JP2012172966A - Earth solar zero-energy house - Google Patents

Earth solar zero-energy house Download PDF

Info

Publication number
JP2012172966A
JP2012172966A JP2011054736A JP2011054736A JP2012172966A JP 2012172966 A JP2012172966 A JP 2012172966A JP 2011054736 A JP2011054736 A JP 2011054736A JP 2011054736 A JP2011054736 A JP 2011054736A JP 2012172966 A JP2012172966 A JP 2012172966A
Authority
JP
Japan
Prior art keywords
hot water
floor
air
storage tank
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011054736A
Other languages
Japanese (ja)
Other versions
JP5742009B2 (en
Inventor
龍夫 ▲高▼▲橋▼
Tatsuo Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takahashi Kanri KK
Original Assignee
Takahashi Kanri KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takahashi Kanri KK filed Critical Takahashi Kanri KK
Priority to JP2011054736A priority Critical patent/JP5742009B2/en
Publication of JP2012172966A publication Critical patent/JP2012172966A/en
Application granted granted Critical
Publication of JP5742009B2 publication Critical patent/JP5742009B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • F24T10/13Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes
    • F24T10/17Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes using tubes closed at one end, i.e. return-type tubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Central Heating Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioner of low energy costs and a simple structure, capable of suppressing waste consumption of artificial energies such as petroleum, gas and electricity, and effectively utilizing solar heat and geothermal heat in the ground to control a room temperature of a house.SOLUTION: The fresh outside air sucked by a total heat exchange type ventilator mounted in a room of a building, is distributed to an underfloor section of a first story of the building, a plurality of U-shaped geothermal heat recovery pipes are embedded in a foundation under the floor of the first story, blowers are mounted on one end of the geothermal heat recovery pipes, and the air sucked to the geothermal heat recovery pipes is heated in the geothermal heat recovery pipes by geothermal heat in winter, and cooled in the geothermal heat recovery pipe by the geothermal heat in summer, so that the temperature of the air in the underfloor section of the first story is conditioned. The temperature-conditioned air is supplied to the inside of a ceiling of each story through an air supply duct, and further supplied indoors from louvers disposed on the ceilings.

Description

本発明は、建物の基礎部に外部との通気口を設置せず、1階床下内部の空気を外気と遮断して密封状態とし、建物の室内に取付けた全熱交換型換気扇が室内側に供給する新鮮な外気を、建物の1階床下部に送り込むと共に、1階床下の基礎底盤に下部をU字形に形成した複数の地中熱回収パイプを、両端を基礎底盤より1階床下部に突き出すように地中に埋設し、地中熱回収パイプの一端には送風機を取付け、その送風機を作動させる事により1階床下内部の空気が地中熱回収パイプに吸い込まれ、その地中熱回収パイプに吸い込まれた空気は、冬期は地中熱により地中熱回収パイプの中で暖められると共に、1階床下の基礎底盤に温水蓄熱槽を設置し、その温水蓄熱槽にエコキュートで沸かしたお湯をお風呂で使用した後、温かい風呂の残り湯を温水蓄熱槽の中に流して溜湯させる事により1階床下内部の空気がさらに暖められ、また、夏期は地中熱により地中熱回収パイプの中で冷やされた空気が1階床下部に供給されると共に、その1階床下の空気をダクトを経由して各階の天井内部に供給し、天井内部に供給された空気が各室天井に設けたガラリより室内に供給されて、室温調整を行うための装置に関するものである。  The present invention does not install an air vent to the base of the building, and shuts off the air inside the first floor floor from the outside air so that it is in a sealed state. The fresh outside air to be supplied is sent to the lower part of the first floor of the building, and a plurality of underground heat recovery pipes with a U-shaped lower part formed on the foundation floor under the first floor, both ends of the foundation floor from the foundation floor to the lower part of the first floor It is buried in the ground so as to protrude, and a blower is attached to one end of the underground heat recovery pipe. By operating the fan, the air inside the first floor is sucked into the underground heat recovery pipe, and the underground heat recovery is performed. The air sucked into the pipe is warmed in the underground heat recovery pipe by underground heat in the winter season, and a hot water storage tank is installed in the foundation floor under the first floor, and the hot water boiled in eco-cute water in the hot water storage tank After using the bath, leave a warm bath By flowing hot water into the hot water storage tank and storing the hot water, the air inside the first floor is further warmed, and in the summer, the air cooled in the underground heat recovery pipe by the underground heat is subsurface. And the air below the first floor is supplied to the interior of the ceiling of each floor via a duct, and the air supplied to the interior of the ceiling is supplied indoors from a gallery provided in the ceiling of each room. The present invention relates to an apparatus for performing adjustment.

従来の、小規模な住宅における室温調整は、夏期にはクーラーを使用し、冬期には電気、ガス、石油等のエネルギーを利用して冷暖房を行って来たが、近年では地球温暖化防止の観点から、エネルギー消費に伴うCO2排出量の削減が急務となり、エネルギー消費量の削減や、さらに自然エネルギーへの代替が早急に望まれている。  Conventional room temperature adjustment in small houses has been using air conditioners in the summer and cooling and heating using energy such as electricity, gas, and oil in the winter. From the viewpoint, it is an urgent need to reduce CO2 emissions accompanying energy consumption, and reduction of energy consumption and further replacement with natural energy are urgently desired.

これに伴い、自然エネルギーの利用手段として、現在、一般的に普及しているものは、太陽エネルギーを利用した、太陽熱温水器(熱効率50〜60%)と太陽光発電(変換効率10〜15%)があるが、いずれも、太陽エネルギーだけを利用する省エネ技術は天候に左右され易く、不安定な点から単独では利用が出来ず、他のエネルギーと兼用して利用されて来たため、なお一層の改良が求められている。  Along with this, as a means of utilizing natural energy, what is currently widely used is a solar water heater (thermal efficiency 50-60%) and solar power generation (conversion efficiency 10-15%) using solar energy. However, in both cases, energy-saving technology that uses only solar energy is easily affected by the weather and cannot be used alone because of instability, and has been used in combination with other energy. There is a need for improvements.

これに対して、地下4〜5メートルの地中は、年間を通じて安定した温度を保つことから、夏期は外気と比べて低温となり、冬期は外気と比べて暖温となる。そのため、従来からこのような地中熱を利用した設備は、大型の建物や公共設備等で実験的に施工されているが、その利用方法は、冬の間に自然界で出来た氷を保存しておき、その氷を夏期に地下に設けた蓄熱槽に移して冷水を作り、その冷水を各室に循環させて冷房を行うことが一般的であり、大掛かりな工事が必要となり、しかも、定期的に蓄熱層に氷を補充しなければならず、小規模な住宅用としては不向きであった。  On the other hand, since the underground of 4 to 5 meters below the ground maintains a stable temperature throughout the year, it is cooler than the outside air in the summer and warmer than the outside in the winter. For this reason, facilities that use geothermal heat have been experimentally constructed in large buildings and public facilities, but the method of use is to preserve the ice made in nature during the winter. In general, it is common to transfer the ice to a heat storage tank in the basement in the summer to make cold water, circulate the cold water to each room and cool it. Therefore, it was necessary to replenish the heat storage layer with ice, which was not suitable for small-scale housing.

さらに、地中熱を利用したヒートポンプ方式で、家庭内の給湯と、室内の冷暖房を行う方法も行われているが、水平ループ方式(地中に深さ1〜2メートルの堀を堀り、そこに採熱用パイプを這わせて埋設する)では、建て坪100mの住宅の熱源を得るために400〜600メートルの採熱用パイプを埋設することが必要であり、又、垂直ループ方式(地中に深さ50〜100メートルの井戸を堀り、そこに採熱用パイプを埋設する)では2本の井戸が必要となり、一般住宅用で300〜500万円の費用を要すると共に、ヒートポンプの稼動コスト(電気代)が、深夜電力を利用した電気温水器の約75%かかるといった問題があった。Furthermore, in the heat pump system using geothermal heat, there is also a method of domestic hot water supply and indoor air conditioning, but the horizontal loop method (deep a 1-2 m deep moat in the ground, In order to obtain a heat source for a house with a floor area of 100 m 2 , it is necessary to embed a 400-600 meter heat collecting pipe, and a vertical loop system. (To dig a well of 50-100 meters deep in the ground and embed a pipe for heat collection there) requires two wells, and costs 3 to 5 million yen for general housing, There is a problem that the operating cost (electricity cost) of the heat pump is about 75% of that of an electric water heater using midnight power.

また、平成15年7月に建築基準法が改正され、「シックハウス対策」として、居室の24時間換気(1時間で居室体積の0.5回分を換気させる事)が義務づけられた。  In July 2003, the Building Standards Law was amended to require 24-hour ventilation of the room (to ventilate 0.5 times the volume of the room in one hour) as a “sick house measure”.

そこで、本出願人は、特許文献1に記載された、建築基準法に対応できる「アース・ソーラーシステム(二層式)」を発明し出願した。この発明によれば、貯水タンクと、貯温水タンクの2つのタンクを地中に埋設し、その双方のタンク内に、外気取入口から各室の24時間給気パイプに連通する熱交換パイプを配管し、貯水タンクを雨水又は地下水又は水道水で満たすと共に、貯温水タンクは太陽熱温水器からの温水で満たし、前記、熱交換パイプに設けた開閉バルブを操作する事により、夏期においては、冬期の冷たい外気で冷やしておいた貯水タンク内の冷水を利用して、外気を貯水タンク内の熱交換パイプを経由させ、暑い外気を冷やして各室に送り込むため、効率よく冷風運転を行うことが出来る。また、冬期においては、夏期の暑い外気で温めておいた貯水タンクの弱温水に冷たい外気を熱交換バイプを経由して暖めると共に、さらに太陽熱温水器を利用した、貯温水タンク内の温水中の熱交換パイプを経由するため、各室に温風を送り込むことが可能となる。
特願2007−42895
Therefore, the present applicant has invented and applied for an “earth / solar system (two-layer type)” described in Patent Document 1 and capable of complying with the Building Standard Law. According to the present invention, two tanks, a water storage tank and a hot water storage tank, are buried in the ground, and heat exchange pipes that communicate with the 24 hour air supply pipes of each room from the outside air intake are provided in both tanks. Plumbing and filling the storage tank with rain water, ground water or tap water, filling the storage tank with hot water from the solar water heater, and operating the opening / closing valve provided in the heat exchange pipe in the summer, in the winter Using cold water in the storage tank that has been cooled with cold outside air, the outside air is passed through the heat exchange pipe in the storage tank, and the hot outside air is cooled and sent to each room, so efficient cold wind operation can be performed I can do it. In the winter season, warm water in the water storage tank that has been warmed by hot outdoor air in the summer is warmed to the low temperature water via the heat exchange vapour. Since it passes through the heat exchange pipe, it becomes possible to send warm air into each room.
Japanese Patent Application No. 2007-42895

しかしながら、本出願人の出願した特許文献1の発明においては、貯水タンクと貯温水タンクの2つのタンクを必要としたため、配管が複雑になり、開閉バルブの数も増え、高価格になると共に、施工するための工期も長く必要であった。  However, in the invention of Patent Document 1 filed by the present applicant, two tanks, a water storage tank and a hot water storage tank, are required, so the piping becomes complicated, the number of open / close valves increases, and the price increases. A long construction period was also required.

そこで、本出願人は、特許文献2に記載された、「アース・ソーラーシステム(一層式)」を発明し出願した。この発明によれば、建物の下部の地中に、建物の基礎部と−体に構成されたコンクリート製タンクを構築し、コンクリート製タンク内に熱交換パイプを配管し、コンクリート製タンク内を雨水、又は水道水、又は地下水で満たし、全熱交換型換気扇からの供給空気をコンクリート製タンク内の熱交換パイプに導き、夏期は、全熱交換型換気扇からの供給空気を、地中熱で冷やされたコンクリート製タンク内の水と、熱交換パイプとの間で熱交換して冷やした後、給気パイプを経由して各階に給気し、冬期は、太陽熱温水器からの温水を、コンクリート製タンク内に循環させて、コンクリート製タンク内を温水状態とし、全熱交換型換気扇からの供給空気を、コンクリート製タンク内の熱交換パイプに導き、コンクリート製タンク内の温水と、熱交換パイプとの間で熱交換して暖めた後、給気パイプを経由して各階に給気した事により、各室に温風を送り込むことが可能となる。
特願2008−134783
Therefore, the present applicant invented and applied for the “earth / solar system (single layer type)” described in Patent Document 2. According to the present invention, a concrete tank composed of the foundation and the body of the building is constructed in the lower part of the building, the heat exchange pipe is piped in the concrete tank, and the rainwater is put inside the concrete tank. Or, it is filled with tap water or groundwater, and the supply air from the total heat exchange type ventilation fan is led to the heat exchange pipe in the concrete tank, and in summer, the supply air from the total heat exchange type ventilation fan is cooled by underground heat. After heat exchange between the water in the made concrete tank and the heat exchange pipe, it is cooled and then supplied to each floor via the air supply pipe. In the winter, hot water from the solar water heater is supplied to the concrete. Circulate in the tank made of concrete, bring the inside of the concrete tank to a warm water state, lead the supply air from the total heat exchange type exhaust fan to the heat exchange pipe in the concrete tank, and warm water in the concrete tank, After warming to heat exchange with the replacement pipe, by which the air supply to each floor through the supply pipe, it is possible to feed the hot air in each room.
Japanese Patent Application No. 2008-134783

しかしながら、本出願人の出願した特許文献2の発明においても、コンクリート製タンクを必要としたため、高価格になると共に、施工するための工期も長く必要であった。  However, in the invention of Patent Document 2 filed by the present applicant, a concrete tank is required, so that the price is high and a construction period for construction is also long.

そこで、本出願人は、特許文献3に記載された、「アース・ソーラーシステム(地中熱回収パイプ方式)」を発明して出願した。この発明によれば、建物の基礎部に外部との通気口を設置せず、1階床下内部の空気を外気と遮断して密封状態とし、建物の室内に取付けた全熱交換型換気扇が室内側に供給する新鮮な外気を、建物の1階床下内部に送り込むと共に、1階床下の基礎底盤に下部をU字形に成形した複数の地中熱回収パイプを、両端を基礎底盤より1階床下内部に突き出すように地中に埋設し、地中熱回収パイプの一端には送風機を取付け、その送風機を作動させる事により1階床下内部の空気が地中熱回収パイプに吸い込まれ、その地中熱回収パイプに吸い込まれた空気は、冬期は地中熱により地中熱回収パイプの中で暖められると共に、さらに、1階床下部に設けた温水蓄熱槽に太陽熱温水器で温めた温水を循環させて1階床下内部の空気を暖め、また、夏期は1階床下部に設けた温水蓄熱槽に太陽熱温水器からの温水を循環させず、地中熱により地中熱回収パイプの中で冷やされた空気が1階床下内部に供給され、その1階床下内部の空気をダクトを通して各階の天井内部に供給し、天井内部に供給された空気を各室天井に設けたガラリより室内に供給した事により、冬期には弱暖房された暖かい空気を各室に供給すると共に、夏期には弱冷風された涼しい空気を各室に送り込むことが可能となった。
特願2009−158863
Therefore, the present applicant invented and filed an application of “Earth Solar System (Ground Heat Recovery Pipe System)” described in Patent Document 3. According to the present invention, there is provided a total heat exchange type ventilation fan installed in a room of a building without installing a vent hole to the outside at the foundation of the building and blocking the air inside the first floor under the outside air to be in a sealed state. Fresh outside air supplied to the inside is sent to the inside of the first floor under the building, and a plurality of underground heat recovery pipes with a U-shaped lower part formed on the foundation floor under the first floor, both ends of the floor below the foundation floor. It is buried in the ground so as to protrude inside, and a blower is attached to one end of the underground heat recovery pipe. By operating the blower, the air inside the floor under the first floor is sucked into the underground heat recovery pipe, and the underground The air sucked into the heat recovery pipe is warmed in the ground heat recovery pipe by the underground heat in the winter season, and further, the hot water warmed by the solar water heater is circulated in the hot water heat storage tank provided at the bottom of the first floor Let the air inside the first floor under the floor warm, During the season, the hot water from the solar water heater is not circulated in the hot water storage tank provided at the bottom of the first floor, but the air cooled by the underground heat recovery pipe is supplied to the inside of the first floor under the ground heat. By supplying the air inside the floor under the first floor through the duct to the ceiling of each floor, and the air supplied inside the ceiling from the gallery installed in the ceiling of each room, the warm air that has been slightly heated in winter In addition to supplying to each room, it became possible to send cool air, which was weakly cooled in the summer, to each room.
Japanese Patent Application No. 2009-158863

しかしながら、本出願人の出願した特許文献3の発明においても、雨や曇りの日が続いた場合、太陽熱温水器のお湯の温度が上がらず、雨や曇りの日と、晴天の日の温度差が大きいといった問題が発生した。  However, even in the invention of Patent Document 3 filed by the present applicant, when the rainy or cloudy day continues, the temperature of the hot water of the solar water heater does not rise, and the temperature difference between the rainy and cloudy day and the sunny day The problem that is large occurred.

