JP5344343B2 - Earth solar system (Ground heat recovery pipe method) - Google Patents

Earth solar system (Ground heat recovery pipe method) Download PDF

Info

Publication number
JP5344343B2
JP5344343B2 JP2009158863A JP2009158863A JP5344343B2 JP 5344343 B2 JP5344343 B2 JP 5344343B2 JP 2009158863 A JP2009158863 A JP 2009158863A JP 2009158863 A JP2009158863 A JP 2009158863A JP 5344343 B2 JP5344343 B2 JP 5344343B2
Authority
JP
Japan
Prior art keywords
floor
air
recovery pipe
heat recovery
underground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009158863A
Other languages
Japanese (ja)
Other versions
JP2011012918A (en
Inventor
龍夫 ▲高▼▲橋▼
Original Assignee
株式会社 ▲高▼▲橋▼監理
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 ▲高▼▲橋▼監理 filed Critical 株式会社 ▲高▼▲橋▼監理
Priority to JP2009158863A priority Critical patent/JP5344343B2/en
Publication of JP2011012918A publication Critical patent/JP2011012918A/en
Application granted granted Critical
Publication of JP5344343B2 publication Critical patent/JP5344343B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • F24T10/13Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Description

本発明は、建物の室内に取付けた全熱交換形換気扇が室内側に供給する新鮮な外気を、建物の1階床下部に送り込むと共に、1階床下の基礎底盤に下部をU字形に形成した複数の地中熱回収パイプを、両端を基礎底盤より1階床下部に突き出すように地中に埋設し、地中熱回収パイプの一端には送風機を取付け、その送風機を作動させる事により1階床下内部の空気が地中熱回収パイプに吸込まれ、その地中熱回収パイプに吸込まれた空気は、冬期は地中熱により地中熱回収パイプの中で暖められ、また、夏期は地中熱により地中熱回収パイプの中で冷やされた空気が1階床下部に供給されると共に、その1階床下の空気をダクトを経由して各階の天井内部に供給し、天井内部に供給された空気が各室天井に設けたガラリより室内に供給され、室温調整を行う為の装置に関するものである。   In the present invention, fresh outside air supplied to the indoor side by a total heat exchange type exhaust fan installed in the room of the building is sent to the lower part of the first floor of the building, and the lower part is formed in a U-shape on the foundation floor under the first floor. A plurality of underground heat recovery pipes are buried in the ground so that both ends protrude from the foundation floor to the lower part of the first floor. A blower is attached to one end of the underground heat recovery pipe, and the blower is operated to operate the first floor. The air inside the underfloor is sucked into the underground heat recovery pipe, and the air sucked into the underground heat recovery pipe is warmed in the underground heat recovery pipe by the underground heat in the winter and underground in the summer. The air cooled in the underground heat recovery pipe by heat is supplied to the lower part of the first floor, and the air under the first floor is supplied to the inside of the ceiling of each floor via the duct and supplied to the inside of the ceiling. Air is supplied to the room from the gallery provided on the ceiling of each room. To an apparatus for performing the room temperature adjustment.

従来の、小規模な住宅における室温調整は、夏期にはクーラーを使用し、冬期には電気、ガス、石油等のエネルギーを利用して冷暖房を行って来たが、近年では地球温暖化防止の観点から、エネルギー消費に伴うCO2排出量の削減が急務となり、エネルギー消費量の削減や、さらに自然エネルギーへの代替が早急に望まれている。   Conventional room temperature adjustment in small houses has been using air conditioners in the summer and cooling and heating using energy such as electricity, gas, and oil in the winter. From the viewpoint, it is an urgent need to reduce CO2 emissions accompanying energy consumption, and reduction of energy consumption and further replacement with natural energy are urgently desired.

これに伴い、自然エネルギーの利用手段として、現在、一般的に普及しているものは、太陽エネルギーを利用した、太陽熱温水器(熱効率50〜60%)と太陽光発電(変換効率10〜15%)があるが、いずれも、太陽エネルギーだけを利用する省エネ技術は天候に左右され易く、不安定な点から単独では利用が出来ず、他のエネルギーと兼用して利用されて来た為、なお一層の改良が求められている。   Along with this, as a means of utilizing natural energy, what is currently widely used is a solar water heater (thermal efficiency 50-60%) and solar power generation (conversion efficiency 10-15%) using solar energy. However, in both cases, energy-saving technology that uses only solar energy is easily affected by the weather and cannot be used alone because of its instability, and it has been used in combination with other energy. There is a need for further improvements.

これに対して、地下4〜5mの地中は、年間を通じて安定した温度を保つことから、夏期は外気と比べて低温となり、冬期は外気と比べて暖温となる。そのため、従来からこのような地中熱を利用した設備は、大型の建物や公共設備等で実験的に施工されているが、その利用方法は、冬の間に自然界で出来た氷を保存しておき、その氷を夏期に地下に設けた蓄熱槽に移して冷水を作り、その冷水を各室に循環させて冷房を行うことが一般的であり、大掛かりな工事が必要となり、しかも、定期的に蓄熱層に氷を補充しなければならず、小規模な住宅用としては不向きであった。   On the other hand, the underground 4 to 5 m underground maintains a stable temperature throughout the year, so that it is cooler than the outside air in the summer and warmer than the outside in the winter. For this reason, facilities that use geothermal heat have been experimentally constructed in large buildings and public facilities, but the method of use is to preserve the ice made in nature during the winter. In general, it is common to transfer the ice to a heat storage tank in the basement in the summer to make cold water, circulate the cold water to each room and cool it. Therefore, it was necessary to replenish the heat storage layer with ice, which was not suitable for small-scale housing.

さらに、地中熱を利用したヒートポンプ方式で、家庭内の給湯と、室内の冷暖房を行う方法も行われているが、水平ループ方式(地中に深さ1〜2mの堀を堀り、そこに採熱用パイプを這わせて埋設する)では、建坪100mの住宅の熱源を得るために400〜600mの採熱用パイプを埋設することが必要であり、又、垂直ループ方式(地中に深さ50〜100mの井戸を堀り、そこに採熱用パイプを埋設する)では2本の井戸が必要となり、一般住宅用で300〜500万円の費用を要すると共に、ヒートポンプの稼動コスト(電気代)が、深夜電力を利用した電気温水器の約75%かかるといった問題があった。 Furthermore, a heat pump system that uses geothermal heat is also used to supply hot water in the home and to cool and heat the room, but a horizontal loop system (deep a 1-2 m deep moat in the ground, In order to obtain a heat source for a house with a floor area of 100 m 2 , it is necessary to embed a heat collecting pipe of 400 to 600 m, and a vertical loop method (underground) 2) is required for the construction of a well with a depth of 50 to 100m, and a pipe for heat collection is buried there. There was a problem that (electricity bill) took about 75% of the electric water heater using midnight power.

また、平成15年7月に建築基準法が改正され、「シックハウス対策」として、居室の24時間換気(1時間で居室体積の0.5回分を換気させる事)が義務づけられた。   In July 2003, the Building Standards Law was amended to require 24-hour ventilation of the room (to ventilate 0.5 times the volume of the room in one hour) as a “sick house measure”.

そこで、本出願人は、特許文献1に記載された、建築基準法に対応できる「アース・ソーラーシステム(二層式)」を発明し出願した。この発明によれば、貯水タンクと、貯温水タンクの2つのタンクを地中に埋設し、その双方のタンク内に、外気取入口から各室の24時間給気パイプに連通する熱交換パイプを配管し、貯水タンクを雨水又は地下水又は水道水で満たすと共に、貯温水タンクは太陽熱温水器からの温水で満たし、前記、熱交換パイプに設けた開閉バルブを操作する事により、夏期においては、冬期の冷たい外気で冷やしておいた貯水タンク内の冷水を利用して、外気を貯水タンク内の熱交換パイプを経由させ、暑い外気を冷やして各室に送り込むため、効率よく冷風運転を行うことが出来る。また、冬期においては、夏期の暑い外気で温めておいた貯水タンクの弱温水に冷たい外気を熱交換バイプを経由して暖めると共に、さらに太陽熱温水器を利用した、貯温水タンク内の温水中の熱交換パイプを経由するため、各室に温風を送り込むことが可能となる。
特願2007―42895 特願2008―134783
Therefore, the present applicant invented and applied for an “earth / solar system (two-layer type)” described in Patent Document 1 and capable of complying with the Building Standard Law. According to the present invention, two tanks, a water storage tank and a hot water storage tank, are buried in the ground, and heat exchange pipes that communicate with the 24 hour air supply pipes of each room from the outside air intake are provided in both tanks. Plumbing and filling the storage tank with rain water, ground water or tap water, filling the storage tank with hot water from the solar water heater, and operating the opening / closing valve provided in the heat exchange pipe in the summer, in the winter Using cold water in the storage tank that has been cooled with cold outside air, the outside air is passed through the heat exchange pipe in the storage tank, and the hot outside air is cooled and sent to each room, so efficient cold wind operation can be performed I can do it. In the winter season, warm water in the water storage tank that has been warmed by hot outdoor air in the summer is warmed to the low temperature water via the heat exchange vapour. Since it passes through the heat exchange pipe, it becomes possible to send warm air into each room.
Japanese Patent Application No. 2007-42895 Japanese Patent Application No. 2008-134783

しかしながら、本出願人の出願した特許においては、貯水タンクと貯温水タンクの2つのタンクを必要とした為、配管が複雑になり、開閉バルブの数も増え、高価格になると共に、施工する為の工期も長く必要であった。   However, in the patent filed by the present applicant, two tanks, a water storage tank and a hot water storage tank, are required, which complicates the piping, increases the number of open / close valves, increases the price, and increases the construction cost. The construction period was long.

また、従来より地中熱交換機を利用した建物の空調換気システムとして知られているジオパワーシステムの場合は、冬期において、地中熱だけでは暖房効果(地下5mでも地中温度は約18度前後だから、外気を地中熱により暖めても、それ以下の温度にしかならない)が低く、さらに価格が高く、一般住宅に施工する場合はコストの面で問題があった。
特開2007―303693
In addition, in the case of the geopower system, which is conventionally known as an air conditioning ventilation system for buildings using underground heat exchangers, in the winter season, only the underground heat alone can produce a heating effect (the underground temperature is around 18 degrees even at 5 meters underground). Therefore, even if the outside air is warmed by underground heat, the temperature is only lower than that), and the price is high, and there is a problem in terms of cost when constructing an ordinary house.
JP2007-303693A

さらに、太陽エネルギーを利用するソーラーシステムとして知られているOMソーラーの場合は、夏期においては冷風運転が出来ないといった欠点があった。
特開平08―005161
Furthermore, in the case of OM solar known as a solar system using solar energy, there was a drawback that cold wind operation could not be performed in summer.
JP 08-005161

本発明は、このような、従来の欠点に鑑みて、自然との調和を図る事を目的とし、石油、ガス、電気等の人工エネルギーの浪費を抑え、太陽熱や地中の地熱を有効に利用して、住宅の室温調整を行うものであり、エネルギーコストが低く、構造が簡単な冷暖房装置を提供する事を課題とする。   In view of such conventional drawbacks, the present invention aims to harmonize with nature, suppress waste of artificial energy such as oil, gas, electricity, etc., and effectively use solar heat and underground geothermal heat. Thus, it is an object of the present invention to provide a cooling / heating device that adjusts the room temperature of a house, has a low energy cost, and has a simple structure.

本出願人の出願した特許文献1、特許文献2による発明では、上記のような問題が発生した為、当社では、新たに、建物の室内に取付けた全熱交換形換気扇が室内側に供給する新鮮な外気を、建物の1階床下部に送り込むと共に、1階床下の基礎底盤に下部をU字形に形成した複数の地中熱回収パイプを、両端を基礎底盤より1階床下部に突き出すように地中に埋設し、地中熱回収パイプの一端には送風機を取付け、その送風機を作動させる事により1階床下内部の空気が地中熱回収パイプに吸込まれ、その地中熱回収パイプに吸込まれた空気は、冬期は地中熱により地中熱回収パイプの中で暖められ、また、夏期は地中熱により地中熱回収パイプの中で冷やされた空気が1階床下部に供給されると共に、その床下の空気をダクトを経由して各階の天井内部に供給し、天井内部に供給された空気が各室天井に設けたガラリより室内に供給され、室温調整を行う為の装置に改良し、本発明を特許出願すると同時に、新製品の発売に踏み切る事となった。   In the inventions according to Patent Document 1 and Patent Document 2 filed by the present applicant, the above-mentioned problems have occurred. Therefore, our company newly supplies a total heat exchange type exhaust fan installed in the room interior to the indoor side. Fresh fresh air is sent to the lower part of the first floor of the building, and a plurality of underground heat recovery pipes with a U-shaped lower part formed on the foundation floor under the first floor protrude from the foundation floor to the lower part of the first floor. It is buried in the ground, and a blower is attached to one end of the underground heat recovery pipe. By operating the fan, the air inside the first floor is sucked into the underground heat recovery pipe, and the underground heat recovery pipe The sucked air is warmed in the ground heat recovery pipe by the underground heat in the winter, and the air cooled in the ground heat recovery pipe by the ground heat is supplied to the lower floor of the first floor in the summer. And the air under the floor goes through the duct The interior of the floor is supplied to the ceiling, and the air supplied to the interior of the ceiling is supplied to the room from the galleries provided on the ceiling of each room, improving the device to adjust the room temperature. It was decided to go on sale.

かかる課題を解決する為、請求項1に記載の発明は、建物の室内に取付けた全熱交換形換気扇が室内側に供給する新鮮な外気を、建物の1階床下部に送り込むと共に、1階床下の基礎底盤に下部をU字形に成形した複数の地中熱回収パイプを、両端を基礎底盤より1階床下部に突き出すように地中に埋設し、地中熱回収パイプの一端には送風機を取付け、その送風機を作動させる事により1階床下内部の空気が地中熱回収パイプに吸込まれ、その地中熱回収パイプに吸込まれた空気は、冬期は地中熱により地中熱回収パイプの中で暖められ、また、夏期は地中熱により地中熱回収パイプの中で冷やされた空気が1階床下部に供給されると共に、その1階床下の空気をダクトを通して各階の天井内部に供給し、天井内部に供給された空気を各室天井に設けたガラリより室内に供給した事を特徴とする。   In order to solve such a problem, the invention according to claim 1 sends fresh outside air supplied to the indoor side by a total heat exchange type ventilation fan attached to the room interior to the lower part of the first floor of the building and the first floor. A plurality of underground heat recovery pipes with a U-shaped lower part formed on the foundation floor under the floor are buried in the ground so that both ends protrude from the foundation floor to the bottom of the first floor, and a blower is installed at one end of the underground heat recovery pipe The air inside the first floor is sucked into the ground heat recovery pipe by operating the blower, and the air sucked into the ground heat recovery pipe is ground heat recovery pipe due to ground heat in the winter season. In the summer, the air cooled in the underground heat recovery pipe by the underground heat is supplied to the lower part of the first floor, and the air below the first floor is passed through the ducts inside the ceiling of each floor. The air supplied to the interior of the ceiling Characterized in that the supply into the room from the louver provided in the well.

請求項2に記載の発明は、請求項1に記載の構成に加え、地中熱回収パイプを1階床下基礎底盤の隅に設置する事により、地中熱回収パイプの位置を相互に離すと共に、地中熱回収パイプの基礎底盤から突き出した端部を基礎底盤に対してL字形に構成し、地中熱回収パイプの送風機が空気を送り出す方向と、別の位置の地中熱回収パイプの空気吸込口が、互いに向い合うように構成した事を特徴とする。   In addition to the structure of claim 1, the invention described in claim 2 installs the underground heat recovery pipe in the corner of the bottom floor of the first floor floor, thereby separating the position of the underground heat recovery pipe from each other. The end protruding from the foundation bottom of the ground heat recovery pipe is configured in an L shape with respect to the foundation bottom, and the direction in which the blower of the ground heat recovery pipe sends air and the ground heat recovery pipe at another position It is characterized in that the air suction ports are configured to face each other.

請求項3に記載の発明は、請求項1又は2に記載の構造に加え、冬期においては、太陽熱温水器からの温水を1階床下部に設けた温水蓄熱槽に循環させ、1階床下内部の空気を暖めた事を特徴とする。   In addition to the structure described in claim 1 or 2, the invention described in claim 3 circulates warm water from a solar water heater in a hot water storage tank provided in the lower part of the first floor in the winter, and the interior under the first floor It is characterized by warming the air.

請求項4に記載の発明は、請求項1及至3のいずれか一つに記載の構造に加え、基礎の外側に基礎外断熱材を施工すると共に、1階床下部を外気調整槽として利用する事により、1階床下部を外気から遮断した密封状態として構成した事を特徴とする。   In addition to the structure described in any one of claims 1 to 3, the invention described in claim 4 constructs a heat insulating material outside the foundation outside the foundation and uses the lower part of the first floor as an outside air adjusting tank. This is characterized in that the lower part of the first floor is configured as a sealed state cut off from the outside air.

請求項1に記載の発明によれば、1階床下部を外気調整槽として活用する為、建物の室内に取付けた全熱交換形換気扇が室内側に供給する新鮮な外気を、室内に循環させるのではなく、建物の1階床下部に送り込むと共に、1階床下の基礎底盤に下部をU字形に形成した複数の地中熱回収パイプを、両端を基礎底盤より1階床下部に突き出すように地中に埋設し、地中熱回収パイプの一端には送風機を取付け、その送風機を作動させる事により1階床下内部の空気が地中熱回収パイプに吸込まれ、その地中熱回収パイプに吸込まれた空気は、冬期は地中熱により地中熱回収パイプの中で暖められ、また、夏期は地中熱により地中熱回収パイプの中で冷やされた空気が1階床下部に供給されると共に、その1階床下の空気をダクトを経由して各階の天井内部に供給し、天井内部に供給された空気が各室天井に設けたガラリより室内に供給される。このように、全熱交換形換気扇と地中熱を利用する事により、従来のように、外気を地中熱回収パイプに直接取り込んで地中熱により熱交換する事に比べて熱効率が飛躍的に高まり、省エネにも貢献する事が可能となり、工期の短縮と、大幅にコストの低減を図る事が出来る。   According to the first aspect of the present invention, in order to utilize the lower part of the first floor as an outside air adjustment tank, fresh outside air supplied to the indoor side by a total heat exchange type ventilation fan attached to the room interior is circulated indoors. Rather than sending it to the lower floor of the first floor of the building, a plurality of underground heat recovery pipes with a U-shaped lower part formed on the foundation floor under the first floor so that both ends protrude from the foundation floor to the lower floor of the first floor It is buried in the ground, and a blower is attached to one end of the ground heat recovery pipe. By operating the blower, the air inside the first floor is sucked into the ground heat recovery pipe and sucked into the ground heat recovery pipe. The air that has been melted is warmed in the underground heat recovery pipe by the underground heat in the winter, and the air cooled in the underground heat recovery pipe by the underground heat is supplied to the lower floor of the first floor in the summer. And the air under the floor on the first floor And the supply to the ceiling inside the air supplied to the ceiling inside is supplied to the room from the louver provided in each room ceiling. In this way, by using the total heat exchange type ventilation fan and the underground heat, the heat efficiency is drastically compared to the conventional case where the outside air is directly taken into the underground heat recovery pipe and heat is exchanged by the underground heat. As a result, it is possible to contribute to energy saving, shortening the construction period and drastically reducing costs.

請求項2に記載の発明によれば、地中熱回収パイプを1階床下の基礎底盤の隅に設置する事により、地中熱回収パイプの位置を相互に離す事が可能となり、複数の地中熱回収パイプ同士が、お互いの地中熱回収パイプ同士からの地中熱の干渉を少なくする事が可能となる。さらに、地中熱回収パイプの基礎底盤から突き出した端部を基礎底盤に対してL字形に構成し、地中熱回収パイプの送風機が空気を送り出す方向と、別の位置の地中熱回収パイプの空気吸込口が互いに向い合うように構成する事により、1階床下内部の空気が掻き混ぜられ、1階床下内部の温度を場所によって、温度の高い低いが無いように均一に保つ事が可能となり、複数の地中熱回収パイプに対して、同一温度の空気を供給する事が可能となる。このように構成する事により、各階に供給する空気の温度を、常に安定させる事が可能となる。   According to the invention described in claim 2, by installing the underground heat recovery pipe in the corner of the foundation bottom under the first floor, it becomes possible to separate the positions of the underground heat recovery pipes from each other, and The intermediate heat recovery pipes can reduce the interference of the underground heat from each other's underground heat recovery pipes. In addition, the end of the geothermal heat recovery pipe that protrudes from the foundation bottom is configured in an L shape with respect to the foundation bottom, and the direction of the ground heat recovery pipe blower that sends out air and the geothermal heat recovery pipe at a different position By configuring the air inlets to face each other, the air inside the first floor floor is agitated, and the temperature inside the first floor floor can be kept uniform so that there is no high or low temperature depending on the location. Thus, it is possible to supply air at the same temperature to a plurality of underground heat recovery pipes. By comprising in this way, it becomes possible to always stabilize the temperature of the air supplied to each floor.

請求項3に記載の発明によれば、冬期における地下5mの地中の温度は、関東地方で概ね18度前後の為、これまで地中熱だけを利用して室内を暖房した場合、室内の温度が低いといった欠点を抱えていた。本発明では、これまでの欠点を改善する為、太陽熱温水器からの温水を1階床下部に設けた温水蓄熱槽に循環させて1階床下内部の空気を暖める事により、地中熱回収パイプで暖めた空気を、それ以上の温度に上げる事が可能となるばかりでなく、曇りや雨の日が続いた場合にも、これまでの、太陽エネルギーを利用するソーラーシステムに比べて1階床下部に設けた温水蓄熱槽の熱源を利用する事により室内に温風を給気する事が可能となる。   According to the invention described in claim 3, since the underground temperature in the underground 5 m in winter is around 18 degrees in the Kanto region, when the room is heated only using geothermal heat until now, It had the disadvantage of a low temperature. In the present invention, in order to improve the conventional defects, the ground heat recovery pipe is heated by circulating the hot water from the solar water heater to the hot water storage tank provided at the lower part of the first floor to warm the air inside the first floor. In addition to being able to raise the temperature of the warmed air to a higher temperature, it is also lower than the first floor when compared to conventional solar systems that use solar energy, even when it is cloudy or rainy. By using the heat source of the hot water storage tank provided in the section, it is possible to supply warm air into the room.

請求項4に記載の発明によれば、基礎部の外側に基礎外断熱材を施工すると共に、1階床下部を外気から遮断した密封状態にして外気調整槽として利用した事により、1階床部の温度を一定に保ち1階室内の温度を一定温度に調整出来るだけではなく、各室に送り込む給気の温度の変化も最小限に抑える事が可能となる。   According to the invention described in claim 4, the first-floor floor can be obtained by constructing the outer heat insulation material outside the foundation portion and using the lower-floor first floor as a sealed state in which the lower floor is shielded from the outside air. Not only can the temperature of the section be kept constant, but the temperature in the first floor room can be adjusted to a constant temperature, and changes in the temperature of the supply air sent into each room can be minimized.

以下、この発明の実施の形態について説明する。
[発明の実施の形態]
Embodiments of the present invention will be described below.
[Embodiment of the Invention]

図1及至図5には、この発明の実施の形態を示す。   1 to 5 show an embodiment of the present invention.

図1は、本発明の太陽熱温水器と温水蓄熱槽と地中熱回収パイプと全熱交換型換気扇を利用した、木造住宅の分解図である。以下に、太陽熱と地中熱を利用した冷暖房システムを説明する。   FIG. 1 is an exploded view of a wooden house using the solar water heater, the hot water heat storage tank, the underground heat recovery pipe, and the total heat exchange type exhaust fan of the present invention. Hereinafter, an air conditioning system using solar heat and underground heat will be described.

図1は、本発明のアース・ソーラーシステム(地中熱回収パイプ方式)を分かり易く説明する為、アース・ソーラーシステム(地中熱回収パイプ方式)を組み込んだ木造住宅1を分解図で表したものである。屋根3の上に、太陽熱温水器2を設置すると共に、太陽熱温水器2で温められ矢印43で示す温水は、温水パイプ42から温水パイプ33を経由して、基礎底盤46の上部に取付けられたビニール製の温水蓄熱槽35に送られる。温水蓄熱槽35に送られた温水は、温水蓄熱槽35を温めると共に、回収パイプ34、給水パイプ41を経由して矢印44で示す循環水となり、再び太陽熱温水器2で温められる。さらに、基礎45の外面には基礎断熱材40が施工され、基礎45の内側の基礎底盤46には4本の地中熱回収パイプ12、18、22、26が設置されると共に、居室に取付けられた全熱交換型換気扇4で熱交換された室内側供給空気(新鮮な空気)は、外気導入ダクト5を経由して矢印7方向に送られ1階床下内部に給気される。   FIG. 1 is an exploded view of a wooden house 1 incorporating an earth / solar system (ground heat recovery pipe method) for easy understanding of the earth / solar system (ground heat recovery pipe method) of the present invention. Is. The solar water heater 2 is installed on the roof 3, and the warm water heated by the solar water heater 2 and indicated by an arrow 43 is attached to the upper portion of the foundation bottom 46 via the hot water pipe 42 and the hot water pipe 33. It is sent to a warm water storage tank 35 made of vinyl. The warm water sent to the warm water heat storage tank 35 warms the warm water heat storage tank 35 and becomes circulating water indicated by an arrow 44 via the recovery pipe 34 and the water supply pipe 41 and is warmed again by the solar water heater 2. Further, a foundation heat insulating material 40 is applied to the outer surface of the foundation 45, and four underground heat recovery pipes 12, 18, 22, 26 are installed on the foundation bottom board 46 inside the foundation 45, and attached to the living room. The indoor-side supplied air (fresh air) heat-exchanged by the total heat exchange type ventilation fan 4 is sent in the direction of arrow 7 through the outside air introduction duct 5 and supplied to the interior under the first floor.

地中熱回収パイプ12、18、22、26は、2本の塩ビパイプの下部を継手で継いで、下部をU字形に構成すると共に、基礎底盤46の上部に突き出す2本の塩ビパイプの部分には、L字形のエルボ等の継手を取り付け、一方のエルボの先端に送風機を取付ける。   The underground heat recovery pipes 12, 18, 22, and 26 are parts of two PVC pipes that connect the lower parts of the two PVC pipes with joints, have a U-shaped lower part, and protrude to the upper part of the foundation base 46. Is attached with a joint such as an L-shaped elbow and a blower is attached to the tip of one of the elbows.

さらに、図1、図5に示すように、送風機10、送風機16、送風機31、送風機38を作動させる事により、地中熱回収パイプ6が矢印143方向から吸込んだ空気は、図1の地中熱回収パイプ12の中を矢印11方向から矢印13方向を経由して地中熱により温度調整されて、地中熱回収パイプ9を経由して送風機10から1階床下内部に排出される。このようにして排出された空気は矢印8方向に送風され、1階床下内部の空気と混ぜ合わされて温度調節が行われ、矢印140方向から再び地中熱回収パイプ14に吸込まれ、地中熱回収パイプ18の中を矢印17方向から矢印19方向を経由して地中熱によって温度調整されて、地中熱回収パイプ15を経由して送風機16より1階床下内部に排出される。このようにして排出された空気は矢印20方向に送風され、1階床下内部の空気と混ぜ合わされて温度調節が行われ、矢印141方向から再び地中熱回収パイプ29に吸込まれ、地中熱回収パイプ26の中を矢印27方向から矢印25方向を経由して地中熱によって温度調整されて、地中熱回収パイプ30を経由して送風機31より1階床下内部に排出される。このようにして排出された空気は矢印32方向に送風され、1階床下内部の空気と混ぜ合わされて温度調節が行われ、矢印142方向から再び地中熱回収パイプ36に吸込まれ、地中熱回収パイプ22の中を矢印23方向から矢印21方向を経由して地中熱によって温度調整されて、地中熱回収パイプ37を経由して送風機38より1階床下内部に排出される。このようにして排出された空気は矢印39方向に送風され、1階床下内部の空気と混ぜ合わされて温度調節が行われ、矢印143方向から再び地中熱回収パイプ6に吸込まれる。このように構成する事により、1階床下内部の空気は床下内部で部分的に澱む事が無くなり、1階床下内部の温度は均一の温度になるように調整される。   Further, as shown in FIGS. 1 and 5, by operating the blower 10, the blower 16, the blower 31, and the blower 38, the air absorbed by the underground heat recovery pipe 6 from the direction of the arrow 143 is the underground in FIG. 1. The temperature of the heat recovery pipe 12 is adjusted by the underground heat from the direction of the arrow 11 to the direction of the arrow 13, and is discharged from the blower 10 to the inside of the first floor under the ground heat recovery pipe 9. The air discharged in this way is blown in the direction of arrow 8 and mixed with the air inside the first floor floor to adjust the temperature, and is sucked again into the underground heat recovery pipe 14 from the direction of arrow 140 to generate the underground heat. The temperature of the recovery pipe 18 is adjusted by underground heat from the direction of the arrow 17 to the direction of the arrow 19 and discharged from the blower 16 to the inside of the first floor under the ground heat recovery pipe 15. The air thus exhausted is blown in the direction of the arrow 20, mixed with the air inside the first floor, adjusted for temperature, sucked into the ground heat recovery pipe 29 again from the direction of the arrow 141, and the underground heat The temperature of the recovery pipe 26 is adjusted by the underground heat from the direction of the arrow 27 to the direction of the arrow 25, and is discharged from the blower 31 to the inside of the first floor through the underground heat recovery pipe 30. The air discharged in this way is blown in the direction of arrow 32, mixed with the air inside the first floor, adjusted in temperature, and again sucked into the underground heat recovery pipe 36 from the direction of arrow 142 to generate the underground heat. The temperature of the recovery pipe 22 is adjusted by the underground heat from the direction of the arrow 23 through the direction of the arrow 21, and is discharged from the blower 38 to the inside of the first floor under the ground heat recovery pipe 37. The air discharged in this way is blown in the direction of arrow 39, mixed with the air inside the first floor, adjusted in temperature, and again sucked into the underground heat recovery pipe 6 from the direction of arrow 143. By configuring in this way, the air inside the first floor floor does not partially stagnate inside the floor, and the temperature inside the first floor floor is adjusted to a uniform temperature.

このように、一本一本の地中熱回収パイプに各々一台の送風機を取付けて地中熱を回収した事により、地中熱を効率良く回収する事が可能となった。さらに、それぞれの地中熱回収パイプに独立して送風機を取付けた事により、1階床下内部の空気の温度が、夏(冬)の初期等に冷え(暖か)すぎる場合には、4本の地中熱回収パイプの内の数本のみ可動させ、他の地中熱回収パイプを停止する事により1階床下内部の空気の温度を調整する事が可能となった。   Thus, it became possible to collect geothermal heat efficiently by attaching one blower to each geothermal heat recovery pipe and collecting geothermal heat. In addition, by installing an air blower independently for each underground heat recovery pipe, if the air temperature inside the first floor floor is too cold (warm) in the early summer (winter), etc. By moving only a few of the underground heat recovery pipes and stopping the other underground heat recovery pipes, it became possible to adjust the temperature of the air inside the floor under the first floor.

本発明において、地中熱回収パイプ12、18、22、26は塩ビパイプを使用し、地中に埋め込む深さは約5mである。その理由は、地中約4〜5mの深さの温度は、一年を通じて約18℃前後と温度があまり変わらない為です。   In the present invention, the underground heat recovery pipes 12, 18, 22, and 26 use polyvinyl chloride pipes, and the depth embedded in the ground is about 5 m. The reason is that the temperature at a depth of about 4-5m in the ground does not change much around 18 ° C throughout the year.

なお、一般の住宅の1階床下の基礎部、特に布基礎においては、1階床下部の湿気を防ぐ為、通風が良い構造となっているが、本発明においては、1階床下部を外気調整槽として利用する為、外気が1階床下部に流入しないように1階床下部を密封状態に構成するように施工される。   In addition, in the foundation part under the first floor of a general house, in particular, the fabric foundation has a structure with good ventilation to prevent moisture in the lower part of the first floor, but in the present invention, the lower part of the first floor is outside air. In order to use as an adjustment tank, it is constructed so that the lower part of the first floor is sealed in order to prevent outside air from flowing into the lower part of the first floor.

以上のような構成において、図2により夏期における各室の冷風運転について説明する。   With the configuration as described above, the cold air operation of each room in summer will be described with reference to FIG.

最初に、全熱交換型換気扇53、全熱交換型換気扇55から室内側に供給する空気を1階床下90へ給気する方法について説明する。1階室内Aの室内側吐出空気(よごれた室内空気)は矢印58方向から全熱交換型換気扇55に吸込まれて室外に排気される。その際、全熱交換型換気扇55が排気する室内の空気と室内に給気する外気とが全熱交換型換気扇55により熱交換されると共に、吸込んだ室外側吸込空気(新鮮な空気)は全て外気導入ダクト56を経由して矢印59で示すように1階床下90に導かれる。同様にして、2階室内Bの室内側吐出空気(よごれた室内空気)は矢印54方向から全熱交換型換気扇53に吸込まれて室外に排気される。その際、全熱交換型換気扇53が排気する室内の空気と室内に給気する外気とが全熱交換型換気扇55により熱交換されると共に、吸込んだ室外側吸込空気(新鮮な空気)は全て外気導入ダクト57を経由して矢印59で示すように1階床下90に導かれる。   First, a method for supplying the air supplied from the total heat exchange type ventilation fan 53 and the total heat exchange type ventilation fan 55 to the indoor side to the lower first floor 90 will be described. The indoor side discharged air (contaminated room air) in the first floor room A is sucked into the total heat exchange type ventilation fan 55 from the direction of the arrow 58 and exhausted to the outside. At that time, the indoor air exhausted by the total heat exchange type ventilation fan 55 and the outside air supplied to the room are heat-exchanged by the total heat exchange type ventilation fan 55, and all the outdoor intake air (fresh air) sucked in is exhausted. As indicated by an arrow 59, the outside air introduction duct 56 is led to the lower first floor 90. Similarly, the indoor side discharge air (contaminated room air) in the second floor room B is sucked into the total heat exchange type exhaust fan 53 from the direction of the arrow 54 and exhausted to the outside. At that time, the indoor air exhausted by the total heat exchange type ventilation fan 53 and the outside air supplied to the room are heat-exchanged by the total heat exchange type ventilation fan 55, and all the outdoor intake air (fresh air) sucked in is exhausted. It is guided to the first floor lower floor 90 through the outside air introduction duct 57 as indicated by an arrow 59.

このようにして、全熱交換型換気扇53、全熱交換型換気扇55を使用する事により、夏期における涼しい室内の空気を、外の暑い外気と入れ替える際に、温度の上昇を最小限に抑える事が可能となる。   In this way, by using the total heat exchange type ventilation fan 53 and the total heat exchange type ventilation fan 55, when the cool indoor air in the summer is replaced with the hot outdoor air, the rise in temperature can be minimized. Is possible.

つづいて、このようにして給気された外気が、どのようにして1階床下90で熱交換されて弱冷風になるかを説明する。外気導入ダクト56、外気導入ダクト57から導入された外気は1階床下90の空気と混ざり合い、送風機65を作動させる事により、矢印64方向から地中熱回収パイプ63に吸込まれ、地中熱回収パイプ63の中で地中熱により冷やされて弱冷風となって、送風機65より矢印66方向に示すように1階床下90に排気される。同様に、送風機69を作動させる事により、矢印67方向から地中熱回収パイプ68に吸込まれ、地中熱回収パイプ68の中で地中熱により冷やされて弱冷風となって、送風機69より矢印70方向に示すように1階床下90に排気される。同様に、送風機73を作動させる事により、矢印71方向から地中熱回収パイプ72に吸込まれ、地中熱回収パイプ72の中で地中熱により冷やされて弱冷風となって、送風機73より矢印74方向に示すように1階床下90に排気される。同様に、送風機77を作動させる事により、矢印75方向から地中熱回収パイプ76に吸込まれ、地中熱回収パイプ76の中で地中熱により冷やされて弱冷風となって、送風機77より矢印78方向に示すように1階床下90に排気される。   Next, how the outside air supplied in this way is subjected to heat exchange at the lower floor 90 of the first floor and becomes weakly cold air will be described. The outside air introduced from the outside air introduction duct 56 and the outside air introduction duct 57 is mixed with the air under the first floor 90, and when the blower 65 is operated, the outside air is sucked into the underground heat recovery pipe 63 from the direction of the arrow 64, and the underground heat It is cooled by underground heat in the recovery pipe 63 to become weak cold air, and is exhausted from the blower 65 to the lower first floor 90 as indicated by the arrow 66 direction. Similarly, by operating the blower 69, it is sucked into the underground heat recovery pipe 68 from the direction of the arrow 67, and is cooled by underground heat in the underground heat recovery pipe 68 to become a weak cold wind. As shown in the direction of arrow 70, the air is exhausted below the first floor 90. Similarly, by operating the blower 73, the air is sucked into the underground heat recovery pipe 72 from the direction of the arrow 71, is cooled by underground heat in the underground heat recovery pipe 72, and becomes weak cold air. As indicated by the direction of the arrow 74, the air is exhausted to the lower floor 90 of the first floor. Similarly, by operating the blower 77, it is sucked into the underground heat recovery pipe 76 from the direction of the arrow 75, and is cooled by underground heat in the underground heat recovery pipe 76 to become weak cold air. As indicated by the direction of the arrow 78, the air is exhausted to the lower floor 90 of the first floor.

このようにして、1階床下90の中で弱冷風となった外気は、1階床を冷やす事により1階室内Aを冷やすと共に、給気ダクト87、給気ダクト103に取付けられた送風機82を作動させる事により、弱冷風となった1階床下90の空気は給気ダクト87を経由して1階天井裏91に給気され、ガラリ93、ガラリ96より1階室内Aに給気されて1階室内Aを冷やす。同様に、1階床下90で弱冷風となった1階床下90の空気は、給気ダクト103を経由して2階天井裏100に給気され、ガラリ102、ガラリ99より2階室内Bに給気されて2階室内Bを冷やす。   In this way, the outside air that has become slightly cold in the first floor floor 90 cools the first floor room A by cooling the first floor, and the blower 82 attached to the air supply duct 87 and the air supply duct 103. , The air in the first floor underfloor 90 that has become slightly cold air is supplied to the first floor ceiling back 91 via the air supply duct 87, and is supplied to the first floor room A from the louvers 93 and 96. Cool the room A on the first floor. Similarly, the air in the first floor underfloor 90 that has become slightly cold air in the first floor underfloor 90 is supplied to the second floor ceiling 100 via the air supply duct 103, and enters the second floor room B from the gallery 102 and gallery 99. It is supplied with air and cools the second floor room B.

なお、夏期においては、1階床下90に設けられた温水蓄熱槽81は、太陽熱温水器120からの温水パイプ79に取付けられた開閉バルブ110を閉め、さらに回収パイプ80の開閉バルブ113を閉め、開閉バルブ118を開ける事により、温水蓄熱槽81内の水を排水して空にした状態にして、夏期においては温水蓄熱槽81は使用しない。   In the summer, the hot water heat storage tank 81 provided under the first floor floor 90 closes the open / close valve 110 attached to the hot water pipe 79 from the solar water heater 120, and further closes the open / close valve 113 of the recovery pipe 80, By opening the opening / closing valve 118, the water in the hot water heat storage tank 81 is drained and emptied, and the hot water heat storage tank 81 is not used in the summer.

また、当然の事ながら、太陽熱温水器120で温められた温水は、開閉バルブ112を開けて開閉バルブ110を閉じ、開閉バルブ113を閉じて水栓86を開ける事により温水パイプ108を経由し、矢印89から矢印84方向を経由して風呂に給湯する事が出来る。   Of course, the warm water heated by the solar water heater 120 is opened via the hot water pipe 108 by opening the opening / closing valve 112, closing the opening / closing valve 110, closing the opening / closing valve 113, and opening the faucet 86, Hot water can be supplied to the bath via the arrow 89 to the arrow 84 direction.

つづいて、図3で示す、冬期における各室の温風運転について説明する。   Next, the hot air operation of each room in winter shown in FIG. 3 will be described.

最初に、全熱交換型換気扇53、全熱交換型換気扇55から室内側に供給する空気を1階床下90へ給気する方法について説明する。1階室内Aの室内側吐出空気(よごれた室内空気)は矢印58方向から全熱交換型換気扇55に吸込まれて室外に排気される。その際、全熱交換型換気扇55が排気する室内の空気と、室内に給気する外気とが全熱交換型換気扇55により熱交換されると共に、吸込んだ室外側吸込空気(新鮮な空気)は全て外気導入ダクト56を経由して矢印59で示すように1階床下に導かれる。同様にして、2階室内Bの室内側吐出空気(よごれた室内空気)は矢印54方向から全熱交換型換気扇53に吸込まれて室外に排気される。その際、全熱交換型換気扇53が排気する室内の空気と室内に供給する外気とが全熱交換型換気扇53により熱交換されると共に、吸込んだ室外側吸込空気(新鮮な空気)は全て外気導入ダクト57を経由して矢印59で示すように1階床下に導かれる。   First, a method for supplying the air supplied from the total heat exchange type ventilation fan 53 and the total heat exchange type ventilation fan 55 to the indoor side to the lower first floor 90 will be described. The indoor side discharged air (contaminated room air) in the first floor room A is sucked into the total heat exchange type ventilation fan 55 from the direction of the arrow 58 and exhausted to the outside. At that time, the indoor air exhausted by the total heat exchange type ventilation fan 55 and the outside air supplied to the room are heat-exchanged by the total heat exchange type ventilation fan 55, and the sucked outdoor outdoor air (fresh air) is All of the air is guided to the lower floor of the first floor as indicated by an arrow 59 via the outside air introduction duct 56. Similarly, the indoor side discharge air (contaminated room air) in the second floor room B is sucked into the total heat exchange type exhaust fan 53 from the direction of the arrow 54 and exhausted to the outside. At that time, the indoor air exhausted by the total heat exchanging ventilator 53 and the outside air supplied to the room are heat-exchanged by the total heat exchanging ventilator 53, and all the sucked outdoor outside air (fresh air) is outside air. It is guided through the introduction duct 57 to the bottom of the first floor as indicated by an arrow 59.

このようにして、全熱交換型換気扇53、全熱交換型換気扇55を使用する事により、冬期における室内の温かい空気を、外の冷たい外気と入れ替える際に、温度が下がるのを最小限に抑える事が可能となる。   In this way, by using the total heat exchange type ventilation fan 53 and the total heat exchange type ventilation fan 55, when the warm air in the room in winter is replaced with the outside cold outside air, the temperature drop is minimized. Things will be possible.

つづいて、このようにして給気された外気が、どのようにして1階床下90で熱交換されて弱温風になるかを説明する。外気導入ダクト56、外気導入ダクト57から導入された外気は1階床下90の空気と混ざり合い、送風機65を作動させる事により、矢印64方向から地中熱回収パイプ63に吸込まれ、地中熱回収パイプ63の中で地中熱により暖められて弱温風となって、送風機65より矢印66方向に示すように1階床下90に排気される。同様に、送風機69を作動させる事により、矢印67方向から地中熱回収パイプ68に吸込まれ、地中熱回収パイプ68の中で地中熱により暖められて弱温風となって、送風機69より矢印70方向に示すように1階床下90に排気される。同様に、送風機73を作動させる事により、矢印71方向から地中熱回収パイプ72に吸込まれ、地中熱回収パイプ72の中で地中熱により暖められて弱温風となって、送風機73より矢印74方向に示すように1階床下90に排気される。同様に、送風機77を作動させる事により、矢印75方向から地中熱回収パイプ76に吸込まれ、地中熱回収パイプ76の中で地中熱により暖められて弱温風となって、送風機77より矢印78方向に示すように1階床下90に排気される。   Next, how the outside air supplied in this way is subjected to heat exchange at the lower floor 90 of the first floor and becomes a low temperature air will be described. The outside air introduced from the outside air introduction duct 56 and the outside air introduction duct 57 is mixed with the air under the first floor 90, and when the blower 65 is operated, the outside air is sucked into the underground heat recovery pipe 63 from the direction of the arrow 64, and the underground heat In the recovery pipe 63, it is warmed by underground heat to become weakly warm air, and is exhausted from the blower 65 to the lower first floor 90 as shown by the arrow 66 direction. Similarly, by operating the blower 69, it is sucked into the underground heat recovery pipe 68 from the direction of the arrow 67, and is warmed by the underground heat in the underground heat recovery pipe 68 to become low-temperature air. As shown in the direction of the arrow 70, the air is exhausted to the lower floor 90 of the first floor. Similarly, by operating the blower 73, the air is sucked into the underground heat recovery pipe 72 from the direction of the arrow 71 and is warmed by the underground heat in the underground heat recovery pipe 72 to become low-temperature air. As shown in the direction of the arrow 74, the air is exhausted below the first floor 90. Similarly, by operating the blower 77, it is sucked into the underground heat recovery pipe 76 from the direction of the arrow 75, and is warmed by the underground heat in the underground heat recovery pipe 76 to become low-temperature air. As shown in the direction of the arrow 78, the air is exhausted below the first floor 90.

さらに冬期では、太陽熱温水器120の温水を温水パイプ108の開閉バルブ110を開け、開閉バルブ118を閉じ、開閉バルブ112を閉じ、開閉バルブ113を開けて送水ポンプ111を運転する事により、太陽熱温水器120の温水は、矢印122方向から矢印106方向を経由して、矢印131の方向に流れて温水蓄熱槽81に溜められる。このようにして温水蓄熱槽81に溜められた温水が1階床下90の空気を暖める。さらに、このようにして、温水蓄熱槽81を温めた温水が冷めた場合は、送水ポンプ111を運転する事により再び太陽熱温水器120に戻され、太陽50により再び温められ、温水パイプ108を経由して温水蓄熱槽81を温める。   Further, in the winter season, the hot water of the solar water heater 120 is operated by opening the open / close valve 110 of the hot water pipe 108, closing the open / close valve 118, closing the open / close valve 112, and opening the open / close valve 113 to operate the water supply pump 111. The hot water in the vessel 120 flows from the direction of the arrow 122 to the direction of the arrow 131 via the direction of the arrow 106 and is stored in the hot water heat storage tank 81. Thus, the warm water stored in the warm water heat storage tank 81 warms the air under the first floor 90. Further, when the warm water that warms the warm water heat storage tank 81 is cooled in this way, it is returned to the solar water heater 120 again by operating the water supply pump 111, is warmed again by the sun 50, and passes through the warm water pipe 108. Then, warm water storage tank 81 is warmed.

このようにして、太陽熱温水器120の温水を溜めた温水蓄熱槽81を1階床下90に設置する事により、地中熱回収パイプ63、68、72、76の中で地中熱により暖められた1階床下90の空気は、さらに温められる事となる。   In this way, by installing the hot water heat storage tank 81 in which the hot water of the solar water heater 120 is stored in the lower floor 90 of the first floor, it is heated by the underground heat in the underground heat recovery pipes 63, 68, 72, 76. The air under the first floor 90 will be further warmed.

なお、当然の事ながら、太陽熱温水器120で温められた温水は、開閉バルブ112を開けて開閉バルブ110を閉じて、水栓86を開ける事により、太陽熱温水器120の温水は、矢印89から矢印84方向を経由して風呂に給湯される。   As a matter of course, the warm water heated by the solar water heater 120 is opened from the arrow 89 by opening the opening / closing valve 112, closing the opening / closing valve 110, and opening the faucet 86. Hot water is supplied to the bath via the arrow 84 direction.

このようにして、1階床下90で弱温風となった外気は、1階床部を暖める事により1階室内Aを温めると共に、送風機82を作動させる事により、弱温風となった1階床下90の空気は、給気ダクト87を経由して1階天井裏91に給気され、ガラリ93、ガラリ96より1階室内Aに給気され1階室内Aを温める。同様に、弱温風となった1階床下90の空気は、給気ダクト103を経由して2階天井裏100に給気され、ガラリ102、ガラリ99より2階室内Bに給気され、2階室内Bを温める。   In this way, the outside air that has become the low temperature air under the first floor 90 becomes the low temperature air by warming the first floor room A by operating the blower 82 while heating the first floor. The air below the floor 90 is supplied to the first floor ceiling back 91 via the air supply duct 87 and is supplied to the first floor room A from the gallery 93 and the gallery 96 to warm the first floor room A. Similarly, the air under the first floor 90 which has become low-temperature air is supplied to the second floor ceiling 100 via the air supply duct 103, and is supplied to the second floor room B from the gallery 102 and the gallery 99, Warm room B on the 2nd floor.

このように、冬期においては、太陽熱温水器120の温水を温水蓄熱槽81に貯留させた事により、曇りや雨の日が続いた場合でも、蓄熱した温水蓄熱槽81の温水を利用する事により、地中熱回収パイプ63、68、72、76の中で地中熱により暖められた1階床下90の空気を、さらに暖め、弱温風として居室に給気する事が可能となる。   As described above, in the winter season, by storing the hot water of the solar water heater 120 in the hot water heat storage tank 81, even when the cloudy or rainy day continues, the hot water stored in the hot water heat storage tank 81 is used. The air under the first floor 90 heated by the underground heat in the underground heat recovery pipes 63, 68, 72, and 76 can be further heated and supplied to the living room as a low-temperature air.

図4は、本発明における木造住宅51を、次世代省エネタイプの断熱で構成した状態を示す。屋根の断熱に関しては、屋根断熱材135(一般的には、厚さ160mmの発泡ウレタン)を屋根内側に施工する。外壁の断熱に関しては、外壁断熱材136(一般的には、厚さ75mmの発泡ウレタン)を外壁内側に施工する。窓のサッシに関しては、各社から発売されている断熱等級四(次世代省エネタイプ)の断熱サッシ137を使用する。基礎の断熱に関しては、基礎外断熱材138(一般的には、厚さ50mmの発泡スチロール板)を基礎コンクリートの外側に施工する。但し、ここに書かれた断熱材の種類と材質に関しては、例えば、発泡スチロール板であっても、密度の違いにより断熱効果に変化が生じるる為、同一メーカーであっても、密度により厚さが変わる場合があり得る。   FIG. 4 shows a state in which the wooden house 51 according to the present invention is configured by next-generation energy-saving heat insulation. Regarding the heat insulation of the roof, a roof heat insulating material 135 (generally, urethane foam having a thickness of 160 mm) is applied to the inside of the roof. Regarding the heat insulation of the outer wall, an outer wall heat insulating material 136 (generally, foamed urethane having a thickness of 75 mm) is applied to the inside of the outer wall. As for the window sash, the heat insulation sash 137 of heat insulation grade 4 (next generation energy saving type) sold by each company is used. Regarding the heat insulation of the foundation, an outside foundation heat insulating material 138 (generally, a foamed polystyrene board having a thickness of 50 mm) is applied to the outside of the foundation concrete. However, regarding the type and material of the heat insulating material written here, for example, even if it is a styrofoam plate, the heat insulating effect changes due to the difference in density. It can change.

本発明における木造住宅51の断熱に関しては、最大限の省エネ効果を得る為にも、図4で説明した次世代省エネタイプの断熱を施工する必要がある。   Regarding the heat insulation of the wooden house 51 in the present invention, in order to obtain the maximum energy saving effect, it is necessary to construct the next generation energy saving type heat insulation described in FIG.

以上、実施の形態に基づいて、本発明に係るアース・ソーラーシステム(地中熱回収パイプ方式)について詳細に説明してきたが、本発明は、以上の実施の形態に限定されるものではなく、発明の趣旨を逸脱しない範囲において各種の改変をなしても、本発明の技術的範囲に属するのはもちろんである。   As mentioned above, based on the embodiment, the earth / solar system (ground heat recovery pipe system) according to the present invention has been described in detail, but the present invention is not limited to the above embodiment, Even if various modifications are made without departing from the spirit of the invention, it goes without saying that they belong to the technical scope of the present invention.

図1、図5において、太陽熱温水器2からの温水を貯留するための温水蓄熱槽35の形状は立方体で描かれているが、この形状に限らず温水パイプ33と回収パイプ34との間を長い塩ビパイプや曲げて施工する事が簡単なリブパイプ等を接続して温水蓄熱槽とする事も可能である。このような材質を使用して温水蓄熱槽を構成する事により、1階床下の基礎が複雑に構成された場合においても、簡単に温水蓄熱槽を構築する事が出来る。また、温水蓄熱槽の材質に関しても、この発明の実施の形態ではビニール製としているが、FRP製、さらに、ステンレス等の金属で構成する事ももちろん可能である。   In FIGS. 1 and 5, the shape of the hot water heat storage tank 35 for storing the hot water from the solar water heater 2 is drawn as a cube, but the shape is not limited to this, and the space between the hot water pipe 33 and the recovery pipe 34 is not limited. It is also possible to connect a long PVC pipe or a rib pipe that is easy to bend to construct a hot water storage tank. By configuring the hot water heat storage tank using such a material, even when the foundation under the first floor is configured in a complicated manner, the hot water heat storage tank can be easily constructed. Further, regarding the material of the hot water heat storage tank, although it is made of vinyl in the embodiment of the present invention, it can of course be made of FRP or a metal such as stainless steel.

図1、図5において、温水蓄熱槽35は基礎底盤46の上に設置されているが、温水蓄熱槽35を設置する際には、基礎底盤46を欠き込んで、その中に温水蓄熱槽35を埋め込んだり、または、温水蓄熱槽35を設置する基礎底盤46の場所に囲いを設けて、その中に温水蓄熱槽35を設置する事も、もちろん可能である。さらに、温水蓄熱槽35は1個で描かれているが、1階床下の基礎が複雑に構成された場合においては、複数個の温水蓄熱槽を連結して対応することも可能である。   In FIG. 1 and FIG. 5, the hot water heat storage tank 35 is installed on the foundation bottom board 46, but when installing the hot water heat storage tank 35, the foundation bottom board 46 is cut out and the hot water heat storage tank 35 is inserted therein. Of course, it is also possible to embed or to place an enclosure in the place of the base bottom plate 46 where the hot water heat storage tank 35 is installed, and to install the hot water heat storage tank 35 therein. Furthermore, although the hot water heat storage tank 35 is drawn with one piece, when the foundation under the first floor is configured in a complex manner, it is possible to connect a plurality of hot water heat storage tanks.

図1、図5において、地中熱回収パイプ12、18、22、26は基礎底盤46の四隅に配置されているが、これは、互いの地中熱回収パイプが地中の熱を回収(放出)する際、地中熱回収パイプで熱回収(熱放出)した際に地中に与えた熱の影響が、互いの地中熱回収パイプに対して干渉するのを少なく抑える為です。   1 and 5, the ground heat recovery pipes 12, 18, 22, and 26 are arranged at the four corners of the foundation bottom plate 46, and this is because each of the ground heat recovery pipes recovers the heat in the ground ( This is to reduce the influence of the heat applied to the ground when heat is recovered (heat released) with the underground heat recovery pipe when it is released).

図1及至図5においては、地中熱回収パイプは4本設置されているが、当然の事ながら住宅の規模(床面積)の大小に応じて地中熱回収パイプの本数は増減する。また、地中熱回収パイプの材質は、地下の水位の高低に応じて地中の熱容量が変化する為、熱伝導率の高いアルミやステンレス等の材料を使用する事も、もちろん可能である。   1 to 5, four geothermal heat recovery pipes are installed, but the number of geothermal heat recovery pipes increases or decreases depending on the size of the house (floor area). In addition, since the underground heat capacity varies depending on the underground water level, it is of course possible to use materials such as aluminum and stainless steel with high thermal conductivity.

本発明においては、地中熱回収パイプは塩ビパイプを使用し、地中に埋め込む深さは、約5mである。と表示しているが、地中の地下水位の高低により、当然ながら地中に埋め込む塩ビパイプの深さを変える事はもちろん必要である。   In the present invention, a PVC pipe is used as the underground heat recovery pipe, and the depth embedded in the underground is about 5 m. Of course, it is of course necessary to change the depth of the PVC pipe embedded in the ground, depending on the groundwater level in the ground.

図1及至図3において、太陽熱温水器120は太陽光の集熱板と貯湯槽が一体となった形式のもので説明したが、この形式に限らず、太陽光の集熱板と貯湯槽が分離され、太陽光の集熱板が屋根に設置されると共に、貯湯槽が地表面に固定されたタイプの太陽熱温水器を使用する事も可能である。   1 to 3, the solar water heater 120 is described as having a solar heat collecting plate and a hot water storage tank integrated with each other. However, the solar water heater 120 is not limited to this type. It is possible to use a solar water heater of a type in which a solar heat collecting plate is separated and installed on the roof and a hot water tank is fixed to the ground surface.

図3において、太陽熱温水器120からの温水を、1階床下90の温水蓄熱槽81に溜める場合において、太陽熱温水器120の構造によっては、常時、太陽熱温水器120の貯湯槽の温水を、送水ポンプにより温水蓄熱槽81に送り込みながら循環回収して、温水蓄熱槽81の温度を一定に保つ事も可能である。   In FIG. 3, when hot water from the solar water heater 120 is stored in the hot water heat storage tank 81 under the first floor 90, depending on the structure of the solar water heater 120, the hot water in the hot water tank of the solar water heater 120 is always supplied. It is also possible to keep the temperature of the hot water heat storage tank 81 constant by circulating and collecting it while sending it to the hot water heat storage tank 81 by a pump.

図3において、室内に温度センサーを取付けると共に、太陽熱温水器120、温水蓄熱槽81にも温度センサーを取付け、水(温水)を送水する為の開閉バルブは、電磁式開閉バルブや切替式電磁バルブ弁等を使用し、コンピューター制御により室内の温度を検知し、開閉バルブ110、112、113、118の開閉並びに、送水ポンプ111の駆動と停止を自動的に行うようにして室内の温度調整を行う事も出来る。さらに、太陽熱温水器120に水温センサーを設置すると共に、温水蓄熱槽81内にも水温を感知するセンサーを設置して、温水蓄熱槽81内の水温が変化した場合、開閉バルブ110、113を開閉させて、送水ポンプ111を作動させ、太陽熱温水器120からの温水を温水蓄熱槽81内に循環させる事も可能である。   In FIG. 3, a temperature sensor is installed in the room, and a temperature sensor is also attached to the solar water heater 120 and the hot water heat storage tank 81, and an open / close valve for supplying water (hot water) is an electromagnetic open / close valve or a switchable electromagnetic valve. Using a valve or the like, the temperature of the room is detected by computer control, and the temperature of the room is adjusted by automatically opening and closing the opening and closing valves 110, 112, 113, and 118, and driving and stopping the water pump 111. You can also do things. Furthermore, a water temperature sensor is installed in the solar water heater 120, and a sensor for sensing the water temperature is also installed in the hot water heat storage tank 81. When the water temperature in the hot water heat storage tank 81 changes, the opening and closing valves 110 and 113 are opened and closed. It is also possible to operate the water supply pump 111 and circulate the hot water from the solar water heater 120 into the hot water heat storage tank 81.

図1及至図5において、外気導入ダクト56、57、給気ダクト81、103の配管スペースは、壁内、床内、天井内、又は専用配管スペースにこだわらず、最適な位置に配管される事は、当然である。   1 to 5, the piping space for the outside air introduction ducts 56 and 57 and the air supply ducts 81 and 103 should be piped at an optimum position regardless of the wall, floor, ceiling, or dedicated piping space. Is natural.

この発明の実施の形態については、木造住宅に関して説明してきたが、鉄骨住宅、RCコンクリート住宅に応用出来ることは、当然である。   Although the embodiment of the present invention has been described with respect to a wooden house, it is a matter of course that it can be applied to a steel frame house and an RC concrete house.

この発明の実施の形態に係るアース・ソーラーシステム(地中熱回収パイプ方式)の分解図である。It is an exploded view of the earth solar system (Ground heat recovery pipe system) concerning an embodiment of this invention. 同実施の形態に係る夏期における、木造住宅断面図の全熱交換型換気扇と地中熱回収パイプを利用したアース・ソーラーシステム(地中熱回収パイプ方式)の弱冷風システム図である。FIG. 4 is a system diagram of a weak cold wind of an earth solar system (a ground heat recovery pipe method) using a total heat exchange type exhaust fan and a ground heat recovery pipe in a sectional view of a wooden house in the summer according to the embodiment. 同実施の形態に係る冬期における、木造住宅断面図の全熱交換型換気扇と地中熱回収パイプと太陽熱温水器を利用したアース・ソーラーシステム(地中熱回収パイプ方式)の弱温風システム図である。Low temperature air system diagram of earth solar system (ground heat recovery pipe method) using total heat exchange type ventilation fan, ground heat recovery pipe and solar water heater of wooden house sectional view in winter according to the same embodiment It is. 同実施の形態に係る木造住宅に、屋根断熱材、外壁断熱材、断熱樹脂サッシ、基礎外断熱材を施工した状態の断面図である。It is sectional drawing of the state which constructed the roof heat insulating material, the outer wall heat insulating material, the heat insulation resin sash, and the foundation outer heat insulating material in the wooden house which concerns on the embodiment. 同実施の形態に係る基礎底盤における、温水蓄熱槽と地中熱回収パイプと送風機と空気の流れを表す基礎底盤平面図である。It is a foundation bottom board top view showing the flow of a warm water thermal storage tank, a geothermal heat recovery pipe, a blower, and air in the foundation bottom board concerning the embodiment.

A 1階室内
B 2階室内
1 木造住宅
2 太陽熱温水器
3 屋根
4 全熱交換型換気扇
5 外気導入ダクト
6 地中熱回収パイプ
7 矢印
8 矢印
9 地中熱回収パイプ
10 送風機
11 矢印
12 地中熱回収パイプ
13 矢印
14 地中熱回収パイプ
15 地中熱回収パイプ
16 送風機
17 矢印
18 地中熱回収パイプ
19 矢印
20 矢印
21 矢印
22 地中熱回収パイプ
23 矢印
24 開閉バルブ
25 矢印
26 地中熱回収パイプ
27 矢印
28 排水溝
29 地中熱回収パイプ
30 地中熱回収パイプ
31 送風機
32 矢印
33 温水パイプ
34 回収パイプ
35 温水蓄熱槽
36 地中熱回収パイプ
37 地中熱回収パイプ
38 送風機
39 矢印
40 基礎外断熱材
41 給水パイプ
42 温水パイプ
43 温水
44 循環水
45 基礎
46 基礎底盤
50 太陽
51 木造住宅
52 屋根
53 全熱交換型換気扇
54 矢印
55 全熱交換型換気扇
56 外気導入ダクト
57 外気導入ダクト
58 矢印
59 矢印
60 地表面
61 基礎
62 水位
63 地中熱回収パイプ
64 矢印
65 送風機
66 矢印
67 矢印
68 地中熱回収パイプ
69 送風機
70 矢印
71 矢印
72 地中熱回収パイプ
73 送風機
74 矢印
75 矢印
76 地中熱回収パイプ
77 送風機
78 矢印
79 温水パイプ
80 回収パイプ
81 温水蓄熱槽
82 送風機
83 矢印
84 矢印
85 蛇口
86 水栓
87 給気ダクト
88 風呂温水パイプ
89 矢印
90 1階床下
91 1階天井裏
92 矢印
93 ガラリ
94 矢印
95 矢印
96 ガラリ
97 矢印
98 矢印
99 ガラリ
100 2階天井裏
101 矢印
102 ガラリ
103 給気ダクト
104 矢印
105 矢印
106 矢印
107 給水パイプ
108 温水パイプ
109 矢印
110 開閉バルブ
111 送水ポンプ
112 開閉バルブ
113 開閉バルブ
114 給水パイプ
115 排水パイプ
116 排水溝
117 給水管
118 開閉バルブ
119 矢印
120 太陽熱温水器
121 矢印
122 矢印
130 矢印
131 矢印
135 屋根断熱材
136 外壁断熱材
137 断熱サッシ
138 基礎外断熱材
140 矢印
141 矢印
142 矢印
143 矢印
A 1st floor room B 2nd floor room 1 Wooden house 2 Solar water heater 3 Roof 4 Total heat exchange type ventilation fan 5 Outside air introduction duct 6 Ground heat recovery pipe 7 Arrow 8 Arrow 9 Ground heat recovery pipe 10 Blower 11 Arrow 12 Underground Heat recovery pipe 13 Arrow 14 Geothermal recovery pipe 15 Geothermal recovery pipe 16 Blower 17 Arrow 18 Geothermal recovery pipe 19 Arrow 20 Arrow 21 Arrow 22 Geothermal recovery pipe 23 Arrow 24 Open / close valve 25 Arrow 26 Geothermal Recovery pipe 27 Arrow 28 Drain groove 29 Geothermal recovery pipe 30 Geothermal recovery pipe 31 Blower 32 Arrow 33 Hot water pipe 34 Recovery pipe 35 Hot water heat storage tank 36 Geothermal recovery pipe 37 Geothermal recovery pipe 38 Blower 39 Arrow 40 Insulation outside the foundation 41 Water supply pipe 42 Hot water pipe 43 Hot water 44 Circulating water 45 Foundation 46 Bottom plate 50 Sun 51 Wooden house 52 Roof 53 Total heat exchange type ventilation fan 54 Arrow 55 Total heat exchange type ventilation fan 56 Outside air introduction duct 57 Outside air introduction duct 58 Arrow 59 Arrow 60 Ground surface 61 Foundation 62 Water level 63 Ground heat recovery pipe 64 Arrow 65 Blower 66 Arrow 67 Arrow 68 Geothermal recovery pipe 69 Blower 70 Arrow 71 Arrow 72 Geothermal recovery pipe 73 Blower 74 Arrow 75 Arrow 76 Geothermal recovery pipe 77 Blower 78 Arrow 79 Hot water pipe 80 Recovery pipe 81 Hot water heat storage tank 82 Blower 83 Arrow 84 Arrow 85 Faucet 86 Faucet 87 Air supply duct 88 Bath hot water pipe 89 Arrow 90 1st floor under floor 91 1st floor under ceiling 92 Arrow 93 Galley 94 Arrow 95 Arrow 96 96 Gallery 97 Arrow 98 Arrow 99 Gallery 100 2nd floor under ceiling 101 Arrow 102 Larry 103 Air supply duct 104 Arrow 105 Arrow 106 Arrow 107 Water supply pipe 108 Hot water pipe 109 Arrow 110 Open / close valve 111 Water supply pump 112 Open / close valve 113 Open / close valve 114 Water supply pipe 115 Drain pipe 116 Drain groove 117 Water supply pipe 118 Open / close valve 119 Arrow 120 Solar heat Water heater 121 Arrow 122 Arrow 130 Arrow 131 Arrow 135 Roof heat insulating material 136 Outer wall heat insulating material 137 Heat insulating sash 138 Basic outer heat insulating material 140 Arrow 141 Arrow 142 Arrow 143 Arrow

