JP2012174812A - 荷電粒子ビーム描画装置および荷電粒子ビーム描画方法 - Google Patents

荷電粒子ビーム描画装置および荷電粒子ビーム描画方法 Download PDF

Info

Publication number
JP2012174812A
JP2012174812A JP2011033954A JP2011033954A JP2012174812A JP 2012174812 A JP2012174812 A JP 2012174812A JP 2011033954 A JP2011033954 A JP 2011033954A JP 2011033954 A JP2011033954 A JP 2011033954A JP 2012174812 A JP2012174812 A JP 2012174812A
Authority
JP
Japan
Prior art keywords
pattern
charged particle
particle beam
allowable value
roughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011033954A
Other languages
English (en)
Other versions
JP5547113B2 (ja
Inventor
Tomoo Motosugi
知生 本杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuflare Technology Inc
Original Assignee
Nuflare Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuflare Technology Inc filed Critical Nuflare Technology Inc
Priority to JP2011033954A priority Critical patent/JP5547113B2/ja
Publication of JP2012174812A publication Critical patent/JP2012174812A/ja
Application granted granted Critical
Publication of JP5547113B2 publication Critical patent/JP5547113B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electron Beam Exposure (AREA)

Abstract

【課題】レジストの厚膜化を必要とせず、スループットの低下を最小限にして、ラフネスを向上させることのできる荷電粒子ビーム描画装置および荷電粒子ビーム描画方法を提供する。
【解決手段】パターンの面積密度と、電子ビームの照射量と、パターンのエッジラフネスとの関係を求め、所定の領域におけるパターンの面積密度と電子ビームの照射量とから、上記関係を用いて、このパターンのエッジラフネスが許容値以下であるか否かを判定する。エッジラフネスが許容値を超える場合には、パターンの面積密度を小さくするリサイズ量を計算し、このリサイズ量に基づきリサイズされたパターンについて、上記領域におけるこのパターンの面積密度と電子ビームの照射量とを求め、上記関係を用いてこのパターンのエッジラフネスが許容値以下であるか否かを判定する工程をエッジラフネスが許容値以下となるまで繰り返す。
【選択図】図1