そこで、本出願人は、特許文献4に記載された、「アース・ソーラーシステム改良型(地中熱回収パイプ方式)」を発明して出願した。この発明によれば、冬期においては、風呂の残り湯を1階床下部に設けた温水蓄熱槽に流して溜湯させると共に、温水蓄熱槽をコストを抑えるためにゴム等(塩化ビニールシート等)の安価な材料で製作したため、雨や曇りの日が続いた場合でも、温水蓄熱槽に温かいお湯を溜湯することが可能となり、冬期には弱暖房された暖かい空気を各室に供給すると共に、夏期には、1階床下部に設けた温水蓄熱槽に太陽熱温水器からの温水を循環させず、地中熱により地中熱回収パイプの中で冷やされた空気が1階床下内部に供給され、その1階床下の空気をダクトを通して各階の天井内部に供給し、天井内部に供給された弱冷風された涼しい空気を各室に送り込むことが可能となった。
特願2010−56088
Therefore, the present applicant invented and applied for the “earth / solar system improved type (ground heat recovery pipe system)” described in Patent Document 4. According to this invention, in winter, the remaining hot water of the bath is poured into a hot water heat storage tank provided at the lower part of the first floor to store hot water, and rubber or the like (vinyl chloride sheet or the like) is used to reduce the cost of the hot water heat storage tank. Because it is made of cheap materials, it is possible to store hot water in the hot water heat storage tank even when rainy or cloudy days continue, and supply warm air that is slightly heated in winter to each room In summer, hot water from the solar water heater is not circulated in the hot water storage tank installed at the bottom of the 1st floor, and the air cooled in the underground heat recovery pipe is supplied to the interior of the 1st floor under the ground heat. Then, the air under the floor of the first floor is supplied to the inside of the ceiling of each floor through the duct, and it is possible to send the cool air, which is supplied into the ceiling, into the rooms.
Japanese Patent Application 2010-56088

しかしながら、本出願人の出願した特許文献4の発明においても、冬期においては温水蓄熱槽に温かいお湯を供給するため、基本的には太陽熱温水器のお湯を利用すると共に、雨や曇りの日が続いた場合には、給湯器からのお湯を利用していたため、雨や曇りの日が続いた場合において、お風呂にお湯を供給するためのガス代金(電気代金)や、日常、洗面所や台所でお湯を使用するための費用がかかるといった問題が残った。  However, even in the invention of Patent Document 4 filed by the present applicant, in order to supply warm hot water to the hot water heat storage tank in the winter, basically the hot water of the solar water heater is used, and rainy or cloudy days are present. In the case that it continued, hot water from the water heater was used, so when rainy or cloudy days continued, gas charges (electricity charges) to supply hot water to the bath, daily life, toilets and The problem remains that it is expensive to use hot water in the kitchen.

また、従来より地中熱交換機を利用した建物の空調換気システムとして知られている、特許文献5に記載したジオパワーシステムの場合は、冬期において、地中熱だけでは暖房効果(地下5mでも地中温度は約18度前後だから、外気を地中熱により暖めても、それ以下の温度にしかならない)が低く、さらに価格が高く、一般住宅に施工する場合はコストの面で問題があった。
特開2007−303693
In addition, in the case of the geopower system described in Patent Document 5, which has been conventionally known as a building air-conditioning ventilation system that uses a geothermal heat exchanger, in the winter season, only the underground heat alone can produce a heating effect (even underground 5 m) The medium temperature is around 18 degrees, so even if the outside air is warmed by underground heat, the temperature is only lower than that), and the price is high. .
JP2007-303693A

さらに、太陽エネルギーを利用するソーラーシステムとして知られている、特許文献6に記載したOMソーラーの場合、雨や曇りの日が続いた場合には暖房効果が下がるため補助暖房装置が必要になるといった問題と、さらに、夏期においては冷風運転が出来ないといった欠点があった。
特開平08−005161
Furthermore, in the case of the OM solar described in Patent Document 6, which is known as a solar system that uses solar energy, the heating effect is reduced when a rainy or cloudy day continues, so an auxiliary heating device is required. There was a problem, and further, there was a drawback that cold wind operation was not possible in summer.
JP 08-005161

本発明は、このような、従来の欠点に鑑みて、自然との調和を図る事を目的とし、石油、ガス、電気等の人工エネルギーの浪費を抑え、太陽熱や、風呂の温かい残り湯や、地中の地中熱を有効に利用して、住宅の室温調整を行うものであり、エネルギーコストが低く、構造が簡単な冷暖房装置を提供する事を課題とする。  In view of such conventional drawbacks, the present invention aims at harmony with nature, suppresses waste of artificial energy such as oil, gas, electricity, solar heat, hot remaining hot water in the bath, An object of the present invention is to provide a cooling / heating device with a low energy cost and a simple structure that adjusts the room temperature of a house by effectively using underground heat.

本出願人の出願した特許文献1、特許文献2、特許文献3、特許文献4による発明では、上記のような問題が発生したため、当社では、新たに、特許文献4の発明を改良して、太陽電池パネルとエコキュートを利用して、太陽の光で発電してエコキュートでお湯を沸かし、そのお湯を貯湯タンクに溜湯してお風呂に供給し、冬期においては、その風呂の残り湯を建物の1階床下に設置した温水蓄熱槽に供給する事により、本出願人が以前に出願した特許文献1、特許文献2、特許文献3、特許文献4より更にエネルギーコストが低い商品を開発し、本発明を特許出願すると同時に、新製品の発売に踏み切る事とした。  In the invention according to Patent Document 1, Patent Document 2, Patent Document 3, and Patent Document 4 filed by the present applicant, the above-mentioned problem has occurred. Therefore, the Company newly improved the invention of Patent Document 4, Using solar panels and EcoCute, it generates electricity with sunlight and boiles hot water with EcoCute, stores the hot water in a hot water storage tank and supplies it to the bath. In the winter, the remaining hot water from the bath is built. By supplying a hot water storage tank installed under the floor of the first floor, a product having a lower energy cost than Patent Document 1, Patent Document 2, Patent Document 3, and Patent Document 4 previously filed by the present applicant, At the same time as filing a patent application for the present invention, it was decided to launch a new product.

かかる課題を解決するため、請求項1に記載の発明は、建物の基礎部に外部との通気口を設置せず、1階床下内部の空気を外気と遮断して密封状態とし、建物の室内に取付けた全熱交換型換気扇が室内側に供給する新鮮な外気を、建物の1階床下内部に送り込むと共に、1階床下の基礎底盤に下部をU字型に成形した複数の地中熱回収パイプを、両端を基礎底盤より1階床下内部に突き出すように地中に埋設し、地中熱回収パイプの一端には送風機を取付け、その送風機を作動させる事により1階床下内部の空気が地中熱回収パイプに吸い込まれ、冬期は、地中熱により地中熱回収パイプの中で暖められて1階床下内部の空気を暖めると共に、1階床下の基礎底盤に温水蓄熱槽を設置し、昼間、太陽光発電システムで発電した電力で、自然冷媒ヒートポンプ給湯機(エコキュート)に電力を供給して沸かしたお湯を、お風呂で利用した後、温かい風呂の残り湯を1階床下空間に設置した温水蓄熱槽に流して留湯させる事により1階床下内部の空気がさらに暖められて弱温風となり、暖められた1階床下内部の空気は、各階天井内部に設けられたダクトの送風機を作動させる事により、1階床下内部からダクトを経由して各階の天井内部に送られ、天井に設けたガラリより室内に供給されて室内を暖める。また、夏期においては、1階床下空間に設置した温水蓄熱槽に風呂の残り湯を供給せず、全熱交換型換気扇から1階床下内部に送り込まれた外気は、地中熱により地中熱回収パイプの中で冷やされて弱冷風となり、1階床下内部の空気と混ぜ合わされた後、各階天井内部に設けられたダクトの送風機を作動させる事により、1階床下内部からダクトを経由して各階の天井内部に送られ、天井に設けたガラリより室内に供給されて室内を冷やす事を特徴とする。  In order to solve such a problem, the invention according to claim 1 does not install a vent hole to the outside of the foundation of the building, blocks the air inside the first floor under the outside air from the outside air and seals it. The fresh heat supplied to the indoor side by the total heat exchange type exhaust fan attached to the inside of the building is sent to the interior of the first floor below the building, and the ground heat recovery is formed in a U-shaped lower part on the foundation floor under the first floor Pipes are buried in the ground so that both ends protrude from the foundation floor into the first floor, and a blower is attached to one end of the underground heat recovery pipe. By operating the blower, the air inside the first floor is grounded. It is sucked into the intermediate heat recovery pipe, and in the winter, it is heated in the underground heat recovery pipe by the underground heat, warming the air inside the first floor under the floor and installing a hot water heat storage tank on the foundation bottom under the first floor, In the daytime, the power generated by the solar power generation system After using hot water boiled by supplying power to a heat pump water heater (EcoCute) in the bath, the remaining hot water from the hot bath flows into a hot water heat storage tank installed in the space under the first floor, and the hot water is stored. The air in the interior of the first floor under the warmed first floor is further warmed, and the heated air in the lower floor of the first floor is activated via a duct from the lower floor of the first floor by operating a duct blower provided inside each floor ceiling. It is sent inside the ceiling of each floor and supplied to the room from the gallery provided on the ceiling to warm the room. Also, during the summer, the remaining hot water in the bath is not supplied to the hot water heat storage tank installed in the first floor underfloor space, and the outside air sent from the total heat exchanging ventilator to the first floor underfloor is caused by geothermal heat. After being cooled in the recovery pipe to become slightly cool air and mixed with the air inside the floor under the first floor, the duct blower provided inside the ceiling of each floor is operated to operate from the inside of the floor under the first floor via the duct. It is sent to the interior of the ceiling of each floor and supplied to the room from a gallery provided on the ceiling to cool the room.

請求項2に記載の発明は、全熱交換型換気扇は、天井取り付け専用型を用い、全熱交換型換気扇からの全ての給気を建物の1階床下内部に送り込む事を特徴とする。  The invention according to claim 2 is characterized in that the total heat exchange type exhaust fan uses a ceiling-mounted exclusive type, and all the air supply from the total heat exchange type exhaust fan is sent into the interior of the first floor under the building.

請求項3に記載の発明は、冬期においては、温水蓄熱槽の上面に温度センサーを取付け、温水蓄熱槽のお湯の温度を温度センサーで検知し、温水蓄熱槽が定めた範囲内の温度を保つように、自然冷媒ヒートポンプ給湯機(エコキュート)で沸かした貯湯タンクのお湯を、混合弁で湯温を調整し、自然冷媒ヒートポンプ給湯機(エコキュート)の貯湯タンクから温水蓄熱槽に給湯した事を特徴とする請求項1に記載のアース・ソーラー・ゼロエネルギー住宅。  In the invention according to claim 3, in winter, a temperature sensor is attached to the upper surface of the hot water heat storage tank, the temperature of the hot water in the hot water heat storage tank is detected by the temperature sensor, and the temperature within the range determined by the hot water heat storage tank is maintained. As mentioned above, the hot water of the hot water storage tank boiled with the natural refrigerant heat pump water heater (EcoCute) is adjusted with the mixing valve, and hot water is supplied from the hot water storage tank of the natural refrigerant heat pump water heater (EcoCute) to the hot water storage tank. The earth solar zero energy house according to claim 1.

請求項4に記載の発明は、1階床下空間に、さらに、もう1台の温水蓄熱槽を設置すると共に、冬期においては、その温水蓄熱槽に自然冷媒ヒートポンプ給湯機(エコキュート)で沸かしたお湯を循環させた事を特徴とする請求項1に記載のアース・ソーラー・ゼロエネルギー住宅。  The invention described in claim 4 is provided with another hot water heat storage tank in the space under the first floor, and in the winter, hot water boiled in a natural refrigerant heat pump water heater (EcoCute) in the hot water heat storage tank. The earth / solar / zero-energy house according to claim 1, wherein the house is circulated.

請求項1に記載の発明によれば、冬期においては、建物の基礎部に外部との通気口を設置せず、1階床下内部の空気を外気と遮断して密封状態とし、建物の室内に取付けた全熱交換型換気扇が室内側に供給する新鮮な外気を、建物の1階床下内部に送り込むと共に、1階床下の基礎底盤に下部をU字形に成形した複数の地中熱回収パイプを、両端を基礎底盤より1階床下内部に突き出すように地中に埋設し、地中熱回収パイプの一端には送風機を取付け、その送風機を作動させる事により1階床下内部の空気が地中熱回収パイプに吸い込まれ、地中熱により地中熱回収パイプの中で暖められて1階床下内部の空気を暖めると共に、昼間、太陽光発電システムで発電した電力で、自然冷媒ヒートポンプ給湯機(エコキュート)に電力を供給して沸かしたお湯を、お風呂で利用した後、温水蓄熱槽に流して溜湯したため、雨や曇りが続いた場合においても、1階床下部の空気の温度を地中熱だけに頼らず暖かくする事が可能となり、これまで排水溝に流していた温かい風呂の残り湯のエネルギーを再利用する事が可能となり、CO2の削減と省エネに貢献する事が可能となった。また、夏期においては、1階床下空間に設置した温水蓄熱槽に風呂の残り湯を供給せず、全熱交換型換気扇から1階床下内部に送り込まれた外気は、地中熱により地中熱回収パイプの中で冷やされて1階床下部の空気と混ぜ合わされた後、各階天井内部に設けられたダクトの送風機を作動させる事により、1階床下内部からダクトを経由して各階の天井内部に送られ、天井に設けたガラリより室内に供給されて室内を冷やしたため、エネルギー消費が少なく、省エネの冷暖房装置を提供する事が可能となった。  According to the first aspect of the present invention, in the winter season, a ventilation hole is not installed on the foundation of the building, and the air inside the first floor is shut off from the outside air to be in a sealed state. The fresh outdoor air supplied to the indoor side by the installed total heat exchange type exhaust fan is sent to the inside of the floor under the first floor of the building, and a plurality of underground heat recovery pipes whose lower part is formed in a U shape on the foundation floor under the first floor. , Both ends are buried in the ground so as to protrude from the foundation bottom into the first floor, and a blower is attached to one end of the underground heat recovery pipe. By operating the blower, the air inside the first floor is underground It is sucked into the recovery pipe and heated in the underground heat recovery pipe by the underground heat to warm the air inside the floor under the first floor, and the natural refrigerant heat pump water heater (EcoCute) with the electric power generated by the solar power generation system in the daytime. ) After using the hot water in the bath, the hot water was poured into the hot water heat storage tank and the hot water was stored, so even if it rains or cloudy, the temperature of the air at the bottom of the 1st floor is kept warm without relying only on underground heat. It has become possible to reuse the energy of the hot water remaining in the warm bath that had been flowing in the drainage channel so far, and it has become possible to contribute to CO2 reduction and energy saving. Also, during the summer, the remaining hot water in the bath is not supplied to the hot water heat storage tank installed in the first floor underfloor space, and the outside air sent from the total heat exchanging ventilator to the first floor underfloor is caused by geothermal heat. After being cooled in the recovery pipe and mixed with the air in the lower floor of the first floor, the duct blower provided inside the ceiling of each floor is operated to operate the interior of the ceiling of each floor via the duct from the lower floor of the first floor Since it was supplied to the room from the gallery installed on the ceiling and cooled the room, it was possible to provide an energy-saving air conditioner with low energy consumption.

請求項2に記載の発明によれば、全熱交換型換気扇を大型の天井取り付け専用型にしたため、各階に1台づつ全熱交換型換気扇を設置すれば全熱交換換気が可能となり、そのため、各階の全熱交換型換気扇から1階床下空間に給気を送り込む際の給気導入ダクトを配管する際の室内のパイプスペースも、1箇所にまとめて配管することが可能となるため、各々室内のパイプスペースが必要無くなると共に、コストの削減にもつながる。また、各階の全熱交換型換気扇は廊下等の居室以外の部分に設置するため、冷暖房を使用している居室とそれ以外の居室との温度差が少なくなるばかりでなく、廊下等も温度調節されて建物全体の室内の温度差を少なくする事が可能となる。  According to the invention described in claim 2, since the total heat exchange type exhaust fan is a large ceiling-mounted type, if one total heat exchange type exhaust fan is installed on each floor, total heat exchange ventilation is possible. The indoor pipe space for piping the air supply duct when supplying the air from the total heat exchange type ventilation fan on each floor to the space below the first floor can be installed in one place. Pipe space is no longer necessary, and costs are reduced. In addition, the total heat exchange type exhaust fan on each floor is installed in a part of the hallway other than the living room, so that not only the temperature difference between the room using the air conditioning and the other rooms is reduced, but also the hallway is temperature controlled. This makes it possible to reduce the temperature difference inside the building.

請求項3に記載の発明によれば、冬期においては、太陽光発電システムで発電した電力で、自然冷媒ヒートポンプ給湯機(エコキュート)に電力を供給して沸かしたお湯を、混合弁で湯温を調整し、温水蓄熱槽に温度センサーを取付け、温水蓄熱槽のお湯の温度を温度センサーで検知し、温水蓄熱槽が定めた温度を保つように、自然冷媒ヒートポンプ給湯機(エコキュート)の貯湯タンクから、お湯を温水蓄熱槽に給湯したため、常に1階床下空間の空気が暖められて弱温風となり、建物内部の温度を、一日中一定温度に保つ事が可能となる。  According to the invention described in claim 3, in winter, hot water boiled by supplying electric power to a natural refrigerant heat pump water heater (EcoCute) with electric power generated by the solar power generation system is heated with a mixing valve. Adjust the temperature sensor in the hot water storage tank, detect the temperature of hot water in the hot water storage tank with the temperature sensor, and keep the temperature set by the hot water storage tank from the hot water storage tank of the natural refrigerant heat pump water heater (EcoCute) Since the hot water is supplied to the hot water storage tank, the air in the space under the first floor is always warmed and weakly heated, and the temperature inside the building can be kept constant throughout the day.

