JP6135907B2 - Earth / Solar system - Google Patents

Earth / Solar system Download PDF

Info

Publication number
JP6135907B2
JP6135907B2 JP2012289458A JP2012289458A JP6135907B2 JP 6135907 B2 JP6135907 B2 JP 6135907B2 JP 2012289458 A JP2012289458 A JP 2012289458A JP 2012289458 A JP2012289458 A JP 2012289458A JP 6135907 B2 JP6135907 B2 JP 6135907B2
Authority
JP
Japan
Prior art keywords
floor
air
pipe
hot water
room
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012289458A
Other languages
Japanese (ja)
Other versions
JP2014129993A (en
Inventor
龍夫 ▲高▼▲橋▼
龍夫 ▲高▼▲橋▼
Original Assignee
株式会社 ▲高▼▲橋▼監理
株式会社 ▲高▼▲橋▼監理
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 ▲高▼▲橋▼監理, 株式会社 ▲高▼▲橋▼監理 filed Critical 株式会社 ▲高▼▲橋▼監理
Priority to JP2012289458A priority Critical patent/JP6135907B2/en
Publication of JP2014129993A publication Critical patent/JP2014129993A/en
Application granted granted Critical
Publication of JP6135907B2 publication Critical patent/JP6135907B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • F24T10/13Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes
    • F24T10/15Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes using bent tubes; using tubes assembled with connectors or with return headers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Building Environments (AREA)
  • Central Air Conditioning (AREA)
  • Central Heating Systems (AREA)

Description

石油、ガス、電気等の人口エネルギーの浪費を抑え、風呂の温かい残り湯や、地中の地熱を有効に活用して住宅の室温調節を行うための、エネルギーコストが低く構造が簡単な冷暖房装置に関する。  Air conditioning system with low energy cost and simple structure to control the room temperature of the house by suppressing the waste of artificial energy such as oil, gas, electricity, etc. About.

従来の、小規模な住宅における室温調整は、夏期にはクーラーを使用し、冬期には電気、ガス、石油等のエネルギーを利用して冷暖房を行って来たが、近年では地球温暖化防止の観点から、エネルギー消費に伴うCO2排出量の削減が急務となり、エネルギー消費量の削減や、さらに自然エネルギーへの代替が早急に望まれている。  Conventional room temperature adjustment in small houses has been using air conditioners in the summer and cooling and heating using energy such as electricity, gas, and oil in the winter. From the viewpoint, it is an urgent need to reduce CO2 emissions accompanying energy consumption, and reduction of energy consumption and further replacement with natural energy are urgently desired.

これに伴い、自然エネルギーの利用手段として、現在、一般的に普及しているものは、太陽エネルギーを利用した、太陽熱温水器(熱効率50〜60%)と太陽光発電(変換効率10〜15%)があるが、いずれも、太陽エネルギーだけを利用する省エネ技術は天候に左右され易く、不安定な点から単独では利用が出来ず、他のエネルギーと兼用して利用されて来たため、なお一層の改良が求められている。  Along with this, as a means of utilizing natural energy, what is currently widely used is a solar water heater (thermal efficiency 50-60%) and solar power generation (conversion efficiency 10-15%) using solar energy. However, in both cases, energy-saving technology that uses only solar energy is easily affected by the weather and cannot be used alone because of instability, and has been used in combination with other energy. There is a need for improvements.

これに対して、地下4〜5mの地中は、年間を通じて安定した温度を保つことから、夏期は外気と比べて低温となり、冬期は外気と比べて暖温となる。そのため、従来からこのような地中熱を利用した設備は、大型の建物や公共設備等で実験的に施工されているが、その利用方法は、冬の間に自然界で出来た氷を保存しておき、その氷を夏期に地下に設けた蓄熱槽に移して冷水を作り、その冷水を各室に循環させて冷房を行うことが一般的であり、大掛かりな工事が必要となり、しかも、定期的に蓄熱層に氷を補充しなければならず、小規模な住宅用としては不向きであった。  On the other hand, the underground 4 to 5 m underground maintains a stable temperature throughout the year, so that it is cooler than the outside air in the summer and warmer than the outside in the winter. For this reason, facilities that use geothermal heat have been experimentally constructed in large buildings and public facilities, but the method of use is to preserve the ice made in nature during the winter. In general, it is common to transfer the ice to a heat storage tank in the basement in the summer to make cold water, circulate the cold water to each room and cool it. Therefore, it was necessary to replenish the heat storage layer with ice, which was not suitable for small-scale housing.

さらに、地中熱を利用したヒートポンプ方式で、家庭内の給湯と、室内の冷暖房を行う方法も行われているが、水平ループ方式(地中に深さ1〜2mの堀を堀り、そこに採熱用パイプを這わせて埋設する)では、建て坪100mの住宅の熱源を得るために400〜600mの採熱用パイプを埋設することが必要であり、又、垂直ループ方式(地中に深さ50〜100mの井戸を堀り、そこに採熱用パイプを埋設する)では2本の井戸が必要となり、一般住宅用で300〜500万円の費用を要すると共に、ヒートポンプの稼動コスト(電気代)が、深夜電力を利用した電気温水器の約75%かかるといった問題があった。Furthermore, a heat pump system that uses geothermal heat is also used to supply hot water in the home and to cool and heat the room, but a horizontal loop system (deep a 1-2 m deep moat in the ground, In order to obtain a heat source for a house with a floor area of 100 m 2 , it is necessary to embed a 400 to 600 m heat collecting pipe, and a vertical loop system (ground) 2 holes are needed for digging 50-50m deep wells, and pipes for heat collection are buried in them, and it costs 3 to 5 million yen for general housing, and the heat pump is operated. There was a problem that the cost (electricity cost) was about 75% of that of an electric water heater using midnight power.

また、平成15年7月に建築基準法が改正され、「シックハウス対策」として、居室の24時間換気(1時間で居室体積の0.5回分を換気させる事)が義務づけられた。  In July 2003, the Building Standards Law was amended to require 24-hour ventilation of the room (to ventilate 0.5 times the volume of the room in one hour) as a “sick house measure”.

そこで、本出願人は、特許文献1に記載された、建築基準法に対応できる「アース・ソーラーシステム(二層式)」を発明し出願した。この発明によれば、貯水タンクと、貯温水タンクの2つのタンクを地中に埋設し、その双方のタンク内に、外気取入口から各室の24時間給気パイプに連通する熱交換パイプを配管し、貯水タンクを雨水又は地下水又は水道水で満たすと共に、貯温水タンクは太陽熱温水器からの温水で満たし、前記、熱交換パイプに設けた開閉バルブを操作する事により、夏期においては、冬期の冷たい外気で冷やしておいた貯水タンク内の冷水を利用して、外気を貯水タンク内の熱交換パイプを経由させ、暑い外気を冷やして各室に送り込むため、効率よく冷風運転を行うことが出来る。また、冬期においては、夏期の暑い外気で温めておいた貯水タンクの弱温水に冷たい外気を熱交換バイプを経由して暖めると共に、さらに太陽熱温水器を利用した、貯温水タンク内の温水中の熱交換パイプを経由するため、各室に温風を送り込むことが可能となった。
特願2007−42895
Therefore, the present applicant has invented and applied for an “earth / solar system (two-layer type)” described in Patent Document 1 and capable of complying with the Building Standard Law. According to the present invention, two tanks, a water storage tank and a hot water storage tank, are buried in the ground, and heat exchange pipes that communicate with the 24 hour air supply pipes of each room from the outside air intake are provided in both tanks. Plumbing and filling the storage tank with rain water, ground water or tap water, filling the storage tank with hot water from the solar water heater, and operating the opening / closing valve provided in the heat exchange pipe in the summer, in the winter Using cold water in the storage tank that has been cooled with cold outside air, the outside air is passed through the heat exchange pipe in the storage tank, and the hot outside air is cooled and sent to each room, so efficient cold wind operation can be performed I can do it. In the winter season, warm water in the water storage tank that has been warmed by hot outdoor air in the summer is warmed to the low temperature water via the heat exchange vapour. Since it passes through the heat exchange pipe, it became possible to send warm air into each room.
Japanese Patent Application No. 2007-42895

しかしながら、本出願人の出願した特許文献1の発明においては、貯水タンクと貯温水タンクの2つのタンクを必要としたため、配管が複雑になり、開閉バルブの数も増え、高価格になると共に、施工するための工期も長く必要であった。  However, in the invention of Patent Document 1 filed by the present applicant, two tanks, a water storage tank and a hot water storage tank, are required, so the piping becomes complicated, the number of open / close valves increases, and the price increases. A long construction period was also required.

そこで、本出願人は、特許文献2に記載された、「アース・ソーラーシステム(一層式)」を発明して出願した。この発明によれば、建物の下部の地中に、建物の基礎部と−体に構成したコンクリート製タンクを構築し、コンクリート製タンク内に熱交換パイプを配管し、コンクリート製タンク内を雨水、又は水道水、又は地下水で満たし、全熱交換型換気扇からの供給空気をコンクリート製タンク内の熱交換パイプに導き、夏期は、全熱交換型換気扇からの供給空気を、地中熱で冷やされたコンクリート製タンク内の水と、熱交換パイプとの間で熱交換して冷やした後、給気パイプを経由して各階に給気し、冬期は、太陽熱温水器からの温水を、コンクリート製タンク内に循環させて、コンクリート製タンク内を温水状態とし、全熱交換型換気扇からの供給空気を、コンクリート製タンク内の熱交換パイプに導き、コンクリート製タンク内の温水と、熱交換パイプとの間で熱交換して暖めた後、給気パイプを経由して各階に給気した事により、各室に温風を送り込むことが可能となった。
特願2008−134783
Therefore, the present applicant invented and filed an application of “earth / solar system (single layer type)” described in Patent Document 2. According to the present invention, in the lower part of the building, a concrete tank composed of the foundation and the body of the building is constructed, the heat exchange pipe is piped in the concrete tank, the rain water is laid in the concrete tank, Or, it is filled with tap water or groundwater, and the supply air from the total heat exchange type exhaust fan is led to the heat exchange pipe in the concrete tank, and in the summer, the supply air from the total heat exchange type exhaust fan is cooled by the underground heat. After heat exchange between the water in the concrete tank and the heat exchange pipe, it is cooled and then supplied to each floor via the air supply pipe.In winter, the hot water from the solar water heater is made of concrete. Circulate in the tank to make the concrete tank warm, and supply air from the total heat exchange ventilator to the heat exchange pipe in the concrete tank to heat and heat the concrete tank. After warming to heat exchange with the conversion pipe, by which the air supply to each floor through the supply pipe, it becomes possible to feed the hot air in each room.
Japanese Patent Application No. 2008-134783

しかしながら、本出願人の出願した特許文献2の発明においても、建物の下部の地中にコンクリート製タンクを必要としたため、高価になると共に、施工するための工期も長く必要であった。  However, in the invention of Patent Document 2 filed by the present applicant, a concrete tank is required in the ground below the building, so that it is expensive and requires a long construction period.

そこで、本出願人は、特許文献3に記載された、「アース・ソーラーシステム(地中熱回収パイプ方式)」を発明して出願した。この発明によれば、建物の基礎部に外部との通気口を設置せず、1階床下内部の空気を外気と遮断して密封状態とし、建物の室内に取付けた全熱交換型換気扇が室内側に供給する新鮮な外気を、建物の1階床下内部に送り込むと共に、1階床下の基礎底盤に下部をU字形に成形した複数の地中熱回収パイプを、両端を基礎底盤より1階床下部に突き出すように地中に埋設し、地中熱回収パイプの一端には送風機を取付け、その送風機を稼動させる事により1階床下内部の空気が地中熱回収パイプに吸い込まれ、その地中熱回収パイプに吸い込まれた空気は、冬期は地中熱により地中熱回収パイプの中で暖められると共に、さらに、1階床下部に設けた温水蓄熱槽に太陽熱温水器で温めた温水を循環させて1階床下内部の空気を暖め、また、夏期は1階床下部に設けた温水蓄熱槽に太陽熱温水器からの温水を循環させず、地中熱により地中熱回収パイプの中で冷やされた空気が1階床下内部に給気され、その1階床下の空気をダクトを通して各階の天井内部に給気し、天井内部に給気した空気を各室天井に設けたガラリより室内に給気した事により、冬期には弱暖房された暖かい空気を各室に送り込むと共に、夏期には弱冷風された涼しい空気を各室に送り込むことが可能となった。
特願2009−158863
Therefore, the present applicant invented and filed an application of “Earth Solar System (Ground Heat Recovery Pipe System)” described in Patent Document 3. According to the present invention, there is provided a total heat exchange type ventilation fan installed in a room of a building without installing a vent hole to the outside at the foundation of the building and blocking the air inside the first floor under the outside air to be in a sealed state. Fresh outside air supplied to the inside is sent to the inside of the first floor under the building, and a plurality of underground heat recovery pipes with a U-shaped lower part formed on the foundation floor under the first floor, both ends of the floor below the foundation floor. It is buried in the ground so as to protrude into the section, a blower is attached to one end of the underground heat recovery pipe, and the air inside the first floor is sucked into the underground heat recovery pipe by operating the blower, and the underground The air sucked into the heat recovery pipe is warmed in the ground heat recovery pipe by the underground heat in the winter season, and further, the hot water warmed by the solar water heater is circulated in the hot water heat storage tank provided at the bottom of the first floor Let the air inside the first floor under the floor warm, and summer Does not circulate the hot water from the solar water heater in the hot water storage tank provided at the bottom of the 1st floor, and the air cooled by the underground heat recovery pipe is supplied to the inside of the 1st floor under the ground heat. Warm air that is heated slightly in winter by supplying air under the first floor into the ceiling of each floor through the duct, and supplying the air from inside the ceiling to the room from the gallery installed in the ceiling of each room Can be sent to each room, and cool air that has been weakly chilled in the summer can be sent to each room.
Japanese Patent Application No. 2009-158863

しかしながら、本出願人の出願した特許文献3の発明においても、雨や曇りの日が続いた場合、太陽熱温水器のお湯の温度が上がらず、雨や曇りの日と、晴天の日の温度差が大きいといった問題が発生した。  However, even in the invention of Patent Document 3 filed by the present applicant, when the rainy or cloudy day continues, the temperature of the hot water of the solar water heater does not rise, and the temperature difference between the rainy and cloudy day and the sunny day The problem that is large occurred.

