JP6135906B2 - Earth / Solar system - Google Patents

Earth / Solar system Download PDF

Info

Publication number
JP6135906B2
JP6135906B2 JP2012289457A JP2012289457A JP6135906B2 JP 6135906 B2 JP6135906 B2 JP 6135906B2 JP 2012289457 A JP2012289457 A JP 2012289457A JP 2012289457 A JP2012289457 A JP 2012289457A JP 6135906 B2 JP6135906 B2 JP 6135906B2
Authority
JP
Japan
Prior art keywords
floor
air
heat
room
recovery pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012289457A
Other languages
Japanese (ja)
Other versions
JP2014129992A (en
Inventor
龍夫 ▲高▼▲橋▼
龍夫 ▲高▼▲橋▼
Original Assignee
株式会社 ▲高▼▲橋▼監理
株式会社 ▲高▼▲橋▼監理
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 ▲高▼▲橋▼監理, 株式会社 ▲高▼▲橋▼監理 filed Critical 株式会社 ▲高▼▲橋▼監理
Priority to JP2012289457A priority Critical patent/JP6135906B2/en
Publication of JP2014129992A publication Critical patent/JP2014129992A/en
Application granted granted Critical
Publication of JP6135906B2 publication Critical patent/JP6135906B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • F24T10/13Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes
    • F24T10/17Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes using tubes closed at one end, i.e. return-type tubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Description

石油、ガス、電気等の人口エネルギーの浪費を抑え、太陽光や地中の地熱を有効に活用して住宅の室温調節を行うための、エネルギーコストが低く構造が簡単な冷暖房装置に関する。  The present invention relates to an air conditioning apparatus with a low energy cost and a simple structure for controlling the room temperature of a house by suppressing waste of artificial energy such as oil, gas, and electricity and effectively utilizing sunlight and geothermal heat in the ground.
従来の、小規模な住宅における室温調整は、夏期にはクーラーを使用し、冬期には電気、ガス、石油等のエネルギーを利用して冷暖房を行って来たが、近年では地球温暖化防止の観点から、エネルギー消費に伴うCO2排出量の削減が急務となり、エネルギー消費量の削減や、さらに自然エネルギーへの代替が早急に望まれている。  Conventional room temperature adjustment in small houses has been using air conditioners in the summer and cooling and heating using energy such as electricity, gas, and oil in the winter. From the viewpoint, it is an urgent need to reduce CO2 emissions accompanying energy consumption, and reduction of energy consumption and further replacement with natural energy are urgently desired.
これに伴い、自然エネルギーの利用手段として、現在、一般的に普及しているものは、太陽エネルギーを利用した、太陽熱温水器(熱効率50〜60%)と太陽光発電(変換効率10〜15%)があるが、いずれも、太陽エネルギーだけを利用する省エネ技術は天候に左右され易く、不安定な点から単独では利用が出来ず、他のエネルギーと兼用して利用されて来たため、なお一層の改良が求められている。  Along with this, as a means of utilizing natural energy, what is currently widely used is a solar water heater (thermal efficiency 50-60%) and solar power generation (conversion efficiency 10-15%) using solar energy. However, in both cases, energy-saving technology that uses only solar energy is easily affected by the weather and cannot be used alone because of instability, and has been used in combination with other energy. There is a need for improvements.
これに対して、地下4〜5mの地中は、年間を通じて安定した温度を保つことから、夏期は外気と比べて低温となり、冬期は外気と比べて暖温となる。そのため、従来からこのような地中熱を利用した設備は、大型の建物や公共設備等で実験的に施工されているが、その利用方法は、冬の間に自然界で出来た氷を保存しておき、その氷を夏期に地下に設けた蓄熱槽に移して冷水を作り、その冷水を各室に循環させて冷房を行うことが一般的であり、大掛かりな工事が必要となり、しかも、定期的に蓄熱層に氷を補充しなければならず、小規模な住宅用としては不向きであった。  On the other hand, the underground 4 to 5 m underground maintains a stable temperature throughout the year, so that it is cooler than the outside air in the summer and warmer than the outside in the winter. For this reason, facilities that use geothermal heat have been experimentally constructed in large buildings and public facilities, but the method of use is to preserve the ice made in nature during the winter. In general, it is common to transfer the ice to a heat storage tank in the basement in the summer to make cold water, circulate the cold water to each room and cool it. Therefore, it was necessary to replenish the heat storage layer with ice, which was not suitable for small-scale housing.
さらに、地中熱を利用したヒートポンプ方式で、家庭内の給湯と、室内の冷暖房を行う方法も行われているが、水平ループ方式(地中に深さ1〜2mの堀を堀り、そこに採熱用パイプを這わせて埋設する)では、建て坪100mの住宅の熱源を得るために400〜600mの採熱用パイプを埋設することが必要であり、又、垂直ループ方式(地中に深さ50〜100mの井戸を堀り、そこに採熱用パイプを埋設する)では2本の井戸が必要となり、一般住宅用で300〜500万円の費用を要すると共に、ヒートポンプの稼動コスト(電気代)が、深夜電力を利用した電気温水器の約75%かかるといった問題があった。Furthermore, a heat pump system that uses geothermal heat is also used to supply hot water in the home and to cool and heat the room, but a horizontal loop system (deep a 1-2 m deep moat in the ground, In order to obtain a heat source for a house with a floor area of 100 m 2 , it is necessary to embed a 400 to 600 m heat collecting pipe, and a vertical loop system (ground) 2 holes are needed for digging 50-50m deep wells, and pipes for heat collection are buried in them, and it costs 3 to 5 million yen for general housing, and the heat pump is operated. There was a problem that the cost (electricity cost) was about 75% of that of an electric water heater using midnight power.
また、平成15年7月に建築基準法が改正され、「シックハウス対策」として、居室の24時間換気(1時間で居室体積の0.5回分を換気させる事)が義務づけられた。  In July 2003, the Building Standards Law was amended to require 24-hour ventilation of the room (to ventilate 0.5 times the volume of the room in one hour) as a “sick house measure”.