請求項4に記載の発明によれば、1階床下空間に、さらに、もう1台の温水蓄熱槽を設置すると共に、冬期においては、お風呂に、設定された温度・湯量で、お湯はりと保温運転と足し湯運転が出来る、自然冷媒ヒートポンプ給湯機(エコキュート)を使用して、そのお風呂にお湯を供給する給湯配管と、お風呂のお湯を自然冷媒ヒートポンプ給湯機(エコキュート)に戻す給湯戻り配管に切替弁を取付け、給湯配管の切替弁に新たに給湯配管を接続して、新たに設置した温水蓄熱槽の取入口に接続すると共に、さらに、給湯戻り配管の切替弁に新たに給湯戻り配管を接続して、新たに設置した温水蓄熱槽の排水口に接続し、自然冷媒ヒートポンプ給湯機(エコキュート)で沸かした貯湯タンクのお湯を循環させる事により、常時、1階床下内部を暖める事が出来るようになり、その1階床下内部の弱温風をダクトを経由して建物各室に供給する事により、冬期にガス、石油等のエネルギーを使わず自然のエネルギーのみで建物内部を暖める事が可能となる。  According to the invention described in claim 4, another hot water heat storage tank is installed in the space under the first floor, and in the winter, the hot water is used in the bath at the set temperature and hot water volume. Using a natural refrigerant heat pump water heater (EcoCute) that can perform warming operation and additional hot water operation, a hot water supply pipe that supplies hot water to the bath, and a hot water supply that returns the bath water to the natural refrigerant heat pump water heater (EcoCute) Attach a switching valve to the return pipe, connect a new hot water supply pipe to the hot water supply pipe switching valve, connect it to the intake port of the newly installed hot water storage tank, and add new hot water to the hot water return pipe switching valve. By connecting the return pipe, connecting it to the drain of the newly installed hot water heat storage tank, and circulating the hot water in the hot water storage tank boiled by the natural refrigerant heat pump water heater (EcoCute), the floor is always downstairs It becomes possible to warm the section, and by supplying the low-temperature air inside the floor under the first floor to each building room via the duct, only natural energy is used without using energy such as gas and oil in the winter. It is possible to warm the interior of the building.

以下、この発明の実施の形態1について説明する。
[発明の実施の形態1]
Embodiment 1 of the present invention will be described below.
Embodiment 1 of the Invention

図1及至図10には、この発明の実施の形態1を示す。  1 to 10 show a first embodiment of the present invention.

図1は、本発明の太陽電池パネルと自然冷媒ヒートポンプ給湯機(エコキュート)と全熱交換型換気扇と温水蓄熱槽と地中熱回収パイプを利用した住宅の分解解説図である。以下に、太陽光と地中熱を利用した冷暖房システムを説明する。  FIG. 1 is an exploded explanatory view of a house using a solar cell panel, a natural refrigerant heat pump water heater (EcoCute), a total heat exchange type exhaust fan, a hot water heat storage tank, and an underground heat recovery pipe of the present invention. Below, the air conditioning system using sunlight and underground heat is demonstrated.

図1は、本発明のアース・ソーラー・ゼロエネルギー住宅を分かり易く説明するため、アース・ソーラー・ゼロエネルギー住宅を組み込んだ住宅1を分解解説図で示したものである。屋根2の上部に太陽電池パネル3を設置すると共に、その太陽電池パネル3で発電した電気で自然冷媒ヒートポンプ給湯機(エコキュート)54を作動させて貯湯タンク50にお湯を蓄えると共に、基礎25には建物外部の空気が流入しないように外気との通気口を設置せず、基礎底盤52の中央部には温水蓄熱槽38が設置され、この温水蓄熱槽38には風呂43の残り湯を供給するための残り湯パイプ37が配管される。さらに、基礎底盤52の四隅には、下部をU字形に成形した4本の地中熱回収パイプ13、地中熱回収パイプ17、地中熱回収パイプ23、地中熱回収パイプ28が、両端を基礎底盤52より1階床下部に突き出すように地中に埋設される。  FIG. 1 is an exploded explanatory view showing a house 1 incorporating an earth, solar, and zero energy house in order to easily explain the earth, solar, and zero energy house of the present invention. The solar panel 3 is installed on the top of the roof 2, and the natural refrigerant heat pump water heater (EcoCute) 54 is operated by electricity generated by the solar panel 3 to store hot water in the hot water storage tank 50. A hot water storage tank 38 is installed in the center of the foundation bottom plate 52 so that air outside the building does not flow in, and the remaining hot water of the bath 43 is supplied to the hot water storage tank 38. A remaining hot water pipe 37 is provided. Further, at the four corners of the foundation bottom plate 52, there are four underground heat recovery pipes 13, a ground heat recovery pipe 17, a ground heat recovery pipe 23, and a ground heat recovery pipe 28, which are formed in a U shape at the bottom. Is buried in the ground so as to protrude from the base bottom 52 to the lower part of the first floor.

このように構成されたアース・ソーラー・ゼロエネルギー住宅は、太陽電池パネル3で発電された電気で、自然冷媒ヒートポンプ給湯機(エコキュート)54を作動させて貯湯タンク50にお湯を蓄えると共に、貯湯タンク50から給湯配管48を経由して風呂43に給湯され、さらに、風呂43で利用された後の温かい残り湯は、風呂43に備え付けられた残り湯パイプ37用の排水栓(図示せず)を抜く事により、残り湯パイプ37を経由して温水蓄熱槽38に溜湯される。また、基礎25の内側の基礎底盤52の四隅には、下部をU字形に成形した4本の地中熱回収パイプ13、地中熱回収パイプ17、地中熱回収パイプ23、地中熱回収パイプ28が設置されると共に、居室に取付けられた全熱交換型換気扇4で熱交換された室内側供給空気(新鮮な空気)は、給気導入ダクト5を経由して矢印7方向に送られ1階床下内部に給気される。  The earth / solar / zero-energy house constructed in this manner uses the electricity generated by the solar panel 3 to operate the natural refrigerant heat pump water heater (EcoCute) 54 to store hot water in the hot water storage tank 50 and also to store the hot water storage tank. The hot remaining hot water after being used in the bath 43 via a hot water supply pipe 48 from the hot water supply pipe 50 is connected to a drain plug (not shown) for the remaining hot water pipe 37 provided in the bath 43. By extracting, the hot water is stored in the hot water heat storage tank 38 via the remaining hot water pipe 37. In addition, at the four corners of the foundation bottom 52 inside the foundation 25, four geothermal heat recovery pipes 13, a geothermal heat recovery pipe 17, a geothermal heat recovery pipe 23, and a geothermal heat recovery whose lower part is formed in a U shape. While the pipe 28 is installed, the indoor side supply air (fresh air) heat-exchanged by the total heat exchange type ventilation fan 4 attached to the living room is sent in the direction of arrow 7 via the air supply introduction duct 5. The air is supplied to the interior under the first floor.

地中熱回収パイプ13、地中熱回収パイプ17、地中熱回収パイプ23、地中熱回収パイプ28は、直径が約100〜120ミリメートルの2本の塩ビパイプの下部を継手で継いで、下部をU字形に構成すると共に、基礎底盤52の四隅に設置し、基礎底盤52の上部に突き出す2本の塩ビパイプには、L字形のエルボ等の継手を取付け、2本の塩ビパイプに取付けたL字形のエルボ等の空気取入口と空気排出口が、基礎底盤52面に対して互いに直角になるように構成し、一方のエルボ等の先端には送風機(24時間換気システム排気ファン)を取付ける。上記で説明した、塩ビパイプを地中熱回収パイプとしてU字形に成形するためには、図2の拡大図で示すように、塩ビパイプ119、塩ビパイプ120の下部をU字形の継手121で継ぐ事により、1本の地中熱回収パイプとなる。  The geothermal heat recovery pipe 13, the geothermal heat recovery pipe 17, the geothermal heat recovery pipe 23, and the geothermal heat recovery pipe 28 are joined by connecting the lower parts of two PVC pipes having a diameter of about 100 to 120 mm with joints, The lower part is configured in a U-shape, installed at the four corners of the foundation bottom 52, and two PVC pipes protruding from the upper part of the foundation bottom 52 are fitted with joints such as L-shaped elbows and attached to the two PVC pipes. The L-shaped elbow and other air intakes and air discharge ports are configured to be at right angles to the surface of the foundation base 52, and a blower (24-hour ventilation system exhaust fan) is attached to the tip of one of the elbows. Install. In order to shape the PVC pipe described above into a U-shape as a ground heat recovery pipe, the lower part of the PVC pipe 119 and the PVC pipe 120 is joined by a U-shaped joint 121 as shown in the enlarged view of FIG. As a result, it becomes a single underground heat recovery pipe.

本発明において、地中熱回収パイプ13、地中熱回収パイプ17、地中熱回収パイプ23、地中熱回収パイプ28には塩ビパイプを使用し、地中に埋め込む深さは約5メートルである。その理由は、関東地区の地中4〜5メートルの地中温度は、年間を通して約17℃〜19℃と温度変化が少ないためです。また、地中熱回収パイプを地中に埋設させる施工方法としては、穴掘建柱車にオーガーを取付けて地面に掘削穴を掘り、その穴の中に地中熱回収パイプを埋設させる工法が、安価で、なおかつ工期を短縮させる事が可能な施工方法である。なお、穴掘建柱車とオーガーを使用する最大の理由は、土木作業等で利用している穴掘建柱車と、それに取付ける一般的なオーガーは掘削穴径が最大約45センチメートル、最大掘削深さが約5メートルのため、本発明の地中熱回収パイプを地中に埋設させる作業に適しており、さらに、穴掘建柱車とオーガーを容易に安価でレンタルする事が出来るといった利点があるためである。ちなみに、東京都足立区の、当社ショールーム(地下室付)では、毎日、地中1メートル、3メートル、5メートルの地中温度を測定しているが、その測定結果によると地中5メートルの地中温度は、5月〜6月の間で最低温度の17.1℃となり、11月〜12月の間で最高温度の19.3℃となる。外気の最低気温(2月頃)に対して地中5メートルの最低温度が5月〜6月となるのは、地表面の温度が地中に浸透するのに時間がかかるためです。夏期の最高温度が11月〜12月となるのも地表面の温度が地中に浸透するのに時間がかかるためです。  In the present invention, a PVC pipe is used for the underground heat recovery pipe 13, the underground heat recovery pipe 17, the underground heat recovery pipe 23, and the underground heat recovery pipe 28, and the depth embedded in the underground is about 5 meters. is there. The reason is that the underground temperature of 4-5 meters underground in the Kanto district is about 17 ° C-19 ° C throughout the year with little change in temperature. In addition, as a construction method to embed the underground heat recovery pipe in the ground, there is a construction method in which an auger is attached to the drilling shaft to dig a digging hole in the ground, and the underground heat recovery pipe is embedded in the hole. It is an inexpensive construction method that can shorten the construction period. The biggest reason for using a digging pillar car and an auger is that the diameter of the digging hole is about 45 centimeters at maximum. Since the excavation depth is about 5 meters, it is suitable for the work to embed the underground heat recovery pipe of the present invention in the ground, and moreover, it is possible to rent the excavated pillar car and the auger easily at low cost. This is because there are advantages. By the way, our showroom (with basement) in Adachi-ku, Tokyo measures the underground temperature of 1 meter, 3 meters, and 5 meters every day. According to the measurement results, it is 5 meters underground. The middle temperature is the lowest temperature of 17.1 ° C between May and June and the highest temperature of 19.3 ° C between November and December. The reason why the minimum temperature of 5 meters underground is from May to June with respect to the lowest outside air temperature (around February) is because it takes time for the surface temperature to penetrate into the ground. The reason why the highest temperature in summer is from November to December is because it takes time for the surface temperature to penetrate into the ground.

さらに、図1と図4で示すように、24時間換気システム用排気ファンに使用している送風機10、送風機20、送風機35、送風機40を作動させる事により、地中熱回収パイプ8が矢印143方向から吸い込んだ1階床下内部の空気は、図1の地中熱回収パイプ13の中を矢印12方向から矢印14方向に流れて地中熱により温度調整されて、地中熱回収パイプ9を経由して送風機10から1階床下内部に排出される。このようにして1階床下内部に排出された空気は矢印11方向に送風され、1階床下内部の空気と混ぜ合わされて温度調整が行われ、図4で示すように、矢印140方向から再び地中熱回収パイプ15に吸い込まれ、地中熱回収パイプ17の中を矢印16方向から矢印18方向に流れて地中熱により温度調整されて、地中熱回収パイプ19を経由して送風機20から1階床下内部に排出される。このようにして1階床下内部に排出された空気は矢印21方向に送風され、1階床下内部の空気と混ぜ合わされて温度調節が行われ、図4で示すように、矢印141方向から再び地中熱回収パイプ30に吸い込まれ、地中熱回収パイプ28の中を矢印29方向から矢印27方向に流れて地中熱により温度調整されて、地中熱回収パイプ33を経由して送風機35から1階床下内部に排出される。このようにして1階床下内部に排出された空気は矢印36方向に送風され、1階床下内部の空気と混ぜ合わされて温度調整が行われ、図4で示すように、矢印142方向から再び地中熱回収パイプ42に吸い込まれ、地中熱回収パイプ23の中を矢印24方向から矢印22方向に流れて地中熱により温度調整されて、地中熱回収パイプ41を経由して送風機40から1階床下内部に排出される。このようにして排出された空気は矢印39方向に送風され、1階床下内部の空気と混ぜ合わされて温度調節が行われ、図4で示すように、矢印143方向から再び地中熱回収パイプ8に吸い込まれる。このように基礎底盤52の四隅に配置された地中熱回収パイプ13、地中熱回収パイプ17、地中熱回収パイプ23、地中熱回収パイプ28の空気の吸込口(地中熱回収パイプ8、地中熱回収パイプ15、地中熱回収パイプ30、地中熱回収パイプ42)と、地中熱回収パイプの空気の排出口(地中熱回収パイプ9、地中熱回収パイプ19、地中熱回収パイプ33、地中熱回収パイプ41)が、互いに向き合うように構成する事により、1階床下内部の空気は床下内部で場所によって澱む事が無くなり、1階床下内部の空気の温度は均一の温度になるように調整される。  Further, as shown in FIGS. 1 and 4, by operating the blower 10, the blower 20, the blower 35, and the blower 40 that are used in the exhaust fan for the 24-hour ventilation system, the underground heat recovery pipe 8 is moved to the arrow 143. The air inside the first floor under the air sucked from the direction flows in the underground heat recovery pipe 13 in FIG. 1 from the direction of the arrow 12 to the direction of the arrow 14 and is adjusted in temperature by the underground heat. Via, it is discharged from the blower 10 to the inside of the floor under the first floor. In this way, the air discharged into the first floor under the air is blown in the direction of the arrow 11 and mixed with the air inside the first floor under the temperature to adjust the temperature. As shown in FIG. It is sucked into the intermediate heat recovery pipe 15, flows through the underground heat recovery pipe 17 from the direction of the arrow 16 in the direction of the arrow 18, and is adjusted in temperature by underground heat, and from the blower 20 via the underground heat recovery pipe 19 It is discharged inside the floor under the first floor. In this way, the air discharged into the first floor under the air is blown in the direction of the arrow 21 and mixed with the air inside the first floor under the temperature to adjust the temperature. As shown in FIG. The air is sucked into the intermediate heat recovery pipe 30, flows through the underground heat recovery pipe 28 from the direction of the arrow 29 to the direction of the arrow 27, and is adjusted in temperature by the underground heat, and from the blower 35 via the underground heat recovery pipe 33. It is discharged inside the floor under the first floor. The air discharged into the first floor under the air in this way is blown in the direction of the arrow 36 and mixed with the air inside the first floor under the air to adjust the temperature. As shown in FIG. The air is sucked into the intermediate heat recovery pipe 42, flows in the underground heat recovery pipe 23 from the direction of the arrow 24 to the direction of the arrow 22, is adjusted in temperature by the underground heat, and passes through the underground heat recovery pipe 41 from the blower 40. It is discharged inside the floor under the first floor. The air discharged in this way is blown in the direction of arrow 39, mixed with the air inside the first floor, and the temperature is adjusted. As shown in FIG. Sucked into. In this way, the air inlets (geothermal recovery pipes) of the geothermal heat recovery pipe 13, the geothermal heat recovery pipe 17, the geothermal heat recovery pipe 23, and the geothermal heat recovery pipe 28 arranged at the four corners of the foundation bottom plate 52 are provided. 8, the geothermal heat recovery pipe 15, the geothermal heat recovery pipe 30, the geothermal heat recovery pipe 42) and the air outlet of the geothermal heat recovery pipe (the geothermal heat recovery pipe 9, the geothermal heat recovery pipe 19, By configuring the ground heat recovery pipe 33 and the ground heat recovery pipe 41) to face each other, the air inside the first floor floor does not stagnate depending on the location inside the floor, and the temperature of the air inside the first floor floor Is adjusted to a uniform temperature.

また、1階床下の基礎底盤52の四隅に地中熱回収パイプ13、地中熱回収パイプ17、地中熱回収パイプ23、地中熱回収パイプ28を埋め込む事が、互いの地中熱回収パイプ同士の距離を離す事となり、地中内部において地中熱回収パイプから発生する熱による、お互いの地中熱回収パイプ同士からの熱の干渉を少なくする事が可能となる。特に、狭い敷地に地中熱回収パイプを多数埋設した場合、地中熱回収パイプ同士が地中に放熱(回収)する地中熱により地中の中の温度が変化してしまい、地中熱回収のメリットが減少する。  Moreover, it is possible to embed the geothermal heat recovery pipe 13, the geothermal heat recovery pipe 17, the geothermal heat recovery pipe 23, and the geothermal heat recovery pipe 28 in the four corners of the foundation floor 52 below the first floor, so that each other's geothermal heat recovery The distance between the pipes is increased, and it becomes possible to reduce the interference of heat from the underground heat recovery pipes due to the heat generated from the underground heat recovery pipes in the underground. In particular, when a large number of underground heat recovery pipes are buried in a narrow site, the underground temperature changes due to the underground heat that is dissipated (recovered) into the ground by the underground heat recovery pipes. The benefits of recovery are reduced.