そこで、本出願人は、特許文献4に記載された、「アース・ソーラーシステム(地中熱回収パイプ方式)」を発明して出願した。この発明によれば、冬期においては、建物の基礎部に外部との通気口を設置せず、1階床下内部の空気を外気と遮断して密封状態とし、建物の室内に取付けた全熱交換型換気扇が室内側に供給する新鮮な外気を、建物の1階床下部に送り込むと共に、1階床下の基礎底盤に下部をU字形に成形した複数の地中熱回収パイプを、両端を基礎底盤より1階床下部に突き出すように地中に埋設し、地中熱回収パイプの一端には送風機を取付け、その送風機を稼動させる事により1階床下内部の空気が地中熱回収パイプに吸い込まれ、地中熱により地中熱回収パイプの中で暖められて1階床下内部の空気を暖めると共に、太陽熱温水器からの温水をお風呂で利用した後、温水蓄熱槽に流して溜湯したため、雨や曇りが続いた場合においても、1階床下内部の空気の温度を地中熱だけに頼らず暖かくする事が可能となり、これまで排水溝に流していた温かい風呂の残り湯のエネルギーを再利用する事により、1階床下内部の弱暖房された暖かい空気を各室に給気する事が可能となった。また、夏期においては、温水蓄熱槽に風呂の残り湯を供給せず、全熱交換型換気扇から1階床下内部に送り込まれた外気は、地中熱により地中熱回収パイプの中で冷やされて1階床下部の空気と混ぜ合わされた後、各階天井内部に設けられたダクトの送風機を稼動させる事により、1階床下内部からダクトを経由して各階の天井内部に送られ、天井に設けたガラリより室内に給気して室内を冷やす事が可能となった。
特願2010−56088
Therefore, the present applicant invented and applied for “earth / solar system (ground heat recovery pipe system)” described in Patent Document 4. According to the present invention, in the winter season, a ventilation hole connected to the outside of the building is not installed in the base of the building, and the air inside the first floor is shut off from the outside air to be in a sealed state, and is installed in the building room. Fresh outside air supplied to the indoor side by the indoor ventilation fan is sent to the lower part of the first floor of the building, and a plurality of underground heat recovery pipes with U-shaped lower parts formed on the base floor under the first floor, both ends of the base floor It is buried in the ground so as to protrude below the first floor, and a blower is attached to one end of the underground heat recovery pipe. By operating the blower, the air inside the first floor is sucked into the underground heat recovery pipe. Because it was heated in the underground heat recovery pipe by the underground heat and warmed the air inside the floor under the first floor, and after using the hot water from the solar water heater in the bath, it was poured into the hot water storage tank, Even if it continues to rain or cloudy, 1st floor below It is possible to warm the temperature of the air without relying only on underground heat, and by reusing the energy of the remaining hot water in the warm bath that has been flowing through the drainage drainage, the interior of the floor under the first floor is lightly heated. Warm air can be supplied to each room. Also, in summer, the remaining hot water from the bath is not supplied to the hot water storage tank, and the outside air sent from the total heat exchange ventilator to the interior of the first floor is cooled in the underground heat recovery pipe by underground heat. After being mixed with the air in the lower floor of the first floor, the duct blower provided inside each floor ceiling is operated to send it from the interior under the first floor via the duct to the ceiling interior of each floor and install it on the ceiling. It became possible to cool the room by supplying air to the room.
Japanese Patent Application 2010-56088

しかしながら、本出願人の出願した特許文献4の発明においても、床下に設置する温水蓄熱槽の長期耐久性に問題が残ると共に、冬期において風呂の残り湯と地中熱だけでは暖房効果が不足するといった問題が発生した。  However, even in the invention of Patent Document 4 filed by the present applicant, there remains a problem in the long-term durability of the hot water heat storage tank installed under the floor, and the heating effect is insufficient only with the remaining hot water of the bath and the underground heat in winter. Such a problem occurred.

また、従来から地中熱交換機を利用した建物の空調換気システムとして知られている、特許文献5に記載したジオパワーシステムの場合、冬期において、地中熱だけでは暖房効果(地下5mでも地中温度は約18度前後だから、外気を地中熱により暖めても、それ以下の温度にしかならない)が低く、さらに価格が高いため、一般住宅に施工する場合はコストの面で問題があった。
特開2007−303693
In addition, in the case of the geopower system described in Patent Document 5, which is conventionally known as a building air-conditioning ventilation system using a geothermal heat exchanger, in the winter season, only the underground heat alone can produce a heating effect (even underground 5m underground). Because the temperature is around 18 degrees, even if the outside air is warmed by underground heat, the temperature is only lower than that) and the price is high, so there was a problem in terms of cost when constructing a general house .
JP2007-303693A

さらに、太陽エネルギーを利用するソーラーシステムとして知られている、特許文献6に記載したOMソーラーの場合、雨や曇りの日が続いた場合には暖房効果が下がるため補助暖房装置が必要になるといった問題と、さらに夏期においては冷風運転が出来ないといった欠点があった。
特開平08−005161
Furthermore, in the case of the OM solar described in Patent Document 6, which is known as a solar system that uses solar energy, the heating effect is reduced when a rainy or cloudy day continues, so an auxiliary heating device is required. There was a problem and the disadvantage that cold wind operation was not possible in summer.
JP 08-005161

本発明は、このような、従来の欠点に鑑みて、自然との調和を図る事を目的とし、石油、ガス、電気等の人工エネルギーの浪費を抑え、風呂の温かい残り湯や、地中の地中熱を有効に利用して、住宅の室温調整を行うものであり、エネルギーコストが低く、構造が簡単な冷暖房装置を提供する事を課題とする。  In view of such conventional drawbacks, the present invention aims at harmony with nature, suppresses waste of artificial energy such as oil, gas, electricity, etc., warm remaining hot water in the bath, An object of the present invention is to provide a cooling / heating device that uses ground heat effectively to adjust the room temperature of a house, has low energy costs, and has a simple structure.

本出願人の出願した特許文献1、特許文献2、特許文献3、特許文献4による発明では、上記のような問題が発生したため、当社では、新たに、特許文献4の発明を改良して、冬期においては、風呂の残り湯を温水放熱パイプに流して温水放熱パイプに温かい風呂の残り湯を溜湯をさせた装置に改良すると共に、温水放熱パイプをコストを抑えて塩ビパイプを利用した製品を新たに開発し、本発明を特許出願すると同時に、本製品の発売を開始した。  In the invention according to Patent Document 1, Patent Document 2, Patent Document 3, and Patent Document 4 filed by the present applicant, the above-mentioned problem has occurred. Therefore, the Company newly improved the invention of Patent Document 4, In winter, the hot water radiant pipe is made of PVC pipes at a lower cost, while the hot water radiant pipe is used to cool the remaining hot water from the hot water radiant pipe. Was newly developed, and at the same time as filing a patent application for the present invention, this product was launched.

かかる課題を解決するため、請求項1に記載の発明は、建物の室内に取付けた全熱交換型換気扇が室内に給気する新鮮な外気を、建物の1階床下に送り込むと共に、1階床下の基礎底盤に、下部をU字形に構成した内径100ミリメートル、地中に埋め込む深さ4メートルの塩ビパイプの地中熱回収パイプの両端を、基礎底盤より1階床下内部に突き出すように地中に埋設し、地中熱回収パイプの一端に送風機を取付けて稼動させる事により、1階床下内部の空気が地中熱回収パイプに吸い込まれ、その地中熱回収パイプに吸い込まれた空気は、冬期においては地中熱により地中熱回収パイプの中で暖められて1階床下内部を暖めると共に、1階床下の基礎底盤の上部に基礎に沿って四角形状になるように構成した温水放熱パイプの高さを調整するため下部を平板状の台座とネジ山のある2本の受けボルトで形成し、前記受けボルトにナットを取付け、ナットの上部に温水放熱パイプの塩ビパイプを受止めるためのU字形をした受台の左右に開けた穴を2本の受けボルトに挿入し、受台に塩ビパイプを乗せ、塩ビパイプを基礎底盤に対して同一高さになるようにナットで受台の高さを調整したあと、逆U字形をして左右に前記受けボルトを通すための穴を開けた固定カバーを塩ビパイプに被せ、ナットで受台と固定カバーを固定し、温水放熱パイプの後端部に、前記塩ビパイプの内部の上部が、逆U字形トラップの頂点の内部の下部と同一高さになるように逆U字形トラップを接続し、さらに逆U字形トラップの端部を排水パイプに接続し、温水放熱パイプに風呂の温かい残り湯を流して溜湯させる事により、1階床下内部の空気をさらに暖め、このようにして暖められた1階床下内部の空気を各階の室内に給気して室内を暖め、また、夏期においては地中熱により地中熱回収パイプの中で冷やされた1階床下内部の空気を各階の室内に給気して室内を冷やした事を特徴とする。In order to solve this problem, the invention according to claim 1 sends fresh outside air supplied to the room by a total heat exchange type ventilation fan installed in the room of the building to the floor of the first floor of the building and below the floor of the first floor. The bottom of the base plate is 100mm in inner diameter with a U-shaped lower part, and the depth of the PVC heat pipe is 4m deep. By installing the blower at one end of the underground heat recovery pipe and operating it, the air inside the first floor floor is sucked into the underground heat recovery pipe, and the air sucked into the underground heat recovery pipe is In the winter season, warm water radiating pipes are constructed in such a way that they are warmed in the ground heat recovery pipe by ground heat to warm the inside of the first floor under the floor and form a quadrilateral shape along the foundation above the foundation floor under the first floor. Adjust the height of Therefore, the lower part is formed with a flat base and two receiving bolts with threads, a nut is attached to the receiving bolt, and a U-shaped receiving part for receiving the PVC pipe of the hot water radiating pipe on the upper part of the nut. The holes drilled on the left and right sides of the base were inserted into the two receiving bolts, the PVC pipe was placed on the base, and the height of the base was adjusted with the nut so that the PVC pipe was at the same height as the foundation bottom. Then, cover the PVC pipe with a fixed cover that has an inverted U shape and has holes for passing the receiving bolts to the left and right, fix the cradle and the fixed cover with nuts, Connect the inverted U-shaped trap so that the upper part inside the PVC pipe is flush with the lower part inside the inverted U-shaped trap, and connect the end of the inverted U-shaped trap to the drain pipe. Hot remaining hot water of the bath on the heat radiating pipe The hot water stored in the first floor is further warmed, and the air inside the first floor under the warming is supplied to the interior of each floor to warm the room. It is characterized in that the air inside the first floor under the ground heat recovery pipe cooled by the medium heat is supplied to the room of each floor to cool the room.