Description

本発明は、荷電粒子ビーム描画装置および荷電粒子ビーム描画方法に関する。
近年、大規模集積回路(LSI)の高集積化および大容量化に伴い、半導体素子に要求される回路線幅は益々狭くなっている。半導体素子は、回路パターンが形成された原画パターン(マスクまたはレチクルを指す。以下では、マスクと総称する。)を用い、いわゆるステッパと呼ばれる縮小投影露光装置でウェハ上にパターンを露光転写して回路形成することにより製造される。こうした微細な回路パターンをウェハに転写するためのマスクの製造には、電子ビーム描画装置が用いられる。
電子ビーム描画装置は、利用する電子ビームが荷電粒子ビームであるため本質的に優れた解像度を有し、また、焦点深度を大きく確保することができるので、高い段差上でも寸法変動を抑制できるという利点を有する。特許文献1には、電子ビーム描画装置を用いた半導体集積回路装置の製造方法が開示されている。
パターンの微細化においては、パターンのエッジラフネスを良好にすることが重要となる。従来は、レジストを厚膜化したり、低感度レジストを用いたりして、電子ビームの照射量を上げることがエッジラフネスの向上に有効とされてきた。しかしながら、その一方で、パターンの微細化に伴ってレジストは薄膜化する傾向にある。また、照射量の増加はスループットを低下させることになるため、こうした従来法には問題があった。
そこで、エッチングパラメータを最適化することで、エッジラフネスを向上させる技術が非特許文献1に開示されている。しかしながら、非特許文献1には、どの程度の改善効果があるかについての具体的な開示はない。
また、非特許文献2には、現像後にレジストスムージングプロセスと称する新しい工程を設けることが記載されている。しかしながら、かかる新プロセスの導入は、マスク欠陥の増加や、プロセス起因による寸法変動の増加などを招くおそれがある。
特開平11−312634号公報
T.Imotoら、凸版印刷株式会社、「LERと解像度のためのエッチングプロセス研究(Study of etching process for LER and resolution)」、Proc. of SPIE、第7748巻、77480D−1頁〜77480D−10頁 S.Kobayashiら、東京エレクトロン九州株式会社、東京エレクトロン株式会社、「新規リソグラフィとエッチング技術によるLWR縮小(LWR reduction by novel lithographic and etch techniques)」、Proc. of SPIE、第7639巻、763914−1頁〜763914−7頁
本発明は、上記の問題に鑑みてなされたものである。すなわち、本発明の目的は、レジストの厚膜化を必要とせず、また、スループットの低下を最小限にして、ラフネスを向上させることのできる荷電粒子ビーム描画装置および荷電粒子ビーム描画方法を提供することにある。
本発明の他の目的および利点は、以下の記載から明らかとなるであろう。
本発明の第1の態様は、パターンの面積密度と、荷電粒子ビームの照射量と、パターンのラフネスとの関係が入力される入力部と、
所定の領域におけるパターンの面積密度と荷電粒子ビームの照射量とから、上記の関係を用いて、このパターンのラフネスが許容値以下であるか否かを判定する判定部と、
判定部でラフネスが許容値を超えると判定された場合に、パターンの面積密度を小さくするリサイズ量を計算する計算部とを有し、
計算部で計算されたリサイズ量に基づいてリサイズされたパターンについて、上記の領域におけるこのパターンの面積密度と荷電粒子ビームの照射量とを求め、判定部でこのパターンのラフネスが許容値以下であるか否かを判定することを特徴とする荷電粒子ビーム描画装置に関する。
本発明の第1の態様において、照射量は、近接効果補正係数を用いて求められることが好ましい。
本発明の第2の態様は、パターンの面積密度と、荷電粒子ビームの照射量と、パターンのラフネスとの関係を求め、
所定の領域におけるパターンの面積密度と荷電粒子ビームの照射量とから、上記の関係を用いて、このパターンのラフネスが許容値以下であるか否かを判定し、
ラフネスが許容値以下である場合には、この照射量によってパターンを描画し、
ラフネスが許容値を超える場合には、パターンの面積密度を小さくするリサイズ量を計算し、このリサイズ量に基づきリサイズされたパターンについて、上記の領域におけるこのパターンの面積密度と荷電粒子ビームの照射量とを求め、上記の関係を用いてこのパターンのラフネスが許容値以下であるか否かを判定する工程をラフネスが許容値以下となるまで繰り返した後、許容値以下となるパターンの面積密度と照射量の組み合わせで描画することを特徴とする荷電粒子ビーム描画方法に関する。
本発明の第2の態様において、照射量は、近接効果補正係数を用いて求められることが好ましい。
本発明の第1の態様によれば、レジストの厚膜化を必要とせず、また、スループットの低下を最小限にして、ラフネスを向上させることのできる荷電粒子ビーム描画装置が提供される。
本発明の第2の態様によれば、レジストの厚膜化を必要とせず、また、スループットの低下を最小限にして、ラフネスを向上させることのできる荷電粒子ビーム描画方法が提供される。