このように、それぞれの地中熱回収パイプ13、地中熱回収パイプ17、地中熱回収パイプ23、地中熱回収パイプ28に各々1台の送風機を取付けて地中熱を回収する事により、地中熱を効率良く回収する事が可能となる。さらに、それぞれの地中熱回収パイプ13、地中熱回収パイプ17、地中熱回収パイプ23、地中熱回収パイプ28に独立して送風機を取付けた事により、1階床下内部の空気の温度が、夏(冬)の初期等に冷え(暖か)すぎる場合には、4本の地中熱回収パイプの内の数本の送風機を可動させ、その他の地中熱回収パイプの送風機を停止する事により、1階床下内部の温度を調整する事が可能となる。  In this way, by installing a single blower to each of the underground heat recovery pipe 13, the underground heat recovery pipe 17, the underground heat recovery pipe 23, and the underground heat recovery pipe 28 to recover the underground heat. It is possible to efficiently recover the underground heat. Furthermore, the temperature of the air inside the floor under the first floor is obtained by independently attaching a blower to each of the underground heat recovery pipe 13, the underground heat recovery pipe 17, the underground heat recovery pipe 23, and the underground heat recovery pipe 28. However, if it is too cold (warm) at the beginning of summer (winter), several of the four geothermal heat recovery pipes are moved, and the other geothermal heat recovery pipes are stopped. This makes it possible to adjust the temperature inside the first floor.

なお、一般住宅の1階床下の基礎部、特にべた基礎(布基礎)においては、1階床下部の湿気を防ぐために外部と通気が良い構造となっているが、本発明においては、1階床下内部を外気温度調整槽として利用するため、外気が1階床下部に直接流入しないように1階床下内部が密封状態となるように構成される。  In addition, in the foundation part under the first floor of a general house, in particular, in the solid foundation (cloth foundation), in order to prevent moisture in the lower part of the first floor, the outside has good ventilation, but in the present invention, the first floor In order to use the inside of the underfloor as an outside air temperature control tank, the inside of the first floor is configured to be sealed so that the outside air does not flow directly into the lower part of the first floor.

以上のような構成により、図2により夏期における各室への冷風運転について解説する。  With the configuration as described above, the cold air operation to each room in the summer will be explained with reference to FIG.

最初に、全熱交換型換気扇64、全熱交換型換気扇65から室内側に供給される空気(新鮮な空気)を1階床下104に給気する方法について説明する。1階室内Aの室内側吐出空気(よごれた室内空気)は、全熱交換型換気扇65に吸い込まれて室外に排気される。その際、全熱交換型換気扇65が排気する室内の空気(室内側吐出空気)と、室内に給気する外気(室外側吸込空気)とが全熱交換型換気扇65の内部で熱交換されると共に、吸い込んだ室外側吸込空気(新鮮な空気)は全て給気導入ダクト66を経由して1階床下104に導かれる。同様にして、2階室内Bの室内側吐出空気(よごれた室内空気)は、全熱交換型換気扇64に吸い込まれて室外に排気される。その際、全熱交換型換気扇64が排気する室内の空気(室内側吐出空気)と、室内に給気する外気(室外側吸込空気)とが全熱交換型換気扇64の中で熱交換されると共に、吸い込んだ室外側吸込空気(新鮮な空気)は全て給気導入ダクト67を経由して1階床下104に導かれる。  First, a method for supplying air (fresh air) supplied from the total heat exchange type ventilation fan 64 and the total heat exchange type ventilation fan 65 to the indoor side to the first floor 104 will be described. The room-side discharged air (contaminated room air) in the first floor room A is sucked into the total heat exchange type ventilation fan 65 and exhausted to the outside. At that time, the indoor air exhausted by the total heat exchanging ventilator 65 (indoor discharge air) and the outside air supplied to the room (outdoor intake air) are heat-exchanged inside the total heat exchanging ventilator 65. At the same time, all of the sucked outdoor outside sucked air (fresh air) is guided to the first floor under floor 104 via the air supply introduction duct 66. Similarly, the indoor side discharged air (contaminated room air) in the second floor room B is sucked into the total heat exchange type ventilation fan 64 and exhausted outside the room. At that time, the indoor air exhausted by the total heat exchange type ventilation fan 64 (indoor discharge air) and the outside air supplied into the room (outdoor suction air) are heat-exchanged in the total heat exchange type ventilation fan 64. At the same time, all of the sucked outdoor intake air (fresh air) is guided to the first floor floor 104 via the air supply introduction duct 67.

このようにして、全熱交換型換気扇64、全熱交換型換気扇65を使用する事により、夏期における涼しい室内の空気を、外の暑い外気と入れ替える(換気する)際に、涼しい室内の空気の温度の上昇を最小限に抑える事が可能となる。  In this way, by using the total heat exchange type ventilation fan 64 and the total heat exchange type ventilation fan 65, when the cool room air in the summer is replaced (ventilated) with the hot outdoor air, It is possible to minimize the temperature rise.

つづいて、このようにして1階床下104に導入された全熱交換型換気扇64、全熱交換型換気扇65からの外気(室外側吸込空気)が、どのようにして1階床下104で熱交換されて弱冷風になるかを説明する。給気導入ダクト66、給気導入ダクト67から導入された全熱交換型換気扇64、全熱交換型換気扇65からの外気は、1階床下104の空気と混ざり合い、地中熱回収パイプ71に取付けられた送風機72を作動させる事により、1階床下104の空気は、矢印70方向から地中熱回収パイプ71に吸い込まれ、地中熱回収パイプ71の中で地中熱により冷やされて弱冷風となり、送風機72より矢印73方向に示すように1階床下104に排気される。同様に、地中熱回収パイプ75に取付けられた送風機77を作動させる事により、1階床下104の空気は、矢印74方向から地中熱回収パイプ75に吸い込まれ、地中熱回収パイプ75の中で地中熱により冷やされて弱冷風となり、送風機77より矢印78方向に示すように1階床下104に排気される。同様に、地中熱回収パイプ76に取付けられた送風機80を作動させる事により、1階床下104の空気は、矢印79方向から地中熱回収パイプ76に吸い込まれ、地中熱回収パイプ76の中で地中熱により冷やされて弱冷風となり、送風機80より矢印81方向に示すように1階床下104に排気される。同様に、地中熱回収パイプ83に取付けられた送風機84を作動させる事により、1階床下104の空気は、矢印82方向から地中熱回収パイプ83に吸い込まれ、地中熱回収パイプ83の中で地中熱により冷やされて弱冷風となり、送風機84より矢印85方向に示すように1階床下104に排気される。  Subsequently, how the outside air (outdoor air intake air) from the total heat exchange type ventilation fan 64 and the total heat exchange type ventilation fan 65 introduced into the first floor under floor 104 in this way exchanges heat in the first floor under floor 104. Explain how the wind will be weak. The outside air from the supply air introduction duct 66, the total heat exchange type ventilation fan 64 introduced from the supply air introduction duct 67, and the total heat exchange type ventilation fan 65 is mixed with the air under the first floor 104, and enters the underground heat recovery pipe 71. By operating the attached blower 72, the air under the first floor 104 is sucked into the underground heat recovery pipe 71 from the direction of the arrow 70 and is cooled by the underground heat in the underground heat recovery pipe 71 and weakened. It becomes cold air and is exhausted from the blower 72 to the lower first floor 104 as shown in the direction of the arrow 73. Similarly, by operating the blower 77 attached to the underground heat recovery pipe 75, the air under the first floor 104 is sucked into the underground heat recovery pipe 75 from the direction of the arrow 74, and the underground heat recovery pipe 75 The air is cooled by underground heat and becomes weak cold air, and is exhausted from the blower 77 to the lower first floor 104 as indicated by an arrow 78 direction. Similarly, by operating the blower 80 attached to the underground heat recovery pipe 76, the air under the first floor 104 is sucked into the underground heat recovery pipe 76 from the direction of the arrow 79, and the ground heat recovery pipe 76 It is cooled by underground heat and becomes weak cold air, and is exhausted from the blower 80 to the lower first floor 104 as indicated by the arrow 81 direction. Similarly, by operating the blower 84 attached to the underground heat recovery pipe 83, the air under the first floor 104 is sucked into the underground heat recovery pipe 83 from the direction of the arrow 82, and the ground heat recovery pipe 83 The air is cooled by underground heat and becomes weak cold air, and is exhausted from the blower 84 to the first floor floor 104 as indicated by the arrow 85 direction.

このようにして、1階床下104の中で弱冷風となった外気は、1階床を冷やす事により1階室内Aを冷やすと共に、弱冷風となった1階床下104の空気は、給気ダクト119に取付けられた送風機110を作動させる事により、給気ダクト119を経由して1階天井裏100に給気され、ガラリ106、ガラリ108より1階室内Aに給気されて1階室内Aを冷やす。同様に、給気ダクト111に取付けられた送風機115を作動させる事により、1階床下104の中で弱冷風となった外気は、給気ダクト111を経由して2階天井裏116に給気され、ガラリ113、ガラリ118より2階室内Bに給気されて2階室内Bを冷やす。  In this way, the outside air that has become weak air in the first floor 104 under the first floor cools the first floor room A by cooling the first floor, and the air in the first floor 104 under the first floor is supplied with air. By operating the blower 110 attached to the duct 119, the air is supplied to the first floor ceiling 100 via the air supply duct 119, and is supplied to the first floor room A from the gallery 106 and the gallery 108 to be supplied to the first floor room. Cool A. Similarly, by operating the air blower 115 attached to the air supply duct 111, the outside air that has become weak air in the first floor under floor 104 is supplied to the second floor ceiling 116 via the air supply duct 111. The second floor room B is supplied from the gallery 113 and the gallery 118 to cool the second floor room B.

なお、夏期においては、1階床下104に設置した温水蓄熱槽102には風呂97の残り湯を供給せず、夏期においては温水蓄熱槽102は利用しない。  In the summer, the remaining hot water of the bath 97 is not supplied to the hot water heat storage tank 102 installed under the first floor 104, and the hot water heat storage tank 102 is not used in the summer.

つづいて、図3で示す、冬期における各室の弱温風運転について説明する。  Subsequently, the operation of the warm air in each room in the winter shown in FIG. 3 will be described.

最初に、全熱交換型換気扇64、全熱交換型換気扇65から室内側に供給される空気(新鮮な空気)を1階床下104に給気する方法について説明する。1階室内Aの室内側吐出空気(よごれた室内空気)は、全熱交換型換気扇65に吸い込まれて室外に排気される。その際、全熱交換型換気扇65が排気する室内の空気(室内側吐出空気)と、室内に給気する外気(室外側吸込空気)とが全熱交換型換気扇65の中で熱交換されると共に、吸い込まれた室外側吸込空気(新鮮な空気)は全て給気導入ダクト66を経由して1階床下104に導かれる。同様にして、2階室内Bの室内側吐出空気(よごれた室内空気)は、全熱交換型換気扇64に吸い込まれて室外に排気される。その際、全熱交換型換気扇64が排気する室内の空気(室内側吐出空気)と、室内に給気する外気(室外側吸込空気)とが全熱交換型換気扇64の中で熱交換されると共に、吸い込まれた室外側吸込空気(新鮮な空気)は全て給気導入ダクト67を経由して1階床下104に導かれる。  First, a method for supplying air (fresh air) supplied from the total heat exchange type ventilation fan 64 and the total heat exchange type ventilation fan 65 to the indoor side to the first floor 104 will be described. The room-side discharged air (contaminated room air) in the first floor room A is sucked into the total heat exchange type ventilation fan 65 and exhausted to the outside. At that time, indoor air exhausted by the total heat exchange type exhaust fan 65 (indoor discharge air) and outdoor air supplied to the room (outdoor intake air) are heat-exchanged in the total heat exchange type exhaust fan 65. At the same time, all of the sucked outdoor outdoor air (fresh air) is guided to the first floor floor 104 via the air supply introduction duct 66. Similarly, the indoor side discharged air (contaminated room air) in the second floor room B is sucked into the total heat exchange type ventilation fan 64 and exhausted outside the room. At that time, the indoor air exhausted by the total heat exchange type ventilation fan 64 (indoor discharge air) and the outside air supplied into the room (outdoor suction air) are heat-exchanged in the total heat exchange type ventilation fan 64. At the same time, all of the sucked outdoor intake air (fresh air) is guided to the first floor floor 104 via the air supply introduction duct 67.

このようにして、全熱交換型換気扇64、全熱交換型換気扇65を使用する事により、冬期における室内の暖かい空気を、外の冷たい外気と入れ替える(換気する)際に、室内の暖かい空気の温度が下がるのを最小限に抑える事が可能となる。ちなみに、三菱電機株式会社のホームページでは、ロスナイ(全熱交換型換気扇)の熱交換機能を、「外気温度0℃、室内温度20℃、温度交換効率75%の場合」、室内温度20℃の空気をロスナイ(全熱交換型換気扇)で換気した場合、外気(0℃)の空気の温度は熱交換機の働きで15℃となって室内に給気(新鮮空気)されると説明している。  Thus, by using the total heat exchange type ventilation fan 64 and the total heat exchange type ventilation fan 65, when the indoor warm air in the winter is replaced (ventilated) with the cold outdoor air, It is possible to minimize the temperature drop. By the way, on the Mitsubishi Electric Corporation homepage, the heat exchange function of LOSSNAY (total heat exchange type exhaust fan) is “when the outside air temperature is 0 ° C., the room temperature is 20 ° C., and the temperature exchange efficiency is 75%”. When the air is ventilated with LOSSNAY (total heat exchange type exhaust fan), the temperature of the air of the outside air (0 ° C.) becomes 15 ° C. due to the action of the heat exchanger and is supplied to the room (fresh air).

つづいて、このようにして1階床下104に導入された全熱交換型換気扇64、全熱交換型換気扇65からの外気(室外側吸込空気)が、どのようにして1階床下104で熱交換されて弱温風になるかを説明する。給気導入ダクト66、給気導入ダクト67から導入された全熱交換型換気扇64、全熱交換型換気扇65からの外気は、1階床下104の空気と混ざり合い、地中熱回収パイプ71に取付けられた送風機72を作動させる事により、1階床下104の空気は、矢印70方向から地中熱回収パイプ71に吸い込まれ、地中熱回収パイプ71の中で地中熱により暖められて弱温風となり、送風機72より矢印73方向に示すように1階床下104に排気される。同様に、地中熱回収パイプ75に取付けられた送風機77を作動させる事により、1階床下104の空気は、矢印74方向から地中熱回収パイプ75に吸い込まれ、地中熱回収パイプ75の中で地中熱により暖められて弱温風となり、送風機77より矢印78方向に示すように1階床下104に排気される。同様に、地中熱回収パイプ76に取付けられた送風機80を作動させる事により、1階床下104の空気は、矢印79方向から地中熱回収パイプ76に吸い込まれ、地中熱回収パイプ76の中で地中熱により暖められて弱温風となり、送風機80より矢印81方向に示すように1階床下104に排気される。同様に、地中熱回収パイプ83に取付けられた送風機84を作動させる事により、1階床下104の空気は、矢印82方向から地中熱回収パイプ83に吸い込まれ、地中熱回収パイプ83の中で地中熱により暖められて弱温風となり、送風機84より矢印85方向に示すように1階床下104に排気される。  Subsequently, how the outside air (outdoor air intake air) from the total heat exchange type ventilation fan 64 and the total heat exchange type ventilation fan 65 introduced into the first floor under floor 104 in this way exchanges heat in the first floor under floor 104. Explain how the wind becomes weak. The outside air from the supply air introduction duct 66, the total heat exchange type ventilation fan 64 introduced from the supply air introduction duct 67, and the total heat exchange type ventilation fan 65 is mixed with the air under the first floor 104, and enters the underground heat recovery pipe 71. By operating the attached blower 72, the air under the first floor 104 is sucked into the underground heat recovery pipe 71 from the direction of the arrow 70, and is warmed by the underground heat in the underground heat recovery pipe 71 and weakened. It becomes warm air and is exhausted from the blower 72 to the lower first floor 104 as shown in the direction of the arrow 73. Similarly, by operating the blower 77 attached to the underground heat recovery pipe 75, the air under the first floor 104 is sucked into the underground heat recovery pipe 75 from the direction of the arrow 74, and the underground heat recovery pipe 75 Inside, it is warmed by underground heat to become weakly warm air, and is exhausted from the blower 77 to the lower first floor 104 as indicated by the arrow 78 direction. Similarly, by operating the blower 80 attached to the underground heat recovery pipe 76, the air under the first floor 104 is sucked into the underground heat recovery pipe 76 from the direction of the arrow 79, and the ground heat recovery pipe 76 Inside, it is warmed by underground heat to become weakly warm air, and is exhausted from the blower 80 to the first floor floor 104 as indicated by the arrow 81 direction. Similarly, by operating the blower 84 attached to the underground heat recovery pipe 83, the air under the first floor 104 is sucked into the underground heat recovery pipe 83 from the direction of the arrow 82, and the ground heat recovery pipe 83 Inside, it is warmed by underground heat to become weakly warm air, and is exhausted from the blower 84 to the lower first floor 104 as indicated by the arrow 85 direction.