そこで、本出願人は、特許文献1に記載された、建築基準法に対応できる「アース・ソーラーシステム(二層式)」を発明し出願した。この発明によれば、貯水タンクと、貯温水タンクの2つのタンクを地中に埋設し、その双方のタンク内に、外気取入口から各室の24時間給気パイプに連通する熱交換パイプを配管し、貯水タンクを雨水又は地下水又は水道水で満たすと共に、貯温水タンクは太陽熱温水器からの温水で満たし、前記、熱交換パイプに設けた開閉バルブを操作する事により、夏期においては、冬期の冷たい外気で冷やしておいた貯水タンク内の冷水を利用して、外気を貯水タンク内の熱交換パイプを経由させ、暑い外気を冷やして各室に送り込むため、効率よく冷風運転を行うことが出来る。また、冬期においては、夏期の暑い外気で温めておいた貯水タンクの弱温水に冷たい外気を熱交換バイプを経由して暖めると共に、さらに太陽熱温水器を利用した、貯温水タンク内の温水中の熱交換パイプを経由するため、各室に温風を送り込むことが可能となった。
特願2007−42895
Therefore, the present applicant has invented and applied for an “earth / solar system (two-layer type)” described in Patent Document 1 and capable of complying with the Building Standard Law. According to the present invention, two tanks, a water storage tank and a hot water storage tank, are buried in the ground, and heat exchange pipes that communicate with the 24 hour air supply pipes of each room from the outside air intake are provided in both tanks. Plumbing and filling the storage tank with rain water, ground water or tap water, filling the storage tank with hot water from the solar water heater, and operating the opening / closing valve provided in the heat exchange pipe in the summer, in the winter Using cold water in the storage tank that has been cooled with cold outside air, the outside air is passed through the heat exchange pipe in the storage tank, and the hot outside air is cooled and sent to each room, so efficient cold wind operation can be performed I can do it. In the winter season, warm water in the water storage tank that has been warmed by hot outdoor air in the summer is warmed to the low temperature water via the heat exchange vapour. Since it passes through the heat exchange pipe, it became possible to send warm air into each room.
Japanese Patent Application No. 2007-42895
しかしながら、本出願人の出願した特許文献1の発明においては、貯水タンクと貯温水タンクの2つのタンクを必要としたため、配管が複雑になり、開閉バルブの数も増え、高価格になると共に、施工するための工期も長く必要であった。  However, in the invention of Patent Document 1 filed by the present applicant, two tanks, a water storage tank and a hot water storage tank, are required, so the piping becomes complicated, the number of open / close valves increases, and the price increases. A long construction period was also required.
そこで、本出願人は、特許文献2に記載された、「アース・ソーラーシステム(一層式)」を発明して出願した。この発明によれば、建物の下部の地中に、建物の基礎部と一体に構成したコンクリート製タンクを構築し、コンクリート製タンク内に熱交換パイプを配管し、コンクリート製タンク内を雨水、又は水道水、又は地下水で満たし、全熱交換型換気扇からの供給空気をコンクリート製タンク内の熱交換パイプに導き、夏期は、全熱交換型換気扇からの供給空気を、地中熱で冷やされたコンクリート製タンク内の水と、熱交換パイプとの間で熱交換して冷やした後、給気パイプを経由して各階に給気し、冬期は、太陽熱温水器からの温水を、コンクリート製タンク内に循環させて、コンクリート製タンク内を温水状態とし、全熱交換型換気扇からの供給空気を、コンクリート製タンク内の熱交換パイプに導き、コンクリート製タンク内の温水と、熱交換パイプとの間で熱交換して暖めた後、給気パイプを経由して各階に給気した事により、各室に温風を送り込むことが可能となった。
特願2008−134783
Therefore, the present applicant invented and filed an application of “earth / solar system (single layer type)” described in Patent Document 2. According to the present invention, a concrete tank constructed integrally with the foundation of the building is built in the lower part of the building, and the heat exchange pipe is piped in the concrete tank, and the inside of the concrete tank is rainwater, or Filled with tap water or groundwater, the supply air from the total heat exchange type exhaust fan was led to the heat exchange pipe in the concrete tank, and in the summer, the supply air from the total heat exchange type exhaust fan was cooled by underground heat The water in the concrete tank and the heat exchange pipe are cooled and cooled, and then supplied to each floor via the air supply pipe. In the winter, the hot water from the solar water heater is supplied to the concrete tank. It is circulated into the concrete tank to make the inside of the concrete tank warm, and the supply air from the total heat exchange type exhaust fan is led to the heat exchange pipe in the concrete tank to heat and heat the concrete tank. After warming to heat exchange with the conversion pipe, by which the air supply to each floor through the supply pipe, it becomes possible to feed the hot air in each room.
Japanese Patent Application No. 2008-134783
しかしながら、本出願人の出願した特許文献2の発明においても、建物の下部の地中にコンクリート製タンクを必要としたため、高価になると共に、施工するための工期も長く必要であった。  However, in the invention of Patent Document 2 filed by the present applicant, a concrete tank is required in the ground below the building, so that it is expensive and requires a long construction period.