請求項1に記載の発明によれば、建物の室内に取付けた全熱交換型換気扇が室内に給気する新鮮な外気を、建物の1階床下に送り込むと共に、1階床下の基礎底盤に、下部をU字形に構成した内径100ミリメートル、地中に埋め込む深さ4メートルの塩ビパイプの地中熱回収パイプの両端を、基礎底盤より1階床下内部に突き出すように地中に埋設し、地中熱回収パイプの一端に送風機を取付けて稼動させる事により、1階床下内部の空気が地中熱回収パイプに吸い込まれ、その地中熱回収パイプに吸い込まれた空気は、冬期においては地中熱により地中熱回収パイプの中で暖められて1階床下内部を暖めると共に、1階床下の基礎底盤の上部に基礎に沿って四角形状になるように構成した温水放熱パイプの高さを調整するため下部を平板状の台座とネジ山のある2本の受けボルトで形成し、前記受けボルトにナットを取付け、ナットの上部に温水放熱パイプの塩ビパイプを受止めるためのU字形をした受台の左右に開けた穴を2本の受けボルトに挿入し、受台に塩ビパイプを乗せ、塩ビパイプを基礎底盤に対して同一高さになるようにナットで受台の高さを調整したあと、逆U字形をして左右に前記受けボルトを通すための穴を開けた固定カバーを塩ビパイプに被せ、ナットで受台と固定カバーを固定し、温水放熱パイプの後端部に、前記塩ビパイプの内部の上部が、逆U字形トラップの頂点の内部の下部と同一高さになるように逆U字形トラップを接続し、さらに逆U字形トラップの端部を排水パイプに接続し、温水放熱パイプに風呂の温かい残り湯を流して溜湯させる事により、1階床下内部の空気をさらに暖め、このようにして暖められた1階床下内部の空気を各階の室内に給気して室内を暖め、また、夏期においては地中熱により地中熱回収パイプの中で冷やされた1階床下内部の空気を各階の室内に給気して室内を冷やした事により、エネルギー消費が少なく、省エネにも貢献する冷暖房装置を提供する事が出来るようになり、エネルギーコスト(電気・ガス・灯油代)を大幅に削減する事が可能となった。According to the first aspect of the present invention, fresh outside air supplied to the room by the total heat exchange type exhaust fan mounted in the room of the building is sent to the floor under the first floor of the building. The bottom of the U-shaped 100mm inner diameter PVC pipe with a depth of 4m buried in the ground is buried in the ground so that both ends of the underground heat recovery pipe protrude from the foundation floor into the first floor below. By installing a blower at one end of the intermediate heat recovery pipe and operating it, the air inside the floor under the first floor is sucked into the underground heat recovery pipe, and the air sucked into the underground heat recovery pipe is underground in the winter season. The inside of the ground heat recovery pipe is warmed by heat to warm the interior under the first floor , and the height of the hot water heat radiating pipe configured to be quadrangular along the foundation at the top of the foundation floor under the first floor Flat plate at the bottom The base is made up of two receiving bolts with threads, a nut is attached to the receiving bolt, and a U-shaped receiving base is opened on the left and right sides of the nut to receive the PVC pipe of the hot water radiating pipe Insert the holes into the two receiving bolts, place the PVC pipe on the cradle, adjust the height of the cradle with the nut so that the PVC pipe is at the same height as the foundation bottom, and then turn the U-shaped Then, cover the PVC pipe with a fixed cover with holes for passing the receiving bolts on the left and right sides, fix the cradle and the fixed cover with nuts, and the upper end inside the PVC pipe at the rear end of the hot water radiating pipe However, the reverse U-shaped trap is connected so that it is at the same height as the inside of the top of the inverted U-shaped trap, and the end of the inverted U-shaped trap is connected to the drain pipe. To drain the remaining hot water The air inside the first floor is further warmed, and the air inside the first floor under the above-mentioned warming is supplied to the rooms on each floor to warm the rooms. It is possible to provide a cooling / heating device that consumes less energy and contributes to energy saving by supplying air inside the floor under the first floor cooled in the recovery pipe to the rooms on each floor to cool the rooms. As a result, energy costs (electricity, gas, and kerosene) can be significantly reduced.

以下、この発明の実施の形態1について説明する。
[発明の実施の形態1]
Embodiment 1 of the present invention will be described below.
Embodiment 1 of the Invention

図1乃至図7には、この発明の実施の形態1を示す。  1 to 7 show a first embodiment of the present invention.

図1は、本発明の温水放熱パイプ29と地中熱回収パイプ17、23、26、31を利用した、住宅1の立体解説図である。以下に、地中熱と風呂の温かい残り湯を利用した住宅の冷暖房システムを説明する。  FIG. 1 is a three-dimensional explanatory diagram of a house 1 using the hot water heat radiating pipe 29 and the underground heat recovery pipes 17, 23, 26, and 31 of the present invention. The following describes a residential air conditioning system that uses underground heat and hot remaining hot water from a bath.

図1は、本発明のアース・ソーラーシステムを分かりやすく説明するため、アース・ソーラーシステムを組み込んだ住宅1を立体解説図で示したものである。基礎底盤10の上部には温水放熱パイプ29を設置し、この温水放熱パイプ29に風呂40の温かい残り湯を供給するため、風呂40の排水パイプ41に電気切替弁39を取付け、風呂40の温かい残り湯を温水放熱パイプ29に供給する場合は、電気切替弁39のスイッチ(図示せず)を排水パイプ34方向から温水放熱パイプ29方向に切り替える事により、風呂40の温かい残り湯が温水放熱パイプ29に供給される。さらに、基礎底盤10の四隅には2本の塩ビパイプ(4mの塩ビパイプ)の下部を塩ビ製の90°エルボと塩ビパイプで継いで、下部をU字形(図2の拡大図で示す)に構成した4組の塩ビパイプの地中熱回収パイプ17、23、26、31が、両端を基礎底盤10より1階床下内部に突き出すように地中に埋設され、地中熱回収パイプ17の1階床下内部に突き出した塩ビパイプの先端には塩ビ製の90°エルボ11、90°エルボ13が取付けられ、塩ビ製の90°エルボ13の先端には送風機14が取付けられる。同様に、地中熱回収パイプ23の1階床下内部に突き出した塩ビパイプの先端には塩ビ製の90°エルボ19、90°エルボ20が取付けられ、塩ビ製の90°エルボ20の先端には送風機21が取付けられる。同様に、地中熱回収パイプ26の1階床下内部に突き出した塩ビパイプの先端には塩ビ製の90°エルボ42、90°エルボ43が取付けられ、塩ビ製の90°エルボ43の先端には送風機44が取付けられる。同様に、地中熱回収パイプ31の1階床下内部に突き出した塩ビパイプの先端には塩ビ製の90°エルボ35、90°エルボ36が取付けられ、塩ビ製の90°エルボ36の先端には送風機37が取付けられると共に、地中熱回収パイプ17、23、26、31を構成する2本の塩ビパイプに取付けた塩ビ製の90°エルボの空気取入口と空気吐出口を互いに直角になるように構成し、隣り合う4組の地中熱回収パイプの空気排出口と、空気取入口が互いに向き合うように配置される。  FIG. 1 is a three-dimensional explanatory view of a house 1 incorporating an earth / solar system for easy understanding of the earth / solar system of the present invention. A hot water radiating pipe 29 is installed on the upper part of the base bottom board 10, and an electric switching valve 39 is attached to the drain pipe 41 of the bath 40 to supply the hot remaining water of the bath 40 to the hot water radiating pipe 29. When the remaining hot water is supplied to the hot water radiating pipe 29, the hot remaining hot water of the bath 40 is changed to the hot water radiating pipe by switching the switch (not shown) of the electric switching valve 39 from the direction of the drain pipe 34 to the hot water radiating pipe 29. 29. In addition, at the four corners of the foundation base 10, the lower part of two PVC pipes (4m PVC pipe) is joined with a 90 ° elbow and PVC pipe made of PVC, and the lower part is U-shaped (shown in enlarged view in FIG. 2). The four sets of the underground heat recovery pipes 17, 23, 26, and 31 of the PVC pipe are buried in the ground so that both ends protrude from the foundation bottom 10 to the inside of the first floor floor. A vinyl chloride 90 ° elbow 11 and a 90 ° elbow 13 are attached to the tip of the PVC pipe protruding into the lower floor, and a blower 14 is attached to the tip of the PVC 90 ° elbow 13. Similarly, a PVC 90 ° elbow 19 and a 90 ° elbow 20 are attached to the tip of the PVC pipe protruding from the ground floor of the underground heat recovery pipe 23, and the end of the PVC 90 ° elbow 20 is attached to the tip of the PVC 90 ° elbow 20. A blower 21 is attached. Similarly, a vinyl chloride 90 ° elbow 42 and a 90 ° elbow 43 are attached to the tip of the PVC pipe protruding into the first floor under the ground heat recovery pipe 26, and the vinyl 90 ° elbow 43 is attached to the tip of the PVC 90 ° elbow 43. A blower 44 is attached. Similarly, a polyvinyl chloride 90 ° elbow 35 and a 90 ° elbow 36 are attached to the tip of the PVC pipe protruding from the ground floor of the underground heat recovery pipe 31, and the tip of the PVC 90 ° elbow 36 is attached to the tip of the PVC 90 ° elbow 36. The blower 37 is attached, and the air intake and the air outlet of the 90 ° elbow made of PVC attached to the two PVC pipes constituting the underground heat recovery pipes 17, 23, 26 and 31 are perpendicular to each other. The air discharge ports of the four adjacent ground heat recovery pipes and the air intake ports are arranged so as to face each other.

さらに、風呂40で利用した後の温かい残り湯は、排水パイプ41に取付けられた電機切替弁39(排水パイプ41の中の排水を、排水パイプ34方向、又は温水放熱パイプ29方向へ流すための電気モーターを使用した排水経路の切替弁)を温水放熱パイプ29方向に切り替える事により風呂40の温かい残り湯は温水放熱パイプ29に流れ込み、温水放熱パイプ29の中に溜湯(図7で詳細に説明する)され1階床下内部の空間を暖める。  Further, the hot remaining hot water after being used in the bath 40 is supplied to an electric switching valve 39 attached to the drain pipe 41 (for draining the drain water in the drain pipe 41 toward the drain pipe 34 or the hot water radiation pipe 29). The hot remaining hot water of the bath 40 flows into the hot water radiating pipe 29 by switching the drainage path switching valve using an electric motor in the direction of the hot water radiating pipe 29 and is stored in the hot water radiating pipe 29 (detailed in FIG. 7). Warm the space under the first floor.

さらに、図6で示すように、送風機14、21、37、44を稼動させる事により、地中熱回収パイプ17が吸い込んだ1階床下内部の空気は、地中熱回収パイプ17の中を矢印16方向から矢印15方向に流れて地中熱により温度調整され、送風機14により1階床下内部に排出される。このようにして1階床下内部に排出された空気は矢印18方向に送風され、1階床下内部の空気と混ぜ合わされて温度が均一になるように調整され、塩ビ製の90°エルボ19から再び地中熱回収パイプ23に吸い込まれ、地中熱回収パイプ23の中を矢印22方向から矢印24方向に流れて地中熱により温度調整され、送風機21により1階床下内部に排出される。このようにして1階床下内部に排出された空気は矢印28方向に送風され、1階床下内部の空気と混ぜ合わされて温度が均一になるように調整され、塩ビ製の90°エルボ35から再び地中熱回収パイプ31に吸い込まれ、地中熱回収パイプ31の中を矢印32方向から矢印30方向に流れて地中熱により温度調整され、送風機37により1階床下内部に排出される。このようにして1階床下内部に排出された空気は矢印38方向に送風され、1階床下内部の空気と混ぜ合わされて温度が均一になるように調整され、塩ビ製の90°エルボ42から再び地中熱回収パイプ26に吸い込まれ、地中熱回収パイプ26の中を矢印27方向から矢印25方向に流れて地中熱により温度調整され、送風機44により1階床下内部に排出される。このようにして1階床下内部に排出された空気は矢印9方向に送風され、1階床下内部の空気と混ぜ合わされて温度が均一になるように調整され、塩ビ製の90°エルボ11から再び地中熱回収パイプ17に吸い込まれる。このように基礎底盤10の四隅に配置された地中熱回収パイプ17、23、26、31の空気取入口(塩ビ製の90°エルボ11、19、35、42)と、地中熱回収パイプの空気排出口(塩ビ製の90°エルボ13、20、36、43)を、互いに向き合うように構成する事により、1階床下内部の空気は、床下内部の場所によって澱む事が無くまぜ合わされ、床下内部の空気の温度が何れの場所でも均一になるように調整される。  Furthermore, as shown in FIG. 6, by operating the blowers 14, 21, 37, 44, the air inside the first floor under the suction of the underground heat recovery pipe 17 is indicated by an arrow in the underground heat recovery pipe 17. It flows in the direction of the arrow 15 from the 16 direction, the temperature is adjusted by underground heat, and is discharged to the inside of the first floor below by the blower 14. The air discharged into the first floor under the air in this way is blown in the direction of arrow 18 and mixed with the air inside the first floor under the air to adjust the temperature to be uniform, and again from the 90 ° elbow 19 made of PVC. It is sucked into the underground heat recovery pipe 23, flows through the underground heat recovery pipe 23 from the direction of the arrow 22 to the direction of the arrow 24, is adjusted in temperature by underground heat, and is discharged by the blower 21 to the inside of the first floor below. The air discharged into the first floor under the air in this way is blown in the direction of arrow 28 and mixed with the air inside the first floor under the air to adjust the temperature to be uniform, and again from the 90 ° elbow 35 made of PVC. It is sucked into the underground heat recovery pipe 31, flows through the underground heat recovery pipe 31 from the direction of the arrow 32 to the direction of the arrow 30, is adjusted in temperature by the underground heat, and is discharged to the inside of the first floor below by the blower 37. The air discharged into the first floor under the air in this way is blown in the direction of the arrow 38, mixed with the air inside the first floor under the air and adjusted so that the temperature becomes uniform, and again from the 90 ° elbow 42 made of PVC. It is sucked into the underground heat recovery pipe 26, flows through the underground heat recovery pipe 26 from the direction of the arrow 27 to the direction of the arrow 25, is adjusted in temperature by underground heat, and is discharged to the inside of the first floor below by the blower 44. The air discharged into the first floor under the air is blown in the direction of arrow 9 in this way, mixed with the air inside the first floor under the air, adjusted so that the temperature becomes uniform, and again from the 90 ° elbow 11 made of PVC. It is sucked into the underground heat recovery pipe 17. As described above, the air intakes (90 ° elbows 11, 19, 35, 42 made of PVC) of the underground heat recovery pipes 17, 23, 26, 31 arranged at the four corners of the foundation bottom 10 and the underground heat recovery pipes. By configuring the air outlets (90 ° elbows 13, 20, 36, 43 made of PVC) so as to face each other, the air inside the first floor floor is mixed without being stagnated depending on the location inside the floor, The temperature of the air under the floor is adjusted so as to be uniform at any place.

