
JP2012188708A
JP2012188708A JP2011053879A JP2011053879A JP2012188708A JP 2012188708 A JP2012188708 A JP 2012188708A JP 2011053879 A JP2011053879 A JP 2011053879A JP 2011053879 A JP2011053879 A JP 2011053879A JP 2012188708 A JP2012188708 A JP 2012188708A
Authority
JP
Japan
Prior art keywords
mnpc2ss
contrast agent
imaging agent
metal nanoparticle
aunp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011053879A
Other languages
English (en)
Inventor
Yutaka Hitomi
穣 人見
Kazuki Aoki
一樹 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Doshisha Co Ltd
Original Assignee
Doshisha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Doshisha Co Ltd filed Critical Doshisha Co Ltd
Priority to JP2011053879A priority Critical patent/JP2012188708A/ja
Priority to PCT/JP2012/055329 priority patent/WO2012124502A1/ja
Publication of JP2012188708A publication Critical patent/JP2012188708A/ja
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1818Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
    • A61K49/1821Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles
    • A61K49/1824Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles
    • A61K49/1827Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle
    • A61K49/1833Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with a small organic molecule
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/04X-ray contrast preparations
    • A61K49/0409Physical forms of mixtures of two different X-ray contrast-enhancing agents, containing at least one X-ray contrast-enhancing agent which is not a halogenated organic compound
    • A61K49/0414Particles, beads, capsules or spheres
    • A61K49/0423Nanoparticles, nanobeads, nanospheres, nanocapsules, i.e. having a size or diameter smaller than 1 micrometer
    • A61K49/0428Surface-modified nanoparticles, e.g. immuno-nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/08Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
    • A61K49/10Organic compounds
    • A61K49/101Organic compounds the carrier being a complex-forming compound able to form MRI-active complexes with paramagnetic metals
    • A61K49/106Organic compounds the carrier being a complex-forming compound able to form MRI-active complexes with paramagnetic metals the complex-forming compound being cyclic, e.g. DOTA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D513/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00
    • C07D513/22Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00 in which the condensed system contains four or more hetero rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/25Noble metals, i.e. Ag Au, Ir, Os, Pd, Pt, Rh, Ru

Abstract

【課題】人体への毒性が少なく、かつ水分子の緩和力をより増大することができるMRI造影剤及びCT造影剤、並びにこれらの材料となる金属ナノ粒子を提供する。
【解決手段】この発明の金属ナノ粒子は、銀イオン、金イオン、白金イオンなどの貴金属イオンを、下記化学式(I)で表されるマンガンポルフィリン錯体で被覆してなるものである。また、この発明のMRI造影剤及びCT造影剤は、前記金属ナノ粒子を含むものである。

