JP2012183552A - Heater tip, joining device, and joining method - Google Patents

Heater tip, joining device, and joining method Download PDF

Info

Publication number
JP2012183552A
JP2012183552A JP2011047462A JP2011047462A JP2012183552A JP 2012183552 A JP2012183552 A JP 2012183552A JP 2011047462 A JP2011047462 A JP 2011047462A JP 2011047462 A JP2011047462 A JP 2011047462A JP 2012183552 A JP2012183552 A JP 2012183552A
Authority
JP
Japan
Prior art keywords
iron
solder
heater chip
tip
recess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011047462A
Other languages
Japanese (ja)
Inventor
Shinichi Harada
慎一 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOBO PDA CO Ltd
Miyachi Technos Corp
Original Assignee
KOBO PDA CO Ltd
Miyachi Technos Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOBO PDA CO Ltd, Miyachi Technos Corp filed Critical KOBO PDA CO Ltd
Priority to JP2011047462A priority Critical patent/JP2012183552A/en
Publication of JP2012183552A publication Critical patent/JP2012183552A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To perform soldering which is high in reliability in strength with respect to an article to be joined (particularly covered wire).SOLUTION: A heater tip 10 has a nearly rectangular-parallelepiped-shaped soldering iron part 12 which is a projecting region at the lowest end in the posture of an ordinary form of use, and is provided with a recess 14 for supplying a solder, which communicates with the tip surface 12b of an iron on one side face 12a of the soldering iron part 12. In a work for joining a lead wire 100 to a terminal 104 on a printed wiring board 102, the insulating coating of the lead wire 100 is peeled and just after a primary solder 105 which is coated beforehand on the surface of the terminal 104 is melted, a second solder 66 composed of a linear solid solder is inserted (supplied) into the recess 14 of the heater tip 10.

Description

本発明は、ハンダ付けに用いるヒータチップ、接合装置および接合方法に係り、特にリフローソルダリングに用いて好適なヒータチップに関する。   The present invention relates to a heater chip, a bonding apparatus, and a bonding method used for soldering, and more particularly to a heater chip suitable for use in reflow soldering.

従来より、たとえば外付け電気部品のリード線(被覆線)100をプリント配線板102上の端子(接続パッドまたは電極等)104にリフローソルダリングで接合するために、図15に示すように、コテ部106を有するヒータチップ108が用いられている(たとえば特許文献1参照)。   Conventionally, for example, in order to join a lead wire (covered wire) 100 of an external electrical component to a terminal (connection pad or electrode) 104 on a printed wiring board 102 by reflow soldering, as shown in FIG. A heater chip 108 having a portion 106 is used (see, for example, Patent Document 1).

このタイプのヒータチップ108は、高融点金属たとえばタングステンあるいはモリブデンからなる略コ字状の板体として形成され、凹形の向き(姿勢)で底辺より下方に突出する小片状のコテ部106を水平にし、左右両端の接続端子部110L,110Rをヒータヘッド112に取り付けている。図示のヒータヘッド112は、ヒータ電源(図示せず)の出力端子に通じる一対の給電用導体114L,114Rの一側面にボルト116L,116Rでヒータチップ108の左右接続端子110L,110Rを物理的かつ電気的にそれぞれ接続しており、給電用導体114L,114Rを介してヒータチップ108を上下に移動させる昇降機構や被接合物に向けて押圧する加圧機構(図示せず)を有している。給電用導体114L,114Rの間には両者を電気的に分離するための絶縁体118が挟まれている。   This type of heater chip 108 is formed as a substantially U-shaped plate body made of a refractory metal such as tungsten or molybdenum, and includes a small piece-like iron portion 106 that protrudes downward from the bottom in a concave direction (posture). The connection terminal portions 110L and 110R at the left and right ends are attached to the heater head 112 in a horizontal manner. The illustrated heater head 112 physically connects the left and right connection terminals 110L and 110R of the heater chip 108 with bolts 116L and 116R on one side of a pair of power supply conductors 114L and 114R that communicate with an output terminal of a heater power source (not shown). They are electrically connected to each other, and have an elevating mechanism for moving the heater chip 108 up and down via the power supply conductors 114L and 114R, and a pressurizing mechanism (not shown) for pressing toward the object to be joined. . An insulator 118 is electrically sandwiched between the power supply conductors 114L and 114R to electrically separate them.

図15において、プリント配線板102は、図示しない作業台(たとえばXYテーブル)上に水平に載置されており、リード線100は端子104の上に載せられる。端子104の表面には、予めクリーム状のハンダまたはメッキのハンダ105がコーティングされている。   In FIG. 15, the printed wiring board 102 is horizontally placed on a work table (for example, an XY table) (not shown), and the lead wire 100 is placed on the terminal 104. The surface of the terminal 104 is coated with cream-like solder or plating solder 105 in advance.

ヒータヘッド112がヒータチップ108を下ろすと、図16に示すように、ヒータチップ108のコテ部106の下面つまりコテ先面106aが被接合部つまりリード線100およびプリント配線板102側の端子104に適度な加圧力で接触する。このようにヒータチップ108のコテ部106を被接合部(100,104)に押し当てた状態の下で、ヒータ電源がオンしてヒータチップ108に電流を供給すると、ヒータチップ108のコテ部106が抵抗発熱し、被接合部(100,104)を加熱する。これによって、リード線100の絶縁被膜が熱で溶けて剥がれ、リード線100の周囲のハンダ105も溶ける。溶けたハンダ105は、リード線100の露出した導体100aの周面に沿って這い上がるように幾らか盛り上がる。通電開始から一定時間(通電時間)経過後にヒータ電源が通電を止め、通電終了から一定時間(保持時間)経過後にヒータヘッド112がヒータチップ108を上昇させて被接合部(100,104)から離す。そうすると、ハンダが凝固して、被接合部(100,104)がリフローのハンダ付けによって結合する。   When the heater head 112 lowers the heater chip 108, as shown in FIG. 16, the lower surface of the iron portion 106 of the heater chip 108, that is, the iron tip surface 106a is connected to the bonded portion, that is, the lead wire 100 and the terminal 104 on the printed wiring board 102 side. Contact with moderate pressure. When the heater power supply is turned on and current is supplied to the heater chip 108 with the iron part 106 of the heater chip 108 pressed against the joined parts (100, 104), the iron part 106 of the heater chip 108 is supplied. Generates resistance and heats the bonded parts (100, 104). As a result, the insulating film of the lead wire 100 is melted and peeled off by heat, and the solder 105 around the lead wire 100 is also melted. The melted solder 105 rises somewhat so as to creep up along the peripheral surface of the exposed conductor 100a of the lead wire 100. The heater power supply stops energization after a certain time (energization time) has elapsed from the start of energization, and after a certain time (holding time) has elapsed since the end of energization, the heater head 112 raises the heater chip 108 and separates it from the joined parts (100, 104). . Then, the solder is solidified, and the joined parts (100, 104) are joined by reflow soldering.

特開2005−66636JP 2005-66636 A

しかしながら、上記のような従来のリフローソルダリングによる被覆線接合法は、接合強度が十分ではなく、リード線100に外力が加わると外れることがあった。すなわち、ICパッケージのように本体もプリント配線板上に取り付けられる表面実装型電気部品のリードとは異なり、プリント配線板の外に配置される外付け電気部品からのリード線100は空中に晒されている範囲または区間が不定に長く、たとえば組み立て時に大きな外力(応力)を受けやすい。しかるに、上記のような従来の接合法は、リード線100と端子104との間で溶融凝固するハンダ105の接合面積が少ないため、強度的に信頼性の高いハンダ接合が得られなかった。   However, the conventional coated wire bonding method using reflow soldering as described above has insufficient bonding strength, and may be disconnected when an external force is applied to the lead wire 100. That is, unlike the lead of the surface mount type electrical component in which the main body is mounted on the printed wiring board as in the IC package, the lead wire 100 from the external electric component arranged outside the printed wiring board is exposed to the air. The range or section is indefinitely long, and is likely to receive a large external force (stress) during assembly, for example. However, in the conventional bonding method as described above, since the bonding area of the solder 105 that melts and solidifies between the lead wire 100 and the terminal 104 is small, solder bonding with high strength and reliability cannot be obtained.

本発明は、上記のような従来技術の問題点を解決するものであり、被接合物、特に被覆線に対して強度的に信頼性の高いハンダ付けを行えるヒータチップ、接合装置および接合方法を提供する。   The present invention solves the problems of the prior art as described above, and provides a heater chip, a joining apparatus, and a joining method capable of performing highly reliable soldering on an object to be joined, particularly a coated wire. provide.