さらに、1階床下の基礎底盤10の四隅に、地中熱回収パイプ17、23、26、31を互いに離して埋め込む事により、地中内部において地中熱回収パイプから発生する熱による、お互いの地中熱回収パイプ同士による熱干渉を少なくする事が可能となる。特に、狭小地に地中熱回収パイプを埋め込む場合、地中熱回収パイプ同士の熱による熱干渉により、地中の温度が変化(夏期には暑い外気を地中熱回収パイプに送り込むため地中の温度が上昇し、冬期には寒い外の外気を地中熱回収パイプに送り込むため地中の温度が下がる)してしまい、地中熱回収パイプのメリットが減少する事となる。  Further, by embedding underground heat recovery pipes 17, 23, 26, and 31 in the four corners of the foundation floor 10 below the first floor floor, the mutual heat generated from the underground heat recovery pipes in the underground can be reduced. It is possible to reduce the heat interference between the underground heat recovery pipes. In particular, when underground heat recovery pipes are embedded in a narrow area, the temperature of the underground changes due to heat interference between the underground heat recovery pipes (in the summer, hot underground air is sent to the underground heat recovery pipe In the winter, the cold outside air is sent to the geothermal heat recovery pipe to lower the temperature in the ground, and the merit of the geothermal heat recovery pipe is reduced.

このように、地中熱回収パイプ17、23、26、31に各々1台の送風機を取付け地中熱を回収した事により地中熱を効率良く回収する事が可能となった。さらに、それぞれの地中熱回収パイプ17、23、26、31に独立して1台づつ送風機を取付けた事により、1階床下内部の空気の温度が、夏(冬)の初めに冷え(暖か)すぎる場合には、4本の地中熱回収パイプ17、23、26、31の内の数本のみ稼動させ、他の地中熱回収パイプの稼動を停止させる事により、1階床下内部の温度を調節する事が可能となった。なお、当社では、この発明の実施の形態1で説明している地中熱回収パイプを4組み使用したアース・ソーラーシステムは、述べ床面積40坪迄の住宅仕様とし、それ以上の述べ床面積の住宅の場合には、述べ床面積に応じて地中熱回収パイプを増設して対応している。  Thus, it became possible to efficiently collect the underground heat by attaching one blower to each of the underground heat recovery pipes 17, 23, 26, and 31 and recovering the underground heat. Furthermore, by installing one blower independently for each of the underground heat recovery pipes 17, 23, 26, 31, the temperature of the air inside the floor under the first floor is cooled (warm) in the beginning of summer (winter). ) If too much, only several of the four underground heat recovery pipes 17, 23, 26, 31 are operated, and the operation of the other underground heat recovery pipes is stopped, It became possible to adjust the temperature. In our company, the earth / solar system using four sets of underground heat recovery pipes explained in the first embodiment of the present invention is a residential specification with a floor area of up to 40 tsubo, and the floor area of more than that In the case of the above-mentioned housing, the underground heat recovery pipe is added according to the floor area.

本発明において、地中熱回収パイプ17、23、26、31には内径100ミリメートルの塩ビパイプを使用し、地中に埋め込む深さは約4メートルである。その理由は、塩ビパイプの標準的な長さは4メートルで入手しやすい上に価格が安く、さらに関東地区の地中4〜5メートルの温度は、年間を通して約17℃〜19℃と温度変化が少ないためです。ちなみに、東京都足立区大谷田の、当社ショールーム(地下室付)で、毎日、地中1メートル、3メートル、5メートルの地中温度を測定しているが、その測定結果によると地中5メートルの地中温度は、毎年5月〜6月の間で最低温度の17.1℃となり、11月〜12月の間で最高温度の19.3℃となる。外気の最低気温(2月頃)に対して地中5メートルの最低温度が5月〜6月となるのは、地表面の温度が地中に浸透するのに時間がかかるためである。夏期の場合も同様である。  In the present invention, a PVC pipe having an inner diameter of 100 mm is used for the underground heat recovery pipes 17, 23, 26, and 31, and the depth embedded in the underground is about 4 meters. The reason for this is that the standard length of PVC pipe is 4 meters, which is easy to obtain and inexpensive, and the temperature of 4 to 5 meters underground in the Kanto area changes from about 17 to 19 degrees Celsius throughout the year. Because there are few. By the way, at our showroom (with basement) in Oyada, Adachi-ku, Tokyo, we measure underground temperatures of 1 meter, 3 meters and 5 meters every day. The underground temperature is the lowest temperature of 17.1 ° C between May and June, and the highest temperature of 19.3 ° C between November and December. The reason why the minimum temperature of 5 meters underground is from May to June with respect to the lowest ambient temperature (around February) is because it takes time for the temperature of the ground surface to penetrate into the ground. The same applies to the summer season.

さらに、地中熱回収パイプ17、23、26、31を地中に埋設する際は、小型重機(穴堀建柱車等)にオーガーを取付け、オーガーで地中に穴を掘り、その穴に地中熱回収パイプを埋め込むため、工期を短縮し安価に施工する事が可能である。  Furthermore, when the underground heat recovery pipes 17, 23, 26, and 31 are buried in the ground, an auger is attached to a small heavy machine (an digging trolley, etc.), and a hole is dug into the ground with the auger. Since the underground heat recovery pipe is embedded, the construction period can be shortened and construction can be performed at low cost.

なお、一般的な住宅の1階床下の基礎は、1階床下内部に湿気が溜まるのを防ぐため、外気と1階床下内部の空気が常に通気するように、基礎と土台の間に通気基礎パッキンを使用しているが、本発明においては、1階床下内部を外気温度調整槽として利用するため、ベタ基礎を施工し、外気が1階床下部に直接流入しないように、基礎と建物の土台の間に気密基礎パッキンを使用し、1階床下内部が外気と通気せず密封状態となるように施工する。  In order to prevent moisture from accumulating inside the first floor under the first floor of a general house, the foundation of the foundation and the foundation are ventilated so that the outside air and the air inside the first floor under the floor are always ventilated. Although packing is used, in the present invention, in order to use the interior under the first floor as an outside air temperature adjustment tank, a solid foundation is constructed so that the outside air does not flow directly into the lower floor of the first floor. Use an airtight foundation packing between the foundations so that the interior under the first floor will be in a sealed state without venting to the outside air.

以上のような構成において、図2において冬期における居室の弱温風運転について説明する。  With the configuration as described above, the low-temperature air operation of the room in winter in FIG. 2 will be described.

最初に、一般的な全熱交換型換気扇の使用方法では、全熱交換型換気扇の内部で熱交換を終えた新鮮な外気は居室に給気されるが、本発明のアース・ソーラーシステムでは全熱交換型換気扇の内部で熱交換を終えた新鮮な外気を1階床下内部73に給気する方法について説明する。1階の居室Aの室内側吐出空気(よごれた室内空気)は、全熱交換型換気扇60に吸い込まれダクト58を経由してフード65から室外に排気される。その際、全熱交換型換気扇60が排気する室内の空気(室内側吐出空気)と、フード65から室内に給気する外気(室外側吸込空気)とが全熱交換型換気扇60の内部で熱交換されると共に、全熱交換型換気扇60が吸い込んだ室外側吸込空気(新鮮な空気)は全てダクト76を経由して1階床下内部73に供給される。同様にして、2階の居室Bの室内側吐出空気(よごれた室内空気)は、全熱交換型換気扇54に吸い込まれダクト55を経由してフード56から室外に排気される。その際、全熱交換型換気扇54が排気する室内の空気(室内側吐出空気)と、フード56から室内に給気する外気(室外側吸込空気)とが全熱交換型換気扇54の内部で熱交換されると共に、全熱交換型換気扇54が吸い込んだ室外側吸込空気(新鮮な空気)は全てダクト62を経由して1階床下内部73に供給される。  First, in a general method of using a total heat exchange type exhaust fan, fresh outside air that has finished heat exchange inside the total heat exchange type exhaust fan is supplied to the living room. A method for supplying fresh outside air, which has been heat exchanged inside the heat exchange type ventilation fan, to the first floor lower interior 73 will be described. The room-side discharged air (contaminated room air) in the first floor room A is sucked into the total heat exchange type ventilation fan 60 and exhausted from the hood 65 to the outside through the duct 58. At that time, the indoor air exhausted by the total heat exchange type ventilation fan 60 (indoor discharge air) and the outside air supplied to the room from the hood 65 (outdoor suction air) are heated inside the total heat exchange type ventilation fan 60. The outdoor intake air (fresh air) sucked by the total heat exchange type ventilation fan 60 is all supplied to the first floor lower interior 73 via the duct 76. Similarly, the indoor side discharged air (contaminated room air) of the second-floor room B is sucked into the total heat exchange type ventilation fan 54 and exhausted from the hood 56 to the outside through the duct 55. At this time, the indoor air exhausted by the total heat exchanging ventilator 54 (indoor discharge air) and the outside air supplied to the room from the hood 56 (outdoor suction air) are heated inside the total heat exchanging ventilator 54. While being exchanged, all of the outdoor intake air (fresh air) sucked by the total heat exchange type ventilation fan 54 is supplied to the first floor lower interior 73 via the duct 62.

このように、全熱交換型換気扇54、60を使用する事により、冬期における室内の暖かい空気を、外の冷たい外気と入れ替える(換気する)際に、室内の暖かい空気の温度が下がるのを最小限に抑える事が可能となる。ちなみに、三菱電機株式会社のホームページでは、ロスナイ(全熱交換型換気扇の商品名)の熱交換機能を、「外気温度0℃、室内温度20℃、温度交換効率75%の場合」、室内温度20℃の空気をロスナイで換気した場合、外気(0℃)の空気の温度は熱交換機の働きで15℃となって室内に給気(新鮮空気)されると説明している。  In this way, by using the total heat exchange type ventilation fans 54 and 60, it is possible to minimize the temperature of the indoor warm air when the indoor warm air in the winter is replaced (ventilated) with the cold outdoor air. It is possible to limit to the limit. By the way, on the Mitsubishi Electric Corporation website, the heat exchange function of LOSSNAY (the product name of the total heat exchange type exhaust fan) is changed to “when the outside air temperature is 0 ° C., the room temperature is 20 ° C., and the temperature exchange efficiency is 75%” It is explained that when air at 0 ° C. is ventilated by LOSSNAY, the temperature of the outside air (0 ° C.) becomes 15 ° C. due to the action of the heat exchanger and is supplied to the room (fresh air).

つづいて、このようにして1階床下内部73に供給された全熱交換型換気扇54、60からの外気(室外側吸込空気)が、どのようにして1階床下内部73で熱交換されて弱温風になるかを説明する。  Subsequently, the outside air (outdoor air sucked in) from the total heat exchange type ventilation fans 54 and 60 supplied to the first floor underfloor interior 73 in this way is heat-exchanged in the first floor underfloor interior 73 and weakened. Explain whether it will be hot air.

