JP2012180837A - ポンプのための誤差容積システムおよび方法 - Google Patents

ポンプのための誤差容積システムおよび方法 Download PDF

Info

Publication number
JP2012180837A
JP2012180837A JP2012115369A JP2012115369A JP2012180837A JP 2012180837 A JP2012180837 A JP 2012180837A JP 2012115369 A JP2012115369 A JP 2012115369A JP 2012115369 A JP2012115369 A JP 2012115369A JP 2012180837 A JP2012180837 A JP 2012180837A
Authority
JP
Japan
Prior art keywords
pump
dispensing
fluid
dispense
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012115369A
Other languages
English (en)
Other versions
JP2012180837A5 (ja
JP5404850B2 (ja
Inventor
George Gonnella
ジョージ ゴネラ,
James Cedrone
ジェームス セドロン,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Entegris Inc
Original Assignee
Entegris Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Entegris Inc filed Critical Entegris Inc
Publication of JP2012180837A publication Critical patent/JP2012180837A/ja
Publication of JP2012180837A5 publication Critical patent/JP2012180837A5/ja
Application granted granted Critical
Publication of JP5404850B2 publication Critical patent/JP5404850B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D7/00Apparatus or devices for transferring liquids from bulk storage containers or reservoirs into vehicles or into portable containers, e.g. for retail sale purposes
    • B67D7/06Details or accessories
    • B67D7/08Arrangements of devices for controlling, indicating, metering or registering quantity or price of liquid transferred
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B13/00Pumps specially modified to deliver fixed or variable measured quantities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B51/00Testing machines, pumps, or pumping installations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/11Automated chemical analysis
    • Y10T436/115831Condition or time responsive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/25Chemistry: analytical and immunological testing including sample preparation
    • Y10T436/2575Volumetric liquid transfer

Abstract

【課題】分注システムのコンプライアンスを補正することによって、ポンプによって分注される流体量における誤差を低減するためのシステムおよび方法を提供する。
【解決手段】分注レシピから分注容積量を決定することと、分注レシピに基づいて流体特性の値を決定することと、分注システムにおけるコンプライアンスを考慮した誤差容積と流体特性との相関関係から、流体特性の値に基づいて、誤差容積量を決定することと、分注モータを制御して、レシピから決定された分注容積量および誤差容積量を考慮した位置へ分注ポンプ内のピストンを動かすことにより、ノズルから流体の分注容積量を分注することとを備える、分注ポンプの分注容積における誤差を補正する。
【選択図】図9