本発明のヒータチップは、通電により発熱するコテ部を有し、前記コテ部のコテ先面を被接合物に加圧接触させることによって前記被接合物をハンダ付けで接合するヒータチップであって、前記コテ部の側面から前記コテ先面まで延びるハンダ供給用のくぼみを有する。   The heater chip of the present invention is a heater chip that has a solder part that generates heat when energized, and that joins the article to be joined by soldering by bringing the tip surface of the iron part into pressure contact with the article to be joined. And a solder supply recess extending from a side surface of the iron portion to the iron tip surface.

本発明のヒータチップにおいては、コテ部のコテ先面を被接合物に加圧接触させてヒータチップを通電すると、コテ部の温度が設定温度まで上昇して被接合物が加熱される。ここで、適当なタイミングを見計らって、くぼみの中にハンダを投入する。そうすると、ハンダはくぼみの中で速やかに溶け、溶けたハンダが被接合物に上に被さるように広がる。ヒータチップの通電を停止して(または弱めて)、あるいはヒータチップを被接合物から離して、被接合物を冷やすと、ハンダが凝固して強度的に信頼性の高いハンダ付けの接合が得られる。   In the heater chip of the present invention, when the tip of the iron part is brought into pressure contact with the object to be joined and the heater chip is energized, the temperature of the iron part rises to a set temperature and the object to be joined is heated. Here, at an appropriate timing, solder is put into the recess. Then, the solder quickly melts in the recess and spreads so that the melted solder covers the object to be joined. If the heater chip is de-energized (or weakened) or the heater chip is moved away from the workpiece and cooled, the solder solidifies and a highly reliable solder joint is obtained. It is done.

本発明の好適な一態様においては、コテ部を電気的には直列にかつ物理的には一体的に複数連設し、各々のコテ部にくぼみを個別に設ける。かかる構成によれば複数組の被接合物を同時にハンダ付けで接合できるうえ、各組の被接合物毎に強度的に信頼性の高いハンダ付けの接合が得られる。   In a preferred aspect of the present invention, a plurality of iron parts are electrically connected in series and physically in one piece, and a depression is individually provided in each iron part. According to such a configuration, a plurality of sets of objects to be bonded can be simultaneously bonded by soldering, and a highly reliable soldering connection can be obtained for each set of objects to be bonded.

本発明の好適な一態様によれば、被接合物は被覆線と端子部材であり、端子部材の上に載せられた被覆線にコテ部のコテ先面を当ててハンダ付けが行われる。この場合、コテ部は、好適には略直方体形状に形成される。ハンダ供給用のくぼみは、ハンダ付けされる被覆線の軸方向と向き合うコテ部の一側面に入口を有してもよく、あるいはハンダ付けされる被覆線の軸方向と平行になるコテ部の一側面に入口を有してもよい。   According to a preferred aspect of the present invention, the objects to be joined are a covered wire and a terminal member, and soldering is performed by applying the tip surface of the iron portion to the covered wire placed on the terminal member. In this case, the iron part is preferably formed in a substantially rectangular parallelepiped shape. The solder supply recess may have an inlet on one side of the iron part facing the axial direction of the coated wire to be soldered, or one of the iron parts parallel to the axial direction of the coated wire to be soldered. You may have an entrance in the side.

本発明の好適な一態様によれば、被覆線の軸方向において、くぼみは、コテ先面の0.3〜0.7倍の奥行き寸法(または幅寸法)を有し、特に好ましくはコテ先面の0.4〜0.6倍の奥行き寸法(または幅寸法)を有する。     According to a preferred aspect of the present invention, in the axial direction of the covered wire, the indentation has a depth dimension (or width dimension) of 0.3 to 0.7 times the iron tip surface, and particularly preferably the iron tip. It has a depth dimension (or width dimension) 0.4 to 0.6 times the surface.

また、好適な一態様によれば、くぼみの天井は、コテ部の側面から内奥に向かって次第に低くなり、その入口から内奥の終端まで底が切り欠かれている。かかる構成によれば、線状の固形ハンダをくぼみの内奥ひいては被接合物に向けて容易に挿入(供給)しやすくなる。   According to a preferred aspect, the ceiling of the indentation is gradually lowered from the side surface of the iron portion toward the inner depth, and the bottom is notched from the entrance to the inner depth end. According to such a configuration, the linear solid solder can be easily inserted (supplied) toward the inner part of the recess and toward the workpiece.

本発明の接合装置は、本発明のヒータチップと、このヒータチップを支持し、被接合物を接合する際にコテ部のコテ先面を被接合物に加圧接触させるヒータヘッドと、該ヒータチップに抵抗発熱用の電流を供給するヒータ電源とを有する。   The joining apparatus of the present invention includes the heater chip of the present invention, a heater head that supports the heater chip and presses the tip of the iron part into the object to be joined when the object to be joined is joined, and the heater A heater power supply for supplying a current for resistance heating to the chip.

本発明の接合装置は、上記の構成により、特に本発明のヒータチップを備える構成により、強度的に信頼性の高いハンダ付けの接合を行うことができる。   The joining apparatus of the present invention can perform soldering with high strength and reliability by the above-described configuration, particularly by the configuration including the heater chip of the present invention.

本発明の接合方法は、本発明のハンダ付け装置を用いて被覆線を端子部材にハンダ付けで接合するための接合方法であって、前記端子部材の上に第1のハンダを介して前記被覆線を載せる工程と、前記コテ部のくぼみが前記被覆線に被さるように、前記ヒータチップのコテ部のコテ先面を前記被覆線に当てて、所定の加圧力を加える工程と、前記コテ部の温度を通電により前記第1のハンダの融点よりも高い第1の設定温度まで上昇させる工程と、前記コテ部の温度を前記第1の設定温度まで上昇させた後に、前記コテ部のくぼみの中に第2のハンダを供給する工程と、前記くぼみの中で前記第2のハンダを溶かし、前記被覆線を包み込むように前記第2のハンダを前記第1のハンダに溶融状態で合体させる工程と、前記コテ部のコテ先面を前記被覆線から離して、溶融状態で合体した前記第1および第2のハンダを凝固させる工程とを有する。   The joining method of the present invention is a joining method for joining a coated wire to a terminal member by soldering using the soldering apparatus of the present invention, wherein the coating is applied to the terminal member via a first solder. A step of placing a wire, a step of applying a predetermined pressing force by applying a tip surface of the iron portion of the heater chip to the covered wire so that a recess of the iron portion covers the covered wire, and the iron portion The step of raising the temperature of the iron part to a first set temperature higher than the melting point of the first solder by energization, and after raising the temperature of the iron part to the first set temperature, Supplying the second solder therein, melting the second solder in the recess, and combining the second solder with the first solder in a molten state so as to wrap the covered wire And the tip of the iron part Separated from serial coated wire, and a step of solidifying said first and second solder coalesced in the molten state.

本発明の接合方法は、上記の構成により、特にコテ部の温度を第1の設定温度まで上昇させた後に、つまり加熱によって被覆線の絶縁被膜を剥し、第1のハンダを溶かした後に、コテ部のくぼみの中に第2のハンダを供給して、くぼみの中で第2のハンダを溶かし、被覆線を包み込むように第2のハンダを第1のハンダに溶融状態で合体させる工程を有することにより、ハンダ接合面積と接合強度を効率よく増やして、被覆線接合の信頼性を向上させることができる。   In the bonding method of the present invention, with the above-described configuration, in particular, after the temperature of the iron part is raised to the first set temperature, that is, after the insulation film of the coated wire is removed by heating and the first solder is melted, the iron is melted. Supplying the second solder into the recess of the part, melting the second solder in the recess, and combining the second solder with the first solder in a molten state so as to wrap the coated wire As a result, the solder joint area and joint strength can be increased efficiently, and the reliability of the coated wire joint can be improved.

本発明のヒータチップ、接合装置および接合方法によれば、上記のような構成および作用により、被接合物、特に被覆線に対して強度的に信頼性の高いハンダ付けを行うことができる。   According to the heater chip, the bonding apparatus, and the bonding method of the present invention, it is possible to perform highly reliable soldering on an object to be bonded, in particular, a covered wire, by the above configuration and operation.