Claims (4)

建物の室内に取付けた全熱交換形換気扇が室内側に供給する新鮮な外気を、建物の1階床下部に送り込むと共に、1階床下の基礎底盤に下部をU字形に成形した複数の地中熱回収パイプを、両端を基礎底盤より1階床下部に突き出すように地中に埋設し、地中熱回収パイプの一端には送風機を取付け、その送風機を作動させる事により1階床下内部の空気が地中熱回収パイプに吸込まれ、その地中熱回収パイプに吸込まれた空気は、冬期は地中熱により地中熱回収パイプの中で暖められ、また、夏期は地中熱により地中熱回収パイプの中で冷やされた空気が1階床下部に供給されると共に、その1階床下の空気をダクトを通して各階の天井内部に供給し、天井内部に供給された空気を各室天井に設けたガラリより室内に供給した事を特徴とするアース・ソーラーシステム(地中熱回収パイプ方式)。   Fresh underground air supplied to the indoor side by a total heat exchange type exhaust fan installed in the room of the building is sent to the lower part of the first floor of the building, and the underground is formed in a U-shaped lower part on the foundation floor under the first floor The heat recovery pipe is buried in the ground so that both ends protrude from the base floor to the lower part of the first floor. A blower is attached to one end of the underground heat recovery pipe, and the air inside the first floor is operated by operating the blower. Is sucked into the ground heat recovery pipe, and the air sucked into the ground heat recovery pipe is warmed in the ground heat recovery pipe by the ground heat in winter, and in the summer it is grounded by the ground heat. Air cooled in the heat recovery pipe is supplied to the lower part of the first floor, and the air below the first floor is supplied to the ceiling of each floor through a duct, and the air supplied to the ceiling is supplied to the ceiling of each room. It is characterized by being supplied indoors from the installed gallery. Earth solar system (underground heat recovery pipe system). 地中熱回収パイプを1階床下基礎底盤の隅に設置する事により、地中熱回収パイプの位置を相互に離すと共に、地中熱回収パイプの基礎底盤から突き出した端部を基礎底盤に対してL字形に構成し、地中熱回収パイプの送風機が空気を送り出す方向と、別の位置の地中熱回収パイプの空気吸込口が、互いに向い合うように構成した事を特徴とする請求項1に記載のアース・ソーラーシステム(地中熱回収パイプ方式)。   By installing the underground heat recovery pipe at the corner of the foundation floor below the first floor, the position of the underground heat recovery pipe is separated from each other, and the end protruding from the foundation floor of the underground heat recovery pipe is A structure in which the air blower of the ground heat recovery pipe sends out air and the air suction port of the ground heat recovery pipe at another position face each other. 1. Earth solar system (Ground heat recovery pipe method). 冬期においては、太陽熱温水器からの温水を1階床下部に設けた温水蓄熱槽に循環させ、1階床下内部の空気を暖めた事を特徴とする請求項1又は2に記載のアース・ソーラーシステム(地中熱回収パイプ方式)。   3. The earth solar according to claim 1, wherein in winter, hot water from a solar water heater is circulated in a hot water storage tank provided at the lower part of the first floor to warm the air inside the first floor. System (Ground heat recovery pipe method). 基礎の外側に基礎外断熱材を施工すると共に、1階床下部を外気調整槽として利用する事により、1階床下部を外気から遮断した密封状態として構成した事を特徴とする請求項1及至3のいずれか一つに記載のアース・ソーラーシステム(地中熱回収パイプ方式)。   The construction of the outside of the foundation is constructed on the outside of the foundation, and the lower part of the first floor is used as an outside air adjusting tank, and the lower part of the first floor is configured to be sealed from outside air. Earth / solar system as described in any one of 3 (Ground heat recovery pipe system).
JP2009158863A 2009-07-03 2009-07-03 Earth solar system (Ground heat recovery pipe method) Active JP5344343B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009158863A JP5344343B2 (en) 2009-07-03 2009-07-03 Earth solar system (Ground heat recovery pipe method)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009158863A JP5344343B2 (en) 2009-07-03 2009-07-03 Earth solar system (Ground heat recovery pipe method)

Publications (2)

Publication Number Publication Date
JP2011012918A JP2011012918A (en) 2011-01-20
JP5344343B2 true JP5344343B2 (en) 2013-11-20

Family

ID=43592003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009158863A Active JP5344343B2 (en) 2009-07-03 2009-07-03 Earth solar system (Ground heat recovery pipe method)

Country Status (1)

Country Link
JP (1) JP5344343B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5742009B2 (en) * 2011-02-24 2015-07-01 株式会社 ▲高▼▲橋▼監理 Earth / Solar / Zero Energy Housing

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58129916A (en) * 1982-01-27 1983-08-03 藤田 岑生 Underground pipe embedding structure in underground heat exchange system
JP2905417B2 (en) * 1995-04-14 1999-06-14 英晴 相澤 Air circulation building
JP2002013829A (en) * 2000-04-24 2002-01-18 Fujimaru Kensetsu Kk Method for utilizing and manufacturing constant temperature and constant humidity air system
JP4401174B2 (en) * 2004-01-13 2010-01-20 滝川木材株式会社 Building air conditioning system using geothermal heat
JP2009085553A (en) * 2007-10-02 2009-04-23 Matsuei Construction Co Ltd Geothermal system for building

Also Published As

Publication number Publication date
JP2011012918A (en) 2011-01-20

Similar Documents

Publication Publication Date Title
JP5505836B2 (en) Improved earth / solar system (Ground heat recovery pipe method)
JP5742009B2 (en) Earth / Solar / Zero Energy Housing
JP2009264721A (en) Earth solar system (single layer type)
JP5067730B2 (en) Earth / Solar system
JP2006266575A (en) House using geothermal heat
Soares et al. Advances in standalone and hybrid earth-air heat exchanger (EAHE) systems for buildings: A review
JP6249387B1 (en) Floor air conditioning system
JP2009127921A (en) Cold taking-in system
JP6135905B2 (en) Earth / Solar system
JP2005061786A (en) Indoor temperature adjusting structure using geotherm
JP5483051B2 (en) Residential ventilation system
JP5505837B2 (en) Earth / Solar system (basement compatible)
JP5351210B2 (en) Thermal storage air conditioning system
KR101625947B1 (en) Total heat exchange ventilating system using heat storage in midnight
JP5344343B2 (en) Earth solar system (Ground heat recovery pipe method)
JP6135906B2 (en) Earth / Solar system
JP6249221B2 (en) Air-conditioning equipment using geothermal heat
JP2006097425A (en) Method of ventilating solar system house
JP6135907B2 (en) Earth / Solar system
JP5833064B2 (en) Thermal storage air conditioning system
JP2014015711A (en) Radiant heat heating and cooling system of building utilizing in-wall-body vent layer
CN106679016A (en) Efficient, energy-saving and emission-reducing ground source constant-temperature device
JP2009085553A (en) Geothermal system for building
KR101656731B1 (en) Total heat exchange ventilating system using geothermal
Danici-Guțul et al. Analysis of the use of geothermal heat pumps for heating and cooling of individual residential buildings

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130802

R150 Certificate of patent or registration of utility model

Ref document number: 5344343

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250