Description

(関連出願の引用)
本願は、米国仮特許出願第60/742,304号、名称「Error Volume System and Method」について米国特許法119条(e)項の優先権および利益を主張するものであり、その全体は参考として本明細書に援用される。
(発明の技術分野)
本発明は、概して流体ポンプに関する。より具体的には、本発明の実施形態は、ポンプにおける誤差補正に関する。
流体がポンプ装置によって分注される量および/または速度の精密制御が必要である多くの用途が存在する。例えば、半導体プロセスでは、フォトレジスト化学物質等の光化学物質が、半導体ウエハに適用される量および速度を制御することは重要である。通常、プロセスの間に半導体ウエハに適用されるコーティングは、オングストローム単位で測定されるウエハの表面全体が平坦であることが要求される。プロセス化学物質がウエハに適用される速度は、プロセス液が均一に適用されることを確実にするために、制御されなければならない。
ウエハに流体を分注するためのポンプおよび関連するシステムの構成要素は、概して、ある量のコンプライアンスを有する。つまり、それらに印加された圧力量に基づいて、その寸法を拡張する傾向がある。その結果、ポンプによって生成されるある量の仕事は、流体移動よりもシステムのコンプライアンスへ向けられる。ポンプおよびシステムのコンプライアンスが考慮されない場合、ポンプは、意図されたよりも少ない流体を分注したり、粗悪な流体特性を有する分注を行ったりする可能性がある。したがって、分注システム全体のコンプライアンスを考慮するシステムおよび方法が必要である。
特開平11−76394号公報
本発明の実施形態は、ポンプによって分注される流体量における誤差を低減するためのシステムおよび方法を提供する。
本発明の一実施形態は、分注レシピから分注容積量を決定するステップと、分注レシピに基づいて流体特性(例えば、粘度、または他の特性)の値を決定するステップと、分注システムにおけるコンプライアンスを考慮した誤差容積と流体特性との相関関係から、流体特性の値に基づいて、誤差容積量を決定するステップと、分注モータを制御して、レシピから決定された分注容積量および誤差容積量を考慮した位置へ分注ポンプ内のピストンを動かすことにより、ノズルから流体の分注容積量を分注するステップと、を備える、分注ポンプの分注容積における誤差を補正するための方法を含む。また、本方法は、ユーザ指定の容積等の他の誤差容積を補正するステップも含むことができる。ポンプを制御して、レシピによって指示された時間内に、分注容積および誤差容積を考慮した位置へピストンを動かすことにより、分注容積を分注することができる。
本発明の別の実施形態は、分注チャンバを画定するポンプ本体と、分注チャンバ内に配置されたダイヤフラムと、分注チャンバ内で往復運動をして、ダイヤフラムを動かすピストンと、ピストンに結合され、ピストンを往復運動させるモータと、モータに結合された制御装置(すなわち、直接的または間接的にモータを制御可能)とを備える多段式ポンプを含む。制御装置は、流体特性と誤差容積との相関関係を格納する記憶装置を含むことができる。また、制御装置は、分注レシピから分注容積量を決定し、分注レシピに基づいて流体特性の値を求め、記憶装置にアクセスし、その相関関係から、流体特性の値に基づいて誤差容積量を決定し、分注モータを制御して、制御装置によって少なくとも誤差容積量と分注容積量との排出と関係付けられた位置へピストンを動かすように動作し得る。
本発明の別の実施形態は、ポンプによって行われる分注動作におけるシステムのコンプライアンスを補正するための方法を備え、テスト分注システム内に搭載されたテストポンプによって行われる部分と、半導体製造設備内に搭載されたポンプによって行われる部分とを含む。半導体製造設備内に搭載されたポンプは、テストポンプと同一または異なることができる。テストポンプに関して、本方法は、流体特性の種々の値を有する一式のテスト流体を使用して、対応する所望の分注容積量の一式のテスト分注を行うステップと、テスト分注の一式の実際の分注容積量を所望の分注容積量と比較して分析し、分注システム(すなわち、ポンプからある部位へ流体が分注される時にコンプライアンスを示す、ポンプ、管類、および付随構成要素)におけるコンプライアンスを考慮した流体特性と誤差容積との相関関係を決定するステップとを備えることができる。半導体製造設備内に搭載されたポンプに関して、本方法は、プロセス流体を分注するための分注レシピから所望の製造プロセス分注容積量を決定するステップと、分注レシピに基づいて、プロセス流体の流体特性値を決定するステップと、流体特性と誤差容積との相関関係から、プロセス流体の流体特性値に基づいて、誤差容積量を決定するステップと、分注モータを制御し、レシピおよび誤差容積量から決定された所望の製造プロセス分注容積量を考慮した位置へピストンを動かし、ノズルからウエハへ流体の分注容積量を分注するステップとを含むことができる。
テストポンプにおいて行われ得る例示的ステップは、a)一式のテスト流体から選択されたテスト流体に対応する所望の分注容積量を使用して、テスト分注を実行するステップと、b)平均的な実際の分注容積量を決定するステップと、c)一式の付加的な所望の分注容積量のそれぞれに対し、ステップa−bを繰り返すステップと、d)一式のテスト流体から選択されたテスト流体のように、新しいテスト流体を選択してステップa−cを繰り返すことであって、各テスト流体は、流体特性に対して異なる値を有するステップと、e)平均的な実際の分注容積量および対応する所望の分注容積量に基づいて、誤差容積と流体特性との関係を決定するステップと、を含む。
本発明の実施形態は、分注動作の正確性を向上させることによって、従来のポンプシステムに優る利点を提供する。
本発明の実施形態は、分注システム全体におけるコンプライアンスを補正することによって、誤差を補正する従来の方法に優る別の利点を提供する。
本発明およびその利点のより完全な理解は、同様の参照番号が同様の特性を示す添付の図面と併せて、以下の説明を参照することによって得られ得る。
図1は、ポンプシステムの一実施形態の図である。 図2は、本発明の一実施形態による多段ポンプ(「多段式ポンプ」)の図である。 図3A、3B、4A、4C、および4Dは、多段式ポンプの種々の実施形態の図である。 図3A、3B、4A、4C、および4Dは、多段式ポンプの種々の実施形態の図である。 図3A、3B、4A、4C、および4Dは、多段式ポンプの種々の実施形態の図である。 図4Bは、分注ブロックの一実施形態の図である。 図3A、3B、4A、4C、および4Dは、多段式ポンプの種々の実施形態の図である。 図3A、3B、4A、4C、および4Dは、多段式ポンプの種々の実施形態の図である。 図5Aは、多段式ポンプの一部分の一実施形態の図である。 図5Bは、分注チャンバを含む、図5Aの多段式ポンプの実施形態の断面図である。 図5Cは、図5Bの多段式ポンプの実施形態の断面図である。 図6は、本発明の一実施形態による、ブラシレスDCモータを有するモータアセンブリの図である。 図7は、分注システムのための、誤差容積と流体特性との相関関係を決定するシステムの図である。 図8は、誤差容積と粘度との相関関係を提供する例示的チャートである。 図9は、誤差容積と流体特性との相関関係を決定する一実施形態を示す工程図である。 図10は、ポンプを制御するための方法の一実施形態を示す工程図である。 図11は、単段ポンプの図である。
好ましい本発明の実施形態を図に例示し、同様の数表示は、種々の図面の同様の、および対応する部分を言及するために使用されている。
本発明の実施形態は、多段(「多段式」)ポンプを使用して、流体を正確に分注するポンプシステムに関する。本発明の実施形態は、分注システムのコンプライアンス(つまり、圧力による形状変化)を考慮することによって、ポンプによって分注される流体量における誤差を低減するためのシステムおよび方法を提供する。
概して言えば、ダイヤフラムポンプにおいて、チャンバ内のピストンの変位によって、特定量の流体を排出する。剛性のシステムにおいては、特定のピストン変位のために排出される流体量は、圧力にかかわらず、変動しない。しかしながら、多くのシステムは、一定量のコンプライアンス(例えば、圧力による部品の伸張)を有しており、圧力に応じて、同量のピストン変位でも、異なる流体量が分注される問題へとつながる。所望の分注容積とポンプによって実際に分注される流体量との差異は、誤差容積と称される。本発明の実施形態は、誤差容積を予測し、ピストンを動かす際に考慮に入れる機構を提供するとによって、誤差容積を低減するシステムおよび方法を提供する。
関連として、図1−6は、誤差容積の補正が実装可能な分注システムおよび多段式分注ポンプの実施例を提供する。多段式ポンプの付加的実施形態は、「SYSTEM AND METHOD FOR MULTI−STAGE PUMP WITH REDUCED FORM FACTOR」の名称で発明者Cedroneらが2005年12月5日に出願した米国仮特許出願第60/742,435号[代理人整理番号第ENTG1720号]、および「SYSTEM AND METHOD FOR A PUMP WITH REDUCED FORM FACTOR」の名称で発明者Cedroneらが______に出願した米国特許出願第______号[代理人整理番号第ENTG1720−1]に記載されている。しかしながら、本発明の実施形態は、他のシステムおよびポンプに実装可能であることは理解されたい。図1は、ポンプシステム10の図である。ポンプシステム10は、流体源15と、ポンプ制御装置20と、多段式ポンプ100とを含み、ウエハ25上へ流体を分注するために恊働することができる。多段式ポンプ100の動作は、多段式ポンプ100に内蔵される、または制御信号、データもしくは他の情報を通信するための1つ以上の通信リンクを介して、多段式ポンプ100に接続されることが可能なポンプ制御装置20によって制御することができる。さらに、ポンプ制御装置20の機能性は、内蔵制御装置と別の制御装置とに分散するができる。ポンプ制御装置20は、多段式ポンプ100の動作を制御するための制御命令30一式を包含するコンピュータ可読の媒体27(例えば、RAM、ROM、フラッシュメモリ、光ディスク、磁気ドライブまたは他のコンピュータ可読の媒体)を含むことができる。プロセッサ35(例えば、CPU、ASIC、RISC、DSPまたは他のプロセッサ)は、命令を実行することができる。プロセッサの一例は、Texas Instruments TMS320F2812PGFA 16−bit DSP(Texas Instrumentsは、テキサス州ダラスを本拠地とする企業である)である。図1の実施形態では、制御装置20は、通信リンク40および45を介して多段式ポンプ100と通信する。通信リンク40および45は、ネットワーク(例えば、Ethernet(登録商標)、無線ネットワーク、グローバルエリアネットワーク、DeviceNetネットワークまたは当技術分野で既知または開発された他のネットワーク)、バス(例えば、SCSIバス)または他の通信リンクであってもよい。制御装置20は、内蔵PCB基板として、遠隔制御装置として、または他の適切な方法で実装することができる。ポンプ制御装置20は、多段式ポンプ100と通信することを制御するために、適切なインターフェース(例えば、ネットワークインターフェース、入出力インターフェース、アナログデジタル変換器および他の部品)を含むことができる。さらに、ポンプ制御装置20は、プロセッサ、記憶装置、インターフェース、表示デバイス、周辺機器、または簡単にするために示さないが他のコンピュータ部品を含み、当技術分野で既知の種々のコンピュータ部品を含むことができる。ポンプ制御装置20は、多段式ポンプで種々の弁およびモータを制御することができ、多段式ポンプに、低粘性流体(すなわち、100センチポアズ未満)または他の流体を含む流体を正確に分注させる。「I/O INTERFACE SYSTEM AND METHOD FOR A PUMP」の名称でCedroneらが2005年12月2日に出願した米国特許出願第60/741,657号[代理人整理番号第ENTG1810号]、および「I/O SYSTEMS, METHODS AND DEVICES FOR INTERFACING A PUMP CONTROLLERの名称で発明者Cedroneらが______に出願した米国特許出願第______[代理人整理番号第ENTG1810−1号](参照することによって本明細書に完全に組み込まれる)に記載のような入出力インターフェースコネクタは、ポンプ制御装置20を種々のインターフェースおよび製造ツールに接続するために使用することができる。
図2は、多段式ポンプ100の図である。多段式ポンプ100には、供給段階部分105および別個の分注段階部分110が含まれる。不純物をプロセス流体から濾過するために、流体の流れの観点から、フィルタ120は、供給段階部分105と分注段階部分110との間に位置する。例えば、入口弁125、隔離弁130、遮断弁135、パージ弁140、排出弁145、および出口弁147を含む、多数の弁によって、多段式ポンプ100を通る流体の流れを制御することができる。分注段階部分110は、分注段階110で流体圧力を測定することができる圧力センサ112をさらに含むことができる。圧力センサ112によって測定された圧力は、以下に記載するように種々のポンプの速度を制御するために使用することができる。圧力センサの例には、ドイツ、コルブのMetallux AG製のものを含み、セラミックおよびポリマーのピエゾ抵抗および容量性の圧力センサが含まれる。一実施形態によると、プロセス流体に接する圧力センサ112の面は、ペルフルオロポリマーである。ポンプ100は、供給チャンバ155内の圧力を読み取るための圧力センサ等、さらなる圧力センサを含むことができる。
供給段階105および分注段階110は、多段式ポンプ100内の流体をポンプで汲み上げるために、回転ダイヤフラムポンプを含むことができる。供給段階ポンプ150(「供給ポンプ150」)は、例えば、流体を回収するための供給チャンバ155と、供給チャンバ155内で動き、流体を排出するための供給段階ダイヤフラム160と、供給段階ダイヤフラム160を動かすピストン165と、送りネジ170と、ステッピングモータ175とを含む。送りネジ170は、ナット、ギア、またはモータから送りネジ170へエネルギを伝えるための他の機構を通してステッピングモータ175に結合する。一実施形態によると、供給モータ170はナットを回転させ、それによって送りネジ170を回転させ、ピストン165を作動させる。同様に、分注段階ポンプ180(「分注ポンプ180」)は、分注チャンバ185と、分注段階ダイヤフラム190と、ピストン192と、送りネジ195と、分注モータ200とを含むことができる。分注モータ200は、ネジ式ナット(例えば、Torlonまたは他の材料のナット)を通して、送りネジ195を駆動することができる。
他の実施形態によると、供給段階105および分注段階110は、空気圧または液圧によって作動するポンプ、液圧ポンプまたは他のポンプを含む、種々の他のポンプであってもよい。供給段階用の空気圧によって作動するポンプ、およびステッピングモータ駆動の液圧ポンプを使用した多段式ポンプの一例は、参照することによって本明細書に組み込まれる、「PUMP CONTROLLER FOR PRECISION PUMPING APPARATUS」の名称で、発明者Zagarsらが2005年2月4日に出願した米国特許出願番号第11/051,576号[代理人整理番号第ENTG1420−2号]に記載されている。しかしながら、両方の段階でモータを使用することは、液圧パイプ、制御システムおよび流体が除去され、それによって空間および潜在的漏洩を減少させるという利点を提供する。
供給モータ175および分注モータ200は、任意の好適なモータであってもよい。一実施形態によると、分注モータ200は、永久磁石同期モータ(「PMSM」)である。PMSMは、モータ200、多段式ポンプ100内蔵の制御装置、または別個のポンプ制御装置(例えば、図1に示すような)で、ベクトル制御(「FOC」)または当技術分野で既知の他の型の位置/速度制御部を利用するデジタルシグナルプロセッサ(「DSP」)によって制御することができる。さらに、PMSM 200は、分注モータ200の位置の即時フィードバックのためのエンコーダ(例えば、細線回転式位置エンコーダ)をさらに含むことが可能である。位置センサを使用すると、ピストン192の位置の正確で反復可能な制御が得られ、ひいては分注チャンバ185内での流体運動に正確で反復可能な制御をもたらす。例えば、一実施形態によると、DSPに8000パルスをもたらす2000ラインエンコーダを使用して、0.045度の回転で正確に測定し、制御することが可能となる。さらに、PMSMは、振動がほとんどまたは全くない状態の低速で駆動することができる。さらに、供給モータ175は、PMSMまたはステッピングモータであってもよい。さらに、供給ポンプは、供給ポンプが定位置にある場合に表示する定位置センサを含むことができることに留意すべきである。
多段式ポンプ100の作動の間、多段式ポンプ100の弁は、多段式ポンプ100の種々の部分に流体の流れを許容または制限するために開閉する。一実施形態によると、これらの弁は、圧力または真空が印加されるかどうかに応じて開閉する、空気圧によって作動する(すなわち、ガスで作動する)ダイヤフラム弁であってもよい。しかしながら、他の本発明の実施形態では、任意の好適な弁を使用することができる。