そこで、本出願人は、特許文献3に記載された、「アース・ソーラーシステム(地中熱回収パイプ方式)」を発明して出願した。この発明によれば、建物の基礎部に外部との通気口を設置せず、1階床下内部の空気を外気と遮断して密封状態とし、建物の室内に取付けた全熱交換型換気扇が室内側に供給する新鮮な外気を、建物の1階床下内部に送り込むと共に、1階床下の基礎底盤に下部をU字形に成形した複数の地中熱回収パイプを、両端を基礎底盤より1階床下部に突き出すように地中に埋設し、地中熱回収パイプの一端には送風機を取付け、その送風機を作動させる事により1階床下内部の空気が地中熱回収パイプに吸い込まれ、その地中熱回収パイプに吸い込まれた空気は、冬期は地中熱により地中熱回収パイプの中で暖められると共に、さらに、1階床下部に設けた温水蓄熱槽に太陽熱温水器で温めた温水を循環させて1階床下内部の空気を暖め、また、夏期は1階床下部に設けた温水蓄熱槽に太陽熱温水器からの温水を循環させず、地中熱により地中熱回収パイプの中で冷やされた空気が1階床下内部に給気され、その1階床下の空気をダクトを通して各階の天井内部に給気し、天井内部に給気した空気を各室天井に設けたガラリより室内に給気した事により、冬期には弱暖房された暖かい空気を各室に送り込むと共に、夏期には弱冷風された涼しい空気を各室に送り込むことが可能となった。
特願2009−158863
Therefore, the present applicant invented and filed an application of “Earth Solar System (Ground Heat Recovery Pipe System)” described in Patent Document 3. According to the present invention, there is provided a total heat exchange type ventilation fan installed in a room of a building without installing a vent hole to the outside at the foundation of the building and blocking the air inside the first floor under the outside air to be in a sealed state. Fresh outside air supplied to the inside is sent to the inside of the first floor under the building, and a plurality of underground heat recovery pipes with a U-shaped lower part formed on the foundation floor under the first floor, both ends of the floor below the foundation floor. It is buried in the ground so as to protrude into the section, a blower is attached to one end of the underground heat recovery pipe, and the air inside the first floor is sucked into the underground heat recovery pipe by operating the blower, and the underground The air sucked into the heat recovery pipe is warmed in the ground heat recovery pipe by the underground heat in the winter season, and further, the hot water warmed by the solar water heater is circulated in the hot water heat storage tank provided at the bottom of the first floor Let the air inside the first floor under the floor warm, and summer Does not circulate the hot water from the solar water heater in the hot water storage tank provided at the bottom of the 1st floor, and the air cooled by the underground heat recovery pipe is supplied to the inside of the 1st floor under the ground heat. Warm air that is heated slightly in winter by supplying air under the first floor into the ceiling of each floor through the duct, and supplying the air from inside the ceiling to the room from the gallery installed in the ceiling of each room Can be sent to each room, and cool air that has been weakly chilled in the summer can be sent to each room.
Japanese Patent Application No. 2009-158863
しかしながら、本出願人の出願した特許文献3の発明においても、雨や曇りの日が続いた場合、太陽熱温水器のお湯の温度が上がらず、雨や曇りの日と、晴天の日の温度差が大きいといった問題が発生した。  However, even in the invention of Patent Document 3 filed by the present applicant, when the rainy or cloudy day continues, the temperature of the hot water of the solar water heater does not rise, and the temperature difference between the rainy and cloudy day and the sunny day The problem that is large occurred.
そこで、本出願人は、特許文献4に記載された、「アース・ソーラーシステム(地中熱回収パイプ方式)」を発明して出願した。この発明によれば、冬期においては、建物の基礎部に外部との通気口を設置せず、1階床下内部の空気を外気と遮断して密封状態とし、建物の室内に取付けた全熱交換型換気扇が室内側に供給する新鮮な外気を、建物の1階床下部に送り込むと共に、1階床下の基礎底盤に下部をU字形に成形した複数の地中熱回収パイプを、両端を基礎底盤より1階床下部に突き出すように地中に埋設し、地中熱回収パイプの一端には送風機を取付け、その送風機を稼動させる事により1階床下内部の空気が地中熱回収パイプに吸い込まれ、地中熱により地中熱回収パイプの中で暖められて1階床下内部の空気を暖めると共に、太陽熱温水器からの温水をお風呂で利用した後、温水蓄熱槽に流して溜湯したため、雨や曇りが続いた場合においても、1階床下内部の空気の温度を地中熱だけに頼らず暖かくする事が可能となり、これまで排水溝に流していた温かい風呂の残り湯のエネルギーを再利用する事により、1階床下内部の弱暖房された暖かい空気を各室に給気する事が可能となった。また、夏期においては、温水蓄熱槽に風呂の残り湯を供給せず、全熱交換型換気扇から1階床下内部に送り込まれた外気は、地中熱により地中熱回収パイプの中で冷やされて1階床下部の空気と混ぜ合わされた後、各階天井内部に設けられたダクトの送風機を稼動させる事により、1階床下内部からダクトを経由して各階の天井内部に送られ、天井に設けたガラリより室内に給気して室内を冷やす事が可能となった。
特願2010−56088
Therefore, the present applicant invented and applied for “earth / solar system (ground heat recovery pipe system)” described in Patent Document 4. According to the present invention, in the winter season, a ventilation hole connected to the outside of the building is not installed in the base of the building, and the air inside the first floor is shut off from the outside air to be in a sealed state, and is installed in the building room. Fresh outside air supplied to the indoor side by the indoor ventilation fan is sent to the lower part of the first floor of the building, and a plurality of underground heat recovery pipes with U-shaped lower parts formed on the base floor under the first floor, both ends of the base floor It is buried in the ground so as to protrude below the first floor, and a blower is attached to one end of the underground heat recovery pipe. By operating the blower, the air inside the first floor is sucked into the underground heat recovery pipe. Because it was heated in the underground heat recovery pipe by the underground heat and warmed the air inside the floor under the first floor, and after using the hot water from the solar water heater in the bath, it was poured into the hot water storage tank, Even if it continues to rain or cloudy, 1st floor below It is possible to warm the temperature of the air without relying only on underground heat, and by reusing the energy of the remaining hot water in the warm bath that has been flowing through the drainage drainage, the interior of the floor under the first floor is lightly heated. Warm air can be supplied to each room. Also, in summer, the remaining hot water from the bath is not supplied to the hot water storage tank, and the outside air sent from the total heat exchange ventilator to the interior of the first floor is cooled in the underground heat recovery pipe by underground heat. After being mixed with the air in the lower floor of the first floor, the duct blower provided inside each floor ceiling is operated to send it from the interior under the first floor via the duct to the ceiling interior of each floor and install it on the ceiling. It became possible to cool the room by supplying air to the room.
Japanese Patent Application 2010-56088
しかしながら、本出願人の出願した特許文献4の発明においても、床下に設置する温水蓄熱槽の長期耐久性に問題が残ると共に、冬期において風呂の残り湯と地中熱だけでは暖房効果が不足するといった問題が発生した。  However, even in the invention of Patent Document 4 filed by the present applicant, there remains a problem in the long-term durability of the hot water heat storage tank installed under the floor, and the heating effect is insufficient only with the remaining hot water of the bath and the underground heat in winter. Such a problem occurred.