ダクト62、76から供給された全熱交換型換気扇54、60からの外気は、1階床下内部73の空気と混ざり合い、地中熱回収パイプ84に取付けられた送風機85を稼動させる事により、1階床下内部73の空気は、矢印83方向から地中熱回収パイプ84に吸い込まれ、地中熱回収パイプ84の中で地中熱により暖められて弱温風となり、送風機85により矢印86方向に示すように1階床下内部73に排気される。同様にして、地中熱回収パイプ88に取付けられた送風機89を稼動させる事により、1階床下内部73の空気は、矢印87方向から地中熱回収パイプ88に吸い込まれ、地中熱回収パイプ88の中で地中熱により暖められて弱温風となり、送風機89により矢印90方向に示すように1階床下内部73に排気される。同様にして、地中熱回収パイプ92に取付けられた送風機93を稼動させる事により、1階床下内部73の空気は、矢印91方向から地中熱回収パイプ92に吸い込まれ、地中熱回収パイプ92の中で地中熱により暖められて弱温風となり、送風機93により矢印94方向に示すように1階床下内部73に排気される。同様にして、地中熱回収パイプ96に取付けられた送風機100を稼動させる事により、1階床下内部73の空気は、矢印95方向から地中熱回収パイプ96に吸い込まれ、地中熱回収パイプ96の中で地中熱により暖められて弱温風となり、送風機100により矢印101方向に示すように1階床下内部73に排気される。  The outside air from the total heat exchange type ventilation fans 54 and 60 supplied from the ducts 62 and 76 is mixed with the air in the first floor lower interior 73, and the blower 85 attached to the underground heat recovery pipe 84 is operated. The air in the first floor underfloor interior 73 is sucked into the underground heat recovery pipe 84 from the direction of the arrow 83 and is warmed by the underground heat in the underground heat recovery pipe 84 to become low-temperature air. As shown in FIG. Similarly, by operating the blower 89 attached to the geothermal heat recovery pipe 88, the air in the first floor underfloor interior 73 is sucked into the geothermal heat recovery pipe 88 from the direction of the arrow 87, and the geothermal heat recovery pipe. In 88, it is warmed by the underground heat and becomes weakly warm air, and is exhausted by the blower 89 to the first floor lower interior 73 as shown by the arrow 90 direction. Similarly, by operating the blower 93 attached to the underground heat recovery pipe 92, the air in the first floor lower interior 73 is sucked into the underground heat recovery pipe 92 from the direction of the arrow 91, and the underground heat recovery pipe The air is heated by the underground heat in 92 and becomes a low-temperature air, and is exhausted by the blower 93 to the first floor lower interior 73 as shown by the arrow 94 direction. Similarly, by operating the blower 100 attached to the underground heat recovery pipe 96, the air in the first floor lower interior 73 is sucked into the underground heat recovery pipe 96 from the direction of the arrow 95, and the underground heat recovery pipe In 96, it is warmed by the underground heat and becomes a low-temperature air, and is exhausted by the blower 100 to the first floor lower interior 73 as shown by the arrow 101 direction.

さらに、冬期では、風呂77で利用した後の温かい残り湯を、電気切替弁78で矢印79方向に示す温水放熱パイプ72に流すように切り替える事により、風呂の77の温かい残り湯が温水放熱パイプ72に溜湯される。このようにして温水放熱パイプ72に溜湯された温かい風呂77の残り湯により1階床下内部73の空気が暖められる。なお、温水放熱パイプ72の長さは風呂77の浴槽の湯量を基にして決める事により、風呂77の温かい残り湯を無駄なく活用する事が可能になると共に、温水放熱パイプ72から溢れ出る、温水放熱パイプ72の中の冷めた風呂の残り湯は、温かい風呂77の残り湯に押し出されて矢印81方向から矢印82方向に流れ排水溝102に排水される。このように構成する事により、常に温水放熱パイプ72の中の冷めた残り湯が押し出され、温水放熱パイプ72の中は温かい風呂77の残り湯で満たされる。  Further, in the winter season, the hot remaining hot water after being used in the bath 77 is switched to flow to the hot water heat radiating pipe 72 indicated by the arrow 79 by the electric switching valve 78, so that the hot remaining hot water of the bath 77 is heated to the hot water radiating pipe. 72 is hot water. In this way, the air in the first floor floor interior 73 is warmed by the remaining hot water of the warm bath 77 stored in the hot water radiating pipe 72. The length of the hot water radiating pipe 72 is determined based on the amount of hot water in the bathtub 77 of the bath 77, so that the hot remaining hot water in the bath 77 can be used without waste, and the hot water radiating pipe 72 overflows. The remaining hot water of the cold bath in the hot water radiating pipe 72 is pushed out by the remaining hot water of the warm bath 77, flows from the direction of the arrow 81 in the direction of the arrow 82, and is drained into the drainage groove 102. By configuring in this way, the cold remaining hot water in the hot water radiating pipe 72 is always pushed out, and the hot water radiating pipe 72 is filled with the remaining hot water in the warm bath 77.

このようにして、風呂77で使用した後の温かい残り湯を、1階床下内部73の基礎底盤70の上に設置した温水放熱パイプ72に流して溜湯させる事により、地中熱回収パイプ84、88、92、96の中で地中熱により暖められた1階床下内部73の空気は、さらに温水放熱パイプ72の中の風呂77の温かい残り湯により暖められる。  In this way, the hot remaining hot water after being used in the bath 77 is caused to flow through the hot water heat radiating pipe 72 installed on the foundation bottom 70 in the first floor under floor 73 to be stored in the hot water, so that the underground heat recovery pipe 84 is stored. , 88, 92 and 96, the air in the first floor lower interior 73 heated by the underground heat is further heated by the hot remaining hot water of the bath 77 in the hot water radiating pipe 72.

このように、1階床下内部73で弱温風となった外気は、1階床を暖める事により1階の居室Aを暖めると共に、弱温風となった1階床下内部73の空気は、1階床下に取付けられた送風機69を稼動させる事により、ガラリ68から矢印67方向に給気されて1階室内を暖め、さらに1階床下内部73から2階床に配管されたダクト109の送風機106を稼動させる事により、1階床下内部73の弱温風はダクト109を経由してガラリ110より矢印63方向に給気され2階の居室Bを暖める。  In this way, the outside air that has become warm air in the first floor under floor 73 warms the first floor room A by warming the first floor, and the air in the first floor under floor 73 that has become warm air is By operating the blower 69 attached under the first floor, air is supplied from the gallery 68 in the direction of the arrow 67 to warm the first floor room, and further the duct 109 blower is piped from the first floor lower interior 73 to the second floor. By operating 106, the warm air in the first floor under floor 73 is supplied in the direction of arrow 63 from the gallery 110 through the duct 109 to warm the second floor room B.

このように、冬期においては風呂77で利用した後の温かい残り湯を、1階床下内部73の基礎底盤70の上部に設置した温水放熱パイプ72に流して溜湯させる事により、曇りや雨の日が続いた場合でも、地中熱回収パイプ84、88、92、96の中で地中熱により暖められた1階床下内部73の空気を、さらに温水放熱パイプ72の中の温かい風呂の残り湯で暖め、弱温風として1階の居室A、2階の居室Bに給気する事が可能となる。  In this way, in the winter season, the hot remaining hot water after being used in the bath 77 flows into the hot water heat radiating pipe 72 installed on the upper part of the foundation bottom 70 in the first floor under floor 73 so as to store hot water. Even if the day continues, the air in the first floor under floor 73 heated by the underground heat in the underground heat recovery pipes 84, 88, 92, and 96 is further left in the warm bath in the hot water radiating pipe 72. It is possible to warm the room with hot water and supply air to the room A on the first floor and the room B on the second floor as low-temperature air.

つづいて、図3において夏期における居室の弱冷風運転について説明する。  Next, a description will be given of the operation of the cool air in the room in summer in FIG.

最初に、一般的な全熱交換型換気扇の使用方法では、全熱交換型換気扇の内部で熱交換を終えた新鮮な外気は居室に給気されるが、本発明のアース・ソーラーシステムでは全熱交換型換気扇の内部で熱交換を終えた新鮮な外気を1階床下内部73に給気する方法について説明する。1階の居室Aの室内側吐出空気(よごれた室内空気)は、全熱交換型換気扇60に吸い込まれダクト58を経由してフード65から室外に排気される。その際、全熱交換型換気扇60が排気する室内の空気(室内側吐出空気)と、フード65から室内に給気する外気(室外側吸込空気)とが全熱交換型換気扇60の内部で熱交換されると共に、吸い込んだ室外側吸込空気(新鮮な空気)は全てダクト76を経由して1階床下内部73に供給される。同様にして、2階の居室Bの室内側吐出空気(よごれた室内空気)は、全熱交換型換気扇54に吸い込まれダクト55を経由してフード56から室外に排気される。その際、全熱交換型換気扇54が排気する室内の空気(室内側吐出空気)と、フード56から室内に給気する外気(室外側吸込空気)とが全熱交換型換気扇54の中で熱交換されると共に、吸い込まれた室外側吸込空気(新鮮な空気)は全てダクト62を経由して1階床下内部73に供給される。  First, in a general method of using a total heat exchange type exhaust fan, fresh outside air that has finished heat exchange inside the total heat exchange type exhaust fan is supplied to the living room. A method for supplying fresh outside air, which has been heat exchanged inside the heat exchange type ventilation fan, to the first floor lower interior 73 will be described. The room-side discharged air (contaminated room air) in the first floor room A is sucked into the total heat exchange type ventilation fan 60 and exhausted from the hood 65 to the outside through the duct 58. At that time, the indoor air exhausted by the total heat exchange type ventilation fan 60 (indoor discharge air) and the outside air supplied to the room from the hood 65 (outdoor suction air) are heated inside the total heat exchange type ventilation fan 60. While being exchanged, all of the sucked outdoor outside air (fresh air) is supplied to the first floor lower interior 73 via the duct 76. Similarly, the indoor side discharged air (contaminated room air) of the second-floor room B is sucked into the total heat exchange type ventilation fan 54 and exhausted from the hood 56 to the outside through the duct 55. At that time, the indoor air exhausted by the total heat exchanging ventilator 54 (indoor discharge air) and the outside air supplied to the room from the hood 56 (outdoor suction air) are heated in the total heat exchanging ventilator 54. While being exchanged, all of the sucked outdoor outdoor air (fresh air) is supplied to the first floor lower interior 73 via the duct 62.

このようにして、全熱交換型換気扇54、60を使用する事により、夏期における涼しい室内の空気を、外の暑い外気と入れ替える(換気する)際に、涼しい室内の空気の温度の上昇を最小限に抑える事が可能となる。  In this way, by using the total heat exchange type ventilation fans 54, 60, when the cool indoor air in the summer is replaced (ventilated) with the hot outdoor air, the rise in the temperature of the cool indoor air is minimized. It is possible to limit to the limit.

つづいて、このようにして1階床下内部73に供給された全熱交換型換気扇54、60からの外気(室外側吸込空気)が、どのようにして1階床下内部73で熱交換されて弱冷風になるかを説明する。ダクト62、76から供給された全熱交換型換気扇54、60からの外気は、1階床下内部73の空気と混ざり合い、地中熱回収パイプ84に取付けられた送風機85を稼動させる事により、1階床下内部73の空気は、矢印83方向から地中熱回収パイプ84に吸い込まれ、地中熱回収パイプ84の中で地中熱により冷やされて弱冷風となり、送風機85により矢印86方向で示すように1階床下内部73に排気される。同様にして、地中熱回収パイプ88に取付けられた送風機89を稼動させる事により、1階床下内部73の空気は、矢印87方向から地中熱回収パイプ88に吸い込まれ、地中熱回収パイプ88の中で地中熱により冷やされて弱冷風となり、送風機89より矢印90方向で示すように1階床下内部73に排気される。同様にして、地中熱回収パイプ92に取付けられた送風機93を稼動させる事により、1階床下内部73の空気は、矢印91方向から地中熱回収パイプ92に吸い込まれ、地中熱回収パイプ92の中で地中熱により冷やされて弱冷風となり、送風機に93より矢印94方向で示すように1階床下内部73に排気される。同様にして、地中熱回収パイプ96に取付けられた送風機100を稼動させる事により、1階床下内部73の空気は、矢印95方向から地中熱回収パイプ96に吸い込まれ、地中熱回収パイプ96の中で地中熱により冷やされて弱冷風となり、送風機100により矢印101方向で示すように1階床下内部73に排気される。  Subsequently, the outside air (outdoor air sucked in) from the total heat exchange type ventilation fans 54 and 60 supplied to the first floor underfloor interior 73 in this way is heat-exchanged in the first floor underfloor interior 73 and weakened. Explain whether it will be cold. The outside air from the total heat exchange type ventilation fans 54 and 60 supplied from the ducts 62 and 76 is mixed with the air in the first floor lower interior 73, and the blower 85 attached to the underground heat recovery pipe 84 is operated. The air in the first floor underfloor interior 73 is sucked into the underground heat recovery pipe 84 from the direction of the arrow 83, is cooled by underground heat in the underground heat recovery pipe 84 and becomes weak cold air, and is blown by the blower 85 in the direction of the arrow 86. As shown, it is exhausted into the first floor under floor interior 73. Similarly, by operating the blower 89 attached to the geothermal heat recovery pipe 88, the air in the first floor underfloor interior 73 is sucked into the geothermal heat recovery pipe 88 from the direction of the arrow 87, and the geothermal heat recovery pipe. In 88, it is cooled by underground heat to become weak cold air, and is exhausted from the blower 89 to the first floor lower interior 73 as indicated by the arrow 90 direction. Similarly, by operating the blower 93 attached to the underground heat recovery pipe 92, the air in the first floor lower interior 73 is sucked into the underground heat recovery pipe 92 from the direction of the arrow 91, and the underground heat recovery pipe The air is cooled by underground heat in 92 and becomes weak cold air, and is exhausted from the air blower 93 to the first floor lower interior 73 as indicated by the arrow 94 direction. Similarly, by operating the blower 100 attached to the underground heat recovery pipe 96, the air in the first floor lower interior 73 is sucked into the underground heat recovery pipe 96 from the direction of the arrow 95, and the underground heat recovery pipe In 96, it is cooled by underground heat to become weak cold air, and is exhausted by the blower 100 to the first floor lower interior 73 as indicated by the arrow 101 direction.