本発明の一実施形態におけるヒータチップの構成を示す斜視図である。It is a perspective view which shows the structure of the heater chip in one Embodiment of this invention. 上記ヒータチップの構成を示す正面図である。It is a front view which shows the structure of the said heater chip. 図2のA−A線についての断面図である。It is sectional drawing about the AA line of FIG. 上記実施形態における接合装置の全体構成を示す図である。It is a figure which shows the whole structure of the joining apparatus in the said embodiment. 上記接合装置を用いて被覆線をプリント配線板上の端子にハンダ付けで接合する一実施例の加工例を示す図である。It is a figure which shows the process example of one Example which joins a covered wire to the terminal on a printed wiring board by soldering using the said joining apparatus. 上記実施例におけるヒータチップの温度制御特性を示す図である。It is a figure which shows the temperature control characteristic of the heater chip in the said Example. 上記実施例においてプリント配線板上の端子に被覆線を載せて位置決めする様子を示す斜視図である。It is a perspective view which shows a mode that a covered wire is mounted and positioned in the terminal on a printed wiring board in the said Example. 上記実施例においてヒータチップを被接合物に加圧接触させた状態を示す一部断面正面図である。It is a partial cross section front view which shows the state which made the heater chip press-contact the to-be-joined object in the said Example. 上記実施例においてリード線の絶縁被膜が剥がれて一次ハンダが溶けた時の状態を示す一部断面正面図である。It is a partial cross section front view which shows a state when the insulating film of a lead wire peels in the said Example and a primary solder melt | dissolves. 上記実施例においてリード線の絶縁被膜が剥がれて一次ハンダが溶けた時の状態を示す一部断面側面図である。It is a partial cross section side view which shows a state when the insulating film of a lead wire peels and the primary solder melt | dissolves in the said Example. 上記実施例においてヒータチップのくぼみの中に二次ハンダを供給するときの様子を示す斜視図である。It is a perspective view which shows a mode when supplying secondary solder in the hollow of a heater chip | tip in the said Example. 上記実施例においてヒータチップのくぼみの中で二次ハンダが溶ける様子およびその作用を示す一部断面側面図である。It is a partial cross section side view which shows a mode that a secondary solder melt | dissolves in the hollow of a heater chip | tip in the said Example, and its effect | action. 上記実施例においてヒータチップを被接合物から離すときの様子およびハンダ付けされた後の被接合物の状態を示す一部断面正面図である。It is a partial cross section front view which shows a mode when a heater chip is separated from a to-be-joined object in the said Example, and the state of the to-be-joined object after soldering. 上記実施例においてヒータチップを被接合物から離すときの様子およびハンダ付けされた後の被接合物の状態を示す一部断面側面図である。In the said Example, it is a partial cross section side view which shows the state when separating a heater chip from a to-be-joined object, and the state of the to-be-joined object after soldering. ヒータチップのコテ先部に関する一変形例を示す図である。It is a figure which shows one modification regarding the tip part of a heater chip. ヒータチップのコテ先部に関する別の変形例を示す図である。It is a figure which shows another modification regarding the tip part of a heater chip. 別の実施形態におけるヒータチップの構成を示す斜め上方から見た斜視図である。It is the perspective view seen from diagonally upward which shows the structure of the heater chip | tip in another embodiment. 図13Aのヒータチップを斜め下から見た斜視図である。It is the perspective view which looked at the heater chip | tip of FIG. 13A from diagonally downward. 図13Aのヒータチップを用いて2本の被覆線を同時に異なる端子にそれぞれハンダ付けで接合する加工例を示す斜視図である。It is a perspective view which shows the process example which joins two covered wires to a different terminal simultaneously by soldering using the heater chip of FIG. 13A. 従来のヒータチップとそれを用いるハンダ付けの例を示す斜視図である。It is a perspective view which shows the example of the conventional heater chip | tip and soldering using it. 図15のヒータチップを通電させている状態を示す正面図である。FIG. 16 is a front view showing a state where the heater chip of FIG. 15 is energized.

以下、図1〜図14を参照して本発明の好適な実施形態を説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to FIGS.

図1〜図3に、本発明の一実施形態におけるヒータチップの構成を示す。図1および図2はこのヒータチップの斜視図および正面図、図3は図2のA−A線についての断面図である。   1 to 3 show a configuration of a heater chip in an embodiment of the present invention. 1 and 2 are a perspective view and a front view of the heater chip, and FIG. 3 is a cross-sectional view taken along line AA of FIG.

この実施形態におけるヒータチップ10は、たとえば3〜5mmの板厚を有するタングステン板で形成されている。このタングステン板をワイヤ放電加工により刳り貫いて一体加工することにより、ヒータチップ10が作製される。   The heater chip 10 in this embodiment is formed of a tungsten plate having a plate thickness of 3 to 5 mm, for example. The heater chip 10 is manufactured by punching and integrally processing this tungsten plate by wire electric discharge machining.

このヒータチップ10は、通常使用形態の姿勢において最下端の突出した部位となる略直方体形状のコテ部12を有し、このコテ部12の一側面12aに底面つまりコテ先面12bに通じるハンダ供給用のくぼみ14を設けている構成を主たる特徴としている。   The heater chip 10 has a substantially rectangular parallelepiped shaped iron part 12 which is a projecting portion at the lowermost end in a posture of a normal use form. Solder supply leading to the bottom surface, that is, the iron tip surface 12b, is provided on one side surface 12a of the iron part 12. The main feature is the configuration in which the recess 14 is provided.

より詳細には、コテ部12の側面12aはその母材(タングステン板)の表面または裏面に対応し、たとえば切削および研磨加工によってこの側面12aにくぼみ14が形成される。図示のくぼみ14は、コテ部12の側面12aの幅方向中心部にて下に向かって逆テーパ状に横に広がりながら、かつ内奥に深度を拡大しながらコテ部12を上端から底(コテ先面12b)まで湾曲に削ぎ落したような構造を有している。このくぼみ構造においては、くぼみ14の天井14aは側面12aから内奥に向かって次第に低くなり、入口14bから内奥の終端14cまで底が切り欠かれており、後述するように線状の固形ハンダ66をくぼみ14の内奥つまり被溶接部に向けて挿入しやすくなっている。   More specifically, the side surface 12a of the iron portion 12 corresponds to the front surface or the back surface of the base material (tungsten plate), and the recess 14 is formed in the side surface 12a by, for example, cutting and polishing. The illustrated recess 14 extends from the upper end to the bottom (the bottom of the iron 12) while spreading laterally in an inversely tapered manner downward at the center in the width direction of the side surface 12a of the iron 12 and increasing the depth inward. It has a structure that has been scraped off to the front surface 12b). In this hollow structure, the ceiling 14a of the hollow 14 is gradually lowered from the side surface 12a toward the inner depth, and the bottom is notched from the inlet 14b to the inner end 14c. As described later, a linear solid solder is used. 66 is easily inserted toward the inside of the recess 14, that is, toward the welded portion.

図3において、くぼみ14の深さ(奥行)Dは、コテ部12の厚さをTとすると、0.3T〜0.7Tの範囲が好ましく、0.5T付近つまり0.4T〜0.6Tの範囲が最も好ましい。すなわち、コテ部12の厚さTに比して深さDが小さすぎると、後述するようにこのくぼみ14を介した二次ハンダの供給量、ひいてはくぼみ14の中で生成されるハンダ溜まりの量、したがって一次ハンダと合体する二次ハンダの量が少なくなり、くぼみ14を備える利点が十全に発揮されなくなる。一方、コテ部12の厚さTに比してくぼみ14の深さDが必要以上に大きいと、二次ハンダの供給量は増えても、被接合物に直接当たるコテ先面12bの接触面積ひいては加熱力が減少するので、後述するような被覆線のハンダ付けでは絶縁被膜が剥がれにくくなって、結果的にハンダ接合強度の向上は難しくなる。   In FIG. 3, the depth (depth) D of the recess 14 is preferably in the range of 0.3T to 0.7T, where T is the thickness of the iron part 12, and is in the vicinity of 0.5T, that is, 0.4T to 0.6T. The range of is most preferable. That is, if the depth D is too small as compared with the thickness T of the iron part 12, the amount of secondary solder supplied through the recess 14 and, as a result, the amount of solder pool generated in the recess 14 will be described later. The amount of secondary solder combined with the primary solder is reduced, and the advantage of having the recess 14 is not fully exhibited. On the other hand, if the depth D of the recess 14 is larger than necessary compared to the thickness T of the iron part 12, even if the amount of secondary solder supplied increases, the contact area of the iron tip surface 12b that directly contacts the object to be joined As a result, the heating power is reduced, so that the insulation coating is hardly peeled off by soldering the coated wire as described later, and as a result, it is difficult to improve the solder joint strength.