また、従来から地中熱交換機を利用した建物の空調換気システムとして知られている、特許文献5に記載したジオパワーシステムの場合、冬期において、地中熱だけでは暖房効果(地下5mでも地中温度は約18度前後だから、外気を地中熱により暖めても、それ以下の温度にしかならない)が低く、さらに価格が高いため、一般住宅に施工する場合はコストの面で問題があった。
特開2007−303693
In addition, in the case of the geopower system described in Patent Document 5, which is conventionally known as a building air-conditioning ventilation system using a geothermal heat exchanger, in the winter season, only the underground heat alone can produce a heating effect (even underground 5m underground). Because the temperature is around 18 degrees, even if the outside air is warmed by underground heat, the temperature is only lower than that) and the price is high, so there was a problem in terms of cost when constructing a general house .
JP2007-303693A
さらに、太陽エネルギーを利用するソーラーシステムとして知られている、特許文献6に記載したOMソーラーの場合、雨や曇りの日が続いた場合には暖房効果が下がるため補助暖房装置が必要になるといった問題と、さらに夏期においては冷風運転が出来ないといった欠点があった。
特開平08−005161
Furthermore, in the case of the OM solar described in Patent Document 6, which is known as a solar system that uses solar energy, the heating effect is reduced when a rainy or cloudy day continues, so an auxiliary heating device is required. There was a problem and the disadvantage that cold wind operation was not possible in summer.
JP 08-005161
本発明は、このような、従来の欠点に鑑みて、自然との調和を図る事を目的とし、石油、ガス、電気等の人工エネルギーの浪費を抑え、太陽熱や、地中の地中熱を有効に利用して、住宅の室温調整を行うものであり、エネルギーコストが低く、構造が簡単な冷暖房装置を提供する事を課題とする。  In view of such conventional drawbacks, the present invention aims at harmony with nature, suppresses waste of artificial energy such as oil, gas, electricity, etc., and reduces solar heat and underground heat. It is an object of the present invention to provide a cooling / heating device that effectively uses and adjusts the room temperature of a house, has a low energy cost, and has a simple structure.
本出願人の出願した特許文献1、特許文献2、特許文献3、特許文献4による発明では、上記のような問題が発生したため、当社では、新たに、特許文献4の発明を改良して、冬期においては、屋根に設置した太陽熱集熱器で暖めた空気を1階床下内部に送り込むタイプのアース・ソーラーシステムを新たに開発し、本発明を特許出願すると同時に、本製品の発売を開始した。  In the invention according to Patent Document 1, Patent Document 2, Patent Document 3, and Patent Document 4 filed by the present applicant, the above-mentioned problem has occurred. Therefore, the Company newly improved the invention of Patent Document 4, In the winter season, we developed a new earth / solar system that sends air heated by a solar heat collector installed on the roof to the inside of the floor below the first floor. .
かかる課題を解決するため、請求項1に記載の発明は、建物の室内に取付けた全熱交換型換気扇が室内に給気する新鮮な外気を、建物の1階床下に送り込むと共に、1階床下の基礎底盤に、下部をU字形に構成した内径100ミリメートル、地中に埋め込む深さ4メートルの塩ビパイプの地中熱回収パイプの両端を、基礎底盤より1階床下内部に突き出すように地中に埋設し、地中熱回収パイプの一端に送風機を取付けて作動させる事により、1階床下内部の空気が地中熱回収パイプに吸い込まれ、その地中熱回収パイプに吸い込まれた空気は、冬期においては地中熱により地中熱回収パイプの中で暖められて1階床下内部を暖めると共に、屋根に黒色のガルバリウム鋼板の両側を屋根と集熱盤の間の隙間が3cmになるようにコの字形に折り曲げ、前記集熱盤の太陽光を受ける面には、集熱盤を補強するため6mmの凸状の補強用折曲部を形成し、集熱盤の上端には太陽光で暖められた暖かい空気を集めるため、黒色のガルバリウム鋼板を直方体に成形した集熱箱を取付けた太陽熱集熱器を取付け、太陽光で暖められた太陽熱集熱器の内部の暖かい空気を1時間当り230立米、送風機で1階床下内部に給気して1階床下内部を暖め、このようにして暖められた1階床下内部の空気を各階の室内に給気して室内を暖め、また、夏期においては地中熱により地中熱回収パイプの中で冷やされた1階床下内部の空気を各階の室内に給気して室内を冷やした事を特徴とする。In order to solve this problem, the invention according to claim 1 sends fresh outside air supplied to the room by a total heat exchange type ventilation fan installed in the room of the building to the floor of the first floor of the building and below the floor of the first floor. The bottom of the base plate is 100mm in inner diameter with a U-shaped lower part, and the depth of the PVC heat pipe is 4m deep. The air inside the first floor is sucked into the ground heat recovery pipe, and the air sucked into the ground heat recovery pipe is In the winter, the ground heat recovery pipe is warmed by the underground heat to warm the interior under the first floor, and the black galvalume steel plate on both sides of the roof so that the gap between the roof and the heat collector is 3 cm. Folded into a U shape Bending and forming a 6 mm convex reinforcing bent portion on the surface of the heat collecting plate that receives sunlight to reinforce the heat collecting plate, and the upper end of the heat collecting plate is warmed by sunlight In order to collect air, a solar heat collector with a heat collecting box formed of black galvalume steel plate in a rectangular parallelepiped shape is installed, and the warm air inside the solar heat collector heated by sunlight is 230 sq.m per hour, blower In the first floor, the air is supplied to the interior of the first floor to warm the interior of the first floor, and the air inside the first floor is warmed to the interior of each floor to warm the interior. The interior of the first floor under the ground heat recovery pipe cooled by heat is supplied to the interior of each floor to cool the interior.
請求項1に記載の発明によれば、 建物の室内に取付けた全熱交換型換気扇が室内に給気する新鮮な外気を、建物の1階床下に送り込むと共に、1階床下の基礎底盤に、下部をU字形に構成した内径100ミリメートル、地中に埋め込む深さ4メートルの塩ビパイプの地中熱回収パイプの両端を、基礎底盤より1階床下内部に突き出すように地中に埋設し、地中熱回収パイプの一端に送風機を取付けて作動させる事により、1階床下内部の空気が地中熱回収パイプに吸い込まれ、その地中熱回収パイプに吸い込まれた空気は、冬期においては地中熱により地中熱回収パイプの中で暖められて1階床下内部を暖めると共に、屋根に黒色のガルバリウム鋼板の両側を屋根と集熱盤の間の隙間が3cmになるようにコの字形に折り曲げ、前記集熱盤の太陽光を受ける面には、集熱盤を補強するため6mmの凸状の補強用折曲部を形成し、集熱盤の上端には太陽光で暖められた暖かい空気を集めるため、黒色のガルバリウム鋼板を直方体に成形した集熱箱を取付けた太陽熱集熱器を取付け、太陽光で暖められた太陽熱集熱器の内部の暖かい空気を1時間当り230立米、送風機で1階床下内部に給気して1階床下内部を暖め、このようにして暖められた1階床下内部の空気を各階の室内に給気して室内を暖め、また、夏期においては地中熱により地中熱回収パイプの中で冷やされた1階床下内部の空気を各階の室内に給気して室内を冷やした事により、エネルギー消費が少なく、省エネにも貢献する冷暖房装置を提供する事が出来るようになり、エネルギーコスト(電気・ガス・灯油代)を大幅に削減する事が可能となった。According to the first aspect of the present invention, fresh outside air supplied to the room by the total heat exchange type exhaust fan installed in the room of the building is sent to the floor under the first floor of the building, and to the foundation floor under the first floor, The bottom of the U-shaped 100mm inner diameter PVC pipe with a depth of 4m buried in the ground is buried in the ground so that both ends of the underground heat recovery pipe protrude from the foundation floor into the first floor below. By installing a blower at one end of the medium heat recovery pipe and operating it, the air inside the floor under the first floor is sucked into the ground heat recovery pipe, and the air sucked into the ground heat recovery pipe is underground in the winter season. The inside of the ground floor heat recovery pipe is heated by heat to warm the interior under the first floor , and both sides of the black galvalume steel plate are folded into a U-shape so that the gap between the roof and the heat collector is 3 cm. Of the heat collector In order to reinforce the heat collection board, a 6 mm convex bent part for reinforcement is formed on the surface that receives sunlight, and the upper end of the heat collection board collects warm air warmed by sunlight. A solar heat collector with a heat collection box formed of a galvalume steel plate in a rectangular parallelepiped shape is installed, and warm air inside the solar heat collector heated by sunlight is supplied 230 sq.m per hour, and a blower supplies the interior below the first floor. The interior of the first floor under the first floor is warmed and the air inside the first floor heated in this way is supplied to the interior of each floor to warm the interior. In the summer, underground heat recovery pipes are generated by underground heat. The air inside the floor on the first floor that has been cooled in the room is supplied to the rooms on each floor to cool the rooms, so that it is possible to provide a cooling and heating device that consumes less energy and contributes to energy saving. Large energy costs (electricity, gas, kerosene) It has become possible to reduce to.
以下、この発明の実施の形態1について説明する。
[発明の実施の形態1]
Embodiment 1 of the present invention will be described below.
Embodiment 1 of the Invention
図1乃至図7には、この発明の実施の形態1を示す。  1 to 7 show a first embodiment of the present invention.
図1は、本発明の太陽熱集熱器3と地中熱回収パイプ31、35、41、43を利用した、住宅1の立体解説図である。以下に、太陽熱と地中熱を利用した住宅の冷暖房システムを説明する。  FIG. 1 is a three-dimensional explanatory diagram of a house 1 using the solar heat collector 3 and the underground heat recovery pipes 31, 35, 41, 43 of the present invention. Below, the air conditioning system of the house using solar heat and underground heat is demonstrated.
図1は、本発明のアース・ソーラーシステムを分かりやすく説明するため、アース・ソーラーシステムを組み込んだ住宅1を立体解説図で示したものである。屋根2の上に太陽熱集熱器3を設置すると共に、基礎底盤24の四隅には2本の塩ビパイプ(4mの塩ビパイプ)の下部を塩ビ製の90°エルボと塩ビパイプで継いで、下部をU字形(図2の拡大図で示す)に構成した4組の塩ビパイプの地中熱回収パイプ31、35、41、43が、両端を基礎底盤24より1階床下内部に突き出すように地中に埋設され、地中熱回収パイプ31の1階床下内部に突き出した塩ビパイプの先端には塩ビ製の90°エルボ25、90°エルボ27が取付けられ、塩ビ製の90°エルボ27の先端には送風機28が取付けられる。同様に、地中熱回収パイプ35の1階床下内部に突き出した塩ビパイプの先端には塩ビ製の90°エルボ33、90°エルボ37が取付けられ、塩ビ製の90°エルボ37の先端には送風機38が取付けられる。同様に、地中熱回収パイプ41の1階床下内部に突き出した塩ビパイプの先端には塩ビ製の90°エルボ15、90°エルボ17が取付けられ、塩ビ製の90°エルボ17の先端には送風機18が取付けられる。同様に、地中熱回収パイプ43の1階床下内部に突き出した塩ビパイプの先端には塩ビ製の90°エルボ47、90°エルボ48が取付けられ、塩ビ製の90°エルボ48の先端には送風機49が取付けられると共に、地中熱回収パイプ31、35、41、43を構成する2本の塩ビパイプに取付けた塩ビ製の90°エルボの空気取入口と空気吐出口を互いに直角になるように構成し、隣り合う4組の地中熱回収パイプの空気排出口と、空気取入口が互いに向き合うように配置される。  FIG. 1 is a three-dimensional explanatory view of a house 1 incorporating an earth / solar system for easy understanding of the earth / solar system of the present invention. The solar heat collector 3 is installed on the roof 2, and the bottom of two PVC pipes (4m PVC pipes) are joined at the four corners of the foundation base 24 with a PVC 90 ° elbow and PVC pipe. 4 sets of PVC pipe underground heat recovery pipes 31, 35, 41, 43 constructed in a U shape (shown in the enlarged view of FIG. 2) so that both ends protrude from the foundation floor 24 into the interior below the first floor. A 90 ° elbow 25 and a 90 ° elbow 27 made of PVC are attached to the tip of the PVC pipe that is buried inside and protrudes into the first floor under the ground heat recovery pipe 31, and the tip of the 90 ° elbow 27 made of PVC. The blower 28 is attached to. Similarly, a PVC 90 ° elbow 33 and a 90 ° elbow 37 are attached to the tip of the PVC pipe protruding into the first floor under the ground heat recovery pipe 35, and the tip of the PVC 90 ° elbow 37 is attached to the tip of the PVC 90 ° elbow 37. A blower 38 is attached. Similarly, a PVC 90 ° elbow 15 and a 90 ° elbow 17 are attached to the tip of the PVC pipe protruding into the first floor under the ground heat recovery pipe 41, and the end of the PVC 90 ° elbow 17 is attached to the tip of the PVC 90 ° elbow 17. A blower 18 is attached. Similarly, a PVC 90 ° elbow 47 and a 90 ° elbow 48 are attached to the tip of the PVC pipe protruding into the first floor under the ground heat recovery pipe 43, and the tip of the PVC 90 ° elbow 48 is attached to the tip of the PVC 90 ° elbow 48. A blower 49 is attached, and the air intake and air outlet of a 90 ° elbow made of PVC attached to the two PVC pipes constituting the underground heat recovery pipes 31, 35, 41 and 43 are perpendicular to each other. The air discharge ports of the four adjacent ground heat recovery pipes and the air intake ports are arranged so as to face each other.