さらに、冬期においては太陽電池パネル63で発電した電気で、自然冷媒ヒートポンプ給湯機(エコキュート)122を動かして貯湯タンク93にお湯を蓄えると共に、貯湯タンク93から給湯配管91を経由して風呂97に給湯され、さらに、風呂97で利用された後の温かい残り湯は、風呂97に備え付けられた残り湯パイプ96用の排水栓(図示せず)を抜く事により、残り湯パイプ96を経由して温水蓄熱槽102に流され溜湯される。このようにして温水蓄熱槽102に溜湯された温かい風呂97の残り湯は1階床下104の空気を暖める。なお、温水蓄熱槽102から溢れ出る、温水蓄熱槽102の底部の冷めた風呂の残り湯は排水パイプ86を経由して矢印131方向に流れ排水溝87に排水される。  Furthermore, in the winter, the natural refrigerant heat pump water heater (EcoCute) 122 is moved with electricity generated by the solar panel 63 to store hot water in the hot water storage tank 93, and from the hot water storage tank 93 to the bath 97 via the hot water supply pipe 91. The hot remaining hot water after being supplied with hot water and being used in the bath 97 is removed via a remaining hot water pipe 96 by removing a drain plug (not shown) for the remaining hot water pipe 96 provided in the bath 97. The hot water is poured into the hot water storage tank 102 and stored. The hot water remaining in the warm bath 97 stored in the hot water heat storage tank 102 in this way warms the air under the first floor 104. In addition, the remaining hot water in the cooled bath at the bottom of the hot water storage tank 102 overflowing from the hot water storage tank 102 flows in the direction of the arrow 131 through the drain pipe 86 and is drained into the drain groove 87.

このようにして、太陽電池パネル63で発電した電気で、自然冷媒ヒートポンプ給湯機(エコキュート)122を動かして貯湯タンク93に蓄えたお湯を、風呂97で使用し、さらに、風呂97で利用した後の温かい残り湯を、1階床下104の基礎底盤に設置した温水蓄熱槽102に流して溜湯させる事により、地中熱回収パイプ71、地中熱回収パイプ75、地中熱回収パイプ76、地中熱回収パイプ83の中で地中熱により暖められた1階床下104の空気は、さらに温水蓄熱槽102に溜湯された温水により暖められ弱温風となる。  The hot water stored in the hot water storage tank 93 by moving the natural refrigerant heat pump water heater (EcoCute) 122 with electricity generated by the solar battery panel 63 in this way is used in the bath 97 and further used in the bath 97. The hot remaining hot water is poured into the hot water heat storage tank 102 installed on the foundation bottom of the first floor floor 104 to store hot water, so that the underground heat recovery pipe 71, the underground heat recovery pipe 75, the underground heat recovery pipe 76, The air in the first floor under floor 104 heated by the underground heat in the underground heat recovery pipe 83 is further heated by the hot water stored in the hot water heat storage tank 102 to become a low temperature air.

このようにして、1階床下104で弱温風となった外気は、1階床を暖める事により1階室内Aを暖めると共に、弱温風となった1階床下104の空気は、給気ダクト119に取付けられた送風機110を作動させる事により、給気ダクト119を経由して1階天井裏100に給気されガラリ106、ガラリ108より1階室内Aに給気されて1階室内Aを暖める。同様に、給気ダクト111に取付けられた送風機115を作動させる事により、給気ダクト111を経由して2階天井裏116に給気され、ガラリ113、ガラリ118より2階室内Bに給気されて2階室内Bを暖める。  In this way, the outside air that has become the low temperature air under the first floor 104 warms the first floor room A by heating the first floor, and the air in the first floor under 104 that has become the low temperature air is supplied. By operating the blower 110 attached to the duct 119, the air is supplied to the first floor ceiling 100 via the air supply duct 119 and supplied to the first floor room A from the gallery 106 and the gallery 108, and is then supplied to the first floor room A. Warm up. Similarly, by operating the blower 115 attached to the air supply duct 111, the air is supplied to the second floor ceiling 116 through the air supply duct 111, and is supplied to the second floor room B from the gallery 113 and the gallery 118. The room B on the second floor is warmed.

このように、冬期においては太陽電池パネル63で発電した電気で、自然冷媒ヒートポンプ給湯機(エコキュート)122を動かして貯湯タンク93に蓄えた温水を風呂97で使用した後、風呂97で利用した後の温かい残り湯を、1階床下104の基礎底盤に設置した温水蓄熱槽102に流して溜湯させる事により、曇りや雨の日が続いた場合でも、風呂97で利用された後の温かい残り湯を温水蓄熱槽102に流して溜湯させる事により、地中熱回収パイプ71、地中熱回収パイプ75、地中熱回収パイプ76、地中熱回収パイプ83の中で地中熱により暖められた1階床下104の空気を、さらに暖め、弱温風として1階室内A、2階室内Bに給気する事が可能となる。  In this way, in the winter, after using the hot water stored in the hot water storage tank 93 by moving the natural refrigerant heat pump water heater (EcoCute) 122 with the electricity generated by the solar panel 63, the hot water stored in the hot water tank 93 is used in the bath 97. The hot remaining hot water after being used in the bath 97 even if it is cloudy or rainy, by flowing it into the hot water heat storage tank 102 installed on the base floor of the floor 104 under the first floor, and keeping it hot. By flowing hot water into the hot water heat storage tank 102 and storing the hot water, it is warmed by the underground heat in the underground heat recovery pipe 71, the underground heat recovery pipe 75, the underground heat recovery pipe 76, and the underground heat recovery pipe 83. The air under the first floor 104 can be further warmed and supplied to the first floor room A and the second floor room B as weakly warm air.

図5は、基礎底盤150に設置した温水蓄熱槽169と地中熱回収パイプと送風機と1階床下空間の空気の流れを説明する。  FIG. 5 illustrates the flow of air in the hot water heat storage tank 169, the underground heat recovery pipe, the blower, and the first floor underfloor space installed on the foundation bottom 150.

建物の基礎151の回りには基礎外断熱材152が施工され、建物の基礎底盤150の四隅には4本の地中熱回収パイプが配置される。温水蓄熱槽169は基礎底盤150の中央部に施工された断熱マット177(厚い発泡スチロールを使用)の上部に設置され、風呂で利用された後の温かい残り湯は、風呂(図示せず)からの残り湯パイプ173を経由して取入口172より温水蓄熱槽169に流され溜湯される。また、温水蓄熱槽169から溢れ出る、温水蓄熱槽169の底部の冷めた風呂の残り湯は、排水口175から排水パイプ174を経由して排水溝158に排水される。  Outside the foundation heat insulating material 152 is constructed around the building foundation 151, and four underground heat recovery pipes are arranged at the four corners of the foundation bottom base 150 of the building. The hot water storage tank 169 is installed on the top of a heat insulating mat 177 (using thick foamed polystyrene) installed in the center of the foundation bottom board 150, and the hot remaining hot water after being used in the bath is taken from the bath (not shown). The remaining hot water pipe 173 is passed through the intake 172 to the hot water heat storage tank 169 to be stored. In addition, the remaining hot water in the cooled bath at the bottom of the hot water heat storage tank 169 overflowing from the hot water heat storage tank 169 is drained from the drain port 175 to the drain groove 158 via the drain pipe 174.

つづいて、図6により温水蓄熱槽169の機能について説明する。  Next, the function of the hot water heat storage tank 169 will be described with reference to FIG.

図6は、温水蓄熱槽169の正面図、平面図、A―A断面図、B―B断面図である。温水蓄熱槽169は、長方形に切断された2枚のゴム状(塩化ビニールシート等)のシートの端部を溶着して水枕状に構成される。温水蓄熱槽169の上部に使用する上面ゴムシート180には取入口172、排水口175のための穴(図示せず)を開け、さらに、ゴム状シートを四角形状に切断(約20cm×約25cmの大きさに切断)して中央部には風呂の残り湯の取入口の穴(図示せず)を開けた溶着部171を作成し、溶着部171には塩ビ管で製作した取入口172を塩ビ溶接すると共に、同様に、ゴム状シートを四角形状に切断(約20cm×約25cmの大きさに切断)して中央部に排水口のための穴(図示せず)を開けた溶着部176を作成し、溶着部176に塩ビ管で製作した排水口175を塩ビ溶接し、上面ゴムシート180に開けられた穴位置(図示せず)に合わせて、溶着部171、溶着部176を溶着して取付ける。なお、現在では、砂漠等に人造湖を造る際に、砂漠等に大きな穴を掘り、その穴の底面にゴムシート(塩化ビニールシート等)を敷き詰め、そのゴムシート同士を溶着して一枚の大きな防水シートに加工して、水を貯める事も行われており、本発明のような温水蓄熱槽をゴムシートで作製した場合においても、長期に渡り保水性能や耐久性が保たれる。  FIG. 6 is a front view, a plan view, an AA cross-sectional view, and a BB cross-sectional view of the hot water heat storage tank 169. The hot water heat storage tank 169 is configured in a water pillow shape by welding the end portions of two rubber-like sheets (vinyl chloride sheet or the like) cut into a rectangle. The upper surface rubber sheet 180 used in the upper part of the hot water heat storage tank 169 has holes (not shown) for the intake port 172 and the drain port 175, and the rubber sheet is cut into a square shape (about 20 cm × about 25 cm). A welded portion 171 having a hole (not shown) for a remaining bath of hot water in the center is created, and the welded portion 171 has an intake 172 made of a PVC pipe. Similarly, a welded portion 176 in which a rubber-like sheet is cut into a quadrangular shape (about 20 cm × about 25 cm in size) and a hole (not shown) for a drain outlet is formed in the center portion while being welded with vinyl chloride. A drain outlet 175 made of a PVC pipe is welded to the welded portion 176 by vinyl chloride welding, and the welded portion 171 and the welded portion 176 are welded in accordance with a hole position (not shown) formed in the upper rubber sheet 180. And install. Currently, when building an artificial lake in the desert, etc., a large hole is dug in the desert, and a rubber sheet (vinyl chloride sheet, etc.) is laid on the bottom of the hole, and the rubber sheets are welded together to form a large sheet. Water is also stored by processing into a waterproof sheet, and even when a hot water heat storage tank like the present invention is made of a rubber sheet, water retention performance and durability can be maintained for a long time.

このようにして取付けた、取入口172から温水蓄熱槽内部189へ風呂の残り湯が流れ込む際には、B―B断面図で示すように、風呂の残り湯は取入口172から、溶着部171の直ぐ下に取付けられた固定部187を経由して矢印188方向で示すように温水蓄熱槽内部189に流れ込み、温水蓄熱槽内部189の上部側に温かい風呂の残り湯が溜湯される。このように温水蓄熱槽内部189に残り湯が供給された場合、温水蓄熱槽内部189の上部が温かく保たれ、温水蓄熱槽内部189の下部は、上部に比べて湯温度が低い状態となる。  When the remaining hot water of the bath flows into the hot water storage tank interior 189 from the intake port 172 thus attached, the remaining hot water of the bath flows from the intake port 172 to the welded portion 171 as shown in the BB sectional view. As shown by the direction of the arrow 188 via the fixing portion 187 attached immediately below, the hot water storage tank interior 189 flows into the hot water storage tank interior 189, and the hot water remaining in the hot bath is stored on the upper side of the hot water storage tank interior 189. When the remaining hot water is supplied to the hot water heat storage tank interior 189 in this way, the upper part of the hot water heat storage tank interior 189 is kept warm, and the lower part of the hot water heat storage tank interior 189 is in a state where the hot water temperature is lower than the upper part.

また、温水蓄熱槽内部189から排水される冷めた風呂の残り湯は、A―A断面図で示すように、温水蓄熱槽内部189の下部の排水取込口191から矢印190方向に吸い込まれ、排水パイプ配管192を経由して排水口175から排水される。なお、風呂の残り湯を流入する温水蓄熱槽169に取付ける取入口172の入口の高さと、冷えた風呂の残り湯が温水蓄熱槽169から排出される排水口175の出口の高さは、温水蓄熱槽169がゴム状のシートで製作されるため、温水蓄熱槽169に風呂の残り湯が流入される事により、温水蓄熱槽169が水枕状に膨らむため、温水蓄熱槽169に風呂の残り湯が満タン状態になるまで流入された状態で、温水蓄熱槽169の上面ゴムシート180の最上部より上部(上面ゴムシート180の上部より、約10〜20センチメートル位高くなるのが良い)になるように構成されなければならない。  Moreover, the remaining hot water of the cooled bath drained from the hot water storage tank interior 189 is sucked in the direction of the arrow 190 from the drainage intake port 191 at the bottom of the hot water storage tank interior 189, as shown in the AA sectional view, The water is drained from the drain port 175 via the drain pipe 192. Note that the height of the inlet 172 attached to the hot water heat storage tank 169 into which the remaining hot water of the bath flows and the height of the outlet of the drain outlet 175 from which the remaining hot water of the cold bath is discharged from the hot water heat storage tank 169 are Since the heat storage tank 169 is made of a rubber sheet, the remaining hot water in the bath flows into the hot water heat storage tank 169, so that the hot water heat storage tank 169 swells in the shape of a water pillow. In the state where the water is poured until the tank is full, the upper part of the upper surface rubber sheet 180 of the hot water heat storage tank 169 is higher than the uppermost part (may be about 10 to 20 centimeters higher than the upper part of the upper surface rubber sheet 180). Must be configured to be

このように温水蓄熱槽169を構成する事により、毎日、温かい風呂の残り湯が温水蓄熱槽169に供給され、雨や曇り日が続いた場合でも、1階床下内部の空気を暖める事が可能となる。さらに、排水取込口191を温水蓄熱槽内部189の底部に設置したため、風呂の残り湯の中に含まれる、温水蓄熱槽内部189の底部に蓄積する湯あか等を、冷めた風呂の残り湯と一緒に容易に排出する事が可能となる。  By configuring the hot water heat storage tank 169 in this way, the hot water remaining in the hot bath is supplied to the hot water heat storage tank 169 every day, and even when rainy or cloudy days continue, the air inside the floor under the first floor can be heated. It becomes. Furthermore, since the drainage inlet 191 is installed at the bottom of the hot water storage tank interior 189, the hot water accumulated in the bottom of the hot water storage tank interior 189 is included in the remaining hot water of the bath with the remaining hot water of the cold bath. It can be easily discharged together.

つづいて、図7により、天井取付専用型全熱交換型換気扇229を設置する設置場所と機能について説明する。  Next, with reference to FIG. 7, the installation location and function for installing the ceiling-mounting total heat exchange type ventilation fan 229 will be described.

図7bに示すように、天井取付専用型全熱交換型換気扇229は、室内空気取入口228が天井取付専用型全熱交換型換気扇本体223の下面に設けられ、室内空気取入口228から吸込まれた室内の空気は、1本の排気用配管227を使って矢印で示す排気226方向(室外)に排気され、このように排気された室内の空気は図7aで示すようにフード203、フード205から室外に排気され、その際、天井取付専用型全熱交換型換気扇が排気226する室内の空気(室内側排出空気)と、フード203、フード205から吸い込まれ、外気取込配管224を経由して天井取付専用型全熱交換型換気扇229に吸込まれる外気225とが天井取付専用型全熱交換型換気扇本体223の内部で熱交換されると共に、吸込まれた外気225は複数本の給気パイプ231に分岐されて各居室に給気230されるように構成されている。  As shown in FIG. 7 b, the ceiling-mounted total heat exchange type exhaust fan 229 has an indoor air intake 228 provided on the lower surface of the ceiling-mounted dedicated total heat exchange type exhaust fan body 223, and is sucked from the indoor air intake 228. The indoor air thus exhausted is exhausted in the direction of the exhaust 226 (outdoor) indicated by an arrow using one exhaust pipe 227, and the exhausted indoor air is hood 203, hood 205 as shown in FIG. 7a. The indoor air exhausted by the ceiling-mounted total heat exchange type exhaust fan (indoor exhaust air) and the hood 203 and the hood 205 are sucked from the hood 203 and the hood 205 and then passed through the outdoor air intake pipe 224. The outside air 225 sucked into the ceiling-mounting type total heat exchange type ventilation fan 229 is heat-exchanged inside the ceiling-mounting type total heat exchange type ventilation fan body 223, and the sucked outside air 225 is It is configured to be air supply 230 branches into several air supply pipe 231 to each room.

このように構成された天井取付専用型全熱交換型換気扇229を、図7aで示すように1階部分の廊下Gの天井部分に天井取付専用型全熱交換型換気扇211を埋め込むように取付け、天井取付専用型全熱交換型換気扇211を稼働させる事により、各居室の室内空気が矢印213方向から廊下Gに流れ込むと共に、天井取付専用型全熱交換型換気扇211に吸込まれ、吸込まれた室内空気は天井取付専用型全熱交換型換気扇211内部で新鮮な外気と熱交換され、全ての給気は給気導入ダクト233を経由して1階床下234に供給される。同様に、2階部分の廊下Dの天井部分に天井取付専用型全熱交換型換気扇207を取付け、天井取付専用型全熱交換型換気扇207を稼働させる事により、各居室の室内空気が矢印210方向から廊下Dに流れ込むと共に、天井取付専用型全熱交換型換気扇207に吸込まれ、吸込まれた室内空気は天井取付専用型全熱交換型換気扇207内部で新鮮な外気と熱交換され、全ての給気は給気導入ダクト220を経由して1階床下234に供給される。このようにして1階床下234に供給された新鮮な外気は、図2、図3で説明したように、1階床下234より給気ダクトを経由して1階天井裏、2階天井裏に給気され、各室のガラリから居室に供給される。このようにして、各階の廊下に天井取付専用型全熱交換型換気扇を1台づつ設置する事により、居室のみならず廊下も含めて建物全体の室温調節が可能となるばかりでなく、さらにフィルターの清掃作業も各階1台の清掃で済むため簡単に行えるようになる。  The ceiling-mounting total heat exchange type ventilation fan 229 configured in this way is attached so that the ceiling-mounting type total heat exchange type ventilation fan 211 is embedded in the ceiling part of the corridor G on the first floor as shown in FIG. By operating the ceiling-mounting total heat exchange type ventilation fan 211, the indoor air in each room flows into the corridor G from the direction of the arrow 213, and is sucked into the ceiling-mounting type total heat exchange type ventilation fan 211. Air is heat-exchanged with fresh outside air inside the ceiling-mounted total heat exchange type exhaust fan 211, and all the air is supplied to the first floor under floor 234 through the air supply introduction duct 233. Similarly, the ceiling-mounting total heat exchange type ventilation fan 207 is attached to the ceiling portion of the corridor D on the second floor, and the ceiling-mounting type total heat exchange type ventilation fan 207 is operated. It flows into the corridor D from the direction, and is sucked into the ceiling-mounted total heat exchange type ventilation fan 207, and the sucked indoor air is heat-exchanged with fresh outside air inside the ceiling-mounted type total heat exchange type ventilation fan 207. The supply air is supplied to the first floor under floor 234 via the supply air introduction duct 220. The fresh outside air supplied to the first floor underfloor 234 in this way passes through the air supply duct from the first floor underfloor 234 to the first floor under the ceiling and the second floor under the ceiling as described in FIGS. Air is supplied and supplied to the living room from the gallery in each room. In this way, by installing one ceiling-mounted total heat exchange type exhaust fan in the hallway on each floor, it is possible not only to adjust the room temperature of the entire building, but also to the hallway as well as the living room. The cleaning work can be easily performed because only one floor is required to be cleaned.

図8は、本発明における住宅236を、次世代省エネタイプの断熱で構成した状態を示す。屋根の断熱に関しては、屋根断熱材237(一般的には、厚さ160ミリメートルの発泡ウレタン)を屋根内側に施工する。外壁の断熱に関しては、外壁断熱材239(一般的には、厚さ75ミリメートルの発泡ウレタン)を外壁内側に施工する。窓のサッシに関しては、各社から発売されている断熱等級4(次世代省エネタイプ)の断熱サッシ240を使用する。基礎の断熱に関しては、基礎外断熱材241(一般的には、厚さ50ミリメートルの発泡スチロール板)を基礎コンクリートの外側に施工する。但し、ここに書かれた断熱材の種類と材質に関しては、例えば、発泡スチロール板であっても、密度の違いにより断熱効果に変化が生じるため、同一メーカーであっても、密度により厚さが変わる場合があり得る。なお、一般的な次世代省エネタイプの住宅においては、1階床下、1階天井裏、2階天井裏に断熱材を施工しているが、本発明においては、住宅の各階の温度と各々室内同士の温度を出来るだけ均一に保つため、1階床下244や1階天井裏243、2階天井裏242には断熱材を施工しない。  FIG. 8 shows a state in which the house 236 according to the present invention is configured by next-generation energy-saving heat insulation. Regarding the heat insulation of the roof, a roof heat insulating material 237 (generally, urethane foam having a thickness of 160 mm) is applied to the inside of the roof. Regarding the heat insulation of the outer wall, an outer wall heat insulating material 239 (generally, foamed urethane having a thickness of 75 mm) is applied to the inside of the outer wall. As for the window sash, a heat insulation sash 240 of heat insulation class 4 (next generation energy saving type) sold by each company is used. Regarding the heat insulation of the foundation, an outside foundation heat insulating material 241 (generally, a foamed polystyrene board having a thickness of 50 mm) is applied to the outside of the foundation concrete. However, regarding the type and material of the heat insulating material written here, for example, even if it is a polystyrene plate, the heat insulating effect changes due to the difference in density, so even the same manufacturer changes the thickness depending on the density There may be cases. In a general next-generation energy saving type house, a heat insulating material is installed below the first floor, on the first floor, behind the second floor, and on the second floor. In order to keep the temperatures as uniform as possible, heat insulating material is not applied to the first floor under floor 244, the first floor ceiling 243, and the second floor ceiling 242.

本発明における住宅の断熱性能に関しては、最大限の省エネ効果を得るためにも、図8で説明した次世代省エネタイプの断熱を必ず施工する必要がある。  Regarding the heat insulation performance of the house in the present invention, in order to obtain the maximum energy saving effect, the next-generation energy-saving type heat insulation described with reference to FIG.

図9は、図6で説明した温水蓄熱槽が、どのような状態で1階床下に設置されるか示す。温水蓄熱槽271は、1階床下の基礎底盤277の上面に設置された断熱マット254の上部に配置されると共に、その温水蓄熱槽271に対して、風呂273に設置されている温水蓄熱槽用の排水栓(図示せず)を抜く事により、風呂273の残り湯が残り湯パイプ272を経由して矢印270方向に送られ温水蓄熱槽271に溜湯されると共に、温水蓄熱槽271から溢れ出た、冷めた風呂の残り湯は、排水パイプ263を経由して矢印264方向から矢印266方向流れて排水溝267に排水される。  FIG. 9 shows how the hot water storage tank described in FIG. 6 is installed under the first floor. The hot water heat storage tank 271 is disposed on the upper surface of the heat insulating mat 254 installed on the upper surface of the base floor 277 below the first floor, and is used for the hot water heat storage tank installed in the bath 273 with respect to the hot water heat storage tank 271. By removing the drain plug (not shown), the remaining hot water in the bath 273 is sent in the direction of arrow 270 via the remaining hot water pipe 272 and stored in the hot water heat storage tank 271 and overflows from the hot water heat storage tank 271. The remaining hot water in the cooled bath that has flowed out flows in the direction of the arrow 266 from the direction of the arrow 264 through the drain pipe 263 and is drained to the drain groove 267.

図10は、太陽電池パネルと、その太陽電池パネルによって発電された電気を利用してお湯を沸かすための、自然冷媒ヒートポンプ給湯機(エコキュート)と風呂と温水蓄熱槽を配管した状態を、分かり易く説明するため立体配管図で示した。太陽電池パネル280で発電された電気で自然冷媒ヒートポンプ給湯機(エコキュート)279に電力を供給して沸かしたお湯を、お風呂285で利用した後、温かい風呂の残り湯を1階床下空間に設置した蓄熱温水槽288に流して留湯させる。  FIG. 10 is an easy-to-understand illustration of a solar cell panel and a natural refrigerant heat pump water heater (EcoCute) for bathing hot water using electricity generated by the solar cell panel, piping a hot water storage tank, and a hot water storage tank. It is shown in a three-dimensional piping diagram for explanation. Hot water boiled by supplying electricity to the natural refrigerant heat pump water heater (EcoCute) 279 using electricity generated by the solar panel 280 is used in the bath 285, and the remaining hot water of the hot bath is installed in the space below the first floor The hot water is poured into the heat storage hot water tank 288 and retained.

太陽電池パネル280で発電された電気で、自然冷媒ヒートポンプ給湯機(エコキュート)279に電力を供給し、上水道292から供給された水がヒートポンプユニット296で外気の熱と熱交換されて温水となり貯湯タンク297に溜湯される。このようにして溜湯されたお湯は貯湯タンク297の中の給湯混合弁(図示せず)で水と混合されて適温となり給湯配管294を経由して風呂285に貯められる。この後、風呂285で使用された風呂285の残り湯は、風呂285に備え付けられた残り湯パイプ286用の排水栓(図示せず)を抜く事により、残り湯パイプ286を経由して温水蓄熱槽288に流され溜湯される。なお、温水蓄熱槽288から溢れ出る、温水蓄熱槽288の底部の冷めた風呂の残り湯は排水パイプ290を経由して排水される。  Electricity generated by the solar panel 280 supplies electric power to a natural refrigerant heat pump water heater (EcoCute) 279, and the water supplied from the water supply 292 is exchanged with the heat of the outside air by the heat pump unit 296 to become hot water. 297 is hot water. The hot water stored in this manner is mixed with water at a hot water supply mixing valve (not shown) in the hot water storage tank 297 to become an appropriate temperature and stored in the bath 285 via the hot water supply pipe 294. Thereafter, the remaining hot water of the bath 285 used in the bath 285 is stored in hot water via the remaining hot water pipe 286 by removing a drain plug (not shown) for the remaining hot water pipe 286 provided in the bath 285. The water is poured into a tank 288 and stored. In addition, the remaining hot water in the cooled bath overflowing from the hot water heat storage tank 288 and drained from the bottom of the hot water heat storage tank 288 is drained through the drain pipe 290.

以下、この発明の実施の形態2について説明する。
[発明の実施の形態2]
The second embodiment of the present invention will be described below.
[Embodiment 2 of the Invention]

図11は、太陽電池パネルと、その太陽電池パネルによって発電された電気を利用してお湯を沸かすための、自然冷媒ヒートポンプ給湯機(エコキュート)と風呂と温水蓄熱槽とを配管した状態を説明した立体配管図である。太陽電池パネル280で発電された電気で自然冷媒ヒートポンプ給湯機(エコキュート)279に電力を供給して沸かしたお湯を、お風呂285で利用した後、温かい風呂の残り湯を1階床下に設置した蓄熱温水槽288に流して留湯させる事により、1階床下内部の空気を暖めることが可能となる。なお、実施の形態1の図10では、風呂285で使用された風呂285の残り湯だけを温水蓄熱槽288に給湯したが、この発明の実施の形態2の、図11では、給湯タンク297から給湯配管300を経由して供給されるお湯と、上水道301からの水を給湯混合弁302で湯温を調節すると共に、温水蓄熱槽288の上面に温度センサー306を取付け、温水蓄熱槽288のお湯の温度を温度センサー306で検知し、温水蓄熱槽288が設定した温度(最低温度と最高温度を設定して、最低温度になったら給湯タンク297からのお湯を温水蓄熱槽288に供給し、最高温度に達したらお湯の供給を停止する)を保つように、貯湯タンク297からのお湯を、給湯混合弁302で湯温調節して温水蓄熱槽288に給湯するように構成した。  FIG. 11 illustrates a state in which a solar cell panel and a natural refrigerant heat pump water heater (EcoCute), a bath, and a hot water heat storage tank for boiling water using electricity generated by the solar cell panel are connected. It is a three-dimensional piping diagram. Hot water boiled by supplying electricity to the natural refrigerant heat pump water heater (EcoCute) 279 using electricity generated by the solar cell panel 280 was used in the bath 285, and then the remaining hot water in the warm bath was installed under the first floor. By flowing in the heat storage hot water tank 288 and retaining the hot water, it becomes possible to warm the air inside the floor under the first floor. In FIG. 10 of the first embodiment, only the remaining hot water of the bath 285 used in the bath 285 is supplied to the hot water heat storage tank 288. However, in FIG. 11 of the second embodiment of the present invention, the hot water storage tank 297 is used. The hot water supplied via the hot water supply pipe 300 and the water from the water supply 301 are adjusted by the hot water supply mixing valve 302, and the temperature sensor 306 is attached to the upper surface of the hot water heat storage tank 288 so that the hot water in the hot water heat storage tank 288 is hot. Is detected by the temperature sensor 306, and the temperature set by the hot water heat storage tank 288 (the minimum temperature and the maximum temperature are set, hot water from the hot water supply tank 297 is supplied to the hot water heat storage tank 288 when the minimum temperature is reached, The hot water from the hot water storage tank 297 is adjusted to a hot water temperature by the hot water supply mixing valve 302 so that the hot water is supplied to the hot water heat storage tank 288 so that the hot water supply is stopped when the temperature is reached. .

このように、給湯タンク297から温水蓄熱槽288に温かい温水を給湯する事により、常に、1階床下内部空間を適温に保つ事が可能となる。  In this way, by supplying hot hot water from the hot water supply tank 297 to the hot water heat storage tank 288, it is possible to always keep the internal space under the first floor at an appropriate temperature.

以下、この発明の実施の形態3について説明する。
[発明の実施の形態3]
The third embodiment of the present invention will be described below.
Embodiment 3 of the Invention

図12は、太陽電池パネルと、その太陽電池パネルによって発電された電気を利用してお湯を沸かすための自然冷媒ヒートポンプ給湯機(エコキュート)と、風呂と、2つの温水蓄熱槽とを相互に配管した状態を分かり易く説明するための立体配管図である。太陽電池パネル280で発電された電気で自然冷媒ヒートポンプ給湯機(エコキュート)279に電力を供給して沸かしたお湯を、お風呂285で使用した後、温かい風呂の残り湯を1階床下に設置した蓄熱温水槽288に流して留湯させる事により1階床下内部の空気を暖めることが可能となる。なお、実施の形態1の、図10では、風呂285で使用された風呂285の残り湯だけを温水蓄熱槽288に給湯したが、この発明の実施の形態3の、図12では、さらに、もう1台の蓄熱温水槽310を1階床下に設置し、給湯タンク297から配管される給湯配管294の途中に、給湯タンク297からのお湯を2方向に切替える事が可能な切替弁315を取付け、給湯タンク297から配管される給湯配管294からのお湯を、2方向の内の何れかに切り替える事を可能にし、一方の給湯配管313を温水蓄熱槽310の取入口311に接続すると共に、他方の給湯配管318を風呂285に接続し、切替弁315で風呂285方向と蓄熱温水槽310方向に切り替える事を可能にした。同様に、切替弁316は切替弁315に同調して、温水蓄熱槽310からの戻り湯と、お風呂285からの戻り湯を給湯戻り配管314と給湯戻り配管317を経由させて貯湯タンク297に戻す事を可能とした。このようにして、給湯タンク297から温水蓄熱槽310にお湯を供給して温水蓄熱槽310に自動お湯はりした後、追い焚き機能を利用して温水蓄熱槽310の湯温を一定温度に保つことが可能となった。  FIG. 12 shows a piping between a solar cell panel, a natural refrigerant heat pump water heater (EcoCute) for boiling water using electricity generated by the solar cell panel, a bath, and two hot water storage tanks. It is a three-dimensional piping diagram for explaining the state made in an easy-to-understand manner. Hot water boiled by supplying electricity to the natural refrigerant heat pump water heater (EcoCute) 279 using electricity generated by the solar panel 280 was used in the bath 285, and then the remaining hot water in the warm bath was installed under the floor on the first floor. It is possible to heat the air inside the first floor under the floor by flowing it into the heat storage hot water tank 288 and keeping it hot. In FIG. 10 of the first embodiment, only the remaining hot water of the bath 285 used in the bath 285 is supplied to the hot water heat storage tank 288. However, in FIG. One heat storage hot water tank 310 is installed under the first floor, and a switching valve 315 capable of switching hot water from the hot water tank 297 in two directions is installed in the middle of the hot water pipe 294 piped from the hot water tank 297. The hot water from the hot water supply pipe 294 piped from the hot water supply tank 297 can be switched to one of the two directions, and one hot water supply pipe 313 is connected to the intake port 311 of the hot water heat storage tank 310 and the other The hot water supply pipe 318 is connected to the bath 285, and the switching valve 315 can be switched between the bath 285 direction and the regenerative hot water tank 310 direction. Similarly, the switching valve 316 is synchronized with the switching valve 315, and the return hot water from the hot water heat storage tank 310 and the return hot water from the bath 285 are supplied to the hot water storage tank 297 via the hot water supply return pipe 314 and the hot water supply return pipe 317. It was possible to return. In this way, hot water is supplied from the hot water supply tank 297 to the hot water heat storage tank 310 and hot water is automatically poured into the hot water heat storage tank 310, and then the hot water temperature of the hot water heat storage tank 310 is maintained at a constant temperature by using a reheating function. Became possible.

このように、切替弁315、切替弁316を設置して貯湯タンク297からのお湯の流れを温水蓄熱槽310方向と風呂285方向に切り替える事により、暖房が必要な時間帯に、必要に応じて温水蓄熱槽310にお湯を供給して、貯湯タンク297と温水蓄熱槽310の間でお湯を循環させ、1階床下内部を暖める事が可能となった。なお、温水蓄熱槽310には排水口321を取付け、その排水口321に排水パイプ320を接続し排水パイプ320は排水口(図示せず)に接続する。このようにして温水蓄熱槽310内のお湯(お水)を排水させたい場合においては、排水バルブを開く事により温水蓄熱槽310内のお湯(お水)を排水させる事が可能となる。  In this way, by installing the switching valve 315 and the switching valve 316 and switching the flow of hot water from the hot water storage tank 297 to the hot water heat storage tank 310 direction and the bath 285 direction, it is necessary as needed during the time zone in which heating is required. Hot water was supplied to the hot water heat storage tank 310, and hot water was circulated between the hot water storage tank 297 and the hot water heat storage tank 310 to warm the interior under the first floor. A drainage port 321 is attached to the hot water heat storage tank 310, a drainage pipe 320 is connected to the drainage port 321, and the drainage pipe 320 is connected to a drainage port (not shown). In this way, when it is desired to drain the hot water (hot water) in the hot water heat storage tank 310, the hot water (hot water) in the hot water heat storage tank 310 can be drained by opening the drain valve.