このようにして、1階床下内部73で弱冷風となった外気は、1階床を冷やす事により1階の居室Aを冷やすと共に、弱冷風となった1階床下内部73の空気は、1階床下に取付けられた送風機69を稼動させる事により、ガラリ68から矢印67方向に示すように1階の居室Aに給気され1階室内を冷やす。さらに1階床下内部73から2階床に配管されたダクト109に取付けられた送風機106を稼動させる事により、1階床下内部73の弱冷風はダクト109を経由してガラリ110から矢印63方向に示すように2階の居室Bに給気され2階の居室Bを冷やす。  In this way, the outside air that has become weak air in the first floor under floor 73 cools the first floor room A by cooling the first floor, and the air in the first floor under floor 73 that has become weak air is 1 By operating the blower 69 attached under the floor, the air is supplied to the first-floor room A as shown by the arrow 67 in the direction of the arrow 68 and cools the first-floor room. Further, by operating the blower 106 attached to the duct 109 piped from the first floor under floor 73 to the second floor, the cool air in the first floor under floor 73 passes through the duct 109 from the gallery 110 in the direction of the arrow 63. As shown, the second floor room B is supplied with air and the second floor room B is cooled.

なお、夏期においては、電気切替弁78を切り替え、風呂77の残り湯を矢印115方向に排水する事により、1階床下内部73の基礎底盤70の上部に設置した温水放熱パイプ72に風呂77の残り湯を供給せず、夏期においては温水放熱パイプ72は利用しない。  In summer, the electric switching valve 78 is switched, and the remaining hot water in the bath 77 is drained in the direction of the arrow 115, so that the hot water radiating pipe 72 installed on the upper part of the foundation bottom 70 in the first floor under floor 73 is connected to the hot water radiating pipe 72. The remaining hot water is not supplied, and the hot water radiating pipe 72 is not used in the summer.

図4は、本発明における住宅52を、次世代省エネタイプの断熱材で施工(構成)した状態を示す。屋根の断熱に関しては、屋根断熱材120(一般的には、厚さ160mmの発泡ウレタン)を屋根裏側に施工する。外壁の断熱に関しては、外壁断熱材121(一般的には、厚さ75mmの発泡ウレタン)を壁内部に施工する。窓のサッシに関しては、各社から発売されている断熱等級4(次世代省エネタイプ)の断熱樹脂サッシ122を使用する。基礎の断熱に関しては、基礎外断熱材123(一般的には、厚さ50mmの発泡スチロール板)を基礎コンクリートの外側に施工したあと、発泡スチロール板の外側に無収縮コンクリートを厚さ10〜20ミリメートル施工する。但し、ここに書かれた断熱材の種類と材質に関しては、例えば、発泡スチロール板であっても、密度の違いにより断熱効果に変化が生じるため、同一メーカーであっても、密度により厚さが変わる場合がある。なお、次世代省エネタイプの住宅においては、1階床下、1階天井裏、2階天井裏に断熱材を施工しているが、本発明においては、住宅の各々室内同士の温度を出来るだけ均一に保つため、1階床下1や1階天井裏、2階天井裏には断熱材を施工しない。本発明における住宅52の断熱性能に関しては、最大限の省エネ効果を得るためにも、図4で説明した次世代省エネタイプの断熱を必ず施工する事が必要である。  FIG. 4 shows a state in which the house 52 in the present invention is constructed (configured) with a next-generation energy-saving heat insulating material. Regarding the heat insulation of the roof, the roof heat insulating material 120 (generally, urethane foam having a thickness of 160 mm) is applied to the attic side. Regarding the heat insulation of the outer wall, an outer wall heat insulating material 121 (generally, foamed urethane having a thickness of 75 mm) is applied inside the wall. For the window sash, a heat insulating resin sash 122 of heat insulation grade 4 (next generation energy saving type) sold by each company is used. For heat insulation of the foundation, after applying non-foundation heat insulation 123 (generally, a 50 mm thick expanded polystyrene board) to the outside of the foundation concrete, non-shrinkable concrete is applied to the outside of the expanded polystyrene board to a thickness of 10 to 20 mm. To do. However, regarding the type and material of the heat insulating material written here, for example, even if it is a polystyrene plate, the heat insulating effect changes due to the difference in density, so even the same manufacturer changes the thickness depending on the density There is a case. In the next-generation energy-saving type housing, heat insulating material is installed under the first floor, under the first floor, and under the second floor. In the present invention, the temperature in each room of the house is as uniform as possible. Therefore, no heat insulation material is applied to the first floor under the first floor, the first floor ceiling, and the second floor ceiling. Regarding the heat insulation performance of the house 52 in the present invention, in order to obtain the maximum energy saving effect, the next-generation energy-saving type heat insulation described with reference to FIG.

つづいて、図5により、全熱交換型換気扇132の機能と、全熱交換型換気扇132の設置場所について説明する。  Next, the function of the total heat exchange type ventilation fan 132 and the installation location of the total heat exchange type ventilation fan 132 will be described with reference to FIG.

図5bに示すように、全熱交換型換気扇本体126の下面には室内空気取込口131が設けられ、室内空気取込口131から吸い込まれた室内の空気は、排気用配管130を経由して排気129方向(室外)に排気され、その際、全熱交換型換気扇132が排気129する室内の空気(室内側排出空気)と、外気取込配管127を経由して全熱交換型換気扇132に吸い込まれる外気128とが全熱交換型換気扇本体126の内部で熱交換されると共に、吸い込まれた外気128は4本の給気パイプ134に分岐されて各居室に給気133されるように構成される。  As shown in FIG. 5 b, an indoor air intake 131 is provided on the lower surface of the total heat exchange type exhaust fan body 126, and the indoor air sucked from the indoor air intake 131 passes through the exhaust pipe 130. Then, the exhaust air is exhausted in the direction of the exhaust air 129 (outside the room). At that time, the total heat exchange type exhaust fan 132 passes through the indoor air exhausted by the total heat exchange type exhaust fan 132 and the outside air intake pipe 127. Heat is exchanged with the outside air 128 sucked into the total heat exchange type exhaust fan main body 126, and the sucked outside air 128 is branched into four air supply pipes 134 to be supplied 133 to each room. Composed.

このように構成された全熱交換型換気扇132を、図5a(図2、図3で説明した符号と同一符号で説明する)で示すように1階の天井部分に全熱交換型換気扇60(図5bで説明した全熱交換型換気扇132と同一製品)を取付け、全熱交換型換気扇60を稼働させる事により、居室Aの室内空気が矢印74方向から廊下Eに流れ込み全熱交換型換気扇60に吸い込まれ、吸い込まれた室内空気はダクト58を経由して室外に排気されると共に、全熱交換型換気扇60内部で新鮮な外気と熱交換され、全ての給気はダクト76を経由して1階床下内部73に供給される。同様に、2階の天井部分に全熱交換型換気扇54(図5bで説明した全熱交換型換気扇132と同一製品)を取付け、全熱交換型換気扇54を稼働させる事により、居室Bの室内空気が矢印59方向から廊下Dに流れ込み全熱交換型換気扇54に吸い込まれ、吸い込まれた室内空気はダクト55を経由して室外に排気されると共に、フード56から吸い込まれた外気は全熱交換型換気扇54内部で熱交換され、全ての外気はダクト62を経由して1階床下内部73に供給される。このようにして1階床下内部73に供給された新鮮な外気は、図2、図3で説明したように、1階床下内部73よりダクトとガラリを経由して1階の居室A、2階の居室Bに給気される。このようにして、各階に全熱交換型換気扇を1台づつ設置する事により、居室のみならず廊下も含めて建物全体の室温調節が可能となるばかりでなく、さらにフィルターの清掃作業も各階1台の清掃で済むようになる。  As shown in FIG. 5a (denoted by the same reference numerals as those described in FIGS. 2 and 3), the total heat exchange type exhaust fan 132 configured in this manner is provided on the ceiling portion of the first floor as shown in FIG. 5b is installed, and the total heat exchange type ventilation fan 60 is operated, so that the room air in the room A flows into the corridor E from the direction of the arrow 74 and the total heat exchange type ventilation fan 60. The indoor air sucked in is exhausted to the outside of the room through the duct 58, and heat is exchanged with fresh outside air in the total heat exchange type ventilation fan 60. All the supply air is routed through the duct 76. It is supplied to the first floor under floor 73. Similarly, the total heat exchange type ventilation fan 54 (the same product as the total heat exchange type ventilation fan 132 described with reference to FIG. 5B) is attached to the ceiling portion of the second floor, and the total heat exchange type ventilation fan 54 is operated, thereby Air flows into the corridor D from the direction of the arrow 59 and is sucked into the total heat exchange type ventilation fan 54. The sucked indoor air is exhausted to the outside through the duct 55, and the outdoor air sucked from the hood 56 is totally heat exchanged. Heat is exchanged inside the mold ventilation fan 54, and all the outside air is supplied to the first floor lower interior 73 via the duct 62. The fresh outside air supplied to the first floor lower interior 73 in this way is, as described with reference to FIGS. 2 and 3, from the first floor lower interior 73 via the duct and the gallery to the first floor room A, the second floor. Is in the room B. In this way, by installing one total heat exchange type ventilation fan on each floor, it is possible not only to adjust the room temperature of the whole building, including the hallway, but also to clean the filter. You will only need to clean the table.

図7は、図1で説明した基礎底盤10の上部に設置した温水放熱パイプ29を示す。温水放熱パイプ29は、図1乃至図3で説明したように1階床下内部の基礎底盤10の上部に設置され、1階床下内部を均等に暖めるように基礎に沿って四角形状になるように構成され、温水放熱パイプ29の高さを調整するため、図7bで示すように、下部が平板状の台座159(鋼板)とネジ山154のある2本の受けボルト156で形成され、その受けボルト156にナット155を取付け、ナット155の上部に、温水放熱パイプ29の塩ビパイプ148を受止めるためのU字形をした受台158の左右に開けた穴を2本のネジ山154に挿入し、受台158に塩ビパイプ148を乗せ、基礎底盤10から塩ビパイプ148までの高さを揃えるため、ナット155で受台158の高さを調整し、基礎底盤10から塩ビパイプ148の高さを同一高さになるように調整したあと、逆U字形をして左右に受けボルト156を通すための穴139が開けられた固定カバー157を塩ビパイプ148に被せナット153で受台158と固定カバー157を固定する。このように、複数のパイプ固定用台座150で温水放熱パイプ29の塩ビパイプ148を支える事により、温水放熱パイプ29の傾きを水平に調整する事が出来るようになり、風呂40の温かい残り湯が偏る事なく温水放熱パイプ29の中に滞留する事が出来るようになった。  FIG. 7 shows the hot water radiating pipe 29 installed on the upper part of the foundation bottom board 10 demonstrated in FIG. The hot water radiating pipe 29 is installed at the upper part of the foundation bottom 10 inside the first floor as described with reference to FIGS. 1 to 3 so as to have a rectangular shape along the foundation so as to uniformly warm the inside of the first floor. In order to adjust the height of the hot water radiating pipe 29, as shown in FIG. 7b, the lower part is formed by a flat pedestal 159 (steel plate) and two receiving bolts 156 having a thread 154. A nut 155 is attached to the bolt 156, and a hole formed on the left and right sides of a U-shaped receiving base 158 for receiving the PVC pipe 148 of the hot water radiating pipe 29 is inserted into the two threads 154 at the top of the nut 155. In order to place the PVC pipe 148 on the cradle 158 and align the height from the foundation bottom 10 to the PVC pipe 148, the height of the cradle 158 is adjusted with the nut 155, and the PVC pipe 148 is After the height is adjusted to the same height, a fixed cover 157 having a reverse U-shape and a hole 139 through which the receiving bolt 156 is passed to the left and right is covered with a PVC pipe 148 and a receiving base 158 with a nut 153. The fixed cover 157 is fixed. In this manner, by supporting the PVC pipe 148 of the hot water radiating pipe 29 with the plurality of pipe fixing bases 150, the inclination of the hot water radiating pipe 29 can be adjusted horizontally, and the hot remaining hot water of the bath 40 can be adjusted. It became possible to stay in the hot water radiating pipe 29 without being biased.