さらに、太陽熱集熱器3の集熱盤4で暖められた屋根2と集熱盤4の間の空気が上昇して集熱箱5に集められ、室内ダクト13に取付けられた送風機21を稼動させる事により、集熱箱5に集められた外気は外気導入ダクト7から室内に取付けられた室内ダクト13を経由して1階床下内部に給気される。この場合、集熱箱5に取付けられ断熱材で囲まれた外気導入ダクト7の内部の外気は、冬期の冷たい外気による温度低下を防ぐため、屋根2の直下の壁面から室内に導入し、断熱材で囲まれた室内ダクト13を経由して矢印20で示すように1階床下内部に給気される。  Further, the air between the roof 2 heated by the heat collecting plate 4 of the solar heat collector 3 and the heat collecting plate 4 rises and is collected in the heat collecting box 5, and the blower 21 attached to the indoor duct 13 is operated. As a result, the outside air collected in the heat collecting box 5 is supplied from the outside air introduction duct 7 to the inside of the first floor under the indoor duct 13 attached indoors. In this case, the outside air inside the outside air introduction duct 7 attached to the heat collecting box 5 and surrounded by the heat insulating material is introduced into the room from the wall immediately below the roof 2 in order to prevent a temperature drop due to the cold outside air in the winter. The air is supplied into the interior of the first floor below the interior duct 13 surrounded by the material as indicated by the arrow 20.
さらに、図6で示すように、送風機18、28、38、49を稼動させる事により、地中熱回収パイプ31が吸い込んだ1階床下内部の空気は、地中熱回収パイプ31の中を矢印30方向から矢印29方向に流れて地中熱により温度調整され、送風機28により1階床下内部に排出される。このようにして1階床下内部に排出された空気は矢印32方向に送風され、1階床下内部の空気と混ぜ合わされて温度が均一になるように調整され、塩ビ製の90°エルボ33から再び地中熱回収パイプ35に吸い込まれ、地中熱回収パイプ35の中を矢印34方向から矢印36方向に流れて地中熱により温度調整され、送風機38により1階床下内部に排出される。このようにして1階床下内部に排出された空気は矢印55方向に送風され、1階床下内部の空気と混ぜ合わされて温度が均一になるように調整され、塩ビ製の90°エルボ47から再び地中熱回収パイプ43に吸い込まれ、地中熱回収パイプ43の中を矢印44方向から矢印42方向に流れて地中熱により温度調整され、送風機49により1階床下内部に排出される。このようにして1階床下内部に排出された空気は矢印50方向に送風され、1階床下内部の空気と混ぜ合わされて温度が均一になるように調整され、塩ビ製の90°エルボ15から再び地中熱回収パイプ41に吸い込まれ、地中熱回収パイプ41の中を矢印40方向から矢印39方向に流れて地中熱により温度調整され、送風機18により1階床下内部に排出される。このようにして1階床下内部に排出された空気は矢印22方向に送風され、1階床下内部の空気と混ぜ合わされて温度が均一になるように調整され、塩ビ製の90°エルボ25から再び地中熱回収パイプ31に吸い込まれる。このように基礎底盤24の四隅に配置された地中熱回収パイプ31、35、41、43の空気取入口(塩ビ製の90°エルボ25、33、47、15)と、地中熱回収パイプの空気排出口(塩ビ製の90°エルボ27、37、48、17)を、互いに向き合うように構成する事により、1階床下内部の空気は、床下内部の場所によって澱む事が無くまぜ合わされ、床下内部の空気の温度が何れの場所でも均一になるように調整される。  Furthermore, as shown in FIG. 6, by operating the blowers 18, 28, 38, and 49, the air inside the first floor under the suction of the underground heat recovery pipe 31 is indicated by the arrow in the underground heat recovery pipe 31. It flows in the direction of the arrow 29 from the 30 direction, the temperature is adjusted by underground heat, and is discharged to the inside of the first floor below by the blower 28. The air discharged into the first floor under the air is blown in the direction of the arrow 32 in this way, mixed with the air inside the first floor under the air, and adjusted so that the temperature becomes uniform, and again from the 90 ° elbow 33 made of PVC. It is sucked into the underground heat recovery pipe 35, flows through the underground heat recovery pipe 35 from the direction of the arrow 34 to the direction of the arrow 36, is adjusted in temperature by the underground heat, and is discharged to the inside of the first floor below by the blower 38. The air discharged into the first floor under the air in this way is blown in the direction of the arrow 55, mixed with the air inside the first floor under the air, adjusted so that the temperature becomes uniform, and again from the 90 ° elbow 47 made of PVC. It is sucked into the underground heat recovery pipe 43, flows through the underground heat recovery pipe 43 from the direction of the arrow 44 in the direction of the arrow 42, is adjusted in temperature by the underground heat, and is discharged to the inside of the first floor below by the blower 49. The air discharged into the first floor under the air is blown in the direction of the arrow 50 in this way, mixed with the air inside the first floor under the air, adjusted so that the temperature becomes uniform, and again from the 90 ° elbow 15 made of PVC. It is sucked into the underground heat recovery pipe 41, flows through the underground heat recovery pipe 41 from the arrow 40 direction to the arrow 39 direction, is adjusted in temperature by underground heat, and is discharged by the blower 18 to the inside of the first floor below. The air discharged into the first floor under the air in this way is blown in the direction of the arrow 22 and mixed with the air inside the first floor under the air so that the temperature becomes uniform, and again from the 90 ° elbow 25 made of PVC. It is sucked into the underground heat recovery pipe 31. In this way, the air intakes (the 90 ° elbows 25, 33, 47, 15 made of PVC) of the underground heat recovery pipes 31, 35, 41, 43 arranged at the four corners of the foundation bottom plate 24, and the underground heat recovery pipes By configuring the air outlets (90 ° elbows 27, 37, 48, and 17 made of PVC) to face each other, the air inside the first floor floor is mixed without being stagnated depending on the location inside the floor, The temperature of the air under the floor is adjusted so as to be uniform at any place.
さらに、1階床下の基礎底盤24の四隅に、地中熱回収パイプ31、35、41、43を互いに離して埋め込む事により、地中内部において地中熱回収パイプから発生する熱による、お互いの地中熱回収パイプ同士による熱干渉を少なくする事が可能となる。特に、狭小地に地中熱回収パイプを埋め込む場合、地中熱回収パイプ同士の熱による熱干渉により、地中の温度が変化(夏期には暑い外気を地中熱回収パイプに送り込むため地中の温度が上昇し、冬期には寒い外の外気を地中熱回収パイプに送り込むため地中の温度が下がる)してしまい、地中熱回収パイプのメリットが減少する事となる。  Furthermore, by embedding underground heat recovery pipes 31, 35, 41, 43 in the four corners of the foundation bottom 24 under the first floor, the heat generated from the underground heat recovery pipes in the underground can be It is possible to reduce the heat interference between the underground heat recovery pipes. In particular, when underground heat recovery pipes are embedded in a narrow area, the temperature of the underground changes due to heat interference between the underground heat recovery pipes (in the summer, hot underground air is sent to the underground heat recovery pipe In the winter, the cold outside air is sent to the geothermal heat recovery pipe to lower the temperature in the ground, and the merit of the geothermal heat recovery pipe is reduced.
このように、地中熱回収パイプ31、35、41、43に各々1台の送風機を取付け地中熱を回収した事により地中熱を効率良く回収する事が可能となった。さらに、それぞれの地中熱回収パイプ31、35、41、43に独立して1台づつ送風機を取付けた事により、1階床下内部の空気の温度が、夏(冬)の初めに冷え(暖か)すぎる場合には、4本の地中熱回収パイプ31、35、41、43の内の数本のみ稼動させ、他の地中熱回収パイプの稼動を停止させる事により、1階床下内部の温度を調節する事が可能となった。なお、当社では、この発明の実施の形態1で説明している地中熱回収パイプを4組み使用したアース・ソーラーシステムは、述べ床面積40坪迄の住宅仕様とし、それ以上の述べ床面積の住宅の場合には、述べ床面積に応じて地中熱回収パイプを増設して対応している。  Thus, it became possible to efficiently collect the underground heat by attaching one blower to each of the underground heat recovery pipes 31, 35, 41, and 43 and recovering the underground heat. Furthermore, by installing one blower independently for each of the underground heat recovery pipes 31, 35, 41, 43, the temperature of the air inside the floor under the first floor is cooled (warm) in the beginning of summer (winter). ) If too much, only a few of the four underground heat recovery pipes 31, 35, 41, 43 are operated, and the operation of the other underground heat recovery pipes is stopped. It became possible to adjust the temperature. In our company, the earth / solar system using four sets of underground heat recovery pipes explained in the first embodiment of the present invention is a residential specification with a floor area of up to 40 tsubo, and the floor area of more than that In the case of the above-mentioned housing, the underground heat recovery pipe is added according to the floor area.
本発明において、地中熱回収パイプ31、35、41、43には内径100ミリメートルの塩ビパイプを使用し、地中に埋め込む深さは約4メートルである。その理由は、塩ビパイプの標準的な長さは4メートルで入手しやすい上に価格が安く、さらに関東地区の地中4〜5メートルの温度は、年間を通して約17℃〜19℃と温度変化が少ないためです。ちなみに、東京都足立区大谷田の、当社ショールーム(地下室付)で、毎日、地中1メートル、3メートル、5メートルの地中温度を測定しているが、その測定結果によると地中5メートルの地中温度は、毎年5月〜6月の間で最低温度の17.1℃となり、11月〜12月の間で最高温度の19.3℃となる。外気の最低気温(2月頃)に対して地中5メートルの最低温度が5月〜6月となるのは、地表面の温度が地中に浸透するのに時間がかかるためである。夏期の場合も同様である。  In the present invention, a PVC pipe having an inner diameter of 100 mm is used for the underground heat recovery pipes 31, 35, 41, and 43, and the depth embedded in the underground is about 4 meters. The reason for this is that the standard length of PVC pipe is 4 meters, which is easy to obtain and inexpensive, and the temperature of 4 to 5 meters underground in the Kanto area changes from about 17 to 19 degrees Celsius throughout the year. Because there are few. By the way, at our showroom (with basement) in Oyada, Adachi-ku, Tokyo, we measure underground temperatures of 1 meter, 3 meters and 5 meters every day. The underground temperature is the lowest temperature of 17.1 ° C between May and June, and the highest temperature of 19.3 ° C between November and December. The reason why the minimum temperature of 5 meters underground is from May to June with respect to the lowest ambient temperature (around February) is because it takes time for the temperature of the ground surface to penetrate into the ground. The same applies to the summer season.
さらに、地中熱回収パイプ31、35、41、43を地中に埋設する際は、小型重機(穴堀建柱車等)にオーガーを取付け、オーガーで地中に穴を掘り、その穴に地中熱回収パイプを埋め込むため、工期を短縮し安価に施工する事が可能である。  In addition, when the underground heat recovery pipes 31, 35, 41, 43 are buried in the ground, an auger is attached to a small heavy machine (Aborigoshishasha, etc.), and a hole is dug in the ground with the auger. Since the underground heat recovery pipe is embedded, the construction period can be shortened and construction can be performed at low cost.