電子ビームの照射量とラインエッジラフネスとの関係を、ラインパターンの面積密度を変えて測定した結果の一例である。 図1の関係を導き出す手法の一例を説明する図である。 本実施の形態における電子ビーム描画装置の構成図である。 電子ビームによる描画方法の説明図である。 本実施の形態の描画データ補正部を説明する図である。
図1は、電子ビームの照射量とラインエッジラフネス(LER:Line Edge Roughness)との関係を、ラインパターンの面積密度を変えて測定した結果の一例である。図中の0%、25%、50%、75%および100%は、それぞれラインパターンの局所的な面積密度を示している。これらは、例えば、一辺が数十μm程度の矩形状の領域内におけるパターンの面積密度とすることができる。
例えば、図2のように、パターンの面積密度が、約0%のラインパターンと、25%のラインパターンと、50%のラインパターンと、75%のラインパターンと、100%のラインパターンとが組みになったパターンセットを配置する。そして、電子ビームの照射量Dの値を変えて(D1〜D10までの10条件)、マスクに各パターンを描画する。次いで、描画したパターンのエッジラフネスを評価する。例えば、ライン・アンド・スペースのパターンについて、両エッジの微細な凹凸を寸法SEMで測定し、エッジラフネスを算出する。次に、照射量を横軸にとり、エッジラフネスを縦軸にとってグラフを描くと、図1と同様のものが得られる。
図1より、パターンの面積密度が高いほど、また、電子ビームの照射量が低いほど、エッジラフネスは大きくなることが分かる。ここで、エッジラフネスの許容値が例えば3.7であるとすると、許容値を超えるパターンを面積密度と照射量によって特定することができる。つまり、面積密度と照射量が分かれば、図1の関係を用いて、マスク上でエッジラフネスが大きくなる箇所を予め把握することが可能である。
そこで、本実施の形態においては、エッジラフネスが大きくなると予想される箇所について、パターンの面積密度が小さくなるようリサイズするとともに、かかる箇所における電子ビームの照射量を上げる。上述したように、パターンの面積密度が高いほど、また、電子ビームの照射量が低いほど、エッジラフネスは大きくなるので、かかるリサイズ処理と照射量調整をすることで、エッジラフネスを小さくすることができる。また、面積密度を小さくしたことによる仕上がり寸法の変化は、照射量の増加によって抑制されるので、リサイズ前と仕上がり寸法の変わらないパターンが得られる。さらに、リサイズした箇所のみ照射量を増加させるので、全体のスループットを大きく低下させることもない。
例えば、図1において、記号×で示す面積密度97.5%のパターンは、照射量が低いところでは、エッジラフネスが許容値を超える。そこで、このパターンをリサイズして面積密度を90%にしたうえで、照射量を上げる。すると、図1に示すように、エッジラフネスを許容値内にすることができる。本発明者の検討によれば、パターンのリサイズに伴う照射量の増加は、レジストヒーティングに大きな影響を与えるものではないことが確認されているが、実際の照射量の再計算にあたっては、この点にも留意することが好ましい。
一方、図1において、エッジラフネスが元々許容値以下であるパターンについては、パターンのリサイズは必要でなく、そのままの面積密度と照射量で描画すればよい。
このようにすることにより、パターン全体のうち、エッジラフネスの向上を必要とする箇所のみ、エッジラフネスを向上させることができる。この方法によれば、レジストを厚膜化する必要がないので、パターンの微細化に逆行することにはならない。また、上述の通り、照射量の増加は、リサイズしたパターンに対してのみ行われるので、スループットを大きく低下させることもない。
図3は、本実施の形態における電子ビーム描画装置の構成図である。
図3に示すように、電子ビーム描画装置の試料室1内には、試料であるマスク2が設置されるステージ3が設けられている。マスク2は、例えば、石英等のマスク基板上に、遮光膜としてのクロム(Cr)膜が形成され、さらにこの上にレジスト膜が形成されたものである。尚、クロム膜に代えてモリブデンシリコン(MoSi)膜などとしてもよい。また、レジスト膜は、化学増幅型レジストを用いて形成された膜とすることができる。
本実施の形態では、レジスト膜に対して電子ビームで描画を行う。ステージ3は、ステージ駆動回路4によりX方向とY方向に駆動される。ステージ3の移動位置は、レーザ測長計等を用いた位置回路5により測定される。
試料室1の上方には、電子ビーム光学系10が設置されている。この光学系10は、電子銃6、各種レンズ7、8、9、11、12、ブランキング用偏向器13、成形偏向器14、ビーム走査用の主偏向器15、ビーム走査用の副偏向器16、および、2個のビーム成形用のアパーチャ17、18等から構成されている。
図4は、電子ビームによる描画方法の説明図である。この図に示すように、マスク2の上に描画されるパターン51は、短冊状のフレーム領域52に分割されている。電子ビーム54による描画は、ステージ3が一方向(例えば、X方向)に連続移動しながら、フレーム領域52毎に行われる。フレーム領域52は、さらに副偏向領域53に分割されており、電子ビーム54は、副偏向領域53内の必要な部分のみを描画する。尚、フレーム領域52は、主偏向器15の偏向幅で決まる短冊状の描画領域であり、副偏向領域53は、副偏向器16の偏向幅で決まる単位描画領域である。