【選択図】なし

Description

この発明は、金属ナノ粒子及びそれを含む造影剤に関する。
核磁気共鳴画像法(以下、MRIと略す。)は、人体内部の血管や臓器の立体画像を非侵襲的に得られる有力な医療診断技術であり、骨折などの整形外科的な疾患、脳腫瘍などの癌など様々な疾患に使用されている。
MRIでは、画像にコントラストを付けたり、特定の組織を強調して撮影するため、MRI造影剤を何らかの方法で生体内に注入したのち、核磁気共鳴現象(以下NMR現象と略す。)を利用して画像を得ることが、一般的である。
MRI造影剤としては、合成スピン核運動量による磁気モーメントが最大となることから、一般的にガドリニウム造影剤が使用されている。ガドリニウム造影剤は、ガドリニウム単体による人体毒性を抑制するため、ガドリニウムイオンをキレート剤で安定化させた化合物である。現在、キレート剤の異なる様々な化合物が開発され、使用されている(特許文献1から14、非特許文献1から10を参照)。
しかし、ガドリニウム造影剤は完全に無害ではなく、例えば、ガドリニウム造影剤を重篤な陣障害のある患者に使用すると、腎性全身性繊維症が発症するとの問題点があった。なお、腎性全身性繊維症とは、ガドリニウム造成剤の投与後数日から数ヶ月、時に数年後に疼痛などにて発症し、進行すると四肢関節の拘縮を生じて活動が著しく制限される疾患である。また、腎性全身性繊維症は、現時点での確立された治療法はなく、その死亡率は20〜30%と推測される疾患でもある(非特許文献11を参照。)。
特開2003−000000号公報 特開2010−248248号公報 特開2010−209098号公報 特開2010−037169号公報 特開2009−269855号公報 特開2009−196907号公報 特開2009−196906号公報 特開2009−126864号公報 特開2009−022273号公報 特開2008−222804号公報 特開2008−156402号公報 特開2008−143805号公報 特開2008−120721号公報 特開2008−081454号公報
K. Nikolaou et al. Radiology 2006, 241, 861. T. Fenzel et al. Invets. Radiol., 2008, 43, 817-828. A. Nicoletta, European Neurological Review, 2009, 4(2), 98-102. "Gadolinium-containing Contrast Agents for Magnetic Resonance Imaging (MRI): Omniscan, OptiMARK, Magnevist, ProHance, and MultiHance"、[online]、U.S.Food and Drug Administration 、[平成23年2月21日検索]、インターネット<URL:http://www.fda.gov/Safety/MedWatch/SafetyInformation/SafetyAlertsforHumanMedicalProducts/ucm150564.htm> Peter Caravan, Chem. Soc. Rev., 2006, 35, 512. R.B. Lauffer, et al., Acad. Radiol., 1996; 3 (Suppl 2): S356-8. R.B. Lauffer, et al., Raiology., 1998, 207, 529.; T.M. Grist, et al., Raiology., 1998, 207, 539. Victor Chechik et al., Chem. Commun. 2010, 451. S. Roux et al., Adv. Funct. Mater. 2006, 16, 2330. Ji-Ae Park et al., Bioorg. Med. Chem. Lett. 2010, 2287. 「腎障害患者におけるガドリニウム造影剤使用に関するガイドライン(2008年8月)」、[online]、社団法人 日本医学放射線学会、[平成23年2月21日検索]、インターネット<URL:http://www.radiology.jp/modules/news/article.php?storyid=675>
そこで、この発明は、人体への毒性が少なく、かつ水分子の緩和力をより増大することができるMRI造影剤及びCT造影剤、並びにこれらの材料となる金属ナノ粒子を提供することを課題とする。
この発明は、MRI造影剤として、貴金属イオンを、マンガンポルフィリン錯体で被覆してなる金属ナノ粒子を使用することを最も主要な特徴とする。なお、この金属ナノ粒子は、エックス線吸収能の大きい原子番号の高い元素である貴金属イオンを含んでいるため、CT造影剤としても利用可能である。
この発明の金属ナノ粒子は、化学的に安定で人体への毒性がない貴金属イオンを、生体成分に近く、人体への毒性がないマンガンポルフィリン錯体で被覆してなるものである。そのため、この金属ナノ粒子を使用すれば、ガドリニウム造影剤と比べてより人体への毒性が少ないMRI造影剤、CT造影剤を得ることができる。
図1は、この発明の金属ナノ粒子の構成成分であるマンガンポルフィリン錯体の合成経路を示す図である。 図2は、S/Auが異なる金属ナノ粒子の透過型電子顕微鏡画像である。 図3は、S/Auと平均粒径との関係をプロットしたグラフである。 図4は、マンガンポルフィリン錯体又は金属ナノ粒子を含む水溶液のT1緩和時間を、濃度を変えて測定した結果を示すグラフである。
この発明は、金属ナノ粒子とそれを含むMRI造影剤及びCT造影剤に関する。そこで、以下に、これらについて説明する。
1.金属ナノ粒子
この発明の金属ナノ粒子は、貴金属イオンを、下記化学式(I)で表されるマンガンポルフィリン錯体で被覆してなるものである。なお、貴金属イオンとは、銀イオン、金イオン、白金イオンのことである。
この発明の金属ナノ粒子は、貴金属イオンを含む塩と、前記化学式(I)に示すマンガンポルフィリン錯体とを、反応容器中で反応させたのち、精製することによって得られる。ここで、貴金属イオンを含む塩としては、公知のものであれば特に限定することなく使用できる。具体的には、硝酸銀、3価の金塩である塩化金酸、1価の金塩である塩化金、塩化白金酸カリウムなどが例示できる。中でも、低価格であることから塩化銀が好ましく、X線吸収率が高くて、金属ナノ粒子が可視光領域に表面プラズモンバンドを有する点から、塩化金酸の使用が好ましい。
また、この発明の金属ナノ粒子は、マンガンポルフィリン錯体に含まれる硫黄原子のモル数と、金イオンを含む塩中の金原子のモル数との比(モル比、以下、S/Auと省略する。)によって、その直径(流体力学的直径)を調節することができる。具体的には、実施例において後述するように、この発明の金属ナノ粒子の流体学的直径は、S/Auが大きくなるにつれて、小さくなることが分かっている。
一方、Choiらによると、流体力学直径が5.5nm以下のナノ粒子は腎臓の糸球体を通過し尿として排出されることが既に分かっている(H.S. Choi et al. Nature Bitotech., 2007, 25, 1165.)。そこで、糸玉体を通過して尿として排出可能できるように、金属ナノ粒子を製造する際には、金イオンを含む塩と、前記化学式(I)に示すマンガンポルフィリン錯体との量比を調節して反応させることが好ましい。
2.MRI造影剤及びCT造影剤
この発明の金属ナノ粒子は、単体で又は公知の製剤用担体とともにMRI造影剤及びCT造影剤を構成して、ヒト又はそれ以外の動物に投与することができる。この発明のMRI造影剤及びCT造影剤の剤形としては特に制限されるものではなく、必要に応じて適宜選択すればよい。
具体的には、注射剤、点滴剤等の非経口剤として利用することが一般的ではあるが、錠剤、カプセル剤、顆粒剤、細粒剤、散剤等の経口剤として利用する可能性もある。なお、造影剤中の金属ナノ粒子の濃度、患者への造影剤の投与量は、金属ナノ粒子の濃度や患者の年齢、体重、疾患の程度に応じて自由に選択することができる。
この発明の造影剤を注射剤、点滴剤等の非経口剤として製造する場合には、注射用蒸留水、生理食塩水希釈剤、ブドウ糖水溶液等の希釈剤とともに、公知の方法によって製造することができる。なお、必要に応じて、殺菌剤、防腐剤、安定剤を加えてもよい。また、この非経口剤は安定性の点から、バイアル等に充填後冷凍して、通常の凍結乾燥処理により水分を除き、使用直前に凍結乾燥物から液剤に再調製することもできる。さらに、必要に応じて、等張化剤、安定剤、防腐剤、無痛化剤を加えてもよい。
この発明の造影剤を錠剤等の経口剤として製造する場合には、公知の賦型剤、結合剤、崩壊剤、界面活性剤、滑沢剤、流動性促進剤等とともに、公知の製造方法により製造することができる。また、この発明の造影剤は、懸濁液、エマルジョン剤、シロップ剤、エリキシル剤としてとしても経口投与することができる。この場合、矯味剤、矯臭剤、着色剤などを含有していてもよい。
なお、この発明の造影剤は公知のDDS技術、例えば、この発明の造影剤をリポソームなどの運搬体に封入して、体内投与してもよい。この場合、標的部位の細胞を特異的に認識する運搬体などを利用すれば、この発明の造影剤を標的部位に効率よく運ぶことができる。
以下、この発明について実施例に基づいてより詳細に説明する。ただし、以下の実施例によって、この発明の特許請求の範囲は如何なる意味においても制限されない。
(1)金属ナノ粒子の調製
この発明に係る金属ナノ粒子(以下、AuNP@MnPC2SSと省略する。)を調製した。具体的には、図1の反応経路に沿って、マンガンポルフィリン錯体(以下、MnPC2SSと省略する。)を合成したのち、これと塩化金酸とを反応させてAuNP@MnPC2SSを調製した。なお、理解しやすくするため、以下の説明では、同じ化合物については図1と同じように表記した。
(a)試薬
α,α,α,α-5,10,15,20-tetrakis(o-bis-disulfidepropylamidophenyl)porphyrin (以下、H2-PC2SSと省略する。)は、論文1(Y. Hitomi, J. Ohyama, Y. Higuchi, K. Aoki, T. Shishido, T. Funabiki, M. Kodera, T. Tanaka, Bulletin of the Chemical Society of Japan, 2010, 83(11), 1392-1396)と論文2(Victor V. Borovkov et al. Synlett, 1999, 61-62.)に従って合成したものを使用した。これ以外の試薬については市販のものを使用した。
(b)測定装置
有機元素分析装置は、Series II CHNS/O Analyzer 2400(Perkin Elmer製)、紫外可視吸収スペクトル分析計はHP8453(Agilent社製)、高分解能質量分析計(HRMS)はJEOL JMS-T100CS(JEOL社製)、NMRはJMN-A 500(JEOL社製)をそれぞれ使用した。
(c)MnPC2SSの合成
H2-PC2SS(100mg,0.098mmol)をクロロホルム(100mL)に溶解した。窒素雰囲気下、2,6-ジメチルピリジン(1mL)と、塩化マンガン(II)4水和物(0.40g,2.00mmol)のメタノール溶液とを加え、35℃で6時間撹拌した。反応の終了をTLC(Rf=0.31,SiO2,クロロホルム:メタノール=30:1)、吸収スペクトル、蛍光スペクトルで確認した。
反応終了後、ロータリーエバポレータで溶媒を除去し、残渣をクロロホルムと水で分液した。クロロホルム層を濃縮したのち、カラムクロマトグラフィー(SiO2、クロロホルム:メタノール=40:1)によって精製した。得られたフラクションを濃縮し、暗緑色固体を得た。この固体をジクロロメタンに溶解させ、ヘキサンを加えて再結晶した。メンブレンフィルターにより結晶をろ過して、結晶を真空乾燥した。その結果、暗緑色固体を得た(70.8mg、収率67.2%)。なお、この錯体は、有機元素分析装置、紫外可視吸収スペクトル分析計、高分解能質量分析計(HRMS)により同定した。その結果を以下に示す。
Anal. Calcd for C56H48ClMnN8O4S4 ([MnPC2SS(Cl)](H2O)3) : C, 59.26%; H, 4.44%; N, 9.87%. Found: C, 59.29%; H, 4.27%; N, 9.51%; UV-Vis λmax in EtOH [nm (ε/M-1 cm-1)]: 378 (4.14×104), 397 (3.95×104), 466 (9.42×104), 567 (1.13×104), 775 (1.33×103); MS (ESI, pos) m/z = 1075.1 ([M-Cl]+), 1133.1 ([M+Na]+).
(d)AuNP@MnPC2SSの調製
マンガンポルフィリン錯体と金とのモル比が異なる金属ナノ粒子を調製した。具体的には次のようにして行った。MnPC2SS(例えば、S/Au=1の場合:5.6mg,5.0μmol,S/Au=4の場合:22.4mg,20.1μmol,S/Au=16の場合:89.7mg,80.5μmol)をN,N-ジメチルアセトアミド(95ml)に溶解した。この溶液に、塩化金酸のN,N-ジメチルアセトアミド(20.6mM,0.10ml)溶液を加え、1時間撹拌した。反応液を激しく撹拌させながら、NaBH4のN,N-ジメチルアセトアミド溶液(48.1mM,5ml)を一気に加えたのち、1.5時間撹拌した。ロータリーエバポレータで溶媒を約5mlにまで濃縮し、遠心分離機(遠心条件:20000G,30min,4℃)によって、反応溶液内の粒子を沈殿させ、沈殿した粒子をメタノールで繰り返し洗浄して、風乾した。
(2)粒径測定
(1)で合成したS/Auの異なるAuNP@MnPC2SSの粒径を、その透過型電子顕微鏡(TEM)画像から測定した。まず、AuNP@MnPC2SSのN,N-ジメチルアセトアミド溶液を調製したのち、これをエラスチックカーボン支持膜(応研商事株式会社製)に滴下して真空乾燥した。つぎに、これの透過型電子顕微鏡(TEM)画像を撮影して、各サンプルのごとに200個の粒子の粒径を測定し、その相加平均を平均粒径とした。なお、透過型電子顕微鏡画像はJEOL JEM-2100F(加速電圧 200kV)を使用した。その結果を表1、図2、図3に示す。
図2は、S/Auが異なるAuNP@MnPC2SSの透過型電子顕微鏡画像である。また、表1は、S/Auと平均粒径との関係を示している。さらに、図3は表1をグラフにプロットしたものである。
図2、図3、表1から、S/Auが大きくなるにつれて、AuNP@MnPC2SSの平均粒径がなだらかに小さくなることが分かった。そして、この結果と先述の流体力学直径が5.5nm以下のナノ粒子が腎臓の糸球体を通過し尿として排出できるとするChoiらの文献から、この発明の金属ナノ粒子(AuNP@MnPC2SS)は、S/Auが1〜16の範囲であれば腎臓の糸球体を通過し尿として排出でき、医薬品として使用しても安全であることが分かった。
(3)AuNP@MnPC2SSの分子量測定
(1)と同様に合成したS/Auの異なるAuNP@MnPC2SSの分子量等を、高周波誘導結合プラズマ発光分光分析法(以下、ICP-OESと省略する。)によって測定した。具体的には、以下のようにして測定した。なお、合成したAuNP@MnPC2SSの直径については(2)と同様にして測定した。
まず、表面プラズモンバンドの吸光度が1のAuNP@MnPC2SSのDMA溶液2mLを、乾燥した200mlのコニカルビーカに入れ、これに王水2mlを加えて完全に溶解させた。つぎに、ICP-OESによって、AuNP@MnPC2SSのマンガンイオンと金イオンとの割合を算出した。
つぎに、(2)と同様にして得られたAuNP@MnPC2SSの直径から求まる体積と、金の密度及びその原子量から、AuNP@MnPC2SSの1個に含まれる金イオンの数を算出した。そして、AuNP@MnPC2SS中の金イオンの数と、AuNP@MnPC2SSのマンガンイオンと金イオンとの割合から、AuNP@MnPC2SS1分子中のマンガンイオンの数、すなわち、MnPC2SSの数を算出した。最後に、AuNP@MnPC2SS中の金イオンの数とMnPC2SSの数から、AuNP@MnPC2SSの分子量を算出した。その結果を表2に示す。
(4)AuNP@MnPC2SSによる水のT1緩和速度の測定及び緩和能の算出
(3)で合成した金属ナノ粒子による水のT1緩和能を以下のようにして測定した。まず、濃度の異なるMnPC2SS、直径4.5nmのAuNP@MnPC2SS、直径2.3nmのAuNP@MnPC2SSのN,N-ジメチルアセトアミド/H2O溶液(v/v=1/1)を調製した。
つぎに、各溶液のT1緩和時間を、フーリエ変換核磁気共鳴装置(ECA-500RX、日本電子製)を使用して測定した。これにより得られた各濃度におけるT1緩和時間の逆数と、各溶液の濃度との関係をグラフにプロットした。その結果を図4に示す。また、図4の傾きから、その緩和力r1を算出した。その結果を表2に示す。
図4及び表2の結果から、AuNP@MnPC2SSの分子量が大きくなるにつれて、その緩和能が向上することが分かった。このことから、この発明の金属ナノ粒子を合成する際にS/Auを大きくすることにより、すなわち、金属ナノ粒子を合成する際のマンガンポルフィリン錯体のモル比を高めることにより、金属ナノ粒子の緩和能の高い、より優れたMRI造影剤が得られることが分かった。

Claims (4)

  1. 貴金属イオンを、下記化学式(I)で表されるマンガンポルフィリン錯体で被覆してなる金属ナノ粒子。
  2. 貴金属イオンが、金イオンである請求項1に記載の金属ナノ粒子。
  3. 請求項1に記載の金属ナノ粒子を含むMRI造影剤。
  4. 請求項1に記載の金属ナノ粒子を含むCT造影剤。
JP2011053879A 2011-03-11 2011-03-11 金属ナノ粒子及びそれを含む造影剤 Withdrawn JP2012188708A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011053879A JP2012188708A (ja) 2011-03-11 2011-03-11 金属ナノ粒子及びそれを含む造影剤
PCT/JP2012/055329 WO2012124502A1 (ja) 2011-03-11 2012-03-02 金属ナノ粒子及びそれを含む造影剤

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011053879A JP2012188708A (ja) 2011-03-11 2011-03-11 金属ナノ粒子及びそれを含む造影剤

Publications (1)

Publication Number Publication Date
JP2012188708A true JP2012188708A (ja) 2012-10-04

Family

ID=46830577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011053879A Withdrawn JP2012188708A (ja) 2011-03-11 2011-03-11 金属ナノ粒子及びそれを含む造影剤

Country Status (2)

Country Link
JP (1) JP2012188708A (ja)
WO (1) WO2012124502A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3099052B1 (fr) * 2019-07-23 2022-03-25 Univ Franche Comte Structures particulaires à base de nanoparticules d’or, leurs procédés de préparation et leurs utilisations dans le traitement des tumeurs solides

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03284629A (ja) * 1990-03-30 1991-12-16 Sakai Chem Ind Co Ltd Mri用造影剤
JPH06234661A (ja) * 1993-02-08 1994-08-23 Eiken Chem Co Ltd 動脈硬化巣のmri造影剤およびmri造影方法
JPH10330288A (ja) * 1997-06-03 1998-12-15 Mitsubishi Chem Corp 金属微粒子複合体及びこれを利用した造影剤
JP2001233883A (ja) * 2000-02-22 2001-08-28 Okayama Pref Gov Shin Gijutsu Shinko Zaidan カゴ状ホウ素化合物担持ポルフィリン錯体
US20070098640A1 (en) * 2005-11-02 2007-05-03 General Electric Company Nanoparticle-based imaging agents for X-ray/computed tomography

Also Published As

Publication number Publication date
WO2012124502A1 (ja) 2012-09-20

Similar Documents

Publication Publication Date Title
Santos-Silva et al. Towards improved therapeutic CORMs: understanding the reactivity of CORM-3 with proteins
JP4885877B2 (ja) 被影響体のインビボ環境から放射性セシウム(*Cs)、放射性ストロンチウム(*Sr)、および放射性ヨウ素(*I)を同時除染する予防混合物
EP2791254B1 (en) Functionalised silicon nanoparticles
CN108030921B (zh) 一种白蛋白负载金属卟啉配合物纳米颗粒的制备方法及其应用
CN108409756B (zh) 一种基于喜树碱类的异二聚体多功能前药及其制备方法和应用
Mokhtari et al. Medical applications of nano-baskets
CN110408047B (zh) 纳米配位聚合物及其制备方法和应用
CN104013968B (zh) 一种叶酸修饰胆固醇疏水改性海藻酸钠自组装纳米粒及其制备方法和应用
CN113264906B (zh) 多西他赛二聚体小分子前药及其自组装纳米粒的构建
JP2009511432A (ja) 金属フレロール及び腫瘍(癌)生長抑制薬物を製造するための金属フレロールの使用
CN111116521B (zh) 茄尼醇修饰的紫杉醇前药及其制备方法和应用
CN111135299A (zh) 光敏剂-低氧激活前药一体化前药自组装纳米粒的构建
CN110478318A (zh) 一种芬顿试剂和阿霉素共转运靶向纳米载体及其制备方法
CN106420664A (zh) 一种具有抗癌活性的阿司匹林偶联物作为药物载体或者分子探针载体的应用
JP5674941B2 (ja) ヨードを含有した放射形状の高分子化合物、その製造方法及びそれを含有するct用造影剤組成物
Chen et al. A magnesium-based coordination container as a multi-drugs co-loaded system for boosting anti-inflammatory therapy in joints
CN107216362A (zh) 一种阿糖胞苷两亲性小分子前药及其制备方法和应用
CN103768620B (zh) Fe/介孔氧化硅纳米复合材料及其制备方法和应用
Zhang et al. Water-Dispersible Bismuth–Organic Materials with Computed Tomography Contrast Properties
WO2012124502A1 (ja) 金属ナノ粒子及びそれを含む造影剤
JP2019163229A (ja) ホウ素同位体を含有するナノシリカ粒子のホウ素中性子捕捉剤
JP6846404B2 (ja) 生体適合性逆ミセル系内におけるシアノ架橋金属ナノ粒子のin situ調製
CN102827227B (zh) 一种腺苷衍生物修饰的硅酞菁及其制备方法和应用
Dirersa et al. Preclinical Assessment of Enhanced Chemodynamic Therapy by an FeMnO x-Based Nanocarrier: Tumor-Microenvironment-Mediated Fenton Reaction and ROS-Induced Chemotherapeutic for Boosted Antitumor Activity
CN103936880A (zh) 纳米级颗粒型辅料

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140513