さらに、基礎底盤10の上部に配置された塩ビパイプ148の両端に、塩ビキャップ145、塩ビキャップ146を取付け塩ビパイプ148の両端を塞ぐと共に、風呂40の排水が流れ込む温水放熱パイプ29の先端部と電気切替弁39を、図7cで示すように電気切替弁39の排水口の底部の高さと、塩ビパイプ148の底部の高さが同一高さになるように高さを調整した上、塩ビの接続パイプ160で接続する事により、風呂40の排水がスムーズに温水放熱パイプ29に流れ込む事が出来るようになる。さらに温水放熱パイプ29の後端部は、図7dで示すように塩ビパイプ148の内部の上部が、逆U字形トラップ141の頂点の内部の下部と同一高さになるように逆U字形トラップ141を構成し、排水パイプ34と塩ビパイプ148を逆U字形トラップ141で接続する事により、風呂40から流れ出た温かい風呂40の残り湯が温水放熱パイプ29の中の冷めた風呂40の残り湯を逆U字形トラップ141から押し出し、冷めた風呂40の残り湯は排水パイプ34を経由して排水溝33に排水され、温かい風呂40の残り湯は塩ビパイプ148の中に溜湯される。  Furthermore, a vinyl chloride cap 145 and a vinyl chloride cap 146 are attached to both ends of the vinyl chloride pipe 148 disposed on the upper portion of the foundation bottom board 10, and both ends of the vinyl chloride pipe 148 are closed, and the distal end portion of the hot water radiating pipe 29 into which the drainage of the bath 40 flows. As shown in FIG. 7c, the electrical switching valve 39 is adjusted so that the height of the bottom of the drain of the electrical switching valve 39 is the same as the height of the bottom of the PVC pipe 148. By connecting with the connection pipe 160, the drainage of the bath 40 can smoothly flow into the hot water radiation pipe 29. Further, the rear end portion of the hot water radiating pipe 29 has an inverted U-shaped trap 141 such that the upper part inside the PVC pipe 148 is flush with the lower part inside the apex of the inverted U-shaped trap 141 as shown in FIG. By connecting the drain pipe 34 and the PVC pipe 148 with an inverted U-shaped trap 141, the remaining hot water of the warm bath 40 flowing out of the bath 40 becomes the remaining hot water of the cooled bath 40 in the hot water radiation pipe 29. The remaining hot water of the bath 40 which has been pushed out from the inverted U-shaped trap 141 and is cooled is drained into the drain groove 33 via the drain pipe 34, and the remaining hot water of the warm bath 40 is stored in the PVC pipe 148.

以下、この発明の実施の形態2について説明する。
[発明の実施の形態2]
The second embodiment of the present invention will be described below.
[Embodiment 2 of the Invention]

図8、図9は、この発明の実施の形態2を示す。上記発明の実施の形態1では、図2(冬期)、図3(夏期)の何れの季節においても、1階床下内部73の空気を1階の居室Aに給気する場合、1階床に穴を開け、その穴の床上部にガラリ68を取付けると共に、穴の床下内部に送風機69を取付け、送風機69を稼動させる事により1階床下内部73の空気を1階の居室Aに給気し、さらに1階床下内部73の空気を2階の居室Bに給気する場合は、1階床下内部73から2階床部にダクト109を取付け、ダクト109の2階床部にガラリ110を取付けると共に、1階床下内部73に送風機106を取付け、送風機106を稼動させる事により1階床下内部73の空気を2階の居室Bに給気していたのに対して、この発明の実施の形態2では、図8、図9で示すように、1階床下内部188から1階の居室Dと2階の居室Eに連通するダクト191を取付け、そのダクト191の1階の居室Dの天井下部に送風機190とガラリ189を取付けると共に、ダクト191の2階の居室Eの天井下部に送風機192とガラリ193を取付け、送風機190、192を稼動させる事により、1階床下内部188の空気を1階の居室Dと2階の居室Eに給気するように構成した。  8 and 9 show a second embodiment of the present invention. In the first embodiment of the present invention, when the air inside the first floor under floor 73 is supplied to the first floor room A in any season of FIG. 2 (winter) and FIG. 3 (summer), A hole 68 is opened, and a gallery 68 is attached to the upper floor of the hole. A blower 69 is attached to the inside of the hole under the hole, and the air in the first floor underfloor interior 73 is supplied to the first floor room A by operating the blower 69. Further, when the air in the first floor under floor 73 is supplied to the second floor living room B, the duct 109 is attached from the first floor under floor 73 to the second floor, and the gallery 110 is attached to the second floor of the duct 109. At the same time, the blower 106 is attached to the first floor underfloor interior 73, and the air in the first floor underfloor interior 73 is supplied to the second floor living room B by operating the blower 106. 2, as shown in FIG. 8 and FIG. A duct 191 communicating from the room 88 to the room D on the first floor and the room E on the second floor is attached, and a fan 190 and a gall 189 are attached to the lower part of the ceiling of the room D on the first floor of the duct 191, and the room on the second floor of the duct 191 A blower 192 and a gallery 193 are attached to the lower part of the ceiling of E, and the blowers 190 and 192 are operated so that the air in the interior 188 under the first floor is supplied to the room D on the first floor and the room E on the second floor. .

このように構成する事により、図9で示す夏期の弱冷風運転において、1階床下内部188の空気をダクト191を経由して1階の居室Dと2階の居室Eの天井下部から給気する事が可能となり、弱冷気を居室の天井部分から床面に向かって給気する事により、冷房効果が一層増して効率よく居室を冷やす事が可能となる。なお、このように夏期において1階床下内部188の空気をダクト191を経由して1階の居室Dと2階の居室Eに給気する際は、1階の居室Dのガラリ175と2階の居室Eのガラリ194に蓋を取付け、送風機176と送風機186の稼動を停止させる。  With this configuration, air in the first floor underfloor interior 188 is supplied from the lower ceiling of the first floor room D and the second floor room E via the duct 191 in the summer cold air operation shown in FIG. By supplying weak cold air from the ceiling portion of the room toward the floor, the cooling effect is further increased and the room can be efficiently cooled. In this way, when the air in the interior 188 under the first floor is supplied to the first-floor room D and the second-floor room E via the duct 191 in the summer, the gallery 175 and the second floor of the first-floor room D A lid is attached to the gallery 194 of the living room E, and the operations of the blower 176 and the blower 186 are stopped.

さらに、図8で示すように、冬期において1階床下内部188の空気を、1階床下内部188の送風機176、送風機186を稼動させて1階の居室Dと2階の居室Eに給気する場合は、ダクト191の1階の居室Dのガラリ189と2階の居室Eのガラリ193に蓋を取付け、送風機190と送風機192の稼動を停止させる。このように1階床下内部188の空気を1階の居室Dと2階の居室Eに給気する際、夏期と冬期で給気するガラリの位置を変更する理由は、室温に比べ、熱い空気は上昇し、冷たい空気は下降するためである。その他の構造においては、この発明の実施の形態1と同様である。  Further, as shown in FIG. 8, the air in the first floor underfloor interior 188 is supplied to the first floor living room D and the second floor living room E by operating the blower 176 and the blower 186 in the first floor underfloor interior 188 in winter. In this case, a lid is attached to the gallery 189 of the first floor room D of the duct 191 and the gallery 193 of the second floor room E, and the operations of the blower 190 and the blower 192 are stopped. As described above, when the air in the interior 188 under the first floor is supplied to the room D on the first floor and the room E on the second floor, the reason for changing the position of the louver supplied in the summer and winter is that the hot air is higher than the room temperature. This is because the air rises and the cold air descends. Other structures are the same as those of the first embodiment of the present invention.

最後に、当社が販売しているアース・ソーラーシステムを装備した注文住宅の場合、お客様の要望(例えば、冬期の暖房を強化してほしい等)に応じ、費用対効果を考慮して各種バリエーション(屋根の上に設置する太陽熱集熱器、地中に埋設して地熱を利用する地中熱回収パイプ、風呂の残り湯を利用する温水放熱パイプ)を組み合わしたアース・ソーラーシステムを販売中である。本発明におけるアース・ソーラーシステムは、その商品(バリエーション)の内の一つである。  Finally, in the case of custom-built homes equipped with an earth / solar system that we sell, various variations (for example, wanting to strengthen heating in the winter season) take into account cost-effectiveness. We are selling earth solar systems that combine solar heat collectors installed on the roof, underground heat recovery pipes that are buried in the ground and use geothermal heat, and hot water radiation pipes that use the remaining hot water in the bath) . The earth solar system in the present invention is one of the products (variations).

以上、実施の形態に基づいて、本発明に係るアース・ソーラーシステムについて詳細に説明してきたが、本発明は、以上の実施の形態に限定されるものではなく、発明の趣旨を逸脱しない範囲において各種の改変をなしても、本発明の技術的範囲に属するのはもちろんである。  As described above, the earth / solar system according to the present invention has been described in detail on the basis of the embodiment. However, the present invention is not limited to the above embodiment, and the scope of the invention is not deviated. It goes without saying that various modifications are included in the technical scope of the present invention.

図1において、風呂40の残り湯を、排水パイプ41から温水放熱パイプ29方向に切り替えるため、電気切替弁39を使用すると説明したが、電気切替弁39に限らず、機械式切替バルブ、電磁式切替弁、手動式切替バルブを使用する事も、もちろん可能である。  In FIG. 1, it has been described that the electric switching valve 39 is used to switch the remaining hot water of the bath 40 from the drain pipe 41 to the hot water radiating pipe 29, but not only the electric switching valve 39 but also a mechanical switching valve, an electromagnetic type Of course, it is possible to use a switching valve or a manual switching valve.

図8、図9において、ダクト191の1階居室部分と2階居室部分に、それぞれ一台の送風機190と送風機192を取付けたが、コストを抑えるために1階居室の送風機190と2階居室の送風機192を取り外し、ダクト191の1階床下内部188の空気取込口に一台の送風機を取付け、1階居室と2階居室を同時に給気する事も、もちろん可能である。  8 and 9, one blower 190 and one blower 192 are attached to the first-floor room portion and the second-floor room portion of the duct 191, respectively. To reduce costs, the first-floor blower 190 and the second-floor room are provided. Of course, it is also possible to remove the blower 192 and attach a single blower to the air intake port of the interior 188 under the first floor of the duct 191 to supply air to the first-floor room and the second-floor room at the same time.

この発明の実施の形態1に係る、アース・ソーラーシステムの立体図である。It is a three-dimensional view of the earth solar system based on Embodiment 1 of this invention. 同実施の形態に係る、冬期の住宅断面図における全熱交換型換気扇と地中熱回収パイプと温水放熱パイプを利用したアース・ソーラーシステムの弱温風システム図である。FIG. 3 is a low-temperature air system diagram of an earth solar system using a total heat exchange type ventilation fan, a ground heat recovery pipe, and a hot water radiation pipe in a winter sectional view of the house according to the embodiment. 同実施の形態に係る、夏期の住宅断面図における全熱交換型換気扇と地中熱回収パイプを利用したアース・ソーラーシステムの弱冷風システム図である。FIG. 4 is a system diagram showing a weak cold wind of an earth solar system using a total heat exchanging ventilation fan and a ground heat recovery pipe in a sectional view of a house in summer, according to the same embodiment. 同実施の形態に係る、住宅に、屋根断熱材、外壁断熱材、断熱樹脂サッシ、基礎外断熱材を施工した状態の断面図である。It is sectional drawing of the state which constructed the roof heat insulating material, the outer wall heat insulating material, the heat insulation resin sash, and the foundation outer heat insulating material to the house based on the embodiment. 同実施の形態に係る、天井取付専用型の全熱交換型換気扇を設置する場所を示した住宅断面図である。It is sectional drawing of a house which showed the place which installs the total heat exchange type exhaust fan only for ceiling mounting based on the embodiment. 同実施の形態に係る、地中熱回収パイプと1階床下空間の空気の流れを説明した斜視図である。It is the perspective view explaining the flow of the air of a underground heat recovery pipe and the 1st floor underfloor space based on the embodiment. 同実施の形態に係る、風呂の残り湯を溜湯するための、温水放熱パイプの斜視図である。It is a perspective view of the warm water heat radiating pipe for storing the hot water of the bath based on the embodiment. この発明の実施の形態2に係る、冬期において居室を暖めるための弱温風の給気経路を示す住宅断面図である。It is house sectional drawing which shows the supply path | route of the low temperature air for warming a living room based on Embodiment 2 of this invention in winter. 同実施の形態に係る、夏期において居室を冷やすための弱冷風の給気経路を示す住宅断面図である。It is a house sectional view showing an air supply route of weak cold air for cooling a living room in the summer according to the embodiment.

1 住宅
2 屋根
3 フード
4 矢印
5 外気導入ダクト
6 ダクト
7 矢印
8 矢印
9 矢印
10 基礎底盤
11 90°エルボ
12 基礎
13 90°エルボ
14 送風機
15 矢印
16 矢印
17 地中熱回収パイプ
18 矢印
19 90°エルボ
20 90°エルボ
21 送風機
22 矢印
23 地中熱回収パイプ
24 矢印
25 矢印
26 地中熱回収パイプ
27 矢印
28 矢印
29 温水放熱パイプ
30 矢印
31 地中熱回収パイプ
32 矢印
33 排水溝
34 排水パイプ
35 90°エルボ
36 90°エルボ
37 送風機
38 矢印
39 電気切替弁
40 風呂
41 排水パイプ
42 90°エルボ
43 90°エルボ
44 送風機
45 給水管
46 風呂給湯器
51 太陽
52 住宅
53 屋根
54 全熱交換型換気扇
55 ダクト
56 フード
57 矢印
58 ダクト
59 矢印
60 全熱交換型換気扇
61 矢印
62 ダクト
63 矢印
64 矢印
65 フード
66 矢印
67 矢印
68 ガラリ
69 送風機
70 基礎底盤
71 基礎
72 温水放熱パイプ
73 1階床下内部
74 矢印
75 矢印
76 ダクト
77 風呂
78 電気切替弁
79 矢印
80 矢印
81 矢印
82 矢印
83 矢印
84 地中熱回収パイプ
85 送風機
86 矢印
87 矢印
88 地中熱回収パイプ
89 送風機
90 矢印
91 矢印
92 地中熱回収パイプ
93 送風機
94 矢印
95 矢印
96 地中熱回収パイプ
97 塩ビパイプ
98 エルボ
99 塩ビパイプ
100 送風機
101 矢印
102 排水溝
103 上水道
104 矢印
105 給水管
106 送風機
107 風呂給湯器
108 矢印
109 ダクト
110 ガラリ
115 矢印
120 屋根断熱材
121 外壁断熱材
122 断熱樹脂サッシ
123 基礎外断熱材
126 全熱交換型換気扇本体
127 外気取込配管
128 外気
129 排気
130 排気用配管
131 室内空気取込口
132 全熱交換型換気扇
133 給気
134 給気パイプ
139 穴
140 矢印
141 逆U字形トラップ
142 矢印
143 矢印
144 矢印
145 塩ビキャップ
146 塩ビキャップ
147 矢印
148 塩ビパイプ
149 エルボ
150 パイプ固定用台座
151 矢印
152 矢印
153 ナット
154 ネジ山
155 ナット
156 受けボルト
157 固定カバー
158 受台
159 台座
160 接続パイプ
161 屋根
162 全熱交換型換気扇
163 ダクト
164 矢印
165 ダクト
166 全熱交換型換気扇
167 ダクト
168 フード
169 矢印
170 フード
171 矢印
172 矢印
173 ダクト
174 矢印
175 ガラリ
176 送風機
177 地中熱回収パイプ
178 送風機
179 地中熱回収パイプ
180 送風機
181 地中熱回収パイプ
182 送風機
183 地中熱回収パイプ
184 送風機
185 矢印
186 送風機
187 ダクト
188 1階床下空間
189 ガラリ
190 送風機
191 ダクト
192 送風機
193 ガラリ
194 ガラリ
195 矢印
196 矢印
197 矢印
198 矢印
DESCRIPTION OF SYMBOLS 1 House 2 Roof 3 Hood 4 Arrow 5 Outside air introduction duct 6 Duct 7 Arrow 8 Arrow 9 Arrow 10 Foundation bottom board 11 90 ° elbow 12 Foundation 13 90 ° elbow 14 Blower 15 Arrow 16 Arrow 17 Ground heat recovery pipe 18 Arrow 19 90 ° Elbow 20 90 ° elbow 21 Blower 22 Arrow 23 Geothermal recovery pipe 24 Arrow 25 Arrow 26 Geothermal recovery pipe 27 Arrow 28 Arrow 29 Hot water radiating pipe 30 Arrow 31 Geothermal recovery pipe 32 Arrow 33 Drain groove 34 Drain pipe 35 90 ° elbow 36 90 ° elbow 37 Blower 38 Arrow 39 Electric switching valve 40 Bath 41 Drain pipe 42 90 ° Elbow 43 90 ° Elbow 44 Blower 45 Water supply pipe 46 Bath water heater 51 Solar 52 House 53 Roof 54 Total heat exchange type exhaust fan 55 Duct 56 Hood 57 Arrow 58 Duct 59 Arrow 60 Total heat exchange ventilation 61 arrow 62 duct 63 arrow 64 arrow 65 hood 66 arrow 67 arrow 68 louver 69 blower 70 foundation bottom 71 71 foundation 72 warm water radiating pipe 73 first floor under floor 74 arrow 75 arrow 76 duct 77 bath 78 electric switching valve 79 arrow 80 arrow 81 arrow 82 Arrow 83 Arrow 84 Geothermal recovery pipe 85 Blower 86 Arrow 87 Arrow 88 Geothermal recovery pipe 89 Blower 90 Arrow 91 Arrow 92 Geothermal recovery pipe 93 Blower 94 Arrow 95 Arrow 96 Geothermal recovery pipe 97 PVC pipe 98 Elbow 99 PVC pipe 100 Blower 101 Arrow 102 Drainage channel 103 Water supply 104 Arrow 105 Water supply pipe 106 Blower 107 Bath water heater 108 Arrow 109 Duct 110 Galley 115 Arrow 120 Roof heat insulating material 121 Outer wall heat insulating material 122 Heat insulating resin sash 123 Basic outer heat insulating material 26 Total heat exchange type exhaust fan body 127 Outside air intake pipe 128 Outside air 129 Exhaust pipe 130 Exhaust pipe 131 Indoor air intake port 132 Total heat exchange type exhaust fan 133 Supply air 134 Supply pipe 139 Hole 140 Arrow 141 Reverse U-shaped trap 142 Arrow 143 arrow 144 arrow 145 PVC cap 146 PVC cap 147 arrow 148 PVC pipe 149 elbow 150 pipe fixing base 151 arrow 152 arrow 153 nut 154 thread 155 nut 156 receiving bolt 157 fixing cover 158 receiving base 159 base 160 connecting pipe 161 roof 162 Total heat exchange type exhaust fan 163 Duct 164 Arrow 165 Duct 166 Total heat exchange type exhaust fan 167 Duct 168 Hood 169 Arrow 170 Hood 171 Arrow 172 Arrow 173 Duct 174 Arrow 175 Garage 176 Machine 177 Geothermal recovery pipe 178 Blower 179 Geothermal recovery pipe 180 Blower 181 Geothermal recovery pipe 182 Blower 183 Geothermal recovery pipe 184 Blower 185 Arrow 186 Blower 187 Duct 188 First floor underfloor space 189 Garage 190 Blower 191 Duct 192 Blower 193 Garage 194 Garage 195 Arrow 196 Arrow 197 Arrow 198 Arrow

Claims (1)

建物の室内に取付けた全熱交換型換気扇が室内に給気する新鮮な外気を、建物の1階床下に送り込むと共に、1階床下の基礎底盤に、下部をU字形に構成した内径100ミリメートル、地中に埋め込む深さ4メートルの塩ビパイプの地中熱回収パイプの両端を、基礎底盤より1階床下内部に突き出すように地中に埋設し、地中熱回収パイプの一端に送風機を取付けて稼動させる事により、1階床下内部の空気が地中熱回収パイプに吸い込まれ、その地中熱回収パイプに吸い込まれた空気は、冬期においては地中熱により地中熱回収パイプの中で暖められて1階床下内部を暖めると共に、1階床下の基礎底盤の上部に基礎に沿って四角形状になるように構成した温水放熱パイプの高さを調整するため下部を平板状の台座とネジ山のある2本の受けボルトで形成し、前記受けボルトにナットを取付け、ナットの上部に温水放熱パイプの塩ビパイプを受止めるためのU字形をした受台の左右に開 けた穴を2本の受けボルトに挿入し、受台に塩ビパイプを乗せ、塩ビパイプを基礎底盤に対して同一高さになるようにナットで受台の高さを調整したあと、逆U字形をして左右に前記受けボルトを通すための穴を開けた固定カバーを塩ビパイプに被せ、ナットで受台と固定カバーを固定し、温水放熱パイプの後端部に、前記塩ビパイプの内部の上部が、逆U字形トラップの頂点の内部の下部と同一高さになるように逆U字形トラップを接続し、さらに逆U字形トラップの端部を排水パイプに接続し、温水放熱パイプに風呂の温かい残り湯を流して溜湯させる事により、1階床下内部の空気をさらに暖め、このようにして暖められた1階床下内部の空気を各階の室内に給気して室内を暖め、また、夏期においては地中熱により地中熱回収パイプの中で冷やされた1階床下内部の空気を各階の室内に給気して室内を冷やした事を特徴とするアース・ソーラーシステム。A fresh heat that is supplied to the room by a total heat exchange type ventilation fan installed in the room of the building sends the fresh air outside the floor of the first floor of the building . Embed both ends of the ground heat recovery pipe of the PVC pipe with a depth of 4 meters embedded in the ground so that it protrudes from the foundation bottom to the bottom of the first floor, and attach a blower to one end of the ground heat recovery pipe. By operating, the air inside the floor under the first floor is sucked into the underground heat recovery pipe, and the air sucked into the underground heat recovery pipe is warmed in the underground heat recovery pipe by the underground heat in winter. In order to warm the interior of the first floor under the floor and adjust the height of the hot water radiating pipe configured to form a square shape along the foundation at the top of the foundation floor under the first floor, the lower part is a flat plate base and screw thread There are two receiving Forming a bolt, attached to the nut to the receiving bolt is inserted into the right and left cradle in which the U-shaped for receiving the PVC pipe for hot water radiating pipe to the top of the nut to open only hole to two receiving bolts, After placing the PVC pipe on the cradle and adjusting the height of the cradle with the nut so that the PVC pipe is at the same height as the base bottom, make a reverse U shape and pass the receiving bolt to the left and right Cover the PVC pipe with the fixed cover with holes, fix the cradle and the fixed cover with nuts, and the upper part of the PVC pipe at the rear end of the hot water radiating pipe is inside the apex of the inverted U-shaped trap. By connecting an inverted U-shaped trap so that it is at the same height as the lower part, connecting the end of the inverted U-shaped trap to a drain pipe, and flowing hot hot water from the bath into the hot water radiating pipe, Air inside the first floor The first floor is warmed and warmed in this way by supplying the air inside the floor under the first floor to the interior of each floor, and in the summer, it is cooled in the underground heat recovery pipe by underground heat. Earth / solar system characterized by cooling the room by supplying the air inside the floor to the room on each floor.
JP2012289458A 2012-12-27 2012-12-27 Earth / Solar system Expired - Fee Related JP6135907B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012289458A JP6135907B2 (en) 2012-12-27 2012-12-27 Earth / Solar system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012289458A JP6135907B2 (en) 2012-12-27 2012-12-27 Earth / Solar system

Publications (2)

Publication Number Publication Date
JP2014129993A JP2014129993A (en) 2014-07-10
JP6135907B2 true JP6135907B2 (en) 2017-05-31

Family

ID=51408511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012289458A Expired - Fee Related JP6135907B2 (en) 2012-12-27 2012-12-27 Earth / Solar system

Country Status (1)

Country Link
JP (1) JP6135907B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7295753B2 (en) * 2019-09-18 2023-06-21 積水化学工業株式会社 air conditioning system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09250782A (en) * 1996-03-14 1997-09-22 Hazama Gumi Ltd Cooling-heating system
JP4283879B1 (en) * 2008-06-17 2009-06-24 積水ハウス株式会社 Heating system using residual heat from bathtub and remaining hot water in bath
JP5505836B2 (en) * 2010-03-12 2014-05-28 株式会社 ▲高▼▲橋▼監理 Improved earth / solar system (Ground heat recovery pipe method)

Also Published As

Publication number Publication date
JP2014129993A (en) 2014-07-10

Similar Documents

Publication Publication Date Title
JP5742009B2 (en) Earth / Solar / Zero Energy Housing
JP5505836B2 (en) Improved earth / solar system (Ground heat recovery pipe method)
JP2009264721A (en) Earth solar system (single layer type)
JP5067730B2 (en) Earth / Solar system
JP2006266575A (en) House using geothermal heat
JP2009127921A (en) Cold taking-in system
JP6249387B1 (en) Floor air conditioning system
JP6135905B2 (en) Earth / Solar system
JP5483051B2 (en) Residential ventilation system
JP5505837B2 (en) Earth / Solar system (basement compatible)
JP6135906B2 (en) Earth / Solar system
JP6135907B2 (en) Earth / Solar system
WO2015015640A1 (en) Smart ecological air conditioning system
JP6249221B2 (en) Air-conditioning equipment using geothermal heat
JP2012251677A (en) Heat storage air-conditioning system
JP3848652B2 (en) Solar system house
JP3148898U (en) Geothermal building
JP2014015711A (en) Radiant heat heating and cooling system of building utilizing in-wall-body vent layer
JP5344343B2 (en) Earth solar system (Ground heat recovery pipe method)
JP5833064B2 (en) Thermal storage air conditioning system
JP2005241073A (en) Passive solar system house
JP2009085553A (en) Geothermal system for building
JP3207041U (en) Airtight house
JP2005163482A (en) Ventilation system for building
JP3185552U (en) Air conditioning system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170412

R150 Certificate of patent or registration of utility model

Ref document number: 6135907

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees