JP2005061786A - Indoor temperature adjusting structure using geotherm - Google Patents

Indoor temperature adjusting structure using geotherm Download PDF

Info

Publication number
JP2005061786A
JP2005061786A JP2003295857A JP2003295857A JP2005061786A JP 2005061786 A JP2005061786 A JP 2005061786A JP 2003295857 A JP2003295857 A JP 2003295857A JP 2003295857 A JP2003295857 A JP 2003295857A JP 2005061786 A JP2005061786 A JP 2005061786A
Authority
JP
Japan
Prior art keywords
temperature
water
building
air
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003295857A
Other languages
Japanese (ja)
Inventor
Koichi Nonaka
耕一 野中
Original Assignee
Nonaka Kensetsu Kk
野中建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nonaka Kensetsu Kk, 野中建設株式会社 filed Critical Nonaka Kensetsu Kk
Priority to JP2003295857A priority Critical patent/JP2005061786A/en
Publication of JP2005061786A publication Critical patent/JP2005061786A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0034Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material
    • F28D20/0043Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material specially adapted for long-term heat storage; Underground tanks; Floating reservoirs; Pools; Ponds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/40Geothermal heat-pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Abstract

<P>PROBLEM TO BE SOLVED: To provide an indoor temperature adjusting structure of a building capable of effectively using geotherm. <P>SOLUTION: A plurality of heat exchange tanks 18 filled with water W are buried in the depth of about underground 2 m of the building, and are connected by a connecting pipe 19 so that the water W in the respective heat exchange tanks 18 flows in one direction to the final water outlet 21 from the first water inlet 20 to the heat exchange tanks 18. Both end parts 22a and 22b of a wall surface circulating pipe 22 are respectively connected to the first water inlet 20 and the final water outlet 21 to the heat exchange tanks 18. The wall surface circulating pipe 22 is meanderingly embedded in an outer wall surface 3 of the building. A pump 23 is arranged in the wall surface circulating pipe 22 to circulate the water W in the heat exchange tanks 18 and the wall surface circulating pipe 22. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、周年を通じてほぼ一定である地下の温度を利用して、温度差の大きな外気に影響を受ける建物の内部を居住に適した一定の温度に調整することができる建築構造に関する。   The present invention relates to a building structure capable of adjusting the interior of a building affected by outside air having a large temperature difference to a constant temperature suitable for living by utilizing an underground temperature that is substantially constant throughout the year.
一般に、建物の室内の温度調節は、電気、ガス、石油などを用いた冷暖房装置で行われているが、それらはいずれもエネルギー資源を大量に消費し、またその費用も嵩むという難点がある。
そこでこれまで、それらの化石燃料の使用をせずに室内の温度調節をすることを目的に、地下の温度と地上の温度差を利用し、地下熱を水や空気などの熱媒体で地上に導き、建物内部の室温を調整しょうとする建築構造が提案されてきた。
Generally, temperature control in a building room is performed by a cooling / heating device using electricity, gas, oil, or the like, but they all have a drawback that they consume a large amount of energy resources and are expensive.
So far, for the purpose of adjusting the indoor temperature without using those fossil fuels, the difference between the underground temperature and the ground temperature is used, and the underground heat is transferred to the ground with a heat medium such as water or air. An architectural structure has been proposed that attempts to guide and adjust the room temperature inside the building.
その内、水などの液体を利用する装置として次の例をあげることができる。
まずその一例としては、建物の敷地の床下に砕石などの粒体を充填した蓄熱領域を区画形成し、その区画の一方から水を入れ他方から吐出させ、その蓄熱領域で熱交換した水を、流体循環配管を介して室内に設けた熱交換機に導いて室内の空気を蓄熱領域の温度によって調節できるようにしたもの(特許文献1)がある。
Among them, the following example can be given as an apparatus using a liquid such as water.
First of all, as an example, a heat storage area filled with granules such as crushed stone is formed under the floor of the building site, water is poured from one of the sections and discharged from the other, and the heat exchanged water in the heat storage area, There is one (Patent Document 1) in which indoor air can be adjusted by the temperature of a heat storage region by guiding it to a heat exchanger provided indoors via a fluid circulation pipe.
また別の例として、建物の床下地中に蓄熱ユニットを設け、その蓄熱ユニットと室内に設けた熱交換機ユニットとも間に潜熱蓄熱体を循環させて、その熱交換機ユニットを通過させた空気で室内の温度を調節できるようにしたもの(特許文献2)がある。   As another example, a heat storage unit is provided in the floor of a building, a latent heat storage body is circulated between the heat storage unit and the heat exchanger unit provided in the room, and the air is passed through the heat exchanger unit. There is one (Patent Document 2) that can adjust the temperature of the liquid crystal.
さらに別の例として、室外熱交換機を室外の地中に埋設し、その熱交換機と室内に設けた室内機とを配管により接続し、室外熱交換機で熱交換された地中の熱を配管内の熱媒体により室内機へ送り、その室内機により室内の温度を調節できるようにしたもの(特許文献3)がある。   As yet another example, an outdoor heat exchanger is buried in the ground outdoors, the heat exchanger is connected to the indoor unit provided in the room, and the underground heat exchanged by the outdoor heat exchanger is connected to the inside of the pipe. There is one (Patent Document 3) in which the temperature of the room can be adjusted by the indoor unit.
上記の各文献によれば、水などの液体を熱媒体にして床下地中の熱を地上に導き、その熱により室内熱交換機で直接に室内の温度を変えようとするものであり、これによって建物そのものの全体の温度を調整しようとするものではなかった。
そのため、その熱交換機の稼動を停止させると、すぐに室内の温度の調整ができなくなってしまう難点があった。
According to each of the above-mentioned documents, a liquid such as water is used as a heat medium to guide the heat in the floor ground to the ground, and the heat is used to change the indoor temperature directly by the indoor heat exchanger. It was not intended to adjust the overall temperature of the building itself.
For this reason, if the operation of the heat exchanger is stopped, there is a problem that the temperature in the room cannot be adjusted immediately.
次ぎに、熱媒体として空気を利用する装置として次の例をあげることができる。
その一例としては、建物の敷地の床下にくり石層を設け、そのくり石層の地下に相当な深さで熱交換用の地中パイプを埋設し、くり石層の開口した吸気口から外気をくり石層内に通して地中パイプへ導き入れ、さらにその空気を、床下空気流通路を介して点検口兼通風口から室内に温度調節された空気を入れ、また室内の空気は空気流通路を介して壁面上部に設けた室内換気口から天井裏に導き、最後に天井裏の熱気をファンで排気口から戸外へ排出できるようにしたもの(特許文献4)がある。
Next, the following example can be given as an apparatus using air as a heat medium.
As an example, a bedstone layer is provided under the floor of the building site, underground pipes for heat exchange are buried at a considerable depth in the basement of the bedstone layer, and the outside air is opened from the intake port where the bedstone layer is open. The air is introduced into the underground pipe through the quarry stone layer, and then the temperature-controlled air is introduced into the room from the inspection / vent through the underfloor air flow passage. There is one that leads to the back of the ceiling from an indoor ventilation opening provided in the upper part of the wall surface via a road, and finally allows the hot air in the back of the ceiling to be discharged from the exhaust opening to the outside with a fan (Patent Document 4).
しかしこの構造では、空気による地中の熱交換構造が建物の地下にあるので、
水(冷媒)による地中の熱交換構造を隣に設けようとすると、広い敷地を必要とし、さらに両者の重複により地下から得られる熱量の低下を招く虞がある。
However, in this structure, since the underground heat exchange structure by air is in the basement of the building,
If an underground heat exchanging structure using water (refrigerant) is to be provided next to the ground, a large site is required, and the amount of heat obtained from the underground may be reduced due to the overlap between the two.
またそれとは別に、地下に熱交換パイプを建物の敷地の地下に相当な深さで埋設し、そのパイプから室内空気導入管を介して室内へ空気を直接導き入れられるようにしたもの(特許文献5)がある。   Separately, a heat exchange pipe is buried in the basement at a considerable depth in the basement of the building, and air can be directly introduced into the room through the indoor air introduction pipe (Patent Document) 5).
しかしこの構造もまた、熱交換パイプを建物の床下に埋設するものであるため、上記の構造と同様に敷地の広さと熱効率を低下させる問題がある。
特開昭62−190334 特開昭60−26375 特開昭60−114673 特願平2000−97586 実用新案登録第3032891号
However, this structure also has a problem of reducing the size and thermal efficiency of the site as in the above structure because the heat exchange pipe is buried under the floor of the building.
JP-A 62-190334 JP-A-60-26375 JP 60-114673 A Japanese Patent Application No. 2000-97586 Utility model registration No. 3032891
本発明は、約1.5m程度の深さの地下が約15°C前後に温度が一定であることを利用し、その地下の熱を水及び空気の媒介で建物の外壁面に循環させ、その外壁面に囲われた建物内部の温度をその地下温度に近づけ、室内を夏には外気より低く、冬には外気より高くするための建物の温度調整構造を提供するものである。   The present invention utilizes the fact that the temperature of the underground of about 1.5 m depth is constant at about 15 ° C., and circulates the heat of the underground to the outer wall surface of the building through water and air. A temperature control structure for a building is provided so that the temperature inside the building surrounded by the outer wall surface approaches the underground temperature, and the room is lower than the outside air in summer and higher than the outside air in winter.
上記課題を解決するため、本発明は、建物の地下1.5乃至2m程度の深さに水を充填して複数の熱交換タンクを埋設し、その熱交換タンクへの最初の入水口から最後の出水口へ各熱交換タンク内の水が一方向に流れるように連結パイプで連結する。
その熱交換タンクへの最初の入水口と最後の出水口とに壁面循環パイプの両端部をそれぞれ連結するとともに、その壁面循環パイプを建物の外壁面に蛇行させて埋設する。
また前記熱交換タンクと壁面循環パイプ内の水が循環できるよう前記壁面循環パイプにポンプを設ける。
そして、地下の温度と室内の温度とを循環水の媒介で熱交換できるように構成する。
In order to solve the above-mentioned problems, the present invention fills water to a depth of about 1.5 to 2 m below the building and embeds a plurality of heat exchange tanks, and finally ends from the first water inlet to the heat exchange tank. It connects with a connection pipe so that the water in each heat exchange tank may flow in one direction to the water outlet.
Both ends of the wall circulation pipe are connected to the first water inlet and the last water outlet to the heat exchange tank, respectively, and the wall circulation pipe is meandered and embedded in the outer wall surface of the building.
A pump is provided on the wall surface circulation pipe so that water in the heat exchange tank and the wall surface circulation pipe can circulate.
And it is comprised so that heat exchange can be carried out between circulating underground water and indoor temperature.
また、請求項2に記載の発明は、上記請求項1の発明の構成に加えて、建物の基礎の外周に沿って地表面下1.5乃至2m程度の深さで縦横約1m程度に周廻空洞を掘り、その周廻空洞が崩れるのを防止するために、その空洞内の底面を除く土露出面に土留板を設ける。
そして、前記周廻空洞から天井裏空間まで貫通する通風路を形成するために、基礎の外側と外壁の外側を縦胴縁を介して被覆壁で被覆する。
さらに、前記周廻空洞上に外気取入口を備えたボックスを設置し、このボックス内空間と前記周廻空洞とを吸気パイプを繋いで、ボックスに流入し外気を周廻空洞内に取り入れられるようにする。
さらにまた、天井裏空間の空気を外部に排出する排気口を設けて構成する。
そして、地下の温度と室内の温度とを循環水及び空気の媒介で熱交換できるように構成したものである。
In addition to the configuration of the invention of claim 1, the invention described in claim 2 has a depth of about 1.5 to 2 m below the ground surface along the outer periphery of the foundation of the building, about 1 m in length and width. In order to dig a surrounding cavity and prevent the surrounding cavity from collapsing, a earth retaining plate is provided on the exposed soil surface except the bottom surface in the cavity.
And in order to form the ventilation path which penetrates from the said surrounding cavity to a ceiling back space, the outer side of a foundation and the outer side of an outer wall are coat | covered with a covering wall via a vertical trunk edge.
Further, a box having an outside air inlet is installed on the circumferential cavity, and the space inside the box and the circumferential cavity are connected to an intake pipe so that the outside air can be taken into the box and taken into the circumferential cavity. To.
Furthermore, an exhaust port for discharging the air in the space behind the ceiling to the outside is provided.
And it is comprised so that heat | fever exchange can be carried out by the medium of circulating water and air between underground temperature and indoor temperature.
さらに、請求項3に記載の発明は、上記請求項2の発明の構成において、ボックス内に現われた部分の吸気パイプに、周廻空洞内に外気を取り入れるための送風手段を設けて構成したものである。   Further, the invention described in claim 3 is the structure of the invention described in claim 2 above, wherein a portion of the intake pipe that appears in the box is provided with a blowing means for taking outside air into the peripheral cavity. It is.
地表面下約1.5m以上の深さの地下温度が周年を通じて約15°Cであるが、 本発明の構造は以上のようなので、水又は水及び空気を媒体として、その一定な地下温度を効果的に利用することができ、夏暑く冬寒い外気温度に対して、建物内の室温をその外気温度にくらべて夏は涼しく且つ冬は暖かい17〜25°C生活適温近くの温度調整することが可能となる。
また、外気温度と室内温度の差が極めて大きく、本発明の構造では温度調整が充分には対応できない場合は、電気、ガス、石油などの冷暖房装置と併用すれば良い。この場合、冷暖房装置のみを使用する場合よりもエネルギー資源を効率的に節約することができる。
The underground temperature at a depth of about 1.5m or more below the ground surface is about 15 ° C throughout the year. However, the structure of the present invention is as described above, so that the constant underground temperature is set using water or water and air as a medium. It can be used effectively, and the room temperature in the building is adjusted to a temperature that is 17-25 ° C, which is cooler in summer and warmer in winter and warm in winter compared to the outside air temperature. Is possible.
If the difference between the outside air temperature and the room temperature is extremely large and the structure of the present invention cannot sufficiently adjust the temperature, it may be used in combination with a cooling / heating device such as electricity, gas, and oil. In this case, energy resources can be efficiently saved as compared with the case where only the air conditioning apparatus is used.
本発明の地温を利用した建物の温度調整構造の形態を以下詳しく説明する。
本発明は、図1に示すように、建物の地下1.5乃至2m程度の深さに水Wを充填した複数の熱交換タンク18を埋設し、その熱交換タンク18への最初の入水口20から最後の出水口21へ各熱交換タンク18内の水Wが一方向に流れるように連結パイプ19で連結する(図2参照)。
その熱交換タンク18及び連結パイプ19は、ステンレスやプラスチックなど腐食しにくい材質のものを使用する。
そして、その熱交換タンク18への最初の入水口20と最後の出水口21とに壁面循環パイプ22の両端部22a、22bをそれぞれ連結するとともに、その壁面循環パイプ22を建物の外壁面3に蛇行させて埋設する(図3参照)。
The form of the temperature control structure of a building using the ground temperature of the present invention will be described in detail below.
As shown in FIG. 1, the present invention embeds a plurality of heat exchange tanks 18 filled with water W at a depth of about 1.5 to 2 m below the building, and the first water inlet to the heat exchange tanks 18. It connects with the connection pipe 19 so that the water W in each heat exchange tank 18 may flow to one direction from 20 to the last outlet 21 (refer FIG. 2).
The heat exchange tank 18 and the connecting pipe 19 are made of a material that hardly corrodes, such as stainless steel or plastic.
Then, both end portions 22a and 22b of the wall surface circulation pipe 22 are connected to the first water inlet 20 and the last water outlet 21 to the heat exchange tank 18, respectively, and the wall surface circulation pipe 22 is connected to the outer wall surface 3 of the building. It is meandered and buried (see FIG. 3).
また、前記熱交換タンク18と壁面循環パイプ22内の水Wが循環できるようにその壁面循環パイプ22にポンプ23を設ける。
そのポンプ23の稼動は、建物の外壁の温度と地下の温度差が少ない場合には間欠稼動でも連続稼動でも良いが、その温度差が大きくなった場合には連続稼動させる。
A pump 23 is provided on the wall surface circulation pipe 22 so that the water W in the heat exchange tank 18 and the wall surface circulation pipe 22 can be circulated.
The operation of the pump 23 may be intermittent operation or continuous operation when the temperature difference between the outer wall of the building and the underground temperature is small, but it is continuously operated when the temperature difference becomes large.
また、請求項2に記載の発明は、上記請求項1の発明の構成に加えて、図4に示すように、建物の基礎1の外周に沿って施工されるものである(図7の平面図を参照)。
そして、図4及び図5に示すように、地表面G下約1.5〜2mの深さで縦横約1m程度に周廻空洞Sを掘り、その周廻空洞Sが崩れるのを防止するために、その空洞S内の底面を除く土露出面に土留板11を設ける。
地下は湿気が高いので、その土留板11に用いる素材は、ステンレスやプラスチックなどの錆にくいものを使用するのが好ましい。
その空洞S内の底面にはくり石16を敷き詰める。
Moreover, in addition to the structure of the said invention of the said Claim 1, invention of Claim 2 is constructed along the outer periphery of the foundation 1 of a building, as shown in FIG. 4 (plane of FIG. 7). (See diagram).
Then, as shown in FIGS. 4 and 5, in order to prevent the circumferential cavity S from collapsing by digging the circumferential cavity S to a depth of about 1.5 to 2 m below the ground surface G to about 1 m in length and width. The earth retaining plate 11 is provided on the soil exposed surface excluding the bottom surface in the cavity S.
Since the underground is highly humid, it is preferable to use a material that is difficult to rust such as stainless steel or plastic as the material for the retaining plate 11.
A stone 16 is spread on the bottom of the cavity S.
そして、前記周廻空洞Sから天井13で室内と仕切られた天井裏空間Cまで貫通する通風路Rを形成するよう外壁3の外側に縦胴縁2を打ち付け、その縦胴縁2に被覆壁4を張って、窓などの開口部を除いた全外面を被覆する。
なお、前記周廻空洞Sから天井裏空間Cへは、図6に示すように、軒桁12の間の隙間に風路Rが形成されるように被覆壁4を屋根15まで突き付ける。
通風路Rの広さは縦胴縁2の厚さで決まり、通風路R幅を2cmにする場合には2cm幅の角材を使用すれば良い。
A vertical trunk edge 2 is struck outside the outer wall 3 so as to form a ventilation path R penetrating from the peripheral cavity S to the ceiling back space C partitioned from the room by the ceiling 13. 4 is stretched to cover the entire outer surface except for openings such as windows.
In addition, as shown in FIG. 6, the covering wall 4 is pushed to the roof 15 so that the air passage R is formed in the gap between the eaves girders 12 from the circumferential cavity S to the ceiling space C.
The width of the ventilation path R is determined by the thickness of the vertical trunk edge 2, and when the width of the ventilation path R is set to 2 cm, a square member having a width of 2 cm may be used.
また、基礎1の外周に沿って設けた土留板11はそのままでは地表面G下の土圧で基礎1側に倒れてしまうので、その倒れを防止して通風路Rを保持するために、図6に示すように、別に基礎1と土留板11との間に隔保持材17を挟んで通風路Rの確保をする。
なお、基礎1の外側の通風路Rは、前記隔保持材17を用いずに、基礎1の外側に前記縦胴縁2を下方へ延長させ、その部分により土留板11を抑えても良い。
In addition, since the earth retaining plate 11 provided along the outer periphery of the foundation 1 falls as it is to the foundation 1 side due to the earth pressure below the ground surface G, in order to prevent the collapse and maintain the ventilation path R, FIG. As shown in FIG. 6, the ventilation path R is secured by interposing a separation holding member 17 between the foundation 1 and the retaining plate 11.
In addition, the ventilation path R outside the foundation 1 may extend the vertical trunk edge 2 downward to the outside of the foundation 1 without using the spacing member 17 and suppress the earth retaining plate 11 by that portion.
さらに、前記周廻空洞S上には外気取入口6を有するボックス5(図5参照)を、周廻空洞Sの長さ方向に距離を置いて設置(図7参照)し、周廻空洞S内に外気を取り入れるために、そのボックス5の空間Bと前記周廻空洞Sとを繋ぐ合成樹脂製の吸気パイプ7を設ける。   Further, a box 5 (see FIG. 5) having an outside air inlet 6 is installed on the circumferential cavity S at a distance in the length direction of the circumferential cavity S (see FIG. 7). In order to take in the outside air, a synthetic resin intake pipe 7 that connects the space B of the box 5 and the peripheral cavity S is provided.
また、請求項3に記載の発明は、上記請求項2の発明の構成に加えて、強制的に周廻空洞S内に外気を取り入れるために、前記ボックス5内に現われた部分の前記吸気パイプ7にエアーポンプやファンなどの送風手段8を設けることも可能である(図5参照)。
そのような送風手段8は建物の外周に設けられている吸気パイプ7の全部に取り付ける場合と、一部に取り付ける場合とがある。
さらに、天井裏空間Cの空気を建物の外部に排出する排気口10を切妻壁面に設ける。
According to a third aspect of the present invention, in addition to the configuration of the second aspect of the present invention, in order to forcibly take outside air into the peripheral cavity S, a portion of the intake pipe that has appeared in the box 5 is provided. 7 can be provided with air blowing means 8 such as an air pump or a fan (see FIG. 5).
Such a blowing means 8 may be attached to the whole intake pipe 7 provided on the outer periphery of the building or may be attached to a part thereof.
Further, an exhaust port 10 for discharging the air in the ceiling back space C to the outside of the building is provided on the gable wall surface.
また、通風路Rに面した外壁3の外側面3aを断熱材9で被覆(図6に示す)することも、室内の温度を外気と遮断し、夏の高温が室内に熱伝達されるのを防止するのに有効である。   In addition, covering the outer surface 3a of the outer wall 3 facing the ventilation path R with a heat insulating material 9 (shown in FIG. 6) can also block the indoor temperature from the outside air and transfer the summer high temperature to the room. It is effective in preventing
上記構成である本発明の作用を以下説明する。
一般に、人の生活する温度は17〜25°Cが適温であるとされているが、夏季は外気温度が30°C以上になり冬は0°C以下となるため、室内の気温も夏は暑く、冬季は寒くなる。
他方、日本国内では、地表面下約1.5m以上の深さでは外気温度に殆ど影響されず、温度が約15°Cに保たれている。
本発明の構造は、その地下温度の約15°Cが生活適温の17〜25°Cに近いことに着目してそれを利用できるようにしたものである。
The effect | action of this invention which is the said structure is demonstrated below.
In general, it is said that the temperature that people live in is 17-25 ° C. However, the outdoor temperature is 30 ° C or higher in summer and 0 ° C or lower in winter. Hot and cold in winter.
On the other hand, in Japan, at a depth of about 1.5 m or more below the ground surface, the temperature is kept at about 15 ° C. with little influence from the outside air temperature.
The structure of the present invention is made available by paying attention to the fact that the underground temperature of about 15 ° C. is close to the optimal living temperature of 17 to 25 ° C.
そこでまず、建物の外部の気温が高い夏季について説明する。
夏季の外気温度が例えば30°Cであった場合、被覆壁4の温度が30°C近くに上がり、ここに日光が直射されると壁の材質や色合いによっては50〜70°C近くにまで上がることがある。
Therefore, first, the summer when the temperature outside the building is high will be described.
When the outdoor temperature in summer is, for example, 30 ° C, the temperature of the covering wall 4 rises to close to 30 ° C, and when the sunlight is shined directly here, depending on the material and the color of the wall, the temperature is close to 50-70 ° C. May go up.
そこで本発明では、建物の地下1.5乃至2m程度の深さの地中温度(約15°C)により、埋設されている熱交換タンク18を約15°Cに近づけ、その熱交換タンク18内の水Wを約15°Cに近づける。
約15°Cに近づいた熱交換タンク18内の水は、ポンプ23の稼動で、連結パイプ19により繋がった各熱交換タンク18を一方向に流れ、地上の建物の外壁面3内を循環パイプ22を通って広域に蛇行して循環する。
そして、約15°Cの水Wは、その周囲の50°C以上の高温となった外壁面3自体の温度を約15°Cに近づける。その結果、室温も約15°Cに近づいていく。
Therefore, in the present invention, the buried heat exchange tank 18 is brought close to about 15 ° C. by the underground temperature (about 15 ° C.) at a depth of about 1.5 to 2 m below the building. The water W inside is brought close to about 15 ° C.
The water in the heat exchange tank 18 that has approached about 15 ° C. flows in one direction through the heat exchange tanks 18 connected by the connecting pipes 19 by the operation of the pump 23, and circulates in the outer wall surface 3 of the building on the ground. It circulates meandering through a wide area through 22.
Then, the water W of about 15 ° C. brings the temperature of the outer wall surface 3 itself that has become a high temperature of 50 ° C. or more around it to about 15 ° C. As a result, the room temperature approaches 15 ° C.
また、請求項2に記載の発明では、上記の水循環によるものに加えて、地下の周廻空洞S内の地下温度を空気を媒体として外壁面3に移転させるものである。
その構造から作用を説明すると、被覆壁4の温度が上がるとその被覆壁4内の各縦胴縁2間に形成された通風路Rが過熱され、通風路R内部の空気の上昇気流が発生する(以下このことを「煙突効果」と呼ぶ)。
この「煙突効果」による通風路R内空気の上昇により、周廻空洞Sの空気が、吸い上げられ、天井裏空間Cへ上昇し、その高温の空気は排気口10から建物の外部に排出される。
In addition, in the invention described in claim 2, in addition to the above-described water circulation, the underground temperature in the underground circumferential cavity S is transferred to the outer wall surface 3 using air as a medium.
Explaining the operation from the structure, when the temperature of the covering wall 4 rises, the ventilation path R formed between the vertical trunk edges 2 in the covering wall 4 is overheated, and the rising air flow of the air inside the ventilation path R is generated. (This is hereinafter referred to as the “chimney effect”).
Due to the rise of the air in the ventilation path R due to this “chimney effect”, the air in the circumferential cavity S is sucked up and rises to the ceiling space C, and the high-temperature air is discharged from the exhaust port 10 to the outside of the building. .
一方、周廻空洞S内は、通風路Rから空気が吸い上げられることにより若干の減圧状態となり、外気がボックス5内空間Bに流入し吸気パイプ7を通って通風路Rへ吸い込まれてくる。
周廻空洞S内の周囲は約15°Cなので、流入した外気は周廻空洞S内の空気と混ざり合って冷却され、温度が30°Cから低下して約15°Cへ近づく。
On the other hand, the inside of the peripheral cavity S is slightly depressurized when air is sucked up from the ventilation path R, and the outside air flows into the space B in the box 5 and is sucked into the ventilation path R through the intake pipe 7.
Since the ambient temperature in the circumferential cavity S is about 15 ° C., the inflowing outside air is mixed with the air in the circumferential cavity S and cooled, and the temperature drops from 30 ° C. to about 15 ° C.
そして、この約15°Cへ近づいて約17〜25°Cになった空気は、通風路Rに流入してその通風路Rに面した外壁3の外側面3aを約17〜25°C近くにまで冷却する。すると外壁3の内側面も、その外壁3素材の熱伝導によって約17〜25°C近くにまで冷却される。
この結果、夏季の外気温度が例えば30°Cであっても、約17〜25°Cとなった外壁3に囲まれた室内空間Lの温度はバランス良く適温に保たれる。
And the air which became about 17-25 degreeC approaching about 15 degreeC flows into the ventilation path R, and the outer side surface 3a of the outer wall 3 which faced the ventilation path R is about 17-25 degreeC. Cool down to. Then, the inner surface of the outer wall 3 is also cooled to about 17 to 25 ° C. by the heat conduction of the outer wall 3 material.
As a result, even if the outdoor air temperature in summer is, for example, 30 ° C., the temperature of the indoor space L surrounded by the outer wall 3 that is about 17 to 25 ° C. is maintained at a suitable temperature with a good balance.
次に、建物の外部の気温が低い冬季についての説明をする。
冬期では外気温度が例えば3°Cであった場合、被覆壁4の温度が3°Cに近づく。一方、地下温度は約15°Cである。
熱交換タンク18内の水Wは地中温度で約15°Cに近づく。
その水は、ポンプ23の稼動で、地上の建物の外壁面3内を循環パイプ22を通って広域に蛇行して循環する。
そして、3°Cとなった外壁面3を循環パイプ22の周囲から約15°Cに近づけていく。その結果、室温も約15°Cに近づいていく。
Next, the winter season when the temperature outside the building is low will be explained.
In the winter, when the outside air temperature is, for example, 3 ° C, the temperature of the covering wall 4 approaches 3 ° C. On the other hand, the underground temperature is about 15 ° C.
The water W in the heat exchange tank 18 approaches about 15 ° C. at the ground temperature.
With the operation of the pump 23, the water circulates through the outer wall surface 3 of the building on the ground through the circulation pipe 22 in a wide area.
Then, the outer wall surface 3 having reached 3 ° C. is brought closer to about 15 ° C. from the periphery of the circulation pipe 22. As a result, the room temperature approaches 15 ° C.
また、請求項2に記載の発明では、上記の水循環によるものに加えて、地下の周廻空洞S内の地下温度を空気を媒体として外壁面3に移転させるものである。
冬季では外気温度が例えば3°Cであった場合、被覆壁4の温度が3°Cに近づく。一方、周廻空洞S内は約15°Cである。
このままでは、上記「煙突効果」は殆ど期待できない。そのため、通風路Rの温度は3°Cに近いままである。
そこで、冬季では、通風路Rの空気を流れるようにさせるには、吸気パイプ7にエアーポンプやファンなどの送風手段8を設けて強制的に送風させることが効果的である。
In addition, in the invention described in claim 2, in addition to the above-described water circulation, the underground temperature in the underground circumferential cavity S is transferred to the outer wall surface 3 using air as a medium.
In the winter, when the outside air temperature is 3 ° C., for example, the temperature of the covering wall 4 approaches 3 ° C. On the other hand, the inside of the circumferential cavity S is about 15 ° C.
In this state, the “chimney effect” can hardly be expected. Therefore, the temperature of the ventilation path R remains close to 3 ° C.
Therefore, in the winter season, in order to allow the air in the ventilation path R to flow, it is effective to provide the air blowing means 8 such as an air pump or a fan in the intake pipe 7 to forcibly blow the air.
その空気の流れを説明すると、周廻空洞S内の約15°Cの空気を吸気パイプ7に設けた送風手段8を稼動させて、3°Cの外気を周廻空洞S内に送る。
すると、周廻空洞S内の空気と混ざり合って、温度が3°Cから約15°Cへ近づき、例えば12°Cになる。
同時に、この12°Cの空気は周廻空洞S内から強制的に通風路Rへ送り出される。
このため、3°Cであった通風路Rに面した外壁3の温度は12°Cに近づいて行く。
Explaining the flow of the air, the air blowing means 8 provided in the intake pipe 7 is operated with about 15 ° C. air in the circumferential cavity S, and 3 ° C. outside air is sent into the circumferential cavity S.
Then, it mixes with the air in the peripheral cavity S, and the temperature approaches from 3 ° C to about 15 ° C, for example, 12 ° C.
At the same time, the 12 ° C. air is forcibly sent from the circumferential cavity S to the ventilation path R.
For this reason, the temperature of the outer wall 3 facing the ventilation path R, which was 3 ° C., approaches 12 ° C.
即ち、地下の周廻空洞S内の空気が通風路Rに流入してその通風路Rに面した外壁3の外側面3aを温めて12°Cに近づけ、その外壁3素材の熱伝導によってその内側面を、約12°C近くにまで暖める。
この結果、冬季の外気温度が例えば3°Cであっても、約12°Cとなった外壁3に囲まれた室内空間Lの温度は暖房器具を稼動しなくても外気温度よりも高い温度に保たれる。
したがって、室内の温度の最終調節は、電気、ガス、石油などを用いた冷暖房装置と併用で行い、そうすると、冷暖房装置のみ使用する場合と比較してエネルギー資源を効率的に節約することができる。
That is, the air in the underground circumferential cavity S flows into the ventilation path R, warms the outer surface 3a of the outer wall 3 facing the ventilation path R, approaches 12 ° C., and the heat conduction of the material of the outer wall 3 Warm the inside surface to about 12 ° C.
As a result, even if the outdoor temperature in winter is 3 ° C, for example, the temperature of the indoor space L surrounded by the outer wall 3 that is about 12 ° C is higher than the outdoor temperature without operating the heater. To be kept.
Therefore, the final adjustment of the indoor temperature is performed in combination with a cooling / heating device using electricity, gas, oil, or the like, so that energy resources can be efficiently saved as compared with the case where only the cooling / heating device is used.
上記形態の発明では、上記のように、夏季は強制的な送風はせずに通風路Rによる自然の「煙突効果」により送風が行われるものであるが、その「煙突効果」が弱い場合には、吸気パイプ7にエアーポンプやファンなどの送風手段8を設けて強制的に送風させることもできる。また「煙突効果」による自然送風と送風手段8による強制送風を併用することも可能である。   In the invention of the above embodiment, as described above, in the summer, air is blown by the natural “chimney effect” by the ventilation path R without forced air blowing, but the “chimney effect” is weak. Can be forcibly blown by providing a blowing means 8 such as an air pump or a fan in the intake pipe 7. It is also possible to use both natural ventilation by the “chimney effect” and forced ventilation by the blowing means 8.
本発明は上記構造であり、戸建住宅のほかにも集合住宅、倉庫、工場など各種建築物にも使用できる。   The present invention has the above-described structure, and can be used for various buildings such as apartment houses, warehouses and factories in addition to detached houses.
本発明の縦断側面図である。It is a vertical side view of the present invention. 地下の構造を示す要部の縦断斜視図である。It is a vertical perspective view of the principal part which shows an underground structure. 壁を切欠した状態を示す要部の縦断斜視図である。It is a vertical perspective view of the principal part which shows the state which notched the wall. 請求項2の形態を示す縦断側面図である。It is a vertical side view which shows the form of Claim 2. 建物を切欠した状態を示す請求項2の形態の縦断斜視図である。It is a vertical perspective view of the form of Claim 2 which shows the state which notched the building. 請求項2の形態の切欠した状態を示す要部の縦断斜視図である。It is a vertical perspective view of the principal part which shows the notched state of the form of Claim 2. 地下構造を示す建物の水平断面図である。It is a horizontal sectional view of a building showing an underground structure.
符号の説明Explanation of symbols
1 建物の基礎
2 縦胴縁
3 外壁
3a 外壁の外側面
4 被覆壁
5 ボックス
6 外気取入口
7 吸気パイプ
8 送風手段
9 断熱材
10 天井裏通風口
11 土留板
12 軒桁
13 天井
14 床
15 屋根
16 くり石
17 隔壁板支持材
18 熱交換タンク
19 連結パイプ
20 入水口
21 出水口
22 壁面循環パイプ
22a 壁面循環パイプの端部
22b 壁面循環パイプの端部
23 循環ポンプ
W 水
G 地表面
S 周廻空洞
C 天井裏空間
R 通風路
B ボックス内空間
L 室内空間





DESCRIPTION OF SYMBOLS 1 Base of building 2 Vertical trunk edge 3 Outer wall 3a Outer surface of outer wall 4 Covering wall 5 Box 6 Outside air intake 7 Intake pipe 8 Air blower 9 Heat insulating material 10 Ceiling back vent 11 Tail plate 12 House girder 13 Ceiling 14 Floor 15 Roof 16 quarry stone 17 partition plate support material 18 heat exchange tank 19 connecting pipe 20 water inlet 21 water outlet 22 wall circulation pipe 22a end of wall circulation pipe 22b end of wall circulation pipe 23 circulation pump W water
G Ground surface
S Circumferential cavity
C Ceiling space
R Ventilation path
B Box space
L Interior space





Claims (3)

  1. 建物の地下1.5乃至2m程度の深さに水を充填して埋設した複数の熱交換タンクと、
    該熱交換タンクへの最初の入水口から最後の出水口へ各熱交換タンク内の水が一方向に流れるように連結した連結パイプと、
    該熱交換タンクへの最初の入水口と最後の出水口とに両端部をそれぞれ連結するとともに建物の外壁面に蛇行させて埋設した壁面循環パイプと、
    該壁面循環パイプ内の水を循環させるポンプとから成り、地下の温度と室内の温度とを循環水の媒介で熱交換できるようにしたことを特徴とする地温を利用した室内温度調整構造。
    A plurality of heat exchange tanks embedded with water at a depth of about 1.5 to 2 m below the building;
    A connecting pipe connected so that the water in each heat exchange tank flows in one direction from the first water inlet to the heat outlet tank to the last water outlet;
    A wall-circulation pipe that is connected to both the first water inlet and the last water outlet to the heat exchange tank, and is embedded in a meandering manner on the outer wall surface of the building,
    An indoor temperature adjustment structure using ground temperature, characterized by comprising a pump for circulating water in the wall surface circulation pipe, and enabling heat exchange between the underground temperature and the room temperature through the circulation water.
  2. 請求項1の構成に加えて、建物の基礎の外周に沿って地表面下1.5乃至2m程度の深さで縦横約1m程度に掘られた周廻空洞と、
    該周廻空洞が崩れるのを防止するためにその空洞内の底面を除く土露出面に設けた土留板と、
    前記周廻空洞から天井裏空間まで貫通する通風路を形成するために基礎の外側及び外壁の外側を縦胴縁を介して被覆する被覆壁と、
    前記周廻空洞上に設置された外気取入口を備えたボックスと、
    該ボックス内空間と前記周廻空洞とを繋いでボックス内の外気を周廻空洞内に取り入れるための吸気パイプと、
    天井裏空間の空気を外部に排出する排気口とから成り、地下の温度と室内の温度とを循環水及び空気の媒介で熱交換できるようにしたことを特徴とする地温を利用した室内温度調整構造。
    In addition to the structure of claim 1, a circumferential cavity dug to about 1 m in length and width at a depth of about 1.5 to 2 m below the ground surface along the outer periphery of the foundation of the building;
    A retaining plate provided on the exposed soil surface excluding the bottom surface in the cavity to prevent the circumferential cavity from collapsing;
    A covering wall that covers the outer side of the foundation and the outer side of the outer wall through a vertical trunk edge in order to form a ventilation path penetrating from the circumferential cavity to the ceiling space;
    A box having an outside air inlet installed on the circumferential cavity;
    An intake pipe for connecting the space in the box and the peripheral cavity and taking outside air in the box into the peripheral cavity;
    Indoor temperature control using ground temperature, which consists of an exhaust vent that exhausts the air in the space behind the ceiling to the outside and enables heat exchange between the underground temperature and the indoor temperature through the circulation of circulating water and air Construction.
  3. ボックス内に現われた部分の吸気パイプに、周廻空洞内に外気を取り入れるための送風手段を設けて成る請求項2に記載の地温を利用した建物の温度調整構造。



    3. The temperature adjustment structure for a building using the ground temperature according to claim 2, wherein a portion of the intake pipe that appears in the box is provided with air blowing means for taking outside air into the peripheral cavity.



JP2003295857A 2003-08-20 2003-08-20 Indoor temperature adjusting structure using geotherm Pending JP2005061786A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003295857A JP2005061786A (en) 2003-08-20 2003-08-20 Indoor temperature adjusting structure using geotherm

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003295857A JP2005061786A (en) 2003-08-20 2003-08-20 Indoor temperature adjusting structure using geotherm

Publications (1)

Publication Number Publication Date
JP2005061786A true JP2005061786A (en) 2005-03-10

Family

ID=34371943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003295857A Pending JP2005061786A (en) 2003-08-20 2003-08-20 Indoor temperature adjusting structure using geotherm

Country Status (1)

Country Link
JP (1) JP2005061786A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102425835A (en) * 2011-12-02 2012-04-25 许培和 Device for regulating indoor temperature by using ground temperature
CN102563797A (en) * 2012-01-17 2012-07-11 黄河勘测规划设计有限公司 Full-ventilation temperature and humidity independent control system for deeply-buried hydraulic power station underground power house
CN102788398A (en) * 2012-09-11 2012-11-21 李大泽 Household cold-warm water and gas circulation air conditioner system
KR101443765B1 (en) 2014-07-11 2014-09-26 (주)한아테크 Insulation and air circulation system using geothermal heat
CN104165429A (en) * 2014-09-01 2014-11-26 李传友 System based on cold-warm/dry-wet and purifying environment in ground temperature adjusting space
CN104913416A (en) * 2015-06-04 2015-09-16 李天林 Novel air-conditioning system
CN106813333A (en) * 2017-01-09 2017-06-09 湖南大学 Double pipe laying air through tunnels couple air-conditioning system with phase-changing energy-storing
JP2017146054A (en) * 2016-02-19 2017-08-24 パナソニックIpマネジメント株式会社 Heat utilization device
KR20170126356A (en) * 2016-05-09 2017-11-17 이준호 Cooling and Heating system using the Geothermal Energy
CN111174451A (en) * 2020-01-08 2020-05-19 中国矿业大学(北京) Open type waste mine energy storage circulation system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102425835A (en) * 2011-12-02 2012-04-25 许培和 Device for regulating indoor temperature by using ground temperature
CN102563797A (en) * 2012-01-17 2012-07-11 黄河勘测规划设计有限公司 Full-ventilation temperature and humidity independent control system for deeply-buried hydraulic power station underground power house
CN102563797B (en) * 2012-01-17 2014-03-19 黄河勘测规划设计有限公司 Full-ventilation temperature and humidity independent control system for deeply-buried hydraulic power station underground power house
CN102788398A (en) * 2012-09-11 2012-11-21 李大泽 Household cold-warm water and gas circulation air conditioner system
KR101443765B1 (en) 2014-07-11 2014-09-26 (주)한아테크 Insulation and air circulation system using geothermal heat
CN104165429A (en) * 2014-09-01 2014-11-26 李传友 System based on cold-warm/dry-wet and purifying environment in ground temperature adjusting space
CN104913416A (en) * 2015-06-04 2015-09-16 李天林 Novel air-conditioning system
JP2017146054A (en) * 2016-02-19 2017-08-24 パナソニックIpマネジメント株式会社 Heat utilization device
KR20170126356A (en) * 2016-05-09 2017-11-17 이준호 Cooling and Heating system using the Geothermal Energy
CN106813333A (en) * 2017-01-09 2017-06-09 湖南大学 Double pipe laying air through tunnels couple air-conditioning system with phase-changing energy-storing
CN106813333B (en) * 2017-01-09 2019-05-03 湖南大学 Double pipe laying air through tunnels couple air-conditioning system with phase-changing energy-storing
CN111174451A (en) * 2020-01-08 2020-05-19 中国矿业大学(北京) Open type waste mine energy storage circulation system

Similar Documents

Publication Publication Date Title
JP2005061786A (en) Indoor temperature adjusting structure using geotherm
JP2009264721A (en) Earth solar system (single layer type)
JP5505836B2 (en) Improved earth / solar system (Ground heat recovery pipe method)
JP2009250581A (en) Heating and cooling system using underground heat
US6978826B2 (en) Heating and cooling apparatus, building structure having heating and cooling apparatus, and method of using heating and cooling apparatus
JP2009127921A (en) Cold taking-in system
US4842048A (en) System for drawing the open air indoors
JP5742009B2 (en) Earth / Solar / Zero Energy Housing
WO2011033325A1 (en) Cooling, heating, surface-radiating and air exchanging building system with low energy consumption for energy-saving houses with increased passive quality
JP3099952U (en) Building temperature control structure using ground temperature
JP2004340463A (en) Air conditioner utilizing geothermal heat
JP2009235677A (en) Thermal environment improving system
JP5351210B2 (en) Thermal storage air conditioning system
JP5932692B2 (en) Heat storage device
JP4049380B2 (en) Building ventilation system
JP5505837B2 (en) Earth / Solar system (basement compatible)
JP5833064B2 (en) Thermal storage air conditioning system
JP2006153304A (en) Geotherm utilizing installation
JP4638831B2 (en) Floor heating system
JP2009085553A (en) Geothermal system for building
JP5945127B2 (en) building
KR101482995B1 (en) air-conditioner and storehouses for farm products with basements and circulation path in ground, the inside or outside air circulating by the path
JP2002372315A (en) Method and device for practically utilizing subterranean heat by utilizing foundation pile
JP5084407B2 (en) Building air conditioning system
JP4933748B2 (en) Solar system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080325