多段式ポンプ100の動作の種々の段の概要を以下に示す。しかしながら、多段式ポンプ100は、弁および制御圧力を配列するために、それぞれが参照することによって本明細書に全面的に組み込まれる、「SYSTEM AND METHOD FOR VALVE SEQUENCING IN A PUMP」の名称でGonnellaらが2005年12月2日に出願した米国仮特許出願第60/742,168号[代理人整理番号第ENTG1740号]、「SYSTEM AND METHOD FOR VALVE SEQUENCING IN A PUMP」の名称で発明者Gonnellaらが______に出願した米国特許出願第______号[代理人整理番号第ENTG1740−1号]、「SYSTEM AND METHOD FOR PRESSURE COMPENSATION IN A PUMP」の名称で発明者Cedroneらが2005年12月2日に出願した米国仮特許出願第60/741,682号[代理人整理番号第ENTG1800号]、「SYSTEM AND METHOD FOR PRESSURE COMPENSATION IN A PUMP」の名称で発明者Cedroneらが______に出願した米国特許出願第______号[代理人整理番号第ENTG1800−1号]、「I/O Interface System and Method for a Pump」の名称で Cedrone らが2005年12月2日に出願した米国仮特許出願第60/741,657号[代理人整理番号第ENTG1810号]、「I/O SYSTEM, METHOD AND DEVICE FOR INTERFACING A PUMP CONTROLLER」の名称で発明者Cedroneらが______に出願した米国特許出願第______号[代理人整理番号第ENTG1810−1号]、「SYSTEMS AND METHODS FOR FLU内径 FLOW CONTROL IN AN IMMERSION LITHOGRAPHY SYSTEM」の名称で 発明者Clarkeらが2006年8月11日に出願した米国特許出願第11/502,729号[代理人整理番号第ENTG1840号]、「SYSTEM AND METHOD FOR CORRECTING FOR PRESSURE VARIATIONS USING A MOTOR」の名称で Gonnellaらが2005年12月2日に出願した米国仮特許出願第60/741,681号[代理人整理番号第ENTG1420−3号]、「SYSTEM AND METHOD FOR CORRECTING FOR PRESSURE VARIATIONS USING A MOTOR」の名称で 発明者Cedroneらが______に出願した米国特許出願第______号[代理人整理番号第ENTG1420−4号]、「SYSTEM AND METHOD FOR CONTROL OF FLU内径 PRESSURE」の名称で発明者Gonnellaらが2005年12月2日に出願した米国特許出願第11/292,559号[代理人整理番号第ENTG1630号]、「SYSTEM AND METHOD FOR MONITORING OPERATION OF A PUMP」の名称で 発明者Gonnellaらが2006年2月28日に出願した米国特許出願第11/364,286号[代理人整理番号第ENTG1630−1号]に記載されているものを含むが、これらに限定されるものではない種々の制御方式により制御することができる。一実施形態によると、多段式ポンプ100は、準備完了区分、分注区分、充填区分、前濾過区分、濾過区分、排出区分、パージ区分および静的パージ区分を含むことができる。供給区分の間には、入口弁125は開状態となり、供給段階ポンプ150は、供給段階ダイヤフラム160を動かし(例えば、引く)、流体を供給チャンバ155の中に汲み上げる。十分な量の流体が供給チャンバ155に充満されると、入口弁125は閉状態となる。濾過区分の間には、供給段階ポンプ150は供給段階ダイヤフラム160を動かし、供給チャンバ155から流体を排出する。隔離弁130および遮断弁135は開状態となり、流体はフィルタ120を通って分注チャンバ185へ流れることが可能となる。一実施形態によると、最初に隔離弁130が開状態となることができ(例えば、「前濾過区分」において)、圧力をフィルタ120内で高めることが可能となり、その後、遮断弁135が開状態となり、分注チャンバ185の中への流体の流れが可能となる。他の実施形態によると、隔離弁130および遮断弁135の両方が開状態となることができ、供給ポンプは、フィルタの分注側で圧力を高めるために動く。濾過区分の間には、分注ポンプ180は、定位置に持って来ることができる。両方とも参照することによって本明細書の組み込まれる、「SYSTEM AND METHOD FOR A VARIABLE HOME POSITION DISPENSE SYSTEM」の名称で、Laverdiereらが2004年11月23日に出願した米国仮特許出願第60/630,384号[代理人整理番号第ENTG1590号]および「SYSTEM AND METHOD FOR VARIABLE HOME POSITION DISPENSE SYSTEM」の名称で、出願者Entegris Inc.および発明者Laverdiereらが2005年11月21日に出願した国際出願第PCT/US2005/042127号[代理人整理番号第ENTG1590−WO号]に記載されるように、分注ポンプの定位置は、分注サイクルに対して分注ポンプでの利用可能な最大量をもたらすが、分注ポンプが提供できる利用可能な最大限の量に満たない位置であってもよい。定位置は、多段式ポンプ100の未使用の保持量を減少するために分注サイクルに対する種々のパラメータに基づき選択される。同様に、供給ポンプ150は、利用可能な最大限の量に満たない量を提供する定位置に持って来ることができる。
排出区分の始まりでは、隔離弁130は開状態となり、遮断弁135は閉状態となり、また排出弁145は開状態となる。他の実施形態では、遮断弁135は、排出区分の間には開状態を維持し、排出区分の終わりで閉状態となることができる。この間に、遮断弁135が開状態である場合、圧力センサ112によって決定することができる、分注チャンバ内の圧力が、フィルタ120内の圧力によって作用されるので、圧力は、制御装置によって伝えられることができる。供給段階ポンプ150は、流体に圧力を加え、フィルタ120から開状態の排出弁145を通して気泡を除去する。供給段階ポンプ150は、所定の率で排出が起こるように制御することができ、排出時間の延長および排出率の低下が可能となり、それによって排出廃棄量の精密制御が可能となる。供給ポンプが空気型ポンプである場合は、流体の流れの制限は、排出流体路内で行うことができ、供給ポンプに加えられる空気圧は、「排出」設定点圧力を維持するために増減することができ、別様に非制御方法のいくつかの制御をもたらす。
パージ区分の始まりでは、隔離弁130は閉状態、遮断弁135は、排出区分が開状態の場合には閉状態、排出弁145は閉状態、パージ弁140は開状態、および入口弁125は開状態となる。分注ポンプ180は、分注チャンバ185内の流体に圧力を加え、パージ弁140を通して気泡を排出する。静的パージ区分の間には、分注ポンプ180は停止するが、パージ弁140は開状態を維持し、継続して空気を排出する。パージ区分または静的パージ区分の間に除去された過剰ないかなる流体も、多段式ポンプ100から送出される(例えば、流体源へ戻るもしくは廃棄される)、または供給段階ポンプ150へ再循環させることができる。準備完了区分の間には、入口弁125、隔離弁130および遮断弁135は開状態となり、またパージ弁140は閉状態となることができるので、供給段階ポンプ150は、流体源(例えば、流体源ボトル)の周囲圧力に達することができる。他の実施形態によると、すべての弁は、準備完了区分では閉状態であってもよい。
分注区分の間には、出口弁147は開状態となり、また分注ポンプ180は、分注チャンバ185内の流体に圧力を加える。出口弁147は、分注ポンプ180よりも制御に対する反応が遅い場合があるので、出口弁147は最初に開状態となり、所定の時間が経過すると、分注モータ200が起動する。これは、分注ポンプ180が流体を部分的に開状態の出口弁147に通過させるのを阻止する。さらに、これは、弁を開状態にすることにより流体が分注ノズルまで上方に移動すること、続いて、モータ作用により流体が前方に動くことを阻止する。他の実施形態では、出口弁147は開状態となり、同時に分注ポンプ180によって分注を開始することができる。
さらなる吸液区分は、分注ノズル内の過剰な流体を除去する際に行うことができる。吸液区分の間には、出口弁147は閉状態となることができ、二次的なモータまたは真空部は、出口ノズルから過剰な流体を吸い取るために使用することができる。さらに、出口弁147は開状態を維持することができ、また分注モータ200は、流体を分注チャンバの中へ吸い戻すために反転させることができる。吸液区分は、過剰な流体がウエハ上に滴下しないように助ける。
図3Aは、多段式ポンプ100のためのポンプアセンブリの一実施形態の図である。多段式ポンプ100は、多段式ポンプ100を通して種々の流体流路を画定し、また供給チャンバ155および分注チャンバ185を少なくとも部分的に画定する分注ブロック205を含むことができる。一実施形態による、分注ポンプブロック205は、PTFE、変性PTFEまたは他の材料から成る単一ブロックであってもよい。これらの材料は、多くのプロセス流体と反応しない、または反応性が少ないので、これらの材料を使用すると、流通路およびポンプチャンバは、最低限のハードウェアの追加をもって分注ブロック205に直接機械加工することができる。ひいては、分注ブロック205は、一体型流体マニホールドを提供することによって、パイピングの必要性を軽減する。
分注ブロック205は、例えば、流体を受ける入口210、流体をパージ/排出するためのパージ/排出出口215、および流体が分注区分の間に分注される分注出口220を含み、種々の外部入口および外部出口を含むことができる。図3Aの例では、パージされた流体は、供給チャンバに送り戻されるので(図4Aおよび図4Bに示す)、分注ブロック205は、外部パージ出口を含まない。しかしながら、他の本発明の実施形態では、流体は、外部からパージすることができる。参照することによって本明細書に全面的に組み込まれる、「O−RING−LESS LOW PROFILE FITTING AND ASSEMBLY THEREOF」の名称で、Iraj Gashgaeeが2005年12月2日に出願した米国仮特許出願第60/741,667号[代理人整理番号第ENTG1760号]および「O−RING−LESS LOW PROFILE FITTINGS AND FITTING ASSEMBLIES」の名称で発明者Gashgaeeが______に出願した米国特許出願第______号[代理人整理番号第ENTG1760−1号]は、分注ブロック205の外部入口および外部出口を流体管路に接続するために利用することができる取付部品の実施形態を記載している。
分注ブロック205は、流体を供給ポンプ、分注ポンプおよびフィルタ120に送る。ポンプカバー225は、供給モータ175および分注モータ200を破損から保護することができるが、ピストンハウジング227は、ピストン165およびピストン192を保護することができ、本発明の一実施形態により、ポリエチレンまたは他のポリマーから形成することができる。弁板230は、流体の流れを多段式ポンプ100の種々の構成要素に誘導するように構成することができる弁(例えば、図2の入口弁125、隔離弁130、遮断弁135、パージ弁140、および排出弁145)のための弁ハウジングを提供する。一実施形態によると、入口弁125、隔離弁130、遮断弁135、パージ弁140、および排出弁145のそれぞれは、弁板230に少なくとも部分的に統合され、対応するダイヤフラム圧力または真空を印加するかどうかに応じて開状態または閉状態となるダイヤフラム弁である。他の実施形態では、弁のいくつかは、分注ブロック205の外部にあってもよく、またはさらなる弁板に配置してもよい。一実施形態によると、1枚のPTFEは、弁板230と分注ブロック205との間に挟入され、種々の弁のダイヤフラムを形成する。弁板230は、それぞれの弁のための弁制御入口を含み、対応するダイヤフラムに圧力または真空を印加する。例えば、入口235は、遮断弁135に、入口240はパージ弁140、入口245は隔離弁130、入口250は排出弁145、入口255は入口弁125に対応する(この場合、出口弁147は、外部)。圧力または真空を入口に選択的に印加することによって、対応する弁は、開状態および閉状態となる。
弁制御ガスおよび真空は、弁制御マニホールド(上蓋263またはハウジングカバー225によって覆われる)から分注ブロック205を通って弁板230へ達する、弁制御供給管路260を介して弁板230に提供される。弁制御ガス供給入口265は、加圧ガスを弁制御マニホールドに提供し、真空入口270は、真空(または低圧力)を弁制御マニホールドに提供する。弁制御マニホールドは、対応する弁を作動させるために、供給管路260を介して弁板230の適切な入口に加圧ガスまたは真空を送る三方弁の役割をする。
図3Bは、多段式ポンプ100の他の実施形態の図である。図3Bに示す特性の多くは、上記の図3Aとともに記載したものと類似している。しかしながら、図3Bの実施形態は、流体液滴が、電子機器を収納する多段式ポンプ100の領域に入らないようにするいくつかの特性を含む。流体液滴は、例えば、操作者が管を入口210、出口215または排出220に接続または切断する場合に発生する可能がある。「防滴」の特性は、潜在的に有害な化学物質の液滴がポンプ、特に電子チャンバに入らないように設計されており、必ずしもポンプが「耐水性」であることを要求しない(例えば、漏洩のない流体中の潜水艇)。他の実施形態によると、ポンプは完全に密閉することができる。
一実施形態によると、分注ブロック205は、垂直に突出しているフランジ、または上蓋263と接する分注ブロック205の端縁部から外側に突出しているリップ272を含むことができる。上端縁部では、一実施形態によると、上蓋263の上部は、リップ272の上表面と同一平面上にある。これにより、分注ブロック205および上蓋263の上部接合部分付近の液滴は、接合部分を通過するよりはむしろ分注ブロック205上に達する傾向になる。しかしながら、側面では、上蓋263は、リップ272の基部と同一平面上にあるか、さもなければリップ272の外部表面から内部にオフセットする。これにより、液滴は、上蓋263と分注ブロック205の間よりはむしろ上蓋263およびリップ272によってできる角に流れ落ちる傾向になる。さらに、ゴム製密閉部は、上蓋263の上端縁部と裏板271との間に設置され、液滴が上蓋263と裏板271との間に漏れることを阻止する。
さらに、分注ブロック205は、電子機器を収納するポンプ100の領域から離れるように下方に傾斜する分注ブロック205内で画定される傾斜表面を含む傾斜特性273を含むことができる。その結果として、分注ブロック205の上部付近の液滴は、電子機器から離れるように導かれる。さらに、ポンプカバー225はまた、分注ブロック205の外部側端縁部から若干内側にオフセットすることができるので、ポンプ100の側部の液滴は、ポンプカバー225の接合部分およびポンプ100の他の部分を流れ過ぎる傾向にある。
本発明の一実施形態によると、金属カバーが分注ブロック205と接合する時はいつも、金属カバーの垂直表面は、分注ブロック205の対応する垂直表面から若干内部にオフセットする(例えば、1/64インチまたは0.396875mm)。さらに、多段式ポンプ100は、密閉部、傾斜特性、または電子機器を収納する多段式ポンプ100の部分に液滴が入らないようにするための他の特性を含むことができる。さらに、図4Aに示し、以下に論じるように、裏板271は、多段式ポンプ100をさらに「防滴」する特性を含むことができる。
図4Aは、そこに画定される流体の流れの通路を示すために透明にされる分注ブロック205を有する多段式ポンプ100の一実施形態の図である。分注ブロック205は、多段式ポンプ100のための種々のチャンバおよび流体の流れの通路を画定する。一実施形態によると、供給チャンバ155および分注チャンバ185は、分注ブロック205に直接機械加工することができる。さらに、種々の流通路は、分注ブロック205に機械加工することができる。流体の流れの通路275(図4Cに示す)は、入口210から入口弁に達する。流体の流れの通路280は、入口弁から供給チャンバ155へ達し、入口210から供給ポンプ150へのポンプ入口路を終了する。弁ハウジング230内の入口弁125は、入口210と供給ポンプ150との間の流れを調節する。流通路285は、弁板230内で供給ポンプ150から隔離弁130へ流体を送る。隔離弁130からの流出は、他の流通路(図示せず)によってフィルタ120へ送られる。これらの流路は、フィルタ120への供給段階出口流路の役割をする。流体は、フィルタ120から、フィルタ120を排出弁145および遮断弁135に接続する流通路を通って流れる。排出弁145からの流出は、排出出口215へ送られ、排出流路を終了するが、遮断弁135からの流出は、流通路290を介して分注ポンプ180へ送られる。このようにして、フィルタ120から遮断弁135への流通路および流通路290は、供給段階入口流路の役割をする。分注ポンプは、分注区分の間では、流通路295(例えば、ポンプ出口流路)を介して出口220へ、またはパージ区分の間では、流通路300を通ってパージ弁へ流体を流出することができる。パージ区分の間では、流体は、流通路305を通って供給ポンプ150に戻ることができる。このようにして、流通路300および流通路305は、流体を供給チャンバ155に戻すパージ流路の役割をする。流体の流れ通路は、PTFE(または他の材料)ブロック内に直接形成することができるので、分注ブロック205は、多段式ポンプ100の種々の構成要素の間のプロセス流体のためのパイピング、さらなる管類の必要性を除去または軽減する役割をすることができる。他の場合には、管類は、流体の流れの通路を画定するために、分注ブロック205に挿入することができる。図4Bは、一実施形態による、流通路のうちのいくつかを示すために透明にされた分注ブロック205の図を提供する。
図4Aに戻ると、図4Aは、供給段階モータ190を含む供給ポンプ150と、分注モータ200を含む分注ポンプ180と、弁制御マニホールド302とを表示するためにポンプカバー225および上蓋263を外した状態の多段式ポンプ100をさらに示す。本発明の一実施形態によると、供給ポンプ150、分注ポンプ180および弁板230の一部分は、分注ブロック205内の対応する空洞に挿入される棒(例えば、金属棒)を使用して、分注ブロック205に結合することができる。それぞれの棒は、ネジを受けるための1つ以上のネジ穴を含むことができる。一例として、分注モータ200およびピストンハウジング227は、棒316内の対応する穴に螺入するために、分注ブロック205内のネジ穴を通って達する1つ以上のネジ(例えば、ネジ312およびネジ314)によって分注ブロック205に取り付けることができる。構成要素を分注ブロック205に結合するためにこの機構は、例証として提供され、任意の適切な添着機構を使用できることが留意されるべきである。