なお、一般的な住宅の1階床下の基礎は、1階床下内部に湿気が溜まるのを防ぐため、外気と1階床下内部の空気が常に通気するように、基礎と土台の間に通気基礎パッキンを使用しているが、本発明においては、1階床下内部を外気温度調整槽として利用するため、ベタ基礎を施工し、外気が1階床下部に直接流入しないように、基礎と建物の土台の間に気密基礎パッキンを使用し、1階床下内部が外気と通気せず密封状態となるように施工する。  In order to prevent moisture from accumulating inside the first floor under the first floor of a general house, the foundation of the foundation and the foundation are ventilated so that the outside air and the air inside the first floor under the floor are always ventilated. Although packing is used, in the present invention, in order to use the interior under the first floor as an outside air temperature adjustment tank, a solid foundation is constructed so that the outside air does not flow directly into the lower floor of the first floor. Use an airtight foundation packing between the foundations so that the interior under the first floor will be in a sealed state without venting to the outside air.
以上のような構成において、図2において冬期における居室の弱温風運転について説明する。  With the configuration as described above, the low-temperature air operation of the room in winter in FIG. 2 will be described.
最初に、一般的な全熱交換型換気扇の使用方法では、全熱交換型換気扇の内部で熱交換を終えた新鮮な外気は居室に給気されるが、本発明のアース・ソーラーシステムでは全熱交換型換気扇の内部で熱交換を終えた新鮮な外気を1階床下内部83に給気する方法について説明する。1階の居室Aの室内側吐出空気(よごれた室内空気)は、全熱交換型換気扇75に吸い込まれダクト77を経由してフード78から室外に排気される。その際、全熱交換型換気扇75が排気する室内の空気(室内側吐出空気)と、フード78から室内に給気する外気(室外側吸込空気)とが全熱交換型換気扇75の内部で熱交換されると共に、全熱交換型換気扇75が吸い込んだ室外側吸込空気(新鮮な空気)は全てダクト86を経由して1階床下内部83に供給される。同様にして、2階の居室Bの室内側吐出空気(よごれた室内空気)は、全熱交換型換気扇67に吸い込まれダクト68を経由してフード69から室外に排気される。その際、全熱交換型換気扇67が排気する室内の空気(室内側吐出空気)と、フード69から室内に給気する外気(室外側吸込空気)とが全熱交換型換気扇67の内部で熱交換されると共に、全熱交換型換気扇67が吸い込んだ室外側吸込空気(新鮮な空気)は全てダクト71を経由して1階床下内部83に供給される。  First, in a general method of using a total heat exchange type exhaust fan, fresh outside air that has finished heat exchange inside the total heat exchange type exhaust fan is supplied to the living room. A method of supplying fresh outside air having been heat exchanged inside the heat exchange type ventilation fan to the inside 1 floor under floor 83 will be described. The room-side discharged air (contaminated room air) of the first-floor room A is sucked into the total heat exchange type ventilation fan 75 and exhausted from the hood 78 to the outside through the duct 77. At that time, the indoor air exhausted by the total heat exchanging ventilation fan 75 (indoor discharge air) and the outside air supplied from the hood 78 into the room (outdoor suction air) are heated inside the total heat exchanging ventilation fan 75. The outdoor intake air (fresh air) sucked by the total heat exchange type ventilation fan 75 is all supplied to the first floor lower interior 83 via the duct 86. Similarly, the indoor side discharge air (contaminated room air) of the room B on the second floor is sucked into the total heat exchange type ventilation fan 67 and exhausted from the hood 69 to the outside through the duct 68. At that time, the indoor air exhausted by the total heat exchange type exhaust fan 67 (indoor discharge air) and the outside air supplied to the room from the hood 69 (outdoor intake air) are heated inside the total heat exchange type exhaust fan 67. While being exchanged, all of the outdoor intake air (fresh air) sucked by the total heat exchange type ventilation fan 67 is supplied to the first floor lower interior 83 via the duct 71.
このように、全熱交換型換気扇67、75を使用する事により、冬期における室内の暖かい空気を、外の冷たい外気と入れ替える(換気する)際に、室内の暖かい空気の温度が下がるのを最小限に抑える事が可能となる。ちなみに、三菱電機株式会社のホームページでは、ロスナイ(全熱交換型換気扇の商品名)の熱交換機能を、「外気温度0℃、室内温度20℃、温度交換効率75%の場合」、室内温度20℃の空気をロスナイで換気した場合、外気(0℃)の空気の温度は熱交換機の働きで15℃となって室内に給気(新鮮空気)されると説明している。  Thus, by using the total heat exchange type exhaust fans 67 and 75, when the warm air in the room in winter is replaced (ventilated) with the cold outside air, the temperature of the warm air in the room is minimized. It is possible to limit to the limit. By the way, on the Mitsubishi Electric Corporation website, the heat exchange function of LOSSNAY (the product name of the total heat exchange type exhaust fan) is changed to “when the outside air temperature is 0 ° C., the room temperature is 20 ° C., and the temperature exchange efficiency is 75%” It is explained that when air at 0 ° C. is ventilated by LOSSNAY, the temperature of the outside air (0 ° C.) becomes 15 ° C. due to the action of the heat exchanger and is supplied to the room (fresh air).
つづいて、このようにして1階床下内部83に供給された全熱交換型換気扇67、75からの外気(室外側吸込空気)が、どのようにして1階床下内部83で熱交換されて弱温風になるかを説明する。  Subsequently, how the outside air (outdoor air sucked) from the total heat exchange type exhaust fans 67 and 75 supplied to the first floor lower interior 83 in this way is heat-exchanged in the first floor lower interior 83 and weakened. Explain whether it will be hot air.
ダクト71、86から供給された全熱交換型換気扇67、75からの外気は、1階床下内部83の空気と混ざり合い、地中熱回収パイプ92に取付けられた送風機93を稼動させる事により、1階床下内部83の空気は、矢印91方向から地中熱回収パイプ92に吸い込まれ、地中熱回収パイプ92の中で地中熱により暖められて弱