くぼみ14の入口の高さHおよび底の幅Wは、ハンダの供給しやすさと溶け込みやすさとの兼ね合い(トレードオフ)の中で最適な寸法に選択されてよい。好ましい一形態として、高さHは0.8T〜1.2Tの範囲に選ばれ、底幅Wは1.5T〜2.0Tの範囲に選ばれる。   The height H and the width W of the bottom of the recess 14 may be selected to be optimal dimensions in view of the trade-off between ease of supplying solder and ease of melting. As a preferred embodiment, the height H is selected in the range of 0.8T to 1.2T, and the bottom width W is selected in the range of 1.5T to 2.0T.

コテ部12の上面の左右両端部には、電流密度を高めるために断面積を細く絞った二股状の電流通過部16L,16Rを介して左右の接続端子部18L,18Rがそれぞれ接続されている。これらの接続端子部18L,18Rは、上端部に1つまたは複数(図示の例は2つ)のボルト通し穴20L,20Rをそれぞれ設けている。コテ部12の上面の中心部には、後述する熱電対22(図5)を取り付けるための突部24が形成されている。   The left and right connection terminal portions 18L and 18R are connected to the left and right end portions of the upper surface of the iron portion 12 through bifurcated current passage portions 16L and 16R, respectively, whose cross-sectional area is narrowed to increase the current density. . Each of the connection terminal portions 18L and 18R is provided with one or a plurality (two in the illustrated example) of bolt through holes 20L and 20R at the upper end. A protrusion 24 for attaching a thermocouple 22 (FIG. 5) to be described later is formed at the center of the upper surface of the iron part 12.

このヒータチップ10も、従来のヒータチップ108と同様に、ヒータヘッド112(図15)に取り付けられ、予め設定された手順および条件で所与の被接合物に対して所定の加圧動作および通電発熱動作を行うようになっている。   Similarly to the conventional heater chip 108, the heater chip 10 is also attached to the heater head 112 (FIG. 15), and applies a predetermined pressurizing operation and energization to a given object under predetermined procedures and conditions. A heat generation operation is performed.

図4に、この実施形態における接合装置26の全体構成を示す。この接合装置26は、上述した構成を有するヒータチップ10と、このヒータチップ10を支持し、被接合物を接合する際にコテ部12のコテ先面12bを被接合物に加圧接触させるヒータヘッド112と、ヒータチップ10に抵抗発熱用の電流を供給するヒータ電源28と、装置内の各部および全体の動作を制御する制御部42とを備えている。   In FIG. 4, the whole structure of the joining apparatus 26 in this embodiment is shown. The joining device 26 includes the heater chip 10 having the above-described configuration, and a heater that supports the heater chip 10 and presses and contacts the tip surface 12b of the iron part 12 to the workpiece when the workpiece is joined. A head 112, a heater power supply 28 that supplies a current for resistance heating to the heater chip 10, and a control unit 42 that controls each unit in the apparatus and the overall operation.

ヒータ電源28は、交流波形インバータ式の電源回路を用いている。この電源回路におけるインバータ30は、GTR(ジャイアント・トランジスタ)またはIGBT(絶縁ゲート・バイポーラ・トランジスタ)等からなる4つのトランジスタ・スイッチング素子32,34,36,38を有している。   The heater power supply 28 uses an AC waveform inverter type power supply circuit. The inverter 30 in this power supply circuit has four transistor switching elements 32, 34, 36, and 38 made of GTR (giant transistor) or IGBT (insulated gate bipolar transistor).

これら4つのスイッチング素子32〜38のうち、第1組(正極側)のスイッチング素子32,36はドライブ回路40を介して制御部42からの同相の駆動パルスG1,G3 により所定のインバータ周波数(たとえば4kHz)で同時にスイッチング(オン・オフ)制御され、第2組(負極側)のスイッチング素子34,38はドライブ回路40を介して制御部42からの同相の駆動パルスG2,G4 により上記インバータ周波数で同時にスイッチング制御されるようになっている。 Among these four switching elements 32 to 38, the first set (positive side) switching elements 32 and 36 are driven at a predetermined inverter frequency by in-phase drive pulses G 1 and G 3 from the control unit 42 via the drive circuit 40. Switching (on / off) is controlled at the same time (for example, 4 kHz), and the second set (negative electrode side) of the switching elements 34 and 38 are driven by in-phase drive pulses G 2 and G 4 from the control unit 42 via the drive circuit 40. Switching control is performed simultaneously with the inverter frequency.

インバータ30の入力端子[L0 ,L1]は三相整流回路44の出力端子に接続されている。三相整流回路44は、たとえば6個のダイオードを三相ブリッジ結線してなり、三相交流電源端子(R,S,T)より入力する商用周波数の三相交流電圧を全波整流して直流電圧に変換する。三相整流回路44より出力された直流電圧は、コンデンサ46で平滑されてからインバータ30の入力端子[L0 ,L1]に与えられる。 The input terminals [L 0 , L 1 ] of the inverter 30 are connected to the output terminals of the three-phase rectifier circuit 44. The three-phase rectifier circuit 44 is formed by, for example, connecting six diodes in a three-phase bridge, and full-wave rectifying a commercial-frequency three-phase AC voltage input from a three-phase AC power supply terminal (R, S, T) to generate a direct current. Convert to voltage. The DC voltage output from the three-phase rectifier circuit 44 is smoothed by the capacitor 46 and then applied to the input terminals [L 0 , L 1 ] of the inverter 30.

インバータ30の出力端子[M0 ,M1]は、溶接トランス48の一次側コイルの両端にそれぞれ接続されている。溶接トランス48の二次側コイルの両端は、整流回路を介さずに二次側導体114L,114Rを介してヒータチップ10の接続端子部18L,18Rにそれぞれ接続されている。 Output terminals [M 0 , M 1 ] of the inverter 30 are respectively connected to both ends of the primary coil of the welding transformer 48. Both ends of the secondary coil of the welding transformer 48 are connected to the connection terminal portions 18L and 18R of the heater chip 10 via the secondary conductors 114L and 114R, respectively, without passing through the rectifier circuit.

制御部42は、マイクロコンピュータを含んでおり、ヒータ電源28内の一切の制御たとえば通電制御(特にインバータ制御)や各種ヒート条件の設定ないし表示処理等を行うほか、ヒータヘッド112に対しても所要の制御を行う。   The control unit 42 includes a microcomputer, and performs all control within the heater power supply 28, such as energization control (particularly inverter control), setting of various heat conditions, display processing, etc., as well as required for the heater head 112. Control.

このヒータ電源28では、チップ温度フィードバック制御を行うために、ヒータチップ10の突部24に取り付けられる熱電対22より出力されるコテ温度測定信号がケーブル25を介して制御部42に与えられる。また、電流フィードバック制御を行う場合は、一次側回路の導体にたとえばカレント・トランスからなる電流センサ50が取り付けられる。この電流センサ50の出力信号から電流測定回路52において一次電流または二次電流の測定値(たとえば実効値、平均値またはピーク値)が求められ、その電流測定信号が制御部42に与えられる。   In the heater power supply 28, a solder temperature measurement signal output from a thermocouple 22 attached to the protrusion 24 of the heater chip 10 is given to the control unit 42 via the cable 25 in order to perform chip temperature feedback control. When current feedback control is performed, a current sensor 50 made of, for example, a current transformer is attached to the conductor of the primary circuit. A measured value (for example, effective value, average value, or peak value) of the primary current or the secondary current is obtained from the output signal of the current sensor 50 in the current measurement circuit 52, and the current measurement signal is given to the control unit 42.

次に、図5〜図11につき、上記構成の接合装置26を用いて被覆線を端子部材にハンダ付けで接合する一実施例を説明する。   Next, with reference to FIGS. 5 to 11, an embodiment will be described in which a coated wire is joined to a terminal member by soldering using the joining device 26 having the above-described configuration.

図5に示すように、この実施例は、上述した従来例(図15、図16)と同様に外付け電気部品(たとえば小型モータ)60のリード(被覆線)100をプリント配線板102上の端子(接続パッドまたは電極等)104にハンダ付けで接合する。図中、左側のリード100'と端子104'は既にハンダ付けが済んでおり、右側のリード100と端子104は未だである。端子104,104'はプリント配線板102上のプリント配線62,62'さらにはスルーホール(図示せず)等を介して裏面に取り付けられている表面実装型電気部品(図示せず)に電気的に接続されている。端子104の表面には、クリーム状のハンダまたはメッキのハンダ105がこの実施例ではリフロー用の一次ハンダとして予めコーティングされている。   As shown in FIG. 5, in this embodiment, the lead (covered wire) 100 of the external electric component (for example, small motor) 60 is placed on the printed wiring board 102 in the same manner as the conventional example (FIGS. 15 and 16) described above. Bonded to terminals (connection pads or electrodes) 104 by soldering. In the drawing, the left lead 100 ′ and the terminal 104 ′ are already soldered, and the right lead 100 and the terminal 104 are not yet connected. The terminals 104 and 104 ′ are electrically connected to a surface mount type electric component (not shown) attached to the back surface through printed wirings 62 and 62 ′ on the printed wiring board 102 and through holes (not shown). It is connected to the. The surface of the terminal 104 is pre-coated with cream-like solder or plated solder 105 as primary solder for reflow in this embodiment.

接合装置26は、ヒータチップ10の通電発熱機能に基づく急速加熱/急速冷却特性とインバータ式ヒータ電源28の高速かつ精細な通電制御機能とを活かして、ヒータチップ10のコテ部12の温度を高速かつ任意に可変できるようになっている。図6に、この実施例においてヒータチップ10のコテ部12の温度を可変制御するシーケンスの一例を示す。   The joining device 26 uses the rapid heating / rapid cooling characteristics based on the energization heat generation function of the heater chip 10 and the high-speed and fine energization control function of the inverter heater power supply 28 to increase the temperature of the iron part 12 of the heater chip 10 at high speed. And it can be arbitrarily changed. FIG. 6 shows an example of a sequence for variably controlling the temperature of the iron part 12 of the heater chip 10 in this embodiment.

先ず、接合装置26を起動させる前に、図7に示すように、作業台(図示せず)上でプリント配線板102の端子104の上に所定の向きでリード線100を水平に載せ、ヒータヘッド112に取り付けられているヒータチップ10の直下に被接合部(100,104)を位置決めする。このとき、ヒータチップ10のくぼみ14が設けられたコテ部12の側面12aは、リード線100の軸方向と向き合う。   First, before starting the joining device 26, as shown in FIG. 7, the lead wire 100 is horizontally placed in a predetermined direction on the terminal 104 of the printed wiring board 102 on a work table (not shown), and the heater Positions (100, 104) to be joined are located directly below the heater chip 10 attached to the head 112. At this time, the side surface 12 a of the iron part 12 provided with the recess 14 of the heater chip 10 faces the axial direction of the lead wire 100.

接合装置26を起動させると、最初にヒータヘッド112が作動する。ヒータヘッド112は、ヒータチップ10を降ろして、図8に示すようにコテ部12の下面つまりコテ先面12bをリード線100の頂部に当て、予め設定された加圧力を加える。こうしてヒータチップ10がリード線100に加圧接触するのと略同時に、ヒータ電源28が作動して、通電を開始する。   When the joining device 26 is activated, the heater head 112 is first activated. The heater head 112 lowers the heater chip 10, applies the lower surface of the iron portion 12, that is, the iron tip surface 12b, to the top of the lead wire 100 as shown in FIG. Thus, at substantially the same time as the heater chip 10 comes into pressure contact with the lead wire 100, the heater power supply 28 is activated to start energization.

通電が開始されると、図6に示すように、ヒータチップ10のコテ部12の温度は急速に上昇し、短時間(0.5秒)でそれまでの常温からベース温度(200℃)に到達する(S1)。このベース温度を一定期間(0.5秒間)保持してヒータチップ10を熱的に安定化させ(S2)、それから通電電流Iの電流量を増やして、コテ部12の温度をベース温度からプレヒート温度(500℃)まで短時間(1.0秒)で急速に上昇させる(S3)。 When energization is started, as shown in FIG. 6, the temperature of the iron part 12 of the heater chip 10 rapidly rises, and from a normal temperature to a base temperature (200 ° C.) in a short time (0.5 seconds). Reach (S 1 ). The base temperature is maintained for a certain period (0.5 seconds) to thermally stabilize the heater chip 10 (S 2 ), and then the current amount of the conduction current I is increased so that the temperature of the iron part 12 is increased from the base temperature. The temperature is rapidly raised to a preheating temperature (500 ° C.) in a short time (1.0 second) (S 3 ).

通常のプレヒートは、予熱を意味し、ハンダの濡れ性を良くするためにハンダの融点(たとえば320℃)よりも低い温度に設定される。しかし、この実施例におけるプレヒートは、リード線100の絶縁被膜を剥離するための加熱を意味し、ハンダの融点よりも格段に高い温度(500℃)に設定される。これにより、図9Aに示すように、コテ部12の直下およびその付近でリード線100の絶縁被膜が剥がれて除去される。端子104表面の一次ハンダ105も、コテ部12からの加熱によりリード線100の周囲で溶けて、一部はリード線100の露出した導体100aの周面に沿って這い上がるように幾らか盛り上がる(図9A、図9B)。   Normal preheating means preheating and is set to a temperature lower than the melting point of solder (for example, 320 ° C.) in order to improve the wettability of the solder. However, the preheating in this embodiment means heating for peeling off the insulating film of the lead wire 100 and is set to a temperature (500 ° C.) much higher than the melting point of the solder. As a result, as shown in FIG. 9A, the insulating film of the lead wire 100 is peeled off and removed immediately below and near the iron part 12. The primary solder 105 on the surface of the terminal 104 is also melted around the lead wire 100 by heating from the iron part 12, and a part of the solder is raised so that a part of the primary solder 105 rises along the peripheral surface of the exposed conductor 100a of the lead wire 100 ( FIG. 9A, FIG. 9B).

ここで、リード線100における絶縁被膜の剥離と一次ハンダ105の溶融は、コテ先面12bの真下で最も激しく多量に起きるが、くぼみ104の中(下)も熱が籠って相当高温になるため、この付近でもかなりの量で絶縁被膜の剥離と一次ハンダ105の溶融が起こる。   Here, the peeling of the insulating film and the melting of the primary solder 105 in the lead wire 100 occur most intensely and directly below the tip surface 12b, but the inside (below) of the recess 104 is heated to a considerable temperature. Even in this vicinity, peeling of the insulating film and melting of the primary solder 105 occur in a considerable amount.

こうして、プレヒート温度で加熱するコテ部12の下でリード線100の絶縁被膜が頂部から周面下部にかけて剥がれる。そして、端子104表面の一次ハンダ105が溶けると、蒸気の煙が立ちこめて、リード線100が溶けたハンダ105の中に沈むように落ち込み、ヒータチップ10もそれに追従して落ち込む(図9B)。   Thus, the insulating film of the lead wire 100 is peeled from the top to the lower part of the peripheral surface under the iron part 12 heated at the preheating temperature. Then, when the primary solder 105 on the surface of the terminal 104 is melted, vapor smoke rises and the lead wire 100 falls so as to sink into the melted solder 105, and the heater chip 10 also follows and falls (FIG. 9B).

接合装置26は、プレヒート温度を一定時間(たとえば1.0秒)保持し(S4)、次いで通電電流Iの電流量を一段減少させて、コテ部12の温度をプレヒート温度からリフロー温度(320℃)まで短時間(1.0秒)で急速に低下させ(S5)、このリフロー温度を一定時間(たとえば1秒間)保持する(S6)。 The joining device 26 maintains the preheating temperature for a certain time (for example, 1.0 second) (S 4 ), and then decreases the current amount of the energization current I by one step, thereby changing the temperature of the iron part 12 from the preheating temperature to the reflow temperature (320). The reflow temperature is rapidly decreased in a short time (1.0 second) until the temperature reaches (° C.) (S 5 ), and this reflow temperature is maintained for a certain time (eg, 1 second) (S 6 ).

作業者は、上記のように煙が立ちこめてリード線100およびヒータチップ10が落ち込んだことを確認して、このタイミングで図10Aおよび図10Bに示すようにヒータチップ10のくぼみ104に好ましくは線状の固形ハンダからなる二次ハンダ66を挿入(供給)する。この二次ハンダ66は、好ましくは一次ハンダ105と同じ材料または成分からなり、同じ融点(320℃)を有する。   The operator confirms that the smoke has fallen as described above and the lead wire 100 and the heater chip 10 have fallen, and at this timing, preferably the wire is formed in the recess 104 of the heater chip 10 as shown in FIGS. 10A and 10B. The secondary solder 66 made of solid solder is inserted (supplied). The secondary solder 66 is preferably made of the same materials or components as the primary solder 105 and has the same melting point (320 ° C.).

上記のようにしてくぼみ104の中に挿入された二次ハンダ66の先端部はリフロー温度の下で速やかに溶けて、ハンダ溜まりが生成される。そして、溶けた二次ハンダ66はリード線100の回りで流れ落ち、下から這い上がってきた一次ハンダ105と合流または合体する。これによって、リード線100の露出した導体100aは、くぼみ104の中で合体した溶融状態の一次ハンダ105および二次ハンダ66によって包み込まれる。   As described above, the tip of the secondary solder 66 inserted into the recess 104 melts rapidly under the reflow temperature, and a solder pool is generated. Then, the melted secondary solder 66 flows down around the lead wire 100 and joins or merges with the primary solder 105 that has crawled up from below. As a result, the exposed conductor 100 a of the lead wire 100 is encased by the primary solder 105 and the secondary solder 66 in a molten state that are united in the recess 104.

接合装置26は、上記のようにリフロー温度を一定時間保持した後に、通電電流Iの電流量をさらに一段減少させて、コテ部12の温度をリフロー温度からベース温度(200℃)に短時間(0.5秒)で急速に戻す(S7)。そして、図11Aおよび図11Bに示すように、ヒータヘッド112によりヒータチップ10を上昇させて、被接合部(100,104)から離す。こうして被接合部(100,104)がベース温度ないし室温の下で冷却され、被接合部(100,104)の周囲で溶けているハンダ、特にリード線100の露出した導体100aを一体に包み込んでいるハンダ(66,105)が同時に凝固する。以後も、上記と同様のハンダ付け加工を続けて実施する場合は、上記S3以降の温度制御ステップを繰り返す。ハンダ付け加工をいったん終了する場合は、通電を停止して、ヒータチップ10を常温に戻す。 After holding the reflow temperature for a certain period of time as described above, the joining device 26 further reduces the current amount of the energization current I and further reduces the temperature of the iron part 12 from the reflow temperature to the base temperature (200 ° C.) ( rapidly back in 0.5 seconds) (S 7). And as shown to FIG. 11A and FIG. 11B, the heater chip | tip 10 is raised by the heater head 112, and it leaves | separates from a to-be-joined part (100,104). In this way, the joined parts (100, 104) are cooled at a base temperature or room temperature, and the solder, particularly the exposed conductor 100a of the lead wire 100, which melts around the joined parts (100, 104) is integrally wrapped. Solder (66,105) coagulates simultaneously. Thereafter also, when implementing continuing the same soldering process and the repeats the temperature control steps of the S 3 or later. When the soldering process is finished, the energization is stopped and the heater chip 10 is returned to room temperature.

このように、この実施例の被覆線接合方法においては、上記のようなハンダ供給用のくぼみ104を有するヒータチップ10を用いて、端子104上でリード線100の導体100aを上から下まで包み込むような仕上がりのよいハンダ付けが行われる。これによって、従来よりも格段に大きなハンダ接合面積と接合強度が得られ、物理的かつ電気的に信頼性の高い被覆線接合を実現することができる。   Thus, in the covered wire joining method of this embodiment, the conductor 100a of the lead wire 100 is wrapped from the top to the bottom on the terminal 104 using the heater chip 10 having the solder supply recess 104 as described above. Such a good finish soldering is performed. As a result, a significantly larger solder joint area and joint strength can be obtained than before, and a physically and electrically highly reliable covered wire joint can be realized.

上述した実施形態においては、ヒータチップ10のコテ先面12bを平坦面に形成していた。しかし、図12Aに示すようにコテ先面12bを正面から見て逆さV状に中心部が凹んでいる構成、あるいは図12Bに示すようにコテ先面12bを中心部の凹んだ円筒面に形成する構成等も可能である。このように、コテ先面12bの中心部を上方に凹ませることにより、コテ先面12bとリード線100との間の接触面積あるいは熱的結合面積を増大させ、ヒータチップ10の加熱効率を向上させることができる。なお、図12Aおよび図12Bにおいて、左側の図(a)はコテ部12の正面図、右側の図(b)は正面図(a)のA−A線についての断面図である。   In the embodiment described above, the tip surface 12b of the heater chip 10 is formed on a flat surface. However, as shown in FIG. 12A, the center portion is recessed in an inverted V shape when the tip surface 12b is viewed from the front, or the tip surface 12b is formed in a cylindrical surface that is recessed in the center portion as shown in FIG. 12B. The structure etc. to perform are also possible. Thus, by denting the center portion of the tip surface 12b upward, the contact area or the thermal coupling area between the tip surface 12b and the lead wire 100 is increased, and the heating efficiency of the heater chip 10 is improved. Can be made. 12A and 12B, the left side (a) is a front view of the iron part 12, and the right side (b) is a cross-sectional view taken along the line AA of the front view (a).

また、上記実施形態におけるヒータチップ10は、一度に1組の被接合物(100,104)をハンダ付けで接合するタイプであり、単一のコテ部12を有する。しかし、別の実施形態として、図13Aおよび図13Bに示すように、ヒータチップ10に複数たとえば2つのコテ部12(1),12(2)を連設する構成も可能である。これらのコテ部12(1),12(2)は、左右の電流通過部16L,16Rの間で物理的に一体的に形成され、かつ電気的には直列に接続されている。それぞれのコテ先面12b(1),12b(2)は、たとえば図12Bと同様の円筒面に形成されている。そして、両コテ部12(1),12(2)の対向する一対の側面つまりリード線100の軸方向と平行になる側面12L,12Rにハンダ供給用のくぼみ14(1),14(2)がそれぞれ形成されている。この場合、ヒータチップ10の厚み方向において、くぼみ14(1),14(2)14の幅Wは、コテ部12(1),12(2)の厚さをTとすると、0.3T〜0.7Tの範囲が好ましく、0.5T付近つまり0.4T〜0.6Tの範囲が最も好ましい。くぼみ14(1),14(2)の入口の高さHは、ハンダの供給しやすさと溶け込みやすさとの兼ね合い(トレードオフ)の中で最適な寸法に選択されてよい。   In addition, the heater chip 10 in the above embodiment is a type in which a set of objects (100, 104) are joined by soldering at a time, and has a single iron part 12. However, as another embodiment, as shown in FIGS. 13A and 13B, a configuration in which a plurality of, for example, two iron parts 12 (1) and 12 (2) are connected to the heater chip 10 is also possible. These iron parts 12 (1) and 12 (2) are physically integrally formed between the left and right current passage parts 16L and 16R, and are electrically connected in series. Each of the iron tip surfaces 12b (1) and 12b (2) is formed in a cylindrical surface similar to that shown in FIG. 12B, for example. The solder supply recesses 14 (1), 14 (2) are formed on a pair of opposing side surfaces of the iron parts 12 (1), 12 (2), that is, the side surfaces 12L, 12R parallel to the axial direction of the lead wire 100. Are formed respectively. In this case, in the thickness direction of the heater chip 10, the width W of the recesses 14 (1) and 14 (2) 14 is about 0.3T, where T is the thickness of the iron parts 12 (1) and 12 (2). The range of 0.7T is preferable, and the vicinity of 0.5T, that is, the range of 0.4T to 0.6T is most preferable. The entrance height H of the recesses 14 (1) and 14 (2) may be selected to an optimum dimension in view of the trade-off between the ease of supplying solder and the ease of melting.

このように、本発明のヒータチップは、ハンダ供給用のくぼみを、リード線の軸方向と向き合うコテ部の側面に限らず、リード線の軸方向と平行になる側面に設けることも可能である。従って、図示はしないが、図1のように単一のコテ部12を有する場合にリード線の軸方向と平行になる側面にハンダ供給用のくぼみを設けることもできる。また、図13Aのように複数のコテ部を連設する場合にリード線の軸方向に向き合う側面にハンダ供給用のくぼみを設けることもできる。   Thus, the heater chip of the present invention can be provided with the solder supply recess not only on the side surface of the iron part facing the axial direction of the lead wire but also on the side surface parallel to the axial direction of the lead wire. . Therefore, although not shown, when the single iron part 12 is provided as shown in FIG. 1, a solder supply recess can be provided on the side surface parallel to the axial direction of the lead wire. In addition, when a plurality of iron parts are provided continuously as shown in FIG. 13A, a solder supply recess can be provided on the side surface of the lead wire facing the axial direction.

かかる構成のヒータチップ10を用いる接合装置26によれば、図14に示すように、プリント配線板102上に近接して設けられた2つの端子104,104'に2本のリード線100,100'を1回のハンダ付け工程で同時に接合することができる。   According to the joining device 26 using the heater chip 10 having such a configuration, as shown in FIG. 14, two lead wires 100, 100 are connected to two terminals 104, 104 ′ provided close to the printed wiring board 102. 'Can be joined simultaneously in one soldering process.

なお、上述した実施例では、従来のリフローソルダリング法に基づいて端子104(104')の表面に予め一次ハンダ105をコーティングしている。しかし、ハンダ接合の強度・信頼性の低下を伴うが、一次ハンダ105を省いて、くぼみ14(14(1),14(2))を介して供給される二次ハンダ66のみによるハンダ付けも可能である。本発明によるハンダ付け接合の加工対象となる被接合物は、被覆線に限るものではなく、絶縁被覆の導体板、導体バー等であってもよく、さらには絶縁被覆の無い金属部材であってもよい。また、二次ハンダ66としては、上述したような線状の固形ハンダに限らず、たとえば粒状あるいはパウダー状のハンダも使用可能である。   In the above-described embodiment, the primary solder 105 is coated on the surface of the terminal 104 (104 ′) in advance based on the conventional reflow soldering method. However, there is a decrease in the strength and reliability of the solder joint, but the soldering with only the secondary solder 66 supplied through the recess 14 (14 (1), 14 (2)) is omitted without the primary solder 105. Is possible. An object to be processed by soldering joining according to the present invention is not limited to a covered wire, and may be a conductor plate, a conductor bar or the like having an insulation coating, or a metal member without an insulation coating. Also good. Further, the secondary solder 66 is not limited to the linear solid solder as described above, and for example, granular or powder solder can be used.

10 ヒータチップ
12,12(1),12(2) コテ部
12a,12L,12R コテ部の側面
12b,12b(1),12b(2) コテ先面
14,14(1),14(2) ハンダ供給用のくぼみ
18L,18R 接続端子
26 接合装置
28 ヒータ電源
42 制御部
112 ヒータヘッド
10 Heater chip 12, 12 (1), 12 (2) Iron part 12a, 12L, 12R Side of iron part 12b, 12b (1), 12b (2) Iron tip face 14, 14 (1), 14 (2) Indentation for supplying solder 18L, 18R Connection terminal 26 Joining device 28 Heater power supply 42 Control unit 112 Heater head

Claims (19)

通電により発熱するコテ部を有し、前記コテ部のコテ先面を被接合物に加圧接触させることによって前記被接合物をハンダ付けで接合するヒータチップであって、
前記コテ部の側面から前記コテ先面まで延びるハンダ供給用のくぼみを有するヒータチップ。
A heater chip that has a iron part that generates heat when energized, and that joins the object to be joined by soldering by bringing the tip of the iron part into pressure contact with the object to be joined,
A heater chip having a solder supply recess extending from a side surface of the iron portion to the iron tip surface.
前記コテ部を電気的には直列にかつ物理的には一体的に複数連設し、各々の前記コテ部に前記くぼみを個別に設ける、請求項1に記載のヒータチップ。   2. The heater chip according to claim 1, wherein a plurality of the iron parts are electrically connected in series and physically integrally, and the recesses are individually provided in each of the iron parts. 前記被接合物は被覆線と端子部材であり、前記端子部材の上に載せられた前記被覆線に前記コテ部のコテ先面を当ててハンダ付けを行う、請求項1または請求項2に記載のヒータチップ。   The said to-be-joined object is a covered wire and a terminal member, and solders by applying the tip surface of the said iron part to the said covered wire placed on the said terminal member. Heater chip. 前記コテ部は、略直方体形状に形成され、
前記くぼみは、ハンダ付けされる前記被覆線の軸方向と向き合う前記コテ部の一側面に入口を有する、
請求項3に記載のヒータチップ。
The iron part is formed in a substantially rectangular parallelepiped shape,
The recess has an inlet on one side of the iron part facing the axial direction of the covered wire to be soldered,
The heater chip according to claim 3.
前記くぼみは、前記被覆線の軸方向において、前記コテ先面の0.3〜0.7倍の奥行き寸法を有する、請求項4に記載のヒータチップ。   5. The heater chip according to claim 4, wherein the recess has a depth dimension of 0.3 to 0.7 times the tip of the iron tip in the axial direction of the covered wire. 前記くぼみは、前記被覆線の軸方向において、前記コテ先面の0.4〜0.6倍の奥行き寸法を有する、請求項5に記載のヒータチップ。   6. The heater chip according to claim 5, wherein the indentation has a depth dimension that is 0.4 to 0.6 times the tip of the iron tip in the axial direction of the covered wire. 前記コテ部は、略直方体形状に形成され、
前記くぼみは、ハンダ付けされる前記被覆線の軸方向と平行になる前記コテ部の一側面に入口を有する、請求項1または請求項2に記載のヒータチップ。
The iron part is formed in a substantially rectangular parallelepiped shape,
3. The heater chip according to claim 1, wherein the recess has an inlet on one side surface of the iron portion that is parallel to an axial direction of the covered wire to be soldered.
前記くぼみは、前記被覆線の軸方向において、前記コテ先面の0.3〜0.7倍の幅寸法を有する、請求項7に記載のヒータチップ。   The heater chip according to claim 7, wherein the indentation has a width dimension of 0.3 to 0.7 times the tip end surface in the axial direction of the covered wire. 前記くぼみは、前記被覆線の軸方向において、前記コテ先面の0.4〜0.6倍の幅寸法を有する、請求項8に記載のヒータチップ。   The heater chip according to claim 8, wherein the recess has a width dimension 0.4 to 0.6 times that of the tip end surface in the axial direction of the covered wire. 前記コテ部のコテ先面が平坦面に形成されている、請求項1〜9のいずれか一項に記載のヒータチップ。   The heater chip according to any one of claims 1 to 9, wherein a tip surface of the iron portion is formed as a flat surface. 前記コテ部のコテ先面は、逆さV状に中心部が凹んでいる、請求項1〜9のいずれか一項に記載のヒータチップ。   The heater chip according to any one of claims 1 to 9, wherein the iron tip surface of the iron part has an inverted V-shaped center part. 前記コテ部のコテ先面は、中心部の凹んだ円筒面に形成されている、請求項1〜9のいずれか一項に記載のヒータチップ。   The heater chip according to any one of claims 1 to 9, wherein the iron tip surface of the iron portion is formed on a cylindrical surface having a recessed central portion. 前記くぼみの天井は、前記コテ部の側面から内奥に向かって次第に低くなる、請求項1〜12のいずれか一項に記載のヒータチップ。   The heater chip according to any one of claims 1 to 12, wherein a ceiling of the recess gradually decreases from a side surface of the iron portion toward an inner depth. 前記くぼみは、その入口から内奥の終端まで底が切り欠かれている、請求項1〜13のいずれか一項に記載のヒータチップ。   The heater chip according to any one of claims 1 to 13, wherein a bottom of the recess is cut out from an entrance to an inner end. 請求項1〜14のいずれか一項に記載のヒータチップと、
前記ヒータチップを支持し、被接合物を接合する際に前記コテ部のコテ先面を 前記被接合物に加圧接触させるヒータヘッドと、
前記ヒータチップに抵抗発熱用の電流を供給するヒータ電源と
を有する接合装置。
The heater chip according to any one of claims 1 to 14,
A heater head that supports the heater chip and presses and contacts the tip surface of the iron part to the workpiece when joining the workpiece;
And a heater power supply for supplying a current for resistance heating to the heater chip.
請求項15に記載のハンダ付け装置を用いて被覆線を端子部材にハンダ付けで接合するための接合方法であって、
前記端子部材の上に第1のハンダを介して前記被覆線を載せる工程と、
前記コテ部のくぼみが前記被覆線に被さるように、前記ヒータチップのコテ部のコテ先面を前記被覆線に当てて、所定の加圧力を加える工程と、
前記コテ部の温度を通電により前記第1のハンダの融点よりも高い第1の設定温度まで上昇させる工程と、
前記コテ部の温度を前記第1の設定温度まで上昇させた後に、前記コテ部のくぼみの中に第2のハンダを供給する工程と、
前記くぼみの中で前記第2のハンダを溶かし、前記被覆線を包み込むように前記第2のハンダを前記第1のハンダに溶融状態で合体させる工程と、
前記コテ部のコテ先面を前記被覆線から離して、溶融状態で合体した前記第1および第2のハンダを凝固させる工程と
を有する接合方法。
A joining method for joining a coated wire to a terminal member by soldering using the soldering apparatus according to claim 15,
Placing the covered wire on the terminal member via a first solder;
A step of applying a predetermined pressing force by applying a tip surface of the iron part of the heater chip to the covered wire so that a recess of the iron part covers the covered wire;
Increasing the temperature of the iron part to a first set temperature higher than the melting point of the first solder by energization;
Supplying the second solder into the recess of the iron part after raising the temperature of the iron part to the first set temperature;
Melting the second solder in the recess and coalescing the second solder into the first solder in a molten state so as to wrap the coated wire;
A step of solidifying the first and second solders which are joined in a molten state by separating a tip surface of the iron part from the covered wire.
前記コテ部の温度を前記第1の設定温度から前記第2のハンダの融点近傍の第2の設定温度まで下げて、前記第2のハンダの供給を行う、請求項16に記載の接合方法。   The bonding method according to claim 16, wherein the temperature of the iron part is lowered from the first set temperature to a second set temperature near the melting point of the second solder, and the second solder is supplied. 前記第2のハンダは、線状の固形ハンダからなり、その先端部が前記くぼみの中に差し込まれる、請求項16または請求項17に記載の接合方法。   The joining method according to claim 16 or 17, wherein the second solder is made of linear solid solder, and a tip portion thereof is inserted into the recess. 前記第1の設定温度は、前記被覆線の絶縁被膜を熱で剥せる温度である、請求項16〜18のいずれか一項に記載の接合方法。   The bonding method according to any one of claims 16 to 18, wherein the first set temperature is a temperature at which the insulating film of the coated wire can be peeled off by heat.
JP2011047462A 2011-03-04 2011-03-04 Heater tip, joining device, and joining method Pending JP2012183552A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011047462A JP2012183552A (en) 2011-03-04 2011-03-04 Heater tip, joining device, and joining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011047462A JP2012183552A (en) 2011-03-04 2011-03-04 Heater tip, joining device, and joining method

Publications (1)

Publication Number Publication Date
JP2012183552A true JP2012183552A (en) 2012-09-27

Family

ID=47014125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011047462A Pending JP2012183552A (en) 2011-03-04 2011-03-04 Heater tip, joining device, and joining method

Country Status (1)

Country Link
JP (1) JP2012183552A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150156885A1 (en) * 2013-11-29 2015-06-04 Sumitomo Electric Device Innovations, Inc. Method for manufacturing an electric device by connecting a wiring board to an object and electric device including a board
JP2016004846A (en) * 2014-06-14 2016-01-12 株式会社アンド Soldering device
WO2017038282A1 (en) * 2015-08-28 2017-03-09 株式会社工房Pda Heater chip, bonding device, and bonding method
JP2017112243A (en) * 2015-12-17 2017-06-22 日本電産サンキョー株式会社 Heater chip and soldering device
JP2018012200A (en) * 2016-07-19 2018-01-25 株式会社 工房Pda Heater chip, joint device and joint method
CN109623078A (en) * 2019-01-20 2019-04-16 巨力自动化设备(浙江)有限公司 Three terminal welders
CN109807424A (en) * 2019-03-20 2019-05-28 安徽合力股份有限公司 A kind of soldering apparatus for strain testing
CN111745242A (en) * 2020-07-28 2020-10-09 广东维克光电技术有限公司 Pressure welding device for rapidly welding LED pixel lamp and processing method
CN114523170A (en) * 2022-03-11 2022-05-24 安徽华晟新能源科技有限公司 Terminal box welding machines hand and welding equipment
CN115379917A (en) * 2020-09-09 2022-11-22 株式会社阿波罗技研 Heating nozzle unit
CN115443202A (en) * 2020-09-09 2022-12-06 株式会社阿波罗技研 Heating nozzle and heating nozzle unit
CN115461180A (en) * 2020-09-09 2022-12-09 株式会社阿波罗技研 Heating nozzle unit

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5182968U (en) * 1974-12-25 1976-07-02
JPS5421621U (en) * 1977-07-14 1979-02-13
JPH04315494A (en) * 1991-04-15 1992-11-06 Fujitsu Ltd Method of connecting wire to circuit component
JPH07154064A (en) * 1993-11-26 1995-06-16 Seikosha Co Ltd Method for soldering electronic component to printed board
JP2004288897A (en) * 2003-03-24 2004-10-14 Ricoh Microelectronics Co Ltd Soldering iron member and soldering device
JP2008155222A (en) * 2006-12-21 2008-07-10 Sanyo Electric Co Ltd Soldering iron tip

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5182968U (en) * 1974-12-25 1976-07-02
JPS5421621U (en) * 1977-07-14 1979-02-13
JPH04315494A (en) * 1991-04-15 1992-11-06 Fujitsu Ltd Method of connecting wire to circuit component
JPH07154064A (en) * 1993-11-26 1995-06-16 Seikosha Co Ltd Method for soldering electronic component to printed board
JP2004288897A (en) * 2003-03-24 2004-10-14 Ricoh Microelectronics Co Ltd Soldering iron member and soldering device
JP2008155222A (en) * 2006-12-21 2008-07-10 Sanyo Electric Co Ltd Soldering iron tip

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150156885A1 (en) * 2013-11-29 2015-06-04 Sumitomo Electric Device Innovations, Inc. Method for manufacturing an electric device by connecting a wiring board to an object and electric device including a board
JP2016004846A (en) * 2014-06-14 2016-01-12 株式会社アンド Soldering device
US10799977B2 (en) 2015-08-28 2020-10-13 Kobo Pda Co., Ltd. Heater chip, joining apparatus and joining method
WO2017038282A1 (en) * 2015-08-28 2017-03-09 株式会社工房Pda Heater chip, bonding device, and bonding method
JP6148800B1 (en) * 2015-08-28 2017-06-14 株式会社 工房Pda Heater chip, bonding apparatus, and bonding method
CN107848063A (en) * 2015-08-28 2018-03-27 株式会社工房Pda Heat chip, coupling apparatus and associated methods
US20180185953A1 (en) * 2015-08-28 2018-07-05 Kobo Pda Co., Ltd. Heater chip, joining apparatus and joining method
JP2017112243A (en) * 2015-12-17 2017-06-22 日本電産サンキョー株式会社 Heater chip and soldering device
JP2018012200A (en) * 2016-07-19 2018-01-25 株式会社 工房Pda Heater chip, joint device and joint method
CN109623078A (en) * 2019-01-20 2019-04-16 巨力自动化设备(浙江)有限公司 Three terminal welders
CN109623078B (en) * 2019-01-20 2023-09-12 巨力自动化设备(浙江)有限公司 Three-terminal welding machine
CN109807424A (en) * 2019-03-20 2019-05-28 安徽合力股份有限公司 A kind of soldering apparatus for strain testing
CN111745242A (en) * 2020-07-28 2020-10-09 广东维克光电技术有限公司 Pressure welding device for rapidly welding LED pixel lamp and processing method
CN115379917A (en) * 2020-09-09 2022-11-22 株式会社阿波罗技研 Heating nozzle unit
CN115443202A (en) * 2020-09-09 2022-12-06 株式会社阿波罗技研 Heating nozzle and heating nozzle unit
CN115461180A (en) * 2020-09-09 2022-12-09 株式会社阿波罗技研 Heating nozzle unit
CN115379917B (en) * 2020-09-09 2023-09-01 株式会社阿波罗技研 Heating nozzle unit
CN114523170A (en) * 2022-03-11 2022-05-24 安徽华晟新能源科技有限公司 Terminal box welding machines hand and welding equipment
CN114523170B (en) * 2022-03-11 2024-04-19 安徽华晟新能源科技有限公司 Junction box welding manipulator and welding equipment

Similar Documents

Publication Publication Date Title
JP2012183552A (en) Heater tip, joining device, and joining method
JP5794577B2 (en) Heater chip, joining device, joining method, and conductor thin wire and terminal connection structure
US10799977B2 (en) Heater chip, joining apparatus and joining method
JP4988607B2 (en) Heater chip, bonding apparatus, and bonding method
JP4426693B2 (en) Metal member joining method and reflow soldering method
JP5457107B2 (en) Heater chip and joining device
JP6677406B2 (en) Heater chip, joining device and joining method
CN104625299B (en) Tin-welding fixture and laser soldering method
JP6851610B2 (en) Heater tip and joining device and joining method
JP2010253503A (en) Heater chip and joining apparatus
KR20010061940A (en) soldering device for a repple
JP2009160617A (en) Heater tip and joining device
WO2020208850A1 (en) Method of joining insulated coating wire, connection structure, and peeling method and bonding device for insulated coating wire
JP2020013866A (en) Manufacturing method for power semiconductor device
US7323359B2 (en) Mounting method for a semiconductor component
US3444347A (en) Method for solder reflow connection of insulated conductors
US11192206B2 (en) Method for producing a cohesive laser bond connection and apparatus for forming a laser bond connection
JP2003080372A (en) Joining device for covered wire
JP2020015080A (en) Soldering device
JP2001275224A (en) Jointing apparatus
CN111250992B (en) Conductive auxiliary member, dissimilar material joining apparatus, and dissimilar material joining method
JPH0371982A (en) Resistance welding method
KR20240019067A (en) Method for forming heat-sink type power semiconductor
JP2001113363A (en) Method and device for joining of terminal
JPS5877769A (en) Method and device for soldering

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20121226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150317

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150728