以上、実施の形態に基づいて、本発明に係るアース・ソーラー・ゼロエネルギー住宅について詳細に説明してきたが、本発明は、以上の実施の形態に限定されるものではなく、発明の趣旨を逸脱しない範囲において各種の改変をなしても、本発明の技術的範囲に属するのはもちろんである。  As described above, the earth solar zero energy house according to the present invention has been described in detail based on the embodiment, but the present invention is not limited to the above embodiment and departs from the gist of the invention. Of course, even if various modifications are made within the range not included, it belongs to the technical scope of the present invention.

図1及至図3において、太陽電池パネルで発電した電気を、自然冷媒ヒートポンプ給湯機(エコキュート)に供給して沸かしたお湯を、貯湯タンクに溜める。と記載しているが、当然の事ながら、天候不順により、雨や曇りの日々が続いて、太陽電池パネルから自然冷媒ヒートポンプ給湯機(エコキュート)に十分な電力が供給されない場合においては、深夜電力を利用して自然冷媒ヒートポンプ給湯機(エコキュート)を稼働させ、お湯を沸かして、貯湯タンクにお湯を溜めるようにする。  1 to 3, hot water boiled by supplying electricity generated by a solar panel to a natural refrigerant heat pump water heater (EcoCute) is stored in a hot water storage tank. However, of course, due to unseasonable weather, rainy and cloudy days continue, and in the case where sufficient power is not supplied from the solar panel to the natural refrigerant heat pump water heater (EcoCute), midnight power The natural refrigerant heat pump water heater (Eco-Cute) is operated using water to boil the hot water so that the hot water is stored in the hot water storage tank.

請求項1で、「昼間、太陽光発電システムで発電した電力で、自然冷媒ヒートポンプ給湯機(エコキュート)に電力を供給して沸かしたお湯を、お風呂で利用した後、」と記述しているが、現在、各電力会社が太陽光発電システムで発電した電力の買取を実施しており、その為、昼間、電力会社が買取る電気の金額(資源エネルギー庁 再生可能エネルギー推進室のホームページによると、平成22年度は住宅用は48円/kWhと記載されている)と、深夜電力の金額を比べて、昼間、太陽光発電システムで発電した電力を電力会社に売却して、深夜電力で、自然冷媒ヒートポンプ給湯機(エコキュート)を動かした方がコストが安い場合は、深夜電力で、自然冷媒ヒートポンプ給湯機(エコキュート)を動かす事も、もちろん可能である。  Claim 1 describes that "after using hot water boiled by supplying power to a natural refrigerant heat pump water heater (EcoCute) with electric power generated by a solar power generation system during the daytime in a bath" However, each electric power company is currently purchasing the electric power generated by the solar power generation system. Therefore, the amount of electricity purchased by the electric power company during the day (according to the Renewable Energy Promotion Office website of the Agency for Natural Resources and Energy, Compared to the amount of late-night electricity in the fiscal year 2010, residential use is listed as 48 yen / kWh), and the electricity generated by the solar power generation system is sold to an electric power company in the daytime. If it is cheaper to move the refrigerant heat pump water heater (EcoCute), you can of course run the natural refrigerant heat pump water heater (EcoCute) with midnight power.

この発明の実施の形態1に係る、アース・ソーラー・ゼロエネルギー住宅の分解斜視図である。It is a disassembled perspective view of the earth solar zero energy house based on Embodiment 1 of this invention. 同実施の形態に係る、夏期における住宅断面図の太陽電池パネルと全熱交換型換気扇とエコキュートと地中熱回収パイプを利用したアース・ソーラー・ゼロエネルギー住宅の弱冷風循環システム図である。FIG. 3 is a diagram showing a low-temperature air circulation system of a ground solar zero energy house using a solar cell panel, a total heat exchange type ventilation fan, an eco-cute, and a ground heat recovery pipe in a sectional view of a house in the summer according to the same embodiment. 同実施の形態に係る、冬期における住宅断面図の太陽電池パネルと全熱交換型換気扇とエコキュートと温水蓄熱槽と地中熱回収パイプを利用したアース・ソーラー・ゼロエネルギー住宅の弱温風循環システム図である。Low-temperature air circulation system for earth, solar, and zero-energy houses using a solar panel, a total heat exchange ventilator, an eco-cute, a hot water heat storage tank, and an underground heat recovery pipe in a winter sectional view, according to the same embodiment FIG. 同実施の形態に係る、地中熱回収パイプと1階床下空間の空気の流れを説明した斜視図である。It is the perspective view explaining the flow of the air of a underground heat recovery pipe and the 1st floor underfloor space based on the embodiment. 同実施の形態に係る、基礎底盤における温水蓄熱槽と地中熱回収パイプと送風機と1階床下空間の空気の流れを説明した基礎底盤平面図である。It is the foundation bottom board top view explaining the flow of the air of the warm water thermal storage tank in a foundation bottom board, a geothermal heat recovery pipe, an air blower, and 1st floor under floor based on the embodiment. 同実施の形態に係る、温水蓄熱槽の正面図、平面図、断面図である。It is a front view, a top view, and a sectional view of a hot water heat storage tank according to the embodiment. 同実施の形態に係る、天井取り付け専用型の全熱交換型換気扇を設置する設置場所の説明図である。It is explanatory drawing of the installation place which installs the total heat exchange type exhaust fan only for ceiling mounting based on the embodiment. 同実施の形態に係る、住宅に、屋根断熱材、外壁断熱材、断熱樹脂サッシ、基礎外断熱材を施工した状態の住宅断面図である。It is a house sectional view in the state where a roof heat insulating material, an outer wall heat insulating material, a heat insulation resin sash, and a foundation external heat insulating material were constructed in the house concerning the embodiment. 同実施の形態に係る、風呂とエコキュートと温水蓄熱槽とを配管した状態の配管図である。It is a piping diagram of the state which piped the bath, eco-cute, and a hot water thermal storage tank based on the embodiment. 同実施の形態に係る、太陽電池パネルとエコキュートと風呂と温水蓄熱槽とを配管した状態の配管図である。It is a piping diagram of the state which piped the solar cell panel, ecocute, bath, and hot water thermal storage tank based on the embodiment. この発明の実施の形態2に係る、太陽電池パネルとエコキュートと風呂と温水蓄熱槽とを配管した状態の配管図である。It is a piping diagram of the state which piped the solar cell panel, ecocute, bath, and hot water thermal storage tank concerning Embodiment 2 of this invention. この発明の実施の形態3に係る、太陽電池パネルとエコキュートと風呂と温水蓄熱槽とを配管した状態の配管図である。It is a piping diagram of the state which piped the solar cell panel, eco-cute, bath, and hot water thermal storage tank concerning Embodiment 3 of this invention.

A 1階室内
B 2階室内
C 居室
D 廊下
E 居室
F 居室
G 廊下
1 住宅
2 屋根
3 太陽電池パネル
4 全熱交換型換気扇
5 給気導入ダクト
6 給気ダクト
7 矢印
8 地中熱回収パイプ
9 地中熱回収パイプ
10 送風機
11 矢印
12 矢印
13 地中熱回収パイプ
14 矢印
15 地中熱回収パイプ
16 矢印
17 地中熱回収パイプ
18 矢印
19 地中熱回収パイプ
20 送風機
21 矢印
22 矢印
23 地中熱回収パイプ
24 矢印
25 基礎
26 排水溝
27 矢印
28 地中熱回収パイプ
29 矢印
30 地中熱回収パイプ
31 排水溝
32 上水道
33 地中熱回収パイプ
34 排水パイプ
35 送風機
36 矢印
37 残り湯パイプ
38 温水蓄熱槽
39 矢印
40 送風機
41 地中熱回収パイプ
42 地中熱回収パイプ
43 風呂
44 蛇口
45 水栓金具
46 シャワー
47 給湯配管
48 給湯配管
49 給湯戻り配管
50 貯湯タンク
61 ヒートポンプユニット
52 基礎底盤
53 排水パイプ
54 自然冷媒ヒートポンプ給湯機(エコキュート)
60 太陽
61 住宅
62 屋根
63 太陽電池パネル
64 全熱交換型換気扇
65 全熱交換型換気扇
66 給気導入ダクト
67 給気導入ダクト
68 矢印
69 基礎
70 矢印
71 地中熱回収パイプ
72 送風機
73 矢印
74 矢印
75 地中熱回収パイプ
76 地中熱回収パイプ
77 送風機
78 矢印
79 矢印
80 送風機
81 矢印
82 矢印
83 地中熱回収パイプ
84 送風機
85 矢印
86 排水パイプ
87 排水溝
88 上水道
89 排水パイプ
90 給湯戻り配管
91 給湯配管
92 ヒートポンプユニット
93 貯湯タンク
94 給湯配管
95 矢印
96 残り湯パイプ
97 風呂
98 蛇口
99 水栓金具
100 1階天井裏
101 矢印
102 温水蓄熱槽
103 矢印
104 1階床下
105 矢印
106 ガラリ
107 矢印
108 ガラリ
109 矢印
110 送風機
111 給気ダクト
112 矢印
113 ガラリ
114 矢印
115 送風機
116 2階天井裏
117 矢印
118 ガラリ
119 塩ビパイプ
120 塩ビパイプ
121 U字形の継手
122 自然冷媒ヒートポンプ給湯機(エコキュート)
130 矢印
131 矢印
140 矢印
141 矢印
142 矢印
143 矢印
145 地中熱回収パイプ
146 地中熱回収パイプ
147 送風機
148 矢印
149 矢印
150 基礎底盤
151 基礎
152 基礎外断熱
153 地中熱回収パイプ
154 地中熱回収パイプ
155 送風機
156 矢印
157 矢印
158 排水溝
159 地中熱回収パイプ
160 矢印
161 地中熱回収パイプ
162 送風機
163 矢印
164 矢印
165 矢印
166 地中熱回収パイプ
167 地中熱回収パイプ
168 送風機
169 温水蓄熱槽
170 溶着部
171 溶着部
172 取入口
173 残り湯パイプ
174 排水パイプ
175 排水口
176 溶着部
177 断熱マット
180 上面ゴムシート
181 下面ゴムシート
182 矢印
183 矢印
184 矢印
185 矢印
186 矢印
187 固定部
188 矢印
189 温水蓄熱槽内部
190 矢印
191 排水取込口
192 排水パイプ配管
193 固定部
200 住宅
201 屋根
202 太陽電池パネル
203 フード
204 ダクト
205 フード
206 ダクト
207 天井取付専用型全熱交換型換気扇
208 間仕切り壁
209 間仕切り壁
210 矢印
211 天井取付専用型全熱交換型換気扇
213 矢印
214 温水蓄熱槽
215 矢印
216 地中熱回収パイプ
217 地中熱回収パイプ
218 地中熱回収パイプ
219 地中熱回収パイプ
220 給気導入ダクト
221 貯湯タンク
222 ヒートポンプユニット
223 天井取付専用型全熱交換型換気扇本体
224 外気取込配管
225 外気
226 排気
227 排気用配管
228 室内空気取込口
229 天井取付専用型全熱交換型換気扇
230 給気
231 給気パイプ
232 自然冷媒ヒートポンプ給湯機(エコキュート)
235 太陽
236 住宅
237 屋根断熱材
238 太陽電池パネル
239 外壁断熱材
240 断熱サッシ
241 基礎外断熱材
242 2階天井裏
243 1階天井裏
244 1階床下
245 貯湯タンク
246 ヒートポンプユニット
247 地中熱回収パイプ
248 地中熱回収パイプ
249 地中熱回収パイプ
250 地中熱回収パイプ
251 自然冷媒ヒートポンプ給湯機(エコキュート)
254 断熱マット
255 太陽
256 太陽電池パネル
257 住宅
258 貯湯タンク
259 給湯配管
260 給湯配管
261 給湯戻り配管
262 ヒートポンプユニット
263 排水パイプ
264 矢印
265 上水道
266 矢印
267 排水溝
268 矢印
269 排水パイプ
270 矢印
271 温水蓄熱槽
272 残り湯パイプ
273 風呂
274 蛇口
275 水栓金具
276 シャワー
277 基礎底盤
278 自然冷媒ヒートポンプ給湯機(エコキュート)
279 自然冷媒ヒートポンプ給湯機(エコキュート)
280 太陽電池パネル
281 太陽電池パネル載台
282 給湯配管
283 水栓金具
284 蛇口
285 風呂
286 残り湯パイプ
287 取入口
288 温水蓄熱槽
289 排水口
290 排水パイプ
291 排水パイプ
292 上水道
293 給湯戻り配管
294 給湯配管
295 上水道
296 ヒートポンプユニット
297 貯湯タンク
298 上水道
300 給湯配管
301 上水道
302 給湯混合弁
303 給湯配管
304 残り湯パイプ
305 上水道
306 温度センサー
310 温水蓄熱槽
311 取入口
312 排水口
313 給湯配管
314 給湯戻り配管
315 切替弁
316 切替弁
317 給湯戻り配管
318 給湯配管
319 排水バルブ
320 排水パイプ
321 排水口
A 1st floor room B 2nd floor room C Living room D Corridor E Living room F Living room G Hallway 1 House 2 Roof 3 Solar panel 4 Total heat exchange type ventilation fan 5 Air supply duct 6 Air supply duct 7 Arrow 8 Geothermal recovery pipe 9 Geothermal recovery pipe 10 Blower 11 Arrow 12 Arrow 13 Geothermal recovery pipe 14 Arrow 15 Geothermal recovery pipe 16 Arrow 17 Geothermal recovery pipe 18 Arrow 19 Geothermal recovery pipe 20 Blower 21 Arrow 22 Arrow 23 Underground Heat recovery pipe 24 Arrow 25 Foundation 26 Drainage groove 27 Arrow 28 Ground heat recovery pipe 29 Arrow 30 Ground heat recovery pipe 31 Drainage groove 32 Water supply 33 Ground heat recovery pipe 34 Drain pipe 35 Blower 36 Arrow 37 Remaining hot water pipe 38 Hot water Thermal storage tank 39 Arrow 40 Blower 41 Geothermal recovery pipe 42 Geothermal recovery pipe 43 Bath 44 Faucet 45 Faucet fitting 46 Shower 47 Supply Pipe 48 hot water supply pipe 49 hot water return pipe 50 hot water storage tank 61 heat pump unit 52 underlying bottom plate 53 drain pipe 54 natural refrigerant heat pump water heater (EcoCute)
60 Solar 61 House 62 Roof 63 Solar panel 64 Total heat exchange type ventilation fan 65 Total heat exchange type ventilation fan 66 Supply air introduction duct 67 Supply air introduction duct 68 Arrow 69 Base 70 Arrow 71 Ground heat recovery pipe 72 Blower 73 Arrow 74 Arrow 75 Geothermal recovery pipe 76 Geothermal recovery pipe 77 Blower 78 Arrow 79 Arrow 80 Blower 81 Arrow 82 Arrow 83 Geothermal recovery pipe 84 Blower 85 Arrow 86 Drain pipe 87 Drain groove 88 Water supply 89 Drain pipe 90 Hot water supply return pipe 91 Hot water supply pipe 92 Heat pump unit 93 Hot water storage tank 94 Hot water supply pipe 95 Arrow 96 Remaining hot water pipe 97 Bath 98 Faucet 99 Faucet fitting 100 First floor ceiling 101 101 Arrow 102 Hot water heat storage tank 103 Arrow 104 First floor lower floor 105 Arrow 106 Garage 107 Arrow 108 Garage 109 Arrow 110 Blower 11 The air supply duct 112 arrow 113 louver 114 arrow 115 blower 116 2F ceiling 117 arrow 118 louver 119 PVC pipe 120 PVC pipe 121 U-shaped joint 122 natural refrigerant heat pump water heater (EcoCute)
130 arrow 131 arrow 140 arrow 141 arrow 142 arrow 143 arrow 145 geothermal recovery pipe 146 geothermal recovery pipe 147 blower 148 arrow 149 arrow 150 foundation bottom base 151 foundation 152 heat insulation outside foundation 153 geothermal heat recovery pipe 154 geothermal heat recovery Pipe 155 Blower 156 Arrow 157 Arrow 158 Drainage groove 159 Geothermal recovery pipe 160 Arrow 161 Geothermal recovery pipe 162 Blower 163 Arrow 164 Arrow 165 Arrow 166 Geothermal recovery pipe 167 Geothermal recovery pipe 168 Blower 169 Hot water heat storage tank 170 Welding portion 171 Welding portion 172 Intake port 173 Remaining hot water pipe 174 Drainage pipe 175 Drainage port 176 Welding portion 177 Thermal insulation mat 180 Upper surface rubber sheet 181 Lower surface rubber sheet 182 Arrow 183 Arrow 184 Arrow 185 Arrow 186 Arrow 18 7 Fixed portion 188 Arrow 189 Inside hot water storage tank 190 Arrow 191 Drain intake 192 Drain pipe piping 193 Fixed portion 200 Housing 201 Roof 202 Solar panel 203 Hood 204 Duct 205 Hood 206 Duct 207 208 Partition wall 209 Partition wall 210 Arrow 211 Total heat exchange type exhaust fan 213 for ceiling mounting 213 Arrow 214 Hot water heat storage tank 215 Arrow 216 Geothermal recovery pipe 217 Geothermal recovery pipe 218 Geothermal recovery pipe 219 Geothermal recovery pipe 219 220 Supply Air Induct Duct 221 Hot Water Storage Tank 222 Heat Pump Unit 223 Ceiling Mounted Total Heat Exchange Exhaust Fan Body 224 Outside Air Intake Pipe 225 Outside Air 226 Exhaust Air 227 Exhaust Pipe 228 Indoor Air Intake Port 229 Ceiling Mounted Type Total Heat Exchange Type Ventilation fan 230 Air 231 Air supply pipe 232 Natural refrigerant heat pump water heater (EcoCute)
235 Sun 236 House 237 Roof insulation 238 Solar panel 239 Exterior wall insulation 240 Insulation sash 241 Base outside insulation 242 2nd floor ceiling 243 1st floor ceiling 244 1st floor underfloor 245 Hot water storage tank 246 Heat pump unit 247 Geothermal recovery pipe 248 Geothermal recovery pipe 249 Geothermal recovery pipe 250 Geothermal recovery pipe 251 Natural refrigerant heat pump water heater (EcoCute)
254 Heat insulation mat 255 Solar 256 Solar panel 257 House 258 Hot water storage tank 259 Hot water supply pipe 260 Hot water supply pipe 261 Hot water return pipe 262 Heat pump unit 263 Drain pipe 264 Arrow 265 Water supply 266 Arrow 267 Drain groove 268 Arrow 269 Drain pipe 270 Arrow 271 Hot water heat storage tank 272 Remaining hot water pipe 273 Bath 274 Faucet 275 Faucet fitting 276 Shower 277 Base bottom 278 Natural refrigerant heat pump water heater (EcoCute)
279 Natural refrigerant heat pump water heater (EcoCute)
280 Solar panel 281 Solar panel mount 282 Hot water supply pipe 283 Faucet fitting 284 Faucet 285 Bath 286 Remaining hot water pipe 287 Intake 288 Hot water heat storage tank 289 Drain outlet 290 Drain pipe 291 Drain pipe 292 Water supply 293 Hot water return pipe 294 Hot water supply pipe 295 Water supply 296 Heat pump unit 297 Hot water storage tank 298 Water supply 300 Hot water supply pipe 301 Water supply 302 Hot water mixing valve 303 Hot water supply pipe 304 Remaining hot water pipe 305 Water supply 306 Temperature sensor 310 Hot water heat storage tank 311 Inlet 312 Drain outlet 313 Hot water supply pipe 314 Hot water return pipe 315 switching Valve 316 Switching valve 317 Hot water supply return pipe 318 Hot water supply pipe 319 Drain valve 320 Drain pipe 321 Drain port

Claims (4)

建物の基礎部に外部との通気口を設置せず、1階床下内部の空気を外気と遮断して密封状態とし、建物の室内に取付けた全熱交換型換気扇が室内側に供給する新鮮な外気を、建物の1階床下内部に送り込むと共に、1階床下の基礎底盤に下部をU字型に成形した複数の地中熱回収パイプを、両端を基礎底盤より1階床下内部に突き出すように地中に埋設し、地中熱回収パイプの一端には送風機を取付け、その送風機を作動させる事により1階床下内部の空気が地中熱回収パイプに吸い込まれ、冬期は、地中熱により地中熱回収パイプの中で暖められて1階床下内部の空気を暖めると共に、1階床下の基礎底盤に温水蓄熱槽を設置し、昼間、太陽光発電システムで発電した電力で、自然冷媒ヒートポンプ給湯機(エコキュート)に電力を供給して沸かしたお湯を、お風呂で利用した後、温かい風呂の残り湯を1階床下空間に設置した温水蓄熱槽に流して留湯させる事により1階床下内部の空気がさらに暖められて弱温風となり、暖められた1階床下内部の空気は、各階天井内部に設けられたダクトの送風機を作動させる事により、1階床下内部からダクトを経由して各階の天井内部に送られ、天井に設けたガラリより室内に供給されて室内を暖める。また、夏期においては、1階床下空間に設置した温水蓄熱槽に風呂の残り湯を供給せず、全熱交換型換気扇から1階床下内部に送り込まれた外気は、地中熱により地中熱回収パイプの中で冷やされて弱冷風となり、1階床下内部の空気と混ぜ合わされた後、各階天井内部に設けられたダクトの送風機を作動させる事により、1階床下内部からダクトを経由して各階の天井内部に送られ、天井に設けたガラリより室内に供給されて室内を冷やす事を特徴とするアース・ソーラー・ゼロエネルギー住宅。  Fresh air supplied to the indoor side by a total heat exchange type ventilation fan installed in the room of the building without blocking the outside vent on the base of the building and shutting off the air inside the first floor floor from the outside air The outside air is sent to the inside of the first floor under the building, and a plurality of underground heat recovery pipes that are shaped into a U-shape at the bottom of the foundation floor under the first floor are protruded from the foundation floor to the inside of the floor under the first floor. It is buried in the ground, and a blower is attached to one end of the ground heat recovery pipe. By operating the blower, the air inside the first floor is sucked into the ground heat recovery pipe. Heated in the middle heat recovery pipe to warm the air inside the floor under the first floor, and installed a hot water heat storage tank on the foundation floor under the first floor, and the natural refrigerant heat pump hot water with the electric power generated by the solar power generation system in the daytime Supply power to the machine (EcoCute) After using the boiled hot water in the bath, the remaining hot water in the hot bath is poured into a hot water heat storage tank installed in the space under the first floor, and the hot water is kept warm. The heated air inside the first floor under the floor is sent to the ceiling of each floor via the duct from the interior under the first floor by operating the duct blower provided inside the ceiling of each floor, and provided on the ceiling. It is supplied to the room from the gallery and warms the room. Also, during the summer, the remaining hot water in the bath is not supplied to the hot water heat storage tank installed in the first floor underfloor space, and the outside air sent from the total heat exchanging ventilator to the first floor underfloor is caused by geothermal heat. After being cooled in the recovery pipe to become slightly cool air and mixed with the air inside the floor under the first floor, the duct blower provided inside the ceiling of each floor is operated to operate from the inside of the floor under the first floor via the duct. Earth, solar, and zero energy houses that are sent to the ceiling of each floor and supplied to the room from the gallery installed on the ceiling to cool the room. 全熱交換型換気扇は、天井取り付け専用型を用い、全熱交換型換気扇からの全ての給気を建物の1階床下内部に送り込む事を特徴とする請求項1に記載のアース・ソーラー・ゼロエネルギー住宅。  2. The earth solar zero according to claim 1, wherein the total heat exchange type exhaust fan is a ceiling-mounted exclusive type, and all air supply from the total heat exchange type exhaust fan is sent into the first floor under the floor of the building. Energy housing. 冬期においては、温水蓄熱槽の上面に温度センサーを取付け、温水蓄熱槽のお湯の温度を温度センサーで検知し、温水蓄熱槽が定めた範囲内の温度を保つように、自然冷媒ヒートポンプ給湯機(エコキュート)で沸かした貯湯タンクのお湯を、混合弁で湯温を調整し、自然冷媒ヒートポンプ給湯機(エコキュート)の貯湯タンクから温水蓄熱槽に給湯した事を特徴とする請求項1に記載のアース・ソーラー・ゼロエネルギー住宅。  In winter, a natural refrigerant heat pump water heater (with a temperature sensor attached to the upper surface of the hot water storage tank, detects the temperature of hot water in the hot water storage tank with the temperature sensor, and maintains the temperature within the range defined by the hot water storage tank ( The hot water of a hot water storage tank boiled in (EcoCute) is adjusted to a hot water temperature with a mixing valve, and hot water is supplied from a hot water storage tank of a natural refrigerant heat pump water heater (EcoCute) to a hot water heat storage tank.・ Solar zero energy house. 1階床下空間に、さらに、もう1台の温水蓄熱槽を設置すると共に、冬期においては、その温水蓄熱槽に自然冷媒ヒートポンプ給湯機(エコキュート)で沸かしたお湯を循環させた事を特徴とする請求項1に記載のアース・ソーラー・ゼロエネルギー住宅。  Another hot water heat storage tank is installed in the space under the first floor, and in winter, hot water boiled by a natural refrigerant heat pump water heater (EcoCute) is circulated in the hot water heat storage tank. The earth solar zero energy house according to claim 1.
JP2011054736A 2011-02-24 2011-02-24 Earth / Solar / Zero Energy Housing Active JP5742009B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011054736A JP5742009B2 (en) 2011-02-24 2011-02-24 Earth / Solar / Zero Energy Housing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011054736A JP5742009B2 (en) 2011-02-24 2011-02-24 Earth / Solar / Zero Energy Housing

Publications (2)

Publication Number Publication Date
JP2012172966A true JP2012172966A (en) 2012-09-10
JP5742009B2 JP5742009B2 (en) 2015-07-01

Family

ID=46976031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011054736A Active JP5742009B2 (en) 2011-02-24 2011-02-24 Earth / Solar / Zero Energy Housing

Country Status (1)

Country Link
JP (1) JP5742009B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5613931B1 (en) * 2013-09-04 2014-10-29 洋樹 及川 Air conditioning system
JP2015064163A (en) * 2013-09-26 2015-04-09 積水化学工業株式会社 Heat storage type heating system and building
WO2015165476A1 (en) * 2014-04-28 2015-11-05 Сергей Евгеньевич УГЛОВСКИЙ Method for heating and cooling buildings
JP2016161213A (en) * 2015-03-02 2016-09-05 積水化学工業株式会社 Underfloor air conditioning system and building
WO2017195885A1 (en) * 2016-05-12 2017-11-16 株式会社ライフル Floor air conditioning system
CN108981269A (en) * 2018-06-19 2018-12-11 华东交通大学 A kind of fresh logistics storage cabinet of energy conservation based on cold chain terminal housing estate
JP2020056555A (en) * 2018-10-04 2020-04-09 Omソーラー株式会社 Operation control method for solar heat utilization apparatus
CN112539564A (en) * 2020-12-18 2021-03-23 南京工业大学 Novel passive combined cooling heating and power system
CN113944346A (en) * 2021-09-03 2022-01-18 锦汇建设集团有限公司 Rain sewage circulation green building
CN116086043A (en) * 2022-12-23 2023-05-09 重庆交通大学 High geothermal energy utilization system with heat supplementing function in alpine region
NL2033314B1 (en) * 2022-10-14 2024-05-02 Optisolar Holding B V Heat source and combination of a bottom layer and such a heat source

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019243868A1 (en) * 2018-06-19 2019-12-26 Amirseyedi Hamid Heating and cooling underground ventilation system

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61237964A (en) * 1985-04-13 1986-10-23 Natl House Ind Co Ltd Device utilizing bath waste hot-water
JPH07233977A (en) * 1994-02-25 1995-09-05 Matsushita Electric Works Ltd Heat source device for air-conditioning and hot water supply
JP2002115870A (en) * 2000-10-06 2002-04-19 Takikawa Mokuzai Kk Air circulation system utilizing terrestrial heat
JP2004069197A (en) * 2002-08-07 2004-03-04 Jmc Geothermal Engineering Co Ltd System using natural energy/underground heat together, and operating method thereof
JP2005201463A (en) * 2004-01-13 2005-07-28 Takikawa Mokuzai Kk Air-conditioning system for building utilizing geothermy
JP2007298252A (en) * 2006-05-02 2007-11-15 Hideharu Aizawa Residential ventilator
JP2008064330A (en) * 2006-09-05 2008-03-21 Toshiba Kyaria Kk Heat pump hot water supply system
JP2008185323A (en) * 2007-01-26 2008-08-14 Takahashi Kanri:Kk Earth solar system (double tank type)
JP2008304180A (en) * 2007-05-07 2008-12-18 Ai Kenchiku Kenkyusho:Kk Thermal storage system
JP2009264721A (en) * 2008-04-23 2009-11-12 Takahashi Kanri:Kk Earth solar system (single layer type)
JP2010088276A (en) * 2008-10-02 2010-04-15 Tokyo Electric Power Co Inc:The Power supply device, compression type cooling medium cycle apparatus, and hot water storage type hot water supply system
JP2010216723A (en) * 2009-03-17 2010-09-30 Nishimatsu Constr Co Ltd Hot water supply system and method for operating the same
JP2011004476A (en) * 2009-06-16 2011-01-06 Tokyo Electric Power Co Inc:The Power load controller and power load control method
JP2011012918A (en) * 2009-07-03 2011-01-20 Takahashi Kanri:Kk Earth solar system (underground heat recovery pipe system)

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61237964A (en) * 1985-04-13 1986-10-23 Natl House Ind Co Ltd Device utilizing bath waste hot-water
JPH07233977A (en) * 1994-02-25 1995-09-05 Matsushita Electric Works Ltd Heat source device for air-conditioning and hot water supply
JP2002115870A (en) * 2000-10-06 2002-04-19 Takikawa Mokuzai Kk Air circulation system utilizing terrestrial heat
JP2004069197A (en) * 2002-08-07 2004-03-04 Jmc Geothermal Engineering Co Ltd System using natural energy/underground heat together, and operating method thereof
JP2005201463A (en) * 2004-01-13 2005-07-28 Takikawa Mokuzai Kk Air-conditioning system for building utilizing geothermy
JP2007298252A (en) * 2006-05-02 2007-11-15 Hideharu Aizawa Residential ventilator
JP2008064330A (en) * 2006-09-05 2008-03-21 Toshiba Kyaria Kk Heat pump hot water supply system
JP2008185323A (en) * 2007-01-26 2008-08-14 Takahashi Kanri:Kk Earth solar system (double tank type)
JP2008304180A (en) * 2007-05-07 2008-12-18 Ai Kenchiku Kenkyusho:Kk Thermal storage system
JP2009264721A (en) * 2008-04-23 2009-11-12 Takahashi Kanri:Kk Earth solar system (single layer type)
JP2010088276A (en) * 2008-10-02 2010-04-15 Tokyo Electric Power Co Inc:The Power supply device, compression type cooling medium cycle apparatus, and hot water storage type hot water supply system
JP2010216723A (en) * 2009-03-17 2010-09-30 Nishimatsu Constr Co Ltd Hot water supply system and method for operating the same
JP2011004476A (en) * 2009-06-16 2011-01-06 Tokyo Electric Power Co Inc:The Power load controller and power load control method
JP2011012918A (en) * 2009-07-03 2011-01-20 Takahashi Kanri:Kk Earth solar system (underground heat recovery pipe system)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5613931B1 (en) * 2013-09-04 2014-10-29 洋樹 及川 Air conditioning system
JP2015064163A (en) * 2013-09-26 2015-04-09 積水化学工業株式会社 Heat storage type heating system and building
WO2015165476A1 (en) * 2014-04-28 2015-11-05 Сергей Евгеньевич УГЛОВСКИЙ Method for heating and cooling buildings
JP2016161213A (en) * 2015-03-02 2016-09-05 積水化学工業株式会社 Underfloor air conditioning system and building
WO2017195885A1 (en) * 2016-05-12 2017-11-16 株式会社ライフル Floor air conditioning system
JP6249387B1 (en) * 2016-05-12 2017-12-20 株式会社シェルタージャパン Floor air conditioning system
CN108981269A (en) * 2018-06-19 2018-12-11 华东交通大学 A kind of fresh logistics storage cabinet of energy conservation based on cold chain terminal housing estate
CN108981269B (en) * 2018-06-19 2023-09-15 华东交通大学 Energy-saving fresh logistics preservation cabinet based on cold chain terminal district
JP2020056555A (en) * 2018-10-04 2020-04-09 Omソーラー株式会社 Operation control method for solar heat utilization apparatus
CN112539564A (en) * 2020-12-18 2021-03-23 南京工业大学 Novel passive combined cooling heating and power system
CN113944346A (en) * 2021-09-03 2022-01-18 锦汇建设集团有限公司 Rain sewage circulation green building
NL2033314B1 (en) * 2022-10-14 2024-05-02 Optisolar Holding B V Heat source and combination of a bottom layer and such a heat source
CN116086043A (en) * 2022-12-23 2023-05-09 重庆交通大学 High geothermal energy utilization system with heat supplementing function in alpine region

Also Published As

Publication number Publication date
JP5742009B2 (en) 2015-07-01

Similar Documents

Publication Publication Date Title
JP5742009B2 (en) Earth / Solar / Zero Energy Housing
JP5505836B2 (en) Improved earth / solar system (Ground heat recovery pipe method)
JP2009264721A (en) Earth solar system (single layer type)
JP5067730B2 (en) Earth / Solar system
US20140014302A1 (en) Heat energy system for heating or maintaining thermal balance in the interiors of buildings or building parts
JP2006266575A (en) House using geothermal heat
JP2009127921A (en) Cold taking-in system
CN101975412A (en) Building integrative heat accumulation and cold accumulation room temperature adjustment device
JP6249387B1 (en) Floor air conditioning system
JP6135905B2 (en) Earth / Solar system
JP5945127B2 (en) building
JP2005061786A (en) Indoor temperature adjusting structure using geotherm
JP5505837B2 (en) Earth / Solar system (basement compatible)
JP5351210B2 (en) Thermal storage air conditioning system
JP6135906B2 (en) Earth / Solar system
CN208312591U (en) Build heat circulating system
JP6249221B2 (en) Air-conditioning equipment using geothermal heat
JP3848652B2 (en) Solar system house
JP6135907B2 (en) Earth / Solar system
JP5344343B2 (en) Earth solar system (Ground heat recovery pipe method)
JP5833064B2 (en) Thermal storage air conditioning system
JP2014015711A (en) Radiant heat heating and cooling system of building utilizing in-wall-body vent layer
Stieglitz et al. Low Temperature Systems for Buildings
JP2006170456A (en) Natural heat utilizing system
Basok et al. The polyvalent heat supply system for passive-type experimental building (area of 300 m2) based on renewable and alternative energy sources

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150416

R150 Certificate of patent or registration of utility model

Ref document number: 5742009

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250