副偏向領域の基準位置の位置決めは、主偏向器15で行われ、副偏向領域53内での描画は、副偏向器16によって制御される。すなわち、主偏向器15によって、電子ビーム54が所定の副偏向領域53に位置決めされ、副偏向器16によって、副偏向領域53内での描画位置が決められる。さらに、成形偏向器14とビーム成形用のアパーチャ17、18によって、電子ビーム54の形状と寸法が決められる。そして、ステージ3を一方向に連続移動させながら、副偏向領域53内を描画し、1つの副偏向領域53の描画が終了したら、次の副偏向領域53を描画する。フレーム領域52内の全ての副偏向領域53の描画が終了したら、ステージ3を連続移動させる方向と直交する方向(例えば、Y方向)にステップ移動させる。その後、同様の処理を繰り返して、フレーム領域52を順次描画して行く。
副偏向領域は、副偏向器16によって、主偏向領域よりも高速に電子ビーム54が走査されて描画される領域であり、一般に最小描画単位となる。副偏向領域内を描画する際には、パターン図形に応じて準備された寸法と形状のショットが成形偏向器14により形成される。具体的には、電子銃6から出射された電子ビーム54が、第1のアパーチャ17で矩形状に成形された後、成形偏向器14で第2のアパーチャ18に投影されて、そのビーム形状と寸法を変化させる。その後、電子ビーム54は、上述の通り、副偏向器16と主偏向器15により偏向されて、ステージ3上に載置されたマスク2に照射される。
設計者(ユーザ)が作成したCADデータは、OASISなどの階層化されたフォーマットの設計中間データに変換される。設計中間データには、レイヤ(層)毎に作成されて各マスクに形成される設計パターンデータが格納される。ここで、一般に、電子ビーム描画装置は、OASISデータを直接読み込めるようには構成されていない。すなわち、電子ビーム描画装置の製造メーカー毎に、独自のフォーマットデータが用いられている。このため、OASISデータは、レイヤ毎に各電子ビーム描画装置に固有のフォーマットデータに変換されてから装置に入力される。
図3で、符号20は入力部であり、記憶媒体である磁気ディスクを通じて電子ビーム描画装置にフォーマットデータが入力される部分である。設計パターンに含まれる図形は、長方形や三角形を基本図形としたものであるので、入力部20には、例えば、図形の基準位置における座標(x,y)、辺の長さ、長方形や三角形等の図形種を区別する識別子となる図形コードといった情報であって、各パターン図形の形、大きさ、位置等を定義した図形データが格納される。
さらに、数十μm程度の範囲に存在する図形の集合を一般にクラスタまたはセルと称するが、これを用いてデータを階層化することが行われている。クラスタまたはセルには、各種図形を単独で配置したり、ある間隔で繰り返し配置したりする場合の配置座標や繰り返し記述も定義される。クラスタまたはセルデータは、さらにフレームまたはストライプと称される、幅が数百μmであって、長さがフォトマスクのX方向またはY方向の全長に対応する100mm程度の短冊状領域に配置される。
図形パターンの分割処理は、電子ビームのサイズにより規定される最大ショットサイズ単位で行われ、併せて、分割された各ショットの座標位置、サイズおよび照射時間が設定される。そして、描画する図形パターンの形状や大きさに応じてショットが成形されるように、描画データが作成される。描画データは、短冊状のフレーム(主偏向領域)単位で区切られ、さらにその中は副偏向領域に分割されている。つまり、チップ全体の描画データは、主偏向領域のサイズにしたがった複数の帯状のフレームデータと、フレーム内で主偏向領域よりも小さい複数の副偏向領域単位とからなるデータ階層構造になっている。
本実施の形態においては、入力部20に、ラインエッジラフネス(LER:Line Edge Roughness)の許容値と校正テーブルも入力される。尚、このラインエッジラフネスに代えて、ライン幅ラフネス(LWR:Line Width Roughness)を用いることも可能である。ラインエッジラフネス(LER)が両エッジの微細な凹凸を個別に測定して算出されるのに対し、ライン幅ラフネス(LWR)は、両エッジの微細な凹凸を連動させて算出され、言わば「超局所的な寸法のゆらぎ」として測定される。本発明の「ラフネス」は、ラインエッジラフネス(LER)とライン幅ラフネス(LWR)のいずれであってもよい。
上記の許容値は、マスクの仕様に応じて適宜決定される。例えば、2010ITRS(Ineternational Technology Roadmap for Semiconductors:国際半導体技術ロードマップ)によると、EUVL(Extreme Ultra Violet Lithography)のマスクにおけるラフネス(LWR:Line Width Roughness)の許容値は、2011年は4.2nm(ナノメートル)で、2012年には3.7nm(ナノメートル)になると予測されている。
校正テーブルは、図1で説明したような、パターンの面積密度と、電子ビームの照射量と、ラインエッジラフネスとの相関マップを用いて得られる。
例えば、図2のように、パターンの面積密度が、約0%のラインパターンと、25%のラインパターンと、50%のラインパターンと、75%のラインパターンと、100%のラインパターンとが組みになったパターンセットを配置する。そして、電子ビームの照射量Dの値を変えて(D1〜D10までの10条件)マスクに描画する。次いで、描画したパターンのエッジラフネスを評価する。例えば、ライン・アンド・スペースのパターン内の1つのラインについて、両エッジの微細な凹凸を寸法SEMで測定した後、それぞれのエッジでPeak to Peak値を求めて平均をとり、エッジラフネスとする。次に、照射量を横軸にとり、エッジラフネスを縦軸にとって測定点をプロットした後、適当な関数を用いてフィッティングを行い、図1と同様のグラフを描く。さらに、これらの関数を補間して、異なる面積密度のグラフも得る。
上記のようにして得られたグラフから、ラインエッジラフネスが許容値を超えるパターンについて、これらを許容値以下とするのに必要なパターン面積密度と照射量の校正テーブルを作成する。
尚、本実施の形態においては、必ずしも校正テーブルである必要はなく、パターンの面積密度と、電子ビームの照射量と、パターンのエッジラフネスとの関係が示されるものであればよい。
図3において、制御計算機19によって入力部20から読み出された描画データは、フレーム領域52毎にパターンメモリ21に一時的に格納される。パターンメモリ21に格納されたフレーム領域52毎のパターンデータ、すなわち、描画位置や描画図形データ等で構成されるフレーム情報は、ラインエッジラフネスの許容値と校正テーブルとともに、描画データ補正部31に送られる。
図5は、図3の描画データ補正部31を説明する図である。
電子ビーム描画装置では、描画後のパターン寸法が設計データの寸法と同一になるようにビーム照射量を変動させる補正処理が必要である。この処理は、近接効果、かぶり効果、ローディング効果といったパターンの寸法変動を引き起こす要因に対して行われる。
本実施の形態では、図5に示すように、パターンメモリ21から送られたパターンデータに対して上記補正処理が行われる。具体的には、パターン面積密度計算部31aにおいて、マスク上の描画領域全体を所定のグリッド寸法でメッシュ状に分割し、得られた小領域毎にパターンの面積密度を求める。そして、照射量計算部31bにおいて、小領域毎に、近接効果補正係数を用いて電子ビームの照射量を計算する。より好ましくは、近接効果補正係数に加えて、かぶり効果やローディング効果の各補正係数を用いて照射量を計算する。
次に、LER判定部31cにおいて、得られた照射量と、各小領域におけるパターンの面積密度に対し、上述した校正テーブルを用いて、ラインエッジラフネスが許容値以下であるか否かを判定する。パターンのエッジラフネスが許容値以下である場合には、この照射量が、パターンデータデコーダ22と描画データデコーダ23に送られる。一方、ラインエッジラフネスが許容値を超えると判定された場合には、リサイズ量計算部31dにおいて、そのパターンの面積密度を小さくするリサイズ量が計算される。この計算は、上記の校正テーブルを用いて行われる。
リサイズ量計算部31dで計算されたリサイズ量に基づいて、パターンデータがリサイズされる。そして、リサイズ後のパターンデータに対して、小領域毎の面積密度と照射量とが求められる。その後、LER判定部31cにおいて、再度、リサイズ後のパターンのラインエッジラフネスが許容値以下であるか否かの判定が行われ、許容値以下であれば、この値がパターンデータデコーダ22と描画データデコーダ23に送られる。一方、許容値を超えるようであれば、リサイズ量計算部31dでリサイズ処理を行う工程が繰り返される。かかる工程は、ラインエッジラフネスが許容値以下となるまで繰り返された後、許容値以下となるパターンの面積密度と照射量の組み合わせで描画が行われる。
上記のようにして決定された、パターンの面積密度と照射量のデータは、描画データ補正部31から、データ解析部であるパターンデータデコーダ22と描画データデコーダ23に送られる。
パターンデータデコーダ22からの情報は、ブランキング回路24とビーム成形器ドライバ25に送られる。具体的には、パターンデータデコーダ22で、上記データに基づいたブランキングデータが作成され、ブランキング回路24に送られる。また、所望とするビーム寸法データも作成されて、ビーム成形器ドライバ25に送られる。そして、ビーム成形器ドライバ25から、電子光学系10の成形偏向器14に所定の偏向信号が印加されて、電子ビーム54の寸法が制御される。
また、パターンデータデコーダ22からの情報は、副偏向領域偏向量算出部28に送られる。副偏向領域偏向量算出部28は、パターンデータデコーダ22で作成したビーム形状データから、副偏向領域53における、1ショットごとの電子ビームの偏向量(移動距離)を算出する。算出された情報は、セトリング時間決定部29に送られ、副偏向による移動距離に対応したセトリング時間が決定される。
セトリング時間決定部29で決定されたセトリング時間は、偏向制御部30へ送られた後、パターンの描画のタイミングを計りながら、偏向制御部30より、ブランキング回路24、ビーム成形器ドライバ25、主偏向器ドライバ26、副偏向器ドライバ27のいずれかに適宜送られる。
一方、描画データデコーダ23の出力は、主偏向器ドライバ26と副偏向器ドライバ27に送られる。そして、主偏向器ドライバ26から主偏向器15に所定の偏向信号が印加されて、電子ビーム54が所定の主偏向位置に偏向走査される。また、副偏向器ドライバ27から副偏向器16に所定の副偏向信号が印加されて、副偏向領域53内での描画が行われる。この描画工程は、次のようにして行われる。
図3において、まず、試料室1内のステージ3上にマスク2を載置する。次いで、ステージ3の位置検出を位置回路5により行い、制御計算機19からの信号に基づいて、ステージ駆動回路4によりステージ3を描画可能な位置まで移動させる。
次に、電子銃6より電子ビーム54を出射する。出射された電子ビーム54は、照明レンズ7により集光される。そして、ブランキング用偏向器13により、電子ビーム54をマスク2に照射するか否かの操作を行う。
第1のアパーチャ17に入射した電子ビーム54は、第1のアパーチャ17の開口部を通過した後、ビーム成形器ドライバ25により制御された成形偏向器14によって偏向される。そして、第2のアパーチャ18に設けられた開口部を通過することにより、所望の形状と寸法を有するビーム形状になる。このビーム形状は、マスク2に照射される電子ビーム54の描画単位である。
電子ビーム54は、ビーム形状に成形された後、縮小レンズ11によって縮小される。そして、マスク2上における電子ビーム54の照射位置は、主偏向器ドライバ26によって制御された主偏向器15と、副偏向器ドライバ27によって制御された副偏向器16とにより制御される。主偏向器15は、(図4に示す)マスク2上の副偏向領域53に電子ビーム54を位置決めする。また、副偏向器16は、副偏向領域53内で描画位置を位置決めする。
マスク2への電子ビーム54による描画は、ステージ3を一方向に移動させながら、電子ビーム54を走査することにより行われる。具体的には、ステージ3を一方向に移動させながら、各副偏向領域53内におけるパターンの描画を行う。そして、1つのフレーム領域52内にある全ての副偏向領域53の描画を終えた後は、ステージ3を新たなフレーム領域52に移動して同様に描画する。
本実施の形態においては、描画と同時にリアルタイムでラインエッジラフネスの判定を行うことができる。但し、描画を行わないオフラインの状態でこの判定を行ってもよい。オフラインで行う場合には、エッジラフネスが許容値以下であるか否かの判定や、リサイズ処理による描画時間の低下を招かずに済むという利点がある。
本実施の形態によれば、描画を行いながら(あるいは、オフラインの状態で)、電子ビームの照射量と、各小領域におけるパターンの面積密度に対し、校正テーブルを用いて、ラインエッジラフネスが許容値以下であるか否かを判定する。パターンのエッジラフネスが許容値以下である場合には、この照射量を用いて描画が行われる。一方、ラインエッジラフネスが許容値を超えると判定された場合には、そのパターンの面積密度を小さくするリサイズ量が計算される。次いで、このリサイズ量に基づきリサイズされたパターンデータに対して、小領域毎の面積密度と照射量とが求められ、再度、リサイズ後のパターンのラインエッジラフネスが許容値以下であるか否かの判定が行われる。
リサイズ量の計算は、校正テーブルを用いて行われる。その後、このリサイズ量に基づいてリサイズされたパターンデータに対して、照射量の再計算が行われる。リサイズ後の照射量は、リサイズ前の照射量より大きくなる。このようなリサイズ処理と照射量の再計算とは、エッジラフネスが許容値以下と判定されるまで繰り返し行われる。そして、許容値以下と判定されたパターンの面積密度と照射量の組み合わせで描画が行われる。
本実施の形態によれば、レジストを厚膜化せずにエッジラフネスの向上が図れる。また、照射量の増加は、リサイズしたパターンに対してのみ行われるので、スループットを大きく低下させることがない。また、パターンの面積密度を小さくしたことによる仕上がり寸法の変化は、照射量の増加によって抑制されるので、リサイズ前と仕上がり寸法の変わらないパターンが得られる。さらに、本実施の形態によれば、従来のプロセスを変えずにマスクを製造することができる。特に、エッジラフネスが許容値以下であるパターンについては、描画条件およびプロセス条件のいずれも変える必要がない。したがって、欠陥の増加などのマスク品質の低下を懸念する必要がない。
尚、本発明は上記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲内において、種々変形して実施することができる。
例えば、上記実施の形態では電子ビームを用いたが、本発明はこれに限られるものではなく、イオンビームなどの他の荷電粒子ビームを用いた場合にも適用可能である。
1 試料室
2 マスク
3 ステージ
4 ステージ駆動回路
5 位置回路
6 電子銃
7、8、9、11、12 各種レンズ
10 光学系
13 ブランキング用偏向器
14 成形偏向器
15 主偏向器
16 副偏向器
17 第1のアパーチャ
18 第2のアパーチャ
19 制御計算機
20 入力部
21 パターンメモリ
22 パターンデータデコーダ
23 描画データデコーダ
24 ブランキング回路
25 ビーム成形器ドライバ
26 主偏向器ドライバ
27 副偏向器ドライバ
28 副偏向領域偏向量算出部
29 セトリング時間決定部
30 偏向制御部
31 描画データ補正部
31a パターン面積密度計算部
31b 照射量計算部
31c LER判定部
31d リサイズ量計算部
51 描画されるパターン
52 フレーム領域
53 副偏向領域
54 電子ビーム

Claims (4)

  1. パターンの面積密度と、荷電粒子ビームの照射量と、前記パターンのラフネスとの関係が入力される入力部と、
    所定の領域におけるパターンの面積密度と荷電粒子ビームの照射量とから、前記関係を用いて、該パターンのラフネスが許容値以下であるか否かを判定する判定部と、
    前記判定部で前記ラフネスが前記許容値を超えると判定された場合に、前記パターンの面積密度を小さくするリサイズ量を計算する計算部とを有し、
    前記計算部で計算されたリサイズ量に基づいてリサイズされたパターンについて、前記領域における該パターンの面積密度と荷電粒子ビームの照射量とを求め、前記判定部で該パターンのラフネスが許容値以下であるか否かを判定することを特徴とする荷電粒子ビーム描画装置。
  2. 前記照射量は、近接効果補正係数を用いて求められることを特徴とする請求項1に記載の荷電粒子ビーム描画装置。
  3. パターンの面積密度と、荷電粒子ビームの照射量と、前記パターンのラフネスとの関係を求め、
    所定の領域におけるパターンの面積密度と荷電粒子ビームの照射量とから、前記関係を用いて、該パターンのラフネスが許容値以下であるか否かを判定し、
    前記ラフネスが前記許容値以下である場合には、前記照射量によって前記パターンを描画し、
    前記ラフネスが前記許容値を超える場合には、前記パターンの面積密度を小さくするリサイズ量を計算し、該リサイズ量に基づきリサイズされたパターンについて、前記領域における該パターンの面積密度と荷電粒子ビームの照射量とを求め、前記関係を用いて該パターンのラフネスが許容値以下であるか否かを判定する工程を該ラフネスが前記許容値以下となるまで繰り返した後、前記許容値以下となるパターンの面積密度と照射量の組み合わせで描画することを特徴とする荷電粒子ビーム描画方法。
  4. 前記照射量は、近接効果補正係数を用いて求められることを特徴とする請求項3に記載の荷電粒子ビーム描画方法。
JP2011033954A 2011-02-18 2011-02-18 荷電粒子ビーム描画装置および荷電粒子ビーム描画方法 Expired - Fee Related JP5547113B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011033954A JP5547113B2 (ja) 2011-02-18 2011-02-18 荷電粒子ビーム描画装置および荷電粒子ビーム描画方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011033954A JP5547113B2 (ja) 2011-02-18 2011-02-18 荷電粒子ビーム描画装置および荷電粒子ビーム描画方法