本発明の一実施形態によると、裏板271は、上蓋263およびポンプカバー225が取り付けられる、内部に延在するツメ(例えば、張り出し受け274)を含むことができる。上蓋263およびポンプカバー225は、張り出し受け274に重なるので(例えば、上蓋263の下後方端縁部およびポンプカバー225の上後方端縁部で)、液滴は、上蓋263の下端縁部とポンプカバー225の上端縁部との間、または上蓋263およびポンプカバー225の後方端縁部での任意の空間の電気機器領域に流れることを阻止される。
本発明の一実施形態によると、マニホールド302は、圧力/真空を弁板230に選択的に誘導するために、ソレノイド弁一式を含むことができる。特定のソレノイドを作動させ、それによって真空または圧力を弁へ誘導する場合には、実装に応じて、ソレノイドは発熱する。一実施形態によると、マニホールド302は、分注ブロック205、特に分注チャンバ185から離れるようにPCB基板(裏板271に取り付けられ、図4Cにより明瞭に示される)の下方に取り付けられる。マニホールド302は、張り出し受けに取り付けることができ、それによって、裏板271に取り付けられるか、または裏板271に結合させることができる。これは、マニホールド302内のソレノイドからの熱が、分注ブロック205内の流体に作用しないように助ける裏板271は、熱をマニホールド302およびPCBから分散することができる、ステンレス鋼機械加工のアルミニウムまたは他の材料から作製することができる。言い換えれば、裏板271は、マニホールド302およびPCBのために放熱張り出し受けの役割をすることができる。ポンプ100は、表面または熱が裏板271によって伝導することができる他の構造にさらに取り付けることができる。このようにして、裏板271およびそれが添着される構造は、マニホールド302およびポンプ100の電子機器のための放熱板の役割をする。
図4Cは、弁板230へ圧力または真空を印加するための供給管路260を示す多段式ポンプ100の図である。図3と併せて論じたように、弁板230内の弁は、流体が多段式ポンプ100の種々の構成要素に流れるように構成することができる。弁の作動は、それぞれの供給管路260に圧力か、または真空を誘導する弁制御マニホールド302によって制御される。それぞれの供給管路260は、小さな開口部を有する取付部品(取付部品の例は318に示す)を含むことができる。この開口部は、取付部品318が添着される、対応する供給管路260の直径より小さな直径から作製してもよい。一実施形態では、開口部は、直径約0.010インチであってもよい。このようにして、取付部品318の開口部は、供給管路260内に制限を設けるように役立つことがある。それぞれの供給管路260内の開口部は、供給管路へ圧力および真空を加える間の急激な圧力差の作用を軽減するのに役立ち、ひいては、弁へ圧力および真空を加える間の転移を円滑にする。言い換えれば、開口部は、下流弁のダイヤフラムでの圧力変化の衝撃を軽減するのに役立つ。これにより、弁は、より円滑に開閉でき、また弁の開閉によって引き起こされるシステム内でのより円滑な圧力転移をもたらし、実際に弁本体の寿命を延ばすことになる。
さらに、図4Cは、PCB397を例示する。本発明の一実施形態によると、マニホールド302は、PCB基板397から信号を受信することができ、ソレノイドに種々の供給管路260に真空/圧力を誘導するために開/閉させ、多段式ポンプ100の弁を制御する。この場合もやはり、図4Cに示すように、マニホールド302は、分注ブロック205からPCB397の遠位端に位置することができ、分注ブロック205内の流体への熱作用を軽減する。さらに、PCBの設計および空間的制約に基づいて実行可能な範囲まで、発熱する構成要素は、分注ブロック205から離れるようにPCBの側部に設置することができ、この場合もやはり、熱作用を軽減する。マニホールド302およびPCB397からの熱は、裏板271によって分散することができる。他方では、図4Dは、マニホールド302が分注ブロック205に直接取り付けられるポンプ100の実施形態の図である。
図5Aは、分注ブロック205、弁板230、ピストンハウジング227、送りネジ170および送りネジ195を含む、多段式ポンプ100の一部分の側面図を例示する。図5Bは、分注ブロック205、分注チャンバ185、ピストンハウジング227、送りネジ195、ピストン192および分注ダイヤフラム190を示す、図5Aの断面図A−Aを例示する。図5Bに示すように、分注チャンバ185は、分注ブロック205によって少なくとも部分的に画定することができる。送りネジ195が作動するにつれて、ピストン192は、分注ダイヤフラム190を変位させるために上方(図5Bに示す配列に対して)に動かすことができ、それによって、分注チャンバ185内流体に出口流通路295またはパージ流通路300を介してチャンバから流出させる。流通路の流入口および流出口は、分注チャンバ185内に種々多様に配置できることは留意されたい。図5Cは、図5Bの一区分を示す。図5Cに示す実施形態では、分注ダイヤフラム190は、分注ブロック200内のグローブ400に嵌着するトング395を含む。このようにして、この実施形態では、分注ダイヤフラム190の端縁部は、ピストンハウジング227と分注ブロック205との間で密閉される。一実施形態によると、分注ポンプおよび/または供給ポンプ150は、回転ダイヤフラムポンプであってもよい。
図1〜図5Cと併せて記載した多段式ポンプ100は、一例として提供されているが、限定されるものではなく、本発明の実施形態は、他の多段式ポンプの構成として実装することができることが留意されるべきである。
上述のように、本発明の一実施形態による供給ポンプ150は、ステッピングモータによって駆動することができ、分注ポンプ180は、ブラシレスDCモータまたはPSMSモータによって駆動することができる。以下の図6は、種々の本発明の実施形態により使用可能なモータアセンブリの実施形態を記載する。
図6は、本発明の一実施形態による、モータ630と、そこに結合された位置センサ640とを有するモータアセンブリ600の特定の実施形態の図である。図6に示す実施例では、ダイヤフラムアセンブリ610は、送りネジ620を介してモータ630に接続される。一実施形態では、モータ630は、永久磁石同期モータ(「PMSM」)である。PMSMモータのための制御方式の実施形態は、「SYSTEM AND METHOD FOR POSITION CONTROL OF A MECHANICAL PISTON IN A PUMP」の名称で、発明者Gonnellaらが2005年12月2日に出願した米国仮出願第60/741,660号[代理人整理番号第ENTG1750号]、および「SYSTEM AND METHOD FOR POSITION CONTROL OF A MECHANICAL PISTON IN A PUMP」の名称で、発明者Gonnellaらが2006年9月1日に出願した米国仮出願第60/841,725[代理人整理番号第ENTG1750−1号]、および、「SYSTEM AND METHOD FOR POSITIONCONTROL OF A MECHANICALPISTON IN A PUMP」の名称で発明者Gonnellaらが出願した______に出願した米国特許出願第______号、[代理人整理番号第ENTG1750−2]に記載されており、参照することによって本明細書に全面的に組み込まれる。電流の極性は、整流子およびブラシによって修正される。しかしながら、PMSMでは、極性の反転は、回転子位置と同期して切り替える電力トランジスタによって行われる。したがって、PMSMは、「ブラシレス」として特徴付けることができ、ブラシDCモータよりもより信頼性があると見なされる。さらに、PMSMは、回転子磁石により回転子磁束を生成することによって、より高い効率性を達成することができる。PMSMの他の利点には、振動の低下、騒音の低下(ブラシの除去により)、効率的な熱放散、より小さな設置面積、および回転子慣性が含まれる。固定子がいかに損傷するかに応じて、回転子の運動によって固定子内に誘発される、逆電磁気力は、異なるプロファイルを有することができる。1つのプロファイルは、台形状を有する場合があり、他のプロファイルは、正弦曲線形状を有する場合がある。本開示内で、用語PMSMとは、すべての型のブラシレス永久磁石モータを表すことを意図し、用語ブラシレスDCモータ(「BLDCM」)と相互交換可能なように使用される。
PMSM630は、上述のように供給モータ175および/または分注モータ200として利用できる。一実施形態では、多段式ポンプ100は、供給モータ175としてのステッピングモータと、分注モータ200としてのPMSM630を組み込む。好適なモータおよび付随部品は、米国ニューハンプシャー州EAD Motors of Dover等から取得してもよい。作動中、BLDCM630の固定子は、固定子磁束を生成し、ロータは、ロータ磁束を生成する。固定子磁束とロータ磁束との相互作用によって、トルク、またそれ故にBLDCM630の速度が定義される。一実施形態では、デジタル信号プロセッサ(DSP)を使用して、ベクトル制御(FOC)のすべてを実装する。FOCアルゴリズムは、コンピュータ可読媒体内で具現化されるコンピュータ実行可能ソフトウェア命令において実現される。現在、デジタル信号プロセッサは、オンチップハードウェア周辺機器とそれのみで、BLDCM630を制御し、FOCアルゴリズムをマイクロ秒で完全に実行するための処理能力、スピード、プログラム可能能力を備え、比較的少ない追加コストで利用可能である。本明細書に開示の本発明の実施形態を実装するために利用可能なDSPの一実施例は、米国テキサス州Dallasに拠点を置くTexas Instruments,Inc.から入手可能である16ビットDSP(部品番号TMS320F2812PGFA)である。
BLDCM630は、実際の回転子位置を感知するための少なくとも1つの位置センサを組み込むことが可能である。一実施形態では、位置センサは、BLDCM630の外部に存在してもよい。一実施形態では、位置センサは、BLDCM630の内部に存在してもよい。一実施形態では、BLDCM630は、センサを有していなくてもよい。図6に示される実施例では、位置センサ640は、BLDCM630の実際の回転子位置の即時フィードバックのためにBLDCM630に結合され、DSPによって使用され、BLDCM630を制御する。位置センサ640を有することのさらなる利点は、機械式ピストンの位置(例えば、図2のピストン192)の非常に正確かつ繰り返し可能な制御が証明されており、これは非常に正確かつ繰り返し可能なピストン変位分注ポンプ(例えば、図2の分注ポンプ180)内の流体運動および分注量の制御を意味することである。一実施形態では、位置センサ640は、細線回転式位置エンコーダである。一実施形態では、位置センサ640は、2000ラインエンコーダである。2000ラインエンコーダを使用することによって、0.045回転度を正確に計測し、制御することが可能である。
BLDCM630は、非常に低速度で稼働し、さらに一定の速度を維持することができ、それは、振動がほとんどまたは全くないことを意味する。ステッピングモータ等の他の技術では、十分に一定ではない速度制御によって引き起こされていた振動をポンプシステム内に導入することなく、より低速で稼働することが可能になってきている。この変動は、十分でない分注性能を引き起こすことになり、結果として極めて限られた作動となる。特定のモータアセンブリが示されているが、本発明の実施形態は、供給および/または分注モータのための種々のモータアセンブリを使用して実装することができる。
典型的には、分注動作は、正確な容積の流体が一定時間の間に分注されるように、指定の時間の間、指定の流速で流体が分注されることを要求する。分注システム内の流体の流速は、流体の粘度および流体に印加される圧力に依存する。指定時間内に特定量の流体を分注することに加え、非常に均一な円柱形状に流体が分注されることが望ましい。「良好な」分注は、出口弁の開閉に応じて、恐らく終端では一部漸減を伴うが、断絶、液滴、または円柱形状に大幅な変形が生じることなく、垂直な流体柱として視覚化することが
できる。
図2および3Aを参照すると、完全に剛性のシステムにおいて、分注ピストン192は、常に同量で動き、流体の粘度にかかわらず、良好な状態で特定の容積の流体を排出する。しかしながら、実際は、分注ポンプ100および分注システムの他の構成要素は、コンプライアンスを示す。つまり、分注システムの種々の構成要素は、圧力に応じた量のコンプライアンスを有し、圧力下で伸張または拡張する傾向にある。分注ピストン192の動きに伴って、その運動の一部は、システムのコンプライアンスへ向けられる。分注ピストン192の動きが停止すると、構成要素は収縮し、原容積に戻ることができる。構成要素が非歪(または、歪が少ない)状態に戻ることによって、円柱形状の終端部分が動かされるため、これによって、分注される流体の柱の質に問題が生じる可能性がある。一例として、ピストンが、分注1mLに対応するx距離動いたと仮定する。流体容積の一部、例えば0.9mLは分注され、流体容積の一部、例えば0.1mLは、コンプライアンスによって生じる付加的容積を占める。ピストンの動きが停止すると(かつ、出口弁が閉鎖されていない場合)、管類、ダイヤフラム、および他の構成要素の収縮に伴って、付加的な0.1mLが分注される。厳密に1mLが分注され得る一方、残りの0.1mLは、典型的には、断絶、液滴、または流体柱の起伏が存在するため、良好な状態を有さない。本発明の実施形態は、ピストンをさらに動かし、適切な流体量が分注され、良好な分注(例えば、実質的に均一な流体柱を伴う分注)が達成されると、出口弁を閉鎖することによって、この問題を補正することができる。
誤差容積は、プロセス流体の粘度(または、他のパラメータ)に基づいて、多段式ポンプ100を含む分注システムに対して決定することができる。誤差容積は、プログラムされた分注量と、誤差容積を考慮せずに分注ポンプ100が分注する流体量と(例えば、いずれの場合も、出口弁が同時に閉鎖すると仮定する)の差異を補正するために、分注容積に加えられる(または、差し引かれる)容積である。誤差容積は、ポンプ100の物理または制御特性、プロセス変数、あるいはポンプ100が接続されるシステムの結果である場合もある。誤差容積は、所望の分注量を提供するためにモータが移動しなければならない付加量に変換することができる。ポンプ制御装置は、分注モータを制御し、分注容積と誤差容積とを考慮した位置へピストンを移動することができる。例えば、分注容積が1mLで、誤差容積が0.1mLの場合、ポンプ制御装置は、分注モータを制御し、制御装置にしたがって、1.1mLの分注に対応する位置へピストを動かすことができる。システムにおけるコンプライアンスのため、1mLだけが一定時間内に実際に分注される。
種々の方法を使用して、ポンプおよび/または分注動作の間の全体の分注システムのコンプライアンスを決定することができる。一実施形態によると、既知の直径およびコンプライアンスを有する1本の管類が、出口210に接続され、垂直に延在する。流体柱が管類の一部を充填し、チャンバ185内の空気が排出されるように、分注チャンバ185は、流体で充填される。大気圧下での流体柱の上部位置が注目される。次いで、ポンプから遠位の管類の端部に圧力が印加され、それによって流体柱および分注チャンバ185内の流体を加圧することができる。これによって、流体柱が管の下方へと移動させられる。開始時の流体柱の上部位置と、圧力が印加された後の流体柱の上部位置との差異を測定することによって、管の直径が既知であるため、圧力に基づく容積変化を決定することができる(すなわち、管の直径に基づいて、1mmの降下は、特定数の立方センチメーターの流体に対応することになる)。この容積変化は、管およびポンプのコンプライアンスによってもたらされる。既知の管のコンプライアンスによる容積変化を差し引き、ポンプのみのコンプライアンスを決定することができる。
ポンプのコンプライアンスによってもたらされる容積誤差を所望の分注容積に加え、より正確に所望の分注容積を達成することができる。一例として、ポンプが、大気圧を上回る圧力5psi下で誤差0.02ミリリットルあり、分注レシピが、大気圧を上回る分注圧力5psiに対応する特定の流速で、1ミリリットルの流体の分注を要求する場合、ポンプ制御装置は、大気圧下(または、完全に剛性のシステム内)で、ポンプに1.02ミリリットルの流体を分注させる一定量でピストン192を動かす。言い換えれば、ポンプ制御装置は、分注モータ200をさらに動かし、5psi下でのポンプのコンプライアンスを補填する。
しかしながら、ポンプは、分離して使用されることは稀であり、ポンプのコンプライアンスを単純に考慮する方法は、ポンプおよび付加的な構成要素を含む分注システム全体のコンプライアンスの補正には不十分である。また、上述の方法は、回転ダイヤフラムが、運動中の異なる段階において同一圧力下で異なるコンプライアンスを有し得るという事実を考慮していない。さらに、分注チャンバ内の流体に圧力を単純に印加するステップに依存する上述のような方法は、弁のタイミングおよび他の制御プロセスが、分注の間のポンプのコンプライアンスを低減し得るという事実を考慮していない。本発明の実施形態は、分注動作の際のシステム全体(ポンプを含む)におけるコンプライアンスによって生じる誤差容積をより優れた方法で決定し、製造設備において正確に流体を分注するための方法を提供する。一実施形態によると、ポンプは、ポンプが作動される環境をシミュレートするように設計されたテストシステムにおいて較正することができる。較正から生成されたデータは、ポンプ制御装置内に格納され、半導体製造設備においてプロセス流体を分注するための所与のプロセスレシピに対して、適切な誤差容積を決定するために使用することができる。
図7は、ポンプのための粘度に基づいて誤差補正を判断するための設定の一実施形態を示す。提供される寸法は、一例として提示されるものであり、限定するものではないことに留意されたい。本発明の実施形態は、種々多様なテストシステムにおいて実装することができる。多段式ポンプ100の入口および排出口は、管類を介して流体源700と流体連通する(本実施例では、入口に対し76インチ(193.04cm)の管類、排出口に対し36インチ(91.44cm)の管類、両方とも外径1/4インチ×内径0.156インチ(0.396cm)の管類)。多段式ポンプ100の出口は、外径1/4インチ(0.635cm)×内径0.157インチ(0.399cm)の15フィート管類を介して、出口弁147および吸引弁704へ通じる。出口弁147および吸引弁704から、ポンプ100は、外径4mm×内径0.3mmの55インチ(139.7cm)管類およびノズル介して、較正された秤(例えば、天秤)(図示せず)と流体連通する。外径4mmの55インチ(139.7cm)管類の端部は、内径2mmのノズルである。
ソレノイド弁706(例えば、米国インディアナ州IndianapolisのSMC Corporation of America社製SMC VQ11Y−5Mソレノイド弁)は、外径4mm×内径2.5mmの15インチ管類を介して、吸引弁704(例えば、米国イリノイ州Rolling MeadowsのCKD USA Corp.社製ニードル弁部品番号CKD AS1201FM、および吸引弁CKDAMDSZO−XO388)および出口弁147に圧力を提供する。ソレノイド弁706は、60psiの圧力を出口弁147および吸引弁706に対し調節し、これらの弁を開閉する。また、20in Hgの真空および38−40psiの加圧ガスをポンプ100に提供し、上述のように弁板230内の種々の弁を開閉する。
一実施形態によると、ポンプ100は、4cPの粘度の標準的基準流体密度で呼び水が差され、分注速度は、1.0mL/秒に設定される。分注サイクルは、流体1mLを分注するように設定される。流体は、較正された秤(すなわち、天秤)上に分注され、5回の分注の質量を記録し、平均質量が決定される。次いで、分注容積が流体2mLへ変更される。再び、較正された秤で5回の分注が行われ、平均質量が決定される。5回の分注の間に分注される平均質量を決定するプロセスは、設定4、6、8、および10mLの分注容積に対して繰り返される。それぞれの分注容積一式(例えば、1、2、4、6、8、および10mL)に対する5回の分注の平均質量を決定するプロセスは、23、45、65、および100の粘性流体に対して繰り返される。分注量および粘度の特定の実施例が上述されたが、これらは、一例として提供されており、限定されるものではない。
誤差容積(例えば、実際に分注される平均容積と分注容積の設定との差異)に基づく粘度は、粘度の関数として座標で示され、曲線適合が行われる。この曲線適合は、ユーザ指定の分注容積とポンプによって実際に分注される量との誤差を示す。曲線(または、曲線を示す表)は、ポンプ100のファームウェア内に保存することができる。ユーザが分注サイクルを設定すると、ポンプが適切な誤差補正を適用可能なように、ユーザは、プロセス流体の粘度を入力することができる。異なる分注速度で分注が生じることが予測される場合、付加的な表または曲線を展開することができる。特定のポンプを使用して生成された較正データは、一般的な特性を有する一式のポンプにインストールすることができる。
図7の実施形態は、粘度(または、他のパラメータ)および誤差容積との相関関係を決定するために使用することができるシステムの一実施形態を示す。テスト設定の構成要素は、予測される製造環境における概略の構成要素に対して選択することができる。例えば、ポンプ100から出口弁147(停止弁)への出口管類は、外径5−6.5mm、内径4−4.35の4−5mの管類であってもよい。出口弁147は、別個の出口弁、または米国イリノイ州Rolling MeadowsのCKD USA Corp.製のCKDAMDSZOX0388等の出口弁、吸引弁の組み合わせであってもよい。出口弁147(または、吸引弁)からの管類は、外径4mm、内径2mmの約1乃至1.5mの長さの管類であってもよい。再び、種々のサイズおよび部品は、一例として提供されるものであって、制限されるものではないことは留意されたい。
図8は、粘度の関数として容積誤差を座標に示したグラフである。誤差容積は、プロセス流体の粘度に基づいてほぼ線形であることが本実施例から分かる。このように、例えば、ユーザが10cPの流体5mLの分注を設定する場合、ポンプ100は、10cPの流体に対して容積誤差0.052106mLを考慮に入れることができる。一方、ユーザが20cPの流体5mLの分注を設定する場合、ポンプ100は、容積誤差0.088935mLを考慮に入れることができる。
本発明の他の実施形態は、異なるテスト設定(例えば、異なる長さおよび直径の管類、異なる部品、および異なる動作条件)を含むことが可能であることに留意されたい。さらに、テストは、およその分注容積および流体粘度を使用して行うことができる。また、容積誤差を決定する他の方式も実装可能である。
ポンプが製造設備に取り付けられると、ユーザは、レシピ(例えば、分注量、分注時間または流速、流体粘度、あるいは他のパラメータ)を入力することができる。流体粘度(または、他の流体特性)に基づいて、ポンプ制御装置は、流体特性と誤差容積との相関関係に基づいて、適切な誤差容積を決定することができる(例えば、計算、索表、または他の機構によって)。図8のグラフを使用して、ユーザが粘度2cP、分注容積2mL、流速1mL/秒の流体のレシピを入力する場合、ポンプ制御装置は、自動的に0.05211mLを分注2mLに加えることができる。分注の間、ポンプ制御装置は、分注モータ200に、分注容積2mLおよび誤差容積0.05211μLを考慮した位置へピストン192を動かせる。分注システム(ポンプ100を含む)内のコンプライアンスのため、分注される量は、約2mLとなる。
ポンプ100が取り付けられる実際の分注システムは、テストシステムと異なってもよく、誤差容積と粘度、または他の流体特性との相関関係が展開される。したがって、図8にしたがって誤差容積を適用する場合でも、所望の分注と実際の分注とに少量の誤差が残り得る。一実施形態によると、ユーザは、相関関係から決定された誤差容積に加え、分注容積に加えられるユーザ指定の誤差容積を指定するオプションが与えられることができる(例えば、粘度に基づく誤差容積に加えて)。分注の間、ポンプ制御装置は、分注モータ200を制御し、ポンプ制御装置にしたがって、分注容積、粘度に基づく誤差容積、およびユーザ指定の誤差容積を考慮した位置へピストン192を動かすことができる。
分注容積を排出するだけのための動きに伴って、分注容積および誤差容積を考慮した位置へポンプが同一速度で動かされる場合、ピストンはより長い距離を同一速度で進行するため、実際の分注速度は、レシピで指定されたものを下回り、分注時間は長くなる。これを補正するために、ポンプ制御装置は、分注モータ200を制御し、レシピによって既定された時間内に誤差容積を考慮した適切な位置へ動かす。従来の実施例を使用して、ポンプ制御装置が、分注モータ200を制御し、元のレシピで指定された1cc/秒での2ccの分注に基づいて、分注容積2mL、粘度誤差容積0.05211mL、およびユーザ指定の誤差容積を考慮した位置へ2秒以内にピストン192を動かすことができる。その結果、正確な流体量が、正確な時間で分注される。いずれの場合も、実施形態にしたがって、システム構成要素の収縮によって付加的流体が分注されないように、ピストン192が適切な位置に達した際に、出口弁を閉鎖することができる。
図9は、ポンプに対して誤差容積を決定するための方法の一実施形態を示す工程図である。図9のステップは、予期される製造分注システムをシミュレートするように設計されたテストシステムを実行することができる。テストポンプを使用して、流体特性と誤差容積との相関関係、および半導体製造設備に取り付けられるテストポンプを含み得る、多段式ポンプに伝播する相関関係を展開することができる。ステップ900では、意図された分注環境を合理的にシミュレートするテスト分注システム内に、ポンプが取り付けられる。テストポンプの制御装置は、ピストンの特定の位置(例えば、実際の位置または開始位置に対する変位に基づいて)が特定の分注容積に対応するように、最初に構成可能である。ステップ902では、分注容積を含むレシピが、ポンプにプログラムされる。ステップ904では、ポンプがレシピにしたがって分注を実行し、一定容積の流体を分注する。分注の間、ポンプ制御装置は、分注モータを制御し、分注容積に対応する距離だけピストンを動かすことができる(すなわち、制御装置が分注容積に関係付けられるように構成された距離)。ステップ906では、分注された流体が測定され、実際に分注された流体の容積を決定する。例えば、天秤を使用する場合、質量が決定され、その質量を密度で割り、容積を決定する。
ステップ904および906は、同一レシピおよび流体をもって任意の回数繰り返すことができる。ステップ908では、分注容積および実際の分注容積の測定結果が分析され、流体に対する誤差容積を決定することができる。例えば、何回かの分注、例えば5回の分注の平均分注容積からレシピで指定された所望の分注容積を差し引き、一式の特定条件下での誤差容積を決定することができる。ステップ902から906は、新しい所望の分注容積を有するレシピに対し繰り返すことができ、ステップ902から908は、流体特性に対して異なる値を有する新しい流体を使用して繰り返し、相関関係を展開することができる。ステップ910では、誤差容積と粘度(または、流体の他の特性)との相関関係が決定される。誤差容積と流体特性との相関関係は、実際の容積測定、測定ピストン変位距離、質量、または容積に対応する他の測定等、容積に対応する任意の測定に関してなされることができることは留意されたい。
図10は、誤差容積を考慮したポンプを作動するための方法の一実施形態を示す。図10の目的のために、ポンプが半導体製造設備内に取り付けられ、上述のように誤差容積と流体特性との相関関係に関してプログラムされたと仮定する。ステップ1000では、ユーザは、例えば、分注容積(または、分注容積を決定することが可能な情報)、分注時間(または、流速)、および流体の種類(または、粘度)を含むレシピを入力することができる。レシピに基づいて、ポンプ制御装置は、ステップ1002において、分注容積量、流体特性の値(例えば、粘度)、誤差容積と流体特性との相関関係に基づいて、誤差容積量を決定することができる。これは、例えば、参照用表、計算、または誤差容積の相関関係を利用する他の機構の使用によってなされ得る。分注容積量および誤差容積量を決定するステップは、容積測定、距離測定(例えば、誤差容積量は、どの程度ピストンを動かして、特定の容積を排出するかの測定であってもよい)、または容積に対応する他の測定を含む、容積に対応する任意の測定であってもよいことに留意されたい。
複数の相関曲線または相関データセットが存在する場合、ポンプは、ユーザによって提供されるレシピに最も適合する相関関係を選択することができる。別の実施例として、ポンプが1cc/秒の分注と10cc/秒の分注の間の粘度と誤差容積との相関曲線を含む場合、ポンプは、レシピのパラメータにより近似する相関関係を選択することができる。さらに別の実施形態によると、ポンプ制御装置は、相関データが特定のレシピと一致しない場合、レシピに対する相関データを補間することができる。例えば、ポンプ制御装置が1ccの分注と10ccの分注の間の粘度と誤差容積との相関データを有するが、レシピが7cc/秒の分注を要求する場合、ポンプ制御装置は、7cc/秒の分注の間の粘度と誤差容積との関係を補間することができる。
ステップ1004において、ポンプ制御装置は、ユーザが指定可能な付加的な誤差容積を受信することができる。ユーザは、例えば、ポンプ制御装置にとって既知の(すなわち、相関関係に基づく)誤差容積を考慮した分注を実行し、ポンプが依然として流体分注がわずかに不足していることを判断できる。実際の分注システムまたはレシピが、相関データが展開される条件から大幅に変動する場合、このことが生じ得る。ユーザは、適切な付加的な誤差容積をポンプ制御装置に提供することができる。
ステップ1006において、ポンプは分注を行うことができる。分注において、ポンプ制御装置は、分注モータを制御し、制御装置にしたがって、分注容積および誤差容積を考慮した位置へ移動することができる。言い換えると、ポンプ制御装置は、分注容積に誤差容積を加えたものを位置または変位に変換し(未だ位置または変位として測定されていない場合)、適宜分注モータを制御し、ピストンを特定の位置に動かすことができる。しかしながら、システムにおけるコンプライアンスのため、分注容積のみがウエハへ実際に分注される。一実施形態によると、レシピによって指定された時間内に流体の分注が生じるように、制御装置は、分注モータを制御することができる。これは、分注モータを制御して、より高速で作動させて、誤差容積によって要求されるより長い距離を移動させるステップを含むことができる。
図9および10の種々のステップは、コンピュータ可読媒体(例えば、図1のコンピュータ可読媒体27)に格納されるコンピュータ命令(例えば、図1のコンピュータ命令30)として実装可能である。図9および10のステップは、必要または所望に応じて繰り返すことができる。
多段式ポンプに関して説明されたが、本発明の実施形態は、単段ポンプにおいても利用可能である。図11は、ポンプ4000のためのポンプアセンブリの一実施形態の図である。ポンプ4000は、上述の多段式ポンプ100の1段階、例えば、分注段階と同様であってもよく、ステッピングモータ、ブラシレスDCモータ、または他のモータによって駆動される回転ダイヤフラムポンプを含むことができる。ポンプ4000は、ポンプ4000を通る種々の流体流路を画定する、またポンプチャンバを少なくとも部分的に画定する分注ブロック4005を含むことができる。一実施形態による、分注ポンプブロック4005は、PTFE、修飾PTFEまたは他の材料から成る単一ブロックであってもよい。これらの材料は、多くのプロセス流体と反応しない、または反応性が少ないので、これらの材料を使用すると、流通路およびポンプチャンバは、最低限のハードウェアの追加をもって、分注ブロック4005に直接機械加工することができる。ひいては、分注ブロック4005は、一体型流体マニホールドを提供することによって、パイピングの必要性を軽減する。
分注ブロック4005は、例えば、流体を受ける入口4010、流体をパージ/排出するためのパージ/排出出口4015、および流体が分注区分の間に分注される分注出口4020を含み、種々の外部入口および外部出口を含むことができる。図23の例では、ポンプがたった1つのチャンバを有するので、分注ブロック4005は、外部パージ出口4010を含む。参照することによって本明細書に全面的に組み込まれる、「O−RING−LESS LOW PROFILE FITTING AND ASSEMBLY THEREOF」の名称で、Iraj Gashgaeeが2005年12月2日に出願した米国特許出願第60/741,667号[代理人整理番号第ENTG1760号]、および「O−RING−LESS LOW PROFILE FITTINGS AND FITTING ASSEMBLIES」の名称で、発明者Iraj Gashgaeeが______に出願した米国特許出願番号第______号[代理人整理番号第ENTG1760−1号]は、分注ブロック4005の外部入口および外部出口を流体管路に結合ために利用することができる取付部品の実施形態を記載している。
分注ブロック4005は、入口から入口弁(例えば、弁板4030によって少なくとも部分的に画定される)へ、入口弁からポンプチャンバへ、ポンプチャンバから排出/パージ弁へ、およびポンプチャンバから出口4020へ流体を送る。ポンプカバー4225は、ポンプモータを破損から保護することができるが、ピストンハウジング4027は、ピストンを保護することができ、本発明の一実施形態により、ポリエチレンまたは他のポリマーから形成することができる。弁板4030は、流体の流れをポンプ4000の種々の部品に誘導するように構成することができる弁(例えば、入口弁、およびパージ/排出弁)のシステムのための弁ハウジングを提供する。弁板4030および対応する弁は、上述の弁板230と併せて記載した方法と同様に形成することができる。一実施形態によると、入口弁、およびパージ/排出弁のそれぞれは、弁板4030に少なくとも部分的に統合され、圧力または真空が対応するダイヤフラムに加えられるかどうかに応じて開状態または閉状態となるダイヤフラム弁である。他の実施形態では、弁のいくつかのは、分注ブロック4005の外部にあってもよく、またはさらなる弁板に配置してもよい。一実施形態によると、1枚のPTFEは、弁板4030と分注ブロック4005との間に挟入され、種々の弁のダイヤフラムを形成する。弁板4030は、それぞれの弁のための弁制御入口(図示せず)を含み、対応するダイヤフラムに圧力または真空を加える。
多段式ポンプ100と同様に、ポンプ4000は、流体液滴が、電子機器を収納する多段式ポンプ100の領域に入らないようにするいくつかの特性を含むことができる。「防滴」の特性は、突出しているリップ、傾斜特性、部品間の密閉部、金属/ポリマーの接合部分でのオフセット、および電子機器を液滴から隔離するために上述した他の特性を含むことができる。電子機器ならびにマニホールドおよびPCB基板は、ポンプチャンバ内の流体上の熱効果を軽減するために上述した方法と同様に構成することができる。
このように、本発明の実施形態は、分注レシピから分注容積量を決定するステップと、分注レシピに基づいて、流体特性の値を決定するステップと、分注システムにおけるコンプライアンスを考慮した誤差容積と流体特性との相関関係から、流体特性の値に基づいて、誤差容積量を決定するステップと、分注モータを制御し、レシピから決定された分注容積量および誤差容積量を考慮した位置へ分注ポンプ内のピストンを動かし、ノズルから流体の分注容積量を分注するステップと、を備える、ポンプの分注容積における誤差を補正するための方法を含むことができる。
本発明は、実例となる実施形態を参照して、本明細書に詳細に記載されてきたが、記述はほんの一例とされるものであり、限定する意味に解釈されるものではないことが理解されるべきである。したがって、本発明の実施形態の詳細における多数の変更形態、および本発明のさらなる実施形態は、本記述に関係がある当業者には明白となり、また当業者によって製作されてもよいことがさらに理解されるべきである。そのようなすべての変更形態およびさらなる実施形態は、請求する本発明の範囲内にあることが企図される。
10 ・・・ポンプシステム、 15 ・・・流体源、 20 ・・・ポンプ制御装置、 25 ・・・ウエハ、 27 ・・・コンピュータ可読の媒体、 30 ・・・制御命令、 35 ・・・プロセッサ、 40,45 ・・・通信リンク、 100 ・・・多段式ポンプ

Claims (1)

  1. 分注ポンプの分注容積における誤差を補正する方法であって、
    分注レシピに基づいて、分注容積量を決定することと、
    該分注レシピに基づいて、流体特性の値を決定することと、
    分注システムにおけるコンプライアンスを考慮する誤差容積と該流体特性との相関関係に基づいて、該流体特性の値に基づく誤差容積量を決定することと、
    分注モータを制御して、該レシピから決定された該分注容積量および該誤差容積量を考慮する位置へ分注ポンプ内のピストンを動かすことにより、該流体の分注容積量をノズルから分注することと
    を含む、方法。
JP2012115369A 2005-12-05 2012-05-21 ポンプのための誤差容積システムおよび方法 Active JP5404850B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US74230405P 2005-12-05 2005-12-05
US60/742,304 2005-12-05

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008544358A Division JP5345853B2 (ja) 2005-12-05 2006-11-20 ポンプのための誤差容積システムおよび方法

Publications (3)

Publication Number Publication Date
JP2012180837A true JP2012180837A (ja) 2012-09-20
JP2012180837A5 JP2012180837A5 (ja) 2013-02-28
JP5404850B2 JP5404850B2 (ja) 2014-02-05

Family

ID=38123376

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2008544358A Active JP5345853B2 (ja) 2005-12-05 2006-11-20 ポンプのための誤差容積システムおよび方法
JP2012115369A Active JP5404850B2 (ja) 2005-12-05 2012-05-21 ポンプのための誤差容積システムおよび方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2008544358A Active JP5345853B2 (ja) 2005-12-05 2006-11-20 ポンプのための誤差容積システムおよび方法

Country Status (6)

Country Link
US (1) US7897196B2 (ja)
JP (2) JP5345853B2 (ja)
KR (1) KR101308175B1 (ja)
CN (1) CN101360678B (ja)
TW (1) TWI395871B (ja)
WO (1) WO2007067360A2 (ja)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8172546B2 (en) 1998-11-23 2012-05-08 Entegris, Inc. System and method for correcting for pressure variations using a motor
KR101231945B1 (ko) 2004-11-23 2013-02-08 엔테그리스, 아이엔씨. 가변 홈 위치 토출 장치용 시스템 및 방법
EP1931545B1 (en) * 2005-09-16 2010-06-16 Wabtec Holding Corporation Pneumatic emergency brake assurance module
US8753097B2 (en) * 2005-11-21 2014-06-17 Entegris, Inc. Method and system for high viscosity pump
WO2007061956A2 (en) 2005-11-21 2007-05-31 Entegris, Inc. System and method for a pump with reduced form factor
JP5253178B2 (ja) * 2005-12-02 2013-07-31 インテグリス・インコーポレーテッド ポンプの弁シーケンスのためのシステムおよび方法
US8029247B2 (en) * 2005-12-02 2011-10-04 Entegris, Inc. System and method for pressure compensation in a pump
US8083498B2 (en) 2005-12-02 2011-12-27 Entegris, Inc. System and method for position control of a mechanical piston in a pump
WO2007067354A2 (en) * 2005-12-02 2007-06-14 Entegris, Inc. I/o systems, methods and devices for interfacing a pump controller
US7878765B2 (en) * 2005-12-02 2011-02-01 Entegris, Inc. System and method for monitoring operation of a pump
US7850431B2 (en) * 2005-12-02 2010-12-14 Entegris, Inc. System and method for control of fluid pressure
TWI402423B (zh) * 2006-02-28 2013-07-21 Entegris Inc 用於一幫浦操作之系統及方法
US7494265B2 (en) * 2006-03-01 2009-02-24 Entegris, Inc. System and method for controlled mixing of fluids via temperature
US7684446B2 (en) * 2006-03-01 2010-03-23 Entegris, Inc. System and method for multiplexing setpoints
US8727744B2 (en) * 2010-02-26 2014-05-20 Entegris, Inc. Method and system for optimizing operation of a pump
US8684705B2 (en) 2010-02-26 2014-04-01 Entegris, Inc. Method and system for controlling operation of a pump based on filter information in a filter information tag
TWI563351B (en) 2010-10-20 2016-12-21 Entegris Inc Method and system for pump priming
CA2841002C (en) * 2011-07-05 2019-11-19 Rad I.P. Pty Limited Fluid portion dispenser
CN102418691B (zh) * 2011-07-12 2014-12-10 上海华力微电子有限公司 一种全自动检测泵失效的方法
DE102012100306B4 (de) * 2012-01-13 2022-06-09 Prominent Gmbh Verfahren zur Adaption einer Dosierpumpe an die Viskosität des zu dosierenden Mediums
WO2014098242A1 (ja) * 2012-12-20 2014-06-26 藤森工業株式会社 血小板凝集能の総合的評価方法
US10155208B2 (en) * 2014-09-30 2018-12-18 Taiwan Semiconductor Manufacturing Co., Ltd. Liquid mixing system for semiconductor fabrication
US10121685B2 (en) * 2015-03-31 2018-11-06 Tokyo Electron Limited Treatment solution supply method, non-transitory computer-readable storage medium, and treatment solution supply apparatus
EP3341612B1 (en) 2015-08-25 2019-10-02 Artemis Intelligent Power Limited The measurement and use of hydraulic stiffness properties of hydraulic apparatus
US11772234B2 (en) 2019-10-25 2023-10-03 Applied Materials, Inc. Small batch polishing fluid delivery for CMP
JP2023502873A (ja) * 2019-11-04 2023-01-26 東京エレクトロン株式会社 分注システムを監視、制御及び同期するための方法及びシステム

Family Cites Families (178)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US269626A (en) 1882-12-26 brauee
US826018A (en) 1904-11-21 1906-07-17 Isaac Robert Concoff Hose-coupling.
US1664125A (en) 1926-11-10 1928-03-27 John R Lowrey Hose coupling
US2153664A (en) 1937-03-08 1939-04-11 Dayton Rubber Mfg Co Strainer
US2215505A (en) 1938-06-13 1940-09-24 Byron Jackson Co Variable capacity pumping apparatus
US2328468A (en) 1940-12-07 1943-08-31 Laffly Edmond Gabriel Coupling device for the assembly of tubular elements
US2457384A (en) 1947-02-17 1948-12-28 Ace Glass Inc Clamp for spherical joints
GB661522A (en) 1949-03-31 1951-11-21 Eureka Williams Corp Improvements in or relating to oil burners
US2631538A (en) 1949-11-17 1953-03-17 Wilford C Thompson Diaphragm pump
US2673522A (en) 1951-04-10 1954-03-30 Bendix Aviat Corp Diaphragm pump
US2757966A (en) 1952-11-06 1956-08-07 Samiran David Pipe coupling
US3072058A (en) 1961-08-18 1963-01-08 Socony Mobil Oil Co Inc Pipe line control system
US3227279A (en) 1963-05-06 1966-01-04 Conair Hydraulic power unit
US3327635A (en) 1965-12-01 1967-06-27 Texsteam Corp Pumps
DE1910093A1 (de) 1969-02-28 1970-09-10 Wagner Josef Fa Farbspritzanlage
US3741298A (en) 1971-05-17 1973-06-26 L Canton Multiple well pump assembly
JPS4971508A (ja) 1972-11-13 1974-07-10
US3895748A (en) 1974-04-03 1975-07-22 George R Klingenberg No drip suck back units for glue or other liquids either separately installed with or incorporated into no drip suck back liquid applying and control apparatus
US4023592A (en) 1976-03-17 1977-05-17 Addressograph Multigraph Corporation Pump and metering device
US4093403A (en) 1976-09-15 1978-06-06 Outboard Marine Corporation Multistage fluid-actuated diaphragm pump with amplified suction capability
US4705461A (en) 1979-09-19 1987-11-10 Seeger Corporation Two-component metering pump
SE416889B (sv) 1979-12-27 1981-02-16 Imo Industri Ab Forfarande for blandning av tva vetskor med olika viskositet samt anordning for genomforande av forfarandet
US4420811A (en) 1980-03-03 1983-12-13 Price-Pfister Brass Mfg. Co. Water temperature and flow rate selection display and control system and method
US4483665A (en) 1982-01-19 1984-11-20 Tritec Industries, Inc. Bellows-type pump and metering system
JPS58203340A (ja) 1982-05-20 1983-11-26 Matsushita Electric Ind Co Ltd 給湯装置
JPS59177929A (ja) 1983-03-28 1984-10-08 Canon Inc サツクバツクポンプ
US4475818A (en) 1983-08-25 1984-10-09 Bialkowski Wojciech L Asphalt coating mix automatic limestone control
US4541455A (en) 1983-12-12 1985-09-17 Tritec Industries, Inc. Automatic vent valve
US4614438A (en) 1984-04-24 1986-09-30 Kabushiki Kaisha Kokusai Technicals Method of mixing fuel oils
US4601409A (en) 1984-11-19 1986-07-22 Tritec Industries, Inc. Liquid chemical dispensing system
JPH0135027Y2 (ja) 1985-01-29 1989-10-25
US4597721A (en) 1985-10-04 1986-07-01 Valco Cincinnati, Inc. Double acting diaphragm pump with improved disassembly means
SE451153B (sv) 1986-01-20 1987-09-07 Dominator Ab Sett att endra trycket i pneumatiska eller hydrauliska system och anordning for att genomfora settet
US4690621A (en) 1986-04-15 1987-09-01 Advanced Control Engineering Filter pump head assembly
KR900008067B1 (ko) 1986-08-01 1990-10-31 도도기끼 가부시끼가이샤 탕수혼합장치
DE3631984C1 (de) 1986-09-19 1987-12-17 Hans Ing Kern Dosierpumpe
US4821997A (en) 1986-09-24 1989-04-18 The Board Of Trustees Of The Leland Stanford Junior University Integrated, microminiature electric-to-fluidic valve and pressure/flow regulator
US4824073A (en) 1986-09-24 1989-04-25 Stanford University Integrated, microminiature electric to fluidic valve
US4943032A (en) 1986-09-24 1990-07-24 Stanford University Integrated, microminiature electric to fluidic valve and pressure/flow regulator
US4966646A (en) 1986-09-24 1990-10-30 Board Of Trustees Of Leland Stanford University Method of making an integrated, microminiature electric-to-fluidic valve
US4797834A (en) 1986-09-30 1989-01-10 Honganen Ronald E Process for controlling a pump to account for compressibility of liquids in obtaining steady flow
JP2604362B2 (ja) 1986-10-22 1997-04-30 株式会社日立製作所 低脈流ポンプ
JPS63173866A (ja) 1987-01-09 1988-07-18 Hitachi Ltd 無脈動ポンプの制御方式
US4875623A (en) 1987-07-17 1989-10-24 Memrysafe, Inc. Valve control
US4969598A (en) 1987-07-17 1990-11-13 Memry Plumbing Products Corp. Valve control
JP2824575B2 (ja) 1987-08-11 1998-11-11 株式会社日立製作所 低脈流送液ポンプ
AU598163B2 (en) 1987-11-12 1990-06-14 Herbert William Reynolds Apparatus for and a method of producing sand moulds
US5246347A (en) 1988-05-17 1993-09-21 Patients Solutions, Inc. Infusion device with disposable elements
US4952386A (en) 1988-05-20 1990-08-28 Athens Corporation Method and apparatus for purifying hydrogen fluoride
US4950134A (en) 1988-12-27 1990-08-21 Cybor Corporation Precision liquid dispenser
US5050062A (en) 1989-02-06 1991-09-17 Hass David N Temperature controlled fluid system
JP2633005B2 (ja) * 1989-02-15 1997-07-23 日本電子株式会社 定流量ポンプ用流量計
US5167837A (en) 1989-03-28 1992-12-01 Fas-Technologies, Inc. Filtering and dispensing system with independently activated pumps in series
US4981418A (en) 1989-07-25 1991-01-01 Osmonics, Inc. Internally pressurized bellows pump
US5062770A (en) 1989-08-11 1991-11-05 Systems Chemistry, Inc. Fluid pumping apparatus and system with leak detection and containment
DE3928949A1 (de) 1989-08-31 1991-03-14 Wagner Gmbh J Membranpumpe
US5135031A (en) 1989-09-25 1992-08-04 Vickers, Incorporated Power transmission
JP2803859B2 (ja) 1989-09-29 1998-09-24 株式会社日立製作所 流動体供給装置およびその制御方法
US5061574A (en) 1989-11-28 1991-10-29 Battelle Memorial Institute Thick, low-stress films, and coated substrates formed therefrom
US5170361A (en) 1990-01-16 1992-12-08 Mark Reed Fluid temperature, flow rate, and volume control system
US5316181A (en) 1990-01-29 1994-05-31 Integrated Designs, Inc. Liquid dispensing system
US5098261A (en) 1990-05-04 1992-03-24 Brandel Corporation Peristaltic pump and method for adjustable flow regulation
US5061156A (en) 1990-05-18 1991-10-29 Tritec Industries, Inc. Bellows-type dispensing pump
JP2963514B2 (ja) * 1990-09-20 1999-10-18 克郎 神谷 輸液制御装置
US5262068A (en) 1991-05-17 1993-11-16 Millipore Corporation Integrated system for filtering and dispensing fluid having fill, dispense and bubble purge strokes
US5230445A (en) 1991-09-30 1993-07-27 City Of Hope Micro delivery valve
US5332311A (en) 1991-10-09 1994-07-26 Beta Raven Inc. Liquid scale and method for liquid ingredient flush thereof
US5527161A (en) 1992-02-13 1996-06-18 Cybor Corporation Filtering and dispensing system
US5380019A (en) 1992-07-01 1995-01-10 Furon Company Spring seal
US5344195A (en) 1992-07-29 1994-09-06 General Electric Company Biased fluid coupling
US5261442A (en) 1992-11-04 1993-11-16 Bunnell Plastics, Inc. Diaphragm valve with leak detection
US6190565B1 (en) 1993-05-17 2001-02-20 David C. Bailey Dual stage pump system with pre-stressed diaphragms and reservoir
US5490765A (en) 1993-05-17 1996-02-13 Cybor Corporation Dual stage pump system with pre-stressed diaphragms and reservoir
US6203759B1 (en) 1996-05-31 2001-03-20 Packard Instrument Company Microvolume liquid handling system
US5511797A (en) 1993-07-28 1996-04-30 Furon Company Tandem seal gasket assembly
JPH0727150U (ja) 1993-10-07 1995-05-19 大日本スクリーン製造株式会社 シリカ系被膜形成用塗布液吐出装置
US5350200A (en) 1994-01-10 1994-09-27 General Electric Company Tube coupling assembly
US5434774A (en) 1994-03-02 1995-07-18 Fisher Controls International, Inc. Interface apparatus for two-wire communication in process control loops
DE4412668C2 (de) 1994-04-13 1998-12-03 Knf Flodos Ag Pumpe
US5476004A (en) 1994-05-27 1995-12-19 Furon Company Leak-sensing apparatus
US5447287A (en) 1994-06-24 1995-09-05 Robertshaw Controls Company Fuel control device and methods of making the same
US5580103A (en) 1994-07-19 1996-12-03 Furon Company Coupling device
US5599100A (en) 1994-10-07 1997-02-04 Mobil Oil Corporation Multi-phase fluids for a hydraulic system
US5546009A (en) 1994-10-12 1996-08-13 Raphael; Ian P. Detector system using extremely low power to sense the presence or absence of an inert or hazardous fuild
US5685963A (en) * 1994-10-31 1997-11-11 Saes Pure Gas, Inc. In situ getter pump system and method
US5784573A (en) 1994-11-04 1998-07-21 Texas Instruments Incorporated Multi-protocol local area network controller
US5575311A (en) 1995-01-13 1996-11-19 Furon Company Three-way poppet valve apparatus
US5653251A (en) 1995-03-06 1997-08-05 Reseal International Limited Partnership Vacuum actuated sheath valve
US5652391A (en) 1995-05-12 1997-07-29 Furon Company Double-diaphragm gauge protector
DE19525557A1 (de) 1995-07-13 1997-01-16 Knf Flodos Ag Dosierpumpe
US5645301A (en) 1995-11-13 1997-07-08 Furon Company Fluid transport coupling
US5991279A (en) 1995-12-07 1999-11-23 Vistar Telecommunications Inc. Wireless packet data distributed communications system
US5793754A (en) 1996-03-29 1998-08-11 Eurotherm Controls, Inc. Two-way, two-wire analog/digital communication system
US5839828A (en) 1996-05-20 1998-11-24 Glanville; Robert W. Static mixer
US6378907B1 (en) 1996-07-12 2002-04-30 Mykrolis Corporation Connector apparatus and system including connector apparatus
US5947702A (en) 1996-12-20 1999-09-07 Beco Manufacturing High precision fluid pump with separating diaphragm and gaseous purging means on both sides of the diaphragm
JP3854691B2 (ja) 1997-01-14 2006-12-06 キヤノン株式会社 無線通信システムおよび無線通信装置
DE69814710T2 (de) 1997-03-03 2004-03-18 Tokyo Electron Ltd. Beschichtungs-Vorrichtung und Verfahren
JP3940854B2 (ja) 1997-03-25 2007-07-04 Smc株式会社 サックバックバルブ
US5967173A (en) 1997-07-14 1999-10-19 Furon Corporation Diaphragm valve with leak detection
DE19732708C1 (de) 1997-07-30 1999-03-18 Henkel Kgaa Verwendung von Fettethern
JP3919896B2 (ja) * 1997-09-05 2007-05-30 テルモ株式会社 遠心式液体ポンプ装置
US6033302A (en) 1997-11-07 2000-03-07 Siemens Building Technologies, Inc. Room pressure control apparatus having feedforward and feedback control and method
US5848605A (en) 1997-11-12 1998-12-15 Cybor Corporation Check valve
CN1291331C (zh) 1998-04-27 2006-12-20 迪吉多电子股份有限公司 控制用主电脑
JP4011210B2 (ja) 1998-10-13 2007-11-21 株式会社コガネイ 薬液供給方法および薬液供給装置
US7029238B1 (en) 1998-11-23 2006-04-18 Mykrolis Corporation Pump controller for precision pumping apparatus
TW593888B (en) * 1998-11-23 2004-06-21 Mykrolis Corp Pump controller for precision pumping apparatus
US8172546B2 (en) 1998-11-23 2012-05-08 Entegris, Inc. System and method for correcting for pressure variations using a motor
US6203288B1 (en) 1999-01-05 2001-03-20 Air Products And Chemicals, Inc. Reciprocating pumps with linear motor driver
US6298941B1 (en) 1999-01-29 2001-10-09 Dana Corp Electro-hydraulic power steering system
US6575264B2 (en) 1999-01-29 2003-06-10 Dana Corporation Precision electro-hydraulic actuator positioning system
JP2000265949A (ja) 1999-03-18 2000-09-26 Toyota Autom Loom Works Ltd 可変容量型圧縮機
US6464464B2 (en) * 1999-03-24 2002-10-15 Itt Manufacturing Enterprises, Inc. Apparatus and method for controlling a pump system
DE29909100U1 (de) 1999-05-25 1999-08-12 Arge Meibes Pleuger Rohrleitungsanordnung mit Filter
US6330517B1 (en) 1999-09-17 2001-12-11 Rosemount Inc. Interface for managing process
US6250502B1 (en) 1999-09-20 2001-06-26 Daniel A. Cote Precision dispensing pump and method of dispensing
JP2001098908A (ja) 1999-09-29 2001-04-10 Mitsubishi Electric Corp バルブタイミング調整装置
US6478547B1 (en) * 1999-10-18 2002-11-12 Integrated Designs L.P. Method and apparatus for dispensing fluids
DE19950222A1 (de) 1999-10-19 2001-04-26 Bosch Gmbh Robert Verfahren und Vorrichtung zur Diagnose eines Kraftstoffversorgungssystems
JP3361300B2 (ja) 1999-10-28 2003-01-07 株式会社イワキ チューブフラムポンプ
US6325932B1 (en) 1999-11-30 2001-12-04 Mykrolis Corporation Apparatus and method for pumping high viscosity fluid
US7247245B1 (en) 1999-12-02 2007-07-24 Entegris, Inc. Filtration cartridge and process for filtering a slurry
US6348124B1 (en) 1999-12-14 2002-02-19 Applied Materials, Inc. Delivery of polishing agents in a wafer processing system
US6497680B1 (en) 1999-12-17 2002-12-24 Abbott Laboratories Method for compensating for pressure differences across valves in cassette type IV pump
US6474950B1 (en) 2000-07-13 2002-11-05 Ingersoll-Rand Company Oil free dry screw compressor including variable speed drive
US7905653B2 (en) 2001-07-31 2011-03-15 Mega Fluid Systems, Inc. Method and apparatus for blending process materials
KR100746414B1 (ko) 2000-07-31 2007-08-03 셀레리티 인크. 공정 재료의 배합 방법 및 장치
US6925072B1 (en) 2000-08-03 2005-08-02 Ericsson Inc. System and method for transmitting control information between a control unit and at least one sub-unit
US6618628B1 (en) 2000-10-05 2003-09-09 Karl A. Davlin Distributed input/output control systems and methods
US6520520B2 (en) 2000-10-31 2003-02-18 Durrell U. Howard Steering stabilizer with trimming accumulator
AU2001295360A1 (en) * 2000-11-17 2002-05-27 Tecan Trading Ag Device and method for separating samples from a liquid
US6708239B1 (en) 2000-12-08 2004-03-16 The Boeing Company Network device interface for digitally interfacing data channels to a controller via a network
US6540265B2 (en) 2000-12-28 2003-04-01 R. W. Beckett Corporation Fluid fitting
WO2002057860A1 (fr) 2001-01-22 2002-07-25 Tokyo Electron Limited Systeme et procede d'amelioration du rendement des appareils
US6554579B2 (en) 2001-03-29 2003-04-29 Integrated Designs, L.P. Liquid dispensing system with enhanced filter
US6767877B2 (en) 2001-04-06 2004-07-27 Akrion, Llc Method and system for chemical injection in silicon wafer processing
US6572255B2 (en) 2001-04-24 2003-06-03 Coulter International Corp. Apparatus for controllably mixing and delivering diluted solution
US6805841B2 (en) 2001-05-09 2004-10-19 The Provost Fellows And Scholars Of The College Of The Holy And Undivided Trinity Of Queen Elizabeth Near Dublin Liquid pumping system
US6697701B2 (en) 2001-08-09 2004-02-24 Lincoln Global, Inc. Welding system and methodology providing multiplexed cell control interface
US6823283B2 (en) 2001-08-14 2004-11-23 National Instruments Corporation Measurement system including a programmable hardware element and measurement modules that convey interface information
KR100711687B1 (ko) 2001-10-01 2007-05-02 엔테그리스, 아이엔씨. 유체 온도 조절용 장치
US20030114942A1 (en) 2001-12-17 2003-06-19 Varone John J. Remote display module
GB2384947B (en) 2002-02-01 2006-01-18 Sendo Int Ltd Enabling and/or inhibiting an operation of a wireless communicatons unit
US6766810B1 (en) 2002-02-15 2004-07-27 Novellus Systems, Inc. Methods and apparatus to control pressure in a supercritical fluid reactor
US6914543B2 (en) 2002-06-03 2005-07-05 Visteon Global Technologies, Inc. Method for initializing position with an encoder
US6837484B2 (en) 2002-07-10 2005-01-04 Saint-Gobain Performance Plastics, Inc. Anti-pumping dispense valve
DE10233127C1 (de) 2002-07-20 2003-12-11 Porsche Ag Vorrichtung zur Wanddurchführung von Rohrleitungen, Schläuchen oder elektrischen Kabeln für Kraftfahrzeuge
US7013223B1 (en) 2002-09-25 2006-03-14 The Board Of Trustees Of The University Of Illinois Method and apparatus for analyzing performance of a hydraulic pump
US20040072450A1 (en) 2002-10-15 2004-04-15 Collins Jimmy D. Spin-coating methods and apparatuses for spin-coating, including pressure sensor
AU2002335884A1 (en) * 2002-10-23 2004-05-13 Carrier Commercial Refrigeration, Inc. Fluid dispenser calibration system and method
US7156115B2 (en) 2003-01-28 2007-01-02 Lancer Partnership, Ltd Method and apparatus for flow control
JP4392474B2 (ja) * 2003-02-21 2010-01-06 兵神装備株式会社 材料供給システム
JP4206308B2 (ja) 2003-08-01 2009-01-07 株式会社日立ハイテクノロジーズ 液体クロマトグラフ用ポンプ
JP4377639B2 (ja) 2003-09-18 2009-12-02 株式会社日立ハイテクノロジーズ ポンプおよびクロマトグラフ用液体ポンプ
US20050173463A1 (en) 2004-02-09 2005-08-11 Wesner John A. Dispensing pump having linear and rotary actuators
JP4319105B2 (ja) 2004-02-18 2009-08-26 三菱電機株式会社 製造システム、ゲートウェイ装置、ゲートウェイプログラムおよび被制御装置の制御方法
DE102004014793A1 (de) 2004-03-24 2005-10-20 Bosch Rexroth Ag Verfahren zur Datenübertragung
US7272452B2 (en) 2004-03-31 2007-09-18 Siemens Vdo Automotive Corporation Controller with configurable connections between data processing components
US7363195B2 (en) 2004-07-07 2008-04-22 Sensarray Corporation Methods of configuring a sensor network
JP2008513205A (ja) 2004-09-21 2008-05-01 グラクソ グループ リミテッド 混合システムおよび方法
US20060083259A1 (en) 2004-10-18 2006-04-20 Metcalf Thomas D Packet-based systems and methods for distributing data
KR101231945B1 (ko) 2004-11-23 2013-02-08 엔테그리스, 아이엔씨. 가변 홈 위치 토출 장치용 시스템 및 방법
US20080089361A1 (en) 2005-10-06 2008-04-17 Metcalf Thomas D System and method for transferring data
US8753097B2 (en) 2005-11-21 2014-06-17 Entegris, Inc. Method and system for high viscosity pump
WO2007061956A2 (en) 2005-11-21 2007-05-31 Entegris, Inc. System and method for a pump with reduced form factor
WO2007067354A2 (en) 2005-12-02 2007-06-14 Entegris, Inc. I/o systems, methods and devices for interfacing a pump controller
US8029247B2 (en) 2005-12-02 2011-10-04 Entegris, Inc. System and method for pressure compensation in a pump
WO2007067359A2 (en) 2005-12-02 2007-06-14 Entegris, Inc. System and method for correcting for pressure variations using a motor
US7850431B2 (en) 2005-12-02 2010-12-14 Entegris, Inc. System and method for control of fluid pressure
US8083498B2 (en) 2005-12-02 2011-12-27 Entegris, Inc. System and method for position control of a mechanical piston in a pump
US7547049B2 (en) 2005-12-02 2009-06-16 Entegris, Inc. O-ring-less low profile fittings and fitting assemblies
US7878765B2 (en) 2005-12-02 2011-02-01 Entegris, Inc. System and method for monitoring operation of a pump
TWI402423B (zh) 2006-02-28 2013-07-21 Entegris Inc 用於一幫浦操作之系統及方法
US7494265B2 (en) 2006-03-01 2009-02-24 Entegris, Inc. System and method for controlled mixing of fluids via temperature
US7684446B2 (en) 2006-03-01 2010-03-23 Entegris, Inc. System and method for multiplexing setpoints
US7660648B2 (en) 2007-01-10 2010-02-09 Halliburton Energy Services, Inc. Methods for self-balancing control of mixing and pumping
US9128493B2 (en) 2007-12-12 2015-09-08 Lam Research Corporation Method and apparatus for plating solution analysis and control

Also Published As

Publication number Publication date
US7897196B2 (en) 2011-03-01
JP2009518580A (ja) 2009-05-07
US20070125796A1 (en) 2007-06-07
KR20080073351A (ko) 2008-08-08
WO2007067360A2 (en) 2007-06-14
JP5404850B2 (ja) 2014-02-05
TW200730727A (en) 2007-08-16
CN101360678B (zh) 2013-01-02
CN101360678A (zh) 2009-02-04
WO2007067360A3 (en) 2007-10-04
TWI395871B (zh) 2013-05-11
JP5345853B2 (ja) 2013-11-20
KR101308175B1 (ko) 2013-09-26

Similar Documents

Publication Publication Date Title
JP5404850B2 (ja) ポンプのための誤差容積システムおよび方法
JP5583708B2 (ja) ポンプ内の圧力補償のためのシステムおよび方法
JP5253178B2 (ja) ポンプの弁シーケンスのためのシステムおよび方法
JP5684186B2 (ja) 低減された形状要因を有するポンプのためのシステムと方法
JP5355091B2 (ja) モータを用いて圧力変動を補正するためのシステムおよび方法
US8753097B2 (en) Method and system for high viscosity pump
JP5674853B2 (ja) ポンプの機械式ピストンのピストン制御システムおよび方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131029

R150 Certificate of patent or registration of utility model

Ref document number: 5404850

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250