Publications (2)

Publication Number Publication Date
JP2012174812A true JP2012174812A (ja) 2012-09-10
JP5547113B2 JP5547113B2 (ja) 2014-07-09

Family

ID=46977465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011033954A Expired - Fee Related JP5547113B2 (ja) 2011-02-18 2011-02-18 荷電粒子ビーム描画装置および荷電粒子ビーム描画方法

Country Status (1)

Country Link
JP (1) JP5547113B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101605356B1 (ko) 2012-11-21 2016-03-22 가부시키가이샤 뉴플레어 테크놀로지 하전 입자빔 묘화 장치 및 하전 입자빔의 조사량 체크 방법
JP2017152480A (ja) * 2016-02-23 2017-08-31 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法
KR20200130099A (ko) * 2019-05-08 2020-11-18 가부시키가이샤 뉴플레어 테크놀로지 하전 입자 빔 묘화 방법 및 하전 입자 빔 묘화 장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003142364A (ja) * 2001-10-30 2003-05-16 Fujitsu Ltd 荷電粒子ビーム露光用マスクパターンの矩形/格子データ変換方法及びこれを用いた荷電粒子ビーム露光方法
JP2004048018A (ja) * 2003-07-22 2004-02-12 Hitachi Ltd 電子線描画装置および電子線を用いた描画方法
JP2009186934A (ja) * 2008-02-08 2009-08-20 Toshiba Corp マスク測定方法およびマスク製造方法
JP2009259992A (ja) * 2008-04-16 2009-11-05 Dainippon Printing Co Ltd 電子線描画用パターンデータの作成方法及びそれに用いる近接効果補正方法、そのデータを用いたパターン形成方法
JP2010034402A (ja) * 2008-07-30 2010-02-12 Toshiba Corp パターン形状予測方法
JP2010219285A (ja) * 2009-03-17 2010-09-30 Nuflare Technology Inc 荷電粒子ビーム描画方法および荷電粒子ビーム描画装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003142364A (ja) * 2001-10-30 2003-05-16 Fujitsu Ltd 荷電粒子ビーム露光用マスクパターンの矩形/格子データ変換方法及びこれを用いた荷電粒子ビーム露光方法
JP2004048018A (ja) * 2003-07-22 2004-02-12 Hitachi Ltd 電子線描画装置および電子線を用いた描画方法
JP2009186934A (ja) * 2008-02-08 2009-08-20 Toshiba Corp マスク測定方法およびマスク製造方法
JP2009259992A (ja) * 2008-04-16 2009-11-05 Dainippon Printing Co Ltd 電子線描画用パターンデータの作成方法及びそれに用いる近接効果補正方法、そのデータを用いたパターン形成方法
JP2010034402A (ja) * 2008-07-30 2010-02-12 Toshiba Corp パターン形状予測方法
JP2010219285A (ja) * 2009-03-17 2010-09-30 Nuflare Technology Inc 荷電粒子ビーム描画方法および荷電粒子ビーム描画装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101605356B1 (ko) 2012-11-21 2016-03-22 가부시키가이샤 뉴플레어 테크놀로지 하전 입자빔 묘화 장치 및 하전 입자빔의 조사량 체크 방법
JP2017152480A (ja) * 2016-02-23 2017-08-31 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法
US9852883B2 (en) 2016-02-23 2017-12-26 Nuflare Technology, Inc. Charged particle beam drawing apparatus and charged particle beam drawing method
KR20200130099A (ko) * 2019-05-08 2020-11-18 가부시키가이샤 뉴플레어 테크놀로지 하전 입자 빔 묘화 방법 및 하전 입자 빔 묘화 장치
KR102366045B1 (ko) 2019-05-08 2022-02-22 가부시키가이샤 뉴플레어 테크놀로지 하전 입자 빔 묘화 방법 및 하전 입자 빔 묘화 장치

Also Published As

Publication number Publication date
JP5547113B2 (ja) 2014-07-09

Similar Documents

Publication Publication Date Title
JP4476975B2 (ja) 荷電粒子ビーム照射量演算方法、荷電粒子ビーム描画方法、プログラム及び荷電粒子ビーム描画装置
KR100878970B1 (ko) 하전 입자빔 묘화 장치
JP5204687B2 (ja) 荷電粒子ビーム描画方法および荷電粒子ビーム描画装置
KR101671322B1 (ko) 가변 성형 빔 리소그래피를 이용하여 레티클을 설계 및 제조하기 위한 방법
JP5480555B2 (ja) 荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法
US8610096B2 (en) Charged particle beam writing apparatus and method
JP4745089B2 (ja) 荷電粒子ビーム描画方法、描画データ作成方法及びプログラム
JP4870437B2 (ja) 偏向収差補正電圧の演算方法及び荷電粒子ビーム描画方法
KR101757743B1 (ko) 플레어 보정방법 및 euv 마스크 제조방법
JP5731257B2 (ja) 荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法
JP2012212793A (ja) 半導体装置の製造方法、描画装置、プログラム及びパターン転写装置
JP5443548B2 (ja) パタン作成方法及び荷電粒子ビーム描画装置
JP5547113B2 (ja) 荷電粒子ビーム描画装置および荷電粒子ビーム描画方法
JP4747112B2 (ja) パターン形成方法及び荷電粒子ビーム描画装置
JP5437124B2 (ja) 荷電粒子ビーム描画方法および荷電粒子ビーム描画装置
JP5436967B2 (ja) 荷電粒子ビーム描画方法および荷電粒子ビーム描画装置
JP5416998B2 (ja) 荷電粒子ビーム描画方法および荷電粒子ビーム描画装置
JP2010225811A (ja) 荷電粒子ビーム描画方法
JP2010267725A (ja) 荷電粒子ビーム描画方法
JP2012044044A (ja) 荷電粒子ビーム描画方法
JP2010267723A (ja) 荷電粒子ビーム描画装置および荷電粒子ビーム描画方法
JP2013074207A (ja) 荷電粒子ビーム描画装置および荷電粒子ビーム描画方法
JP2010147449A (ja) 荷電粒子ビーム描画方法および荷電粒子ビーム描画装置
US10217606B2 (en) Charged particle beam drawing method and charged particle beam drawing apparatus
JP2011228501A (ja) 荷電粒子ビーム描画方法および荷電粒子ビーム描画装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131024

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140430

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140502

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140514

R150 Certificate of patent or registration of utility model

Ref document number: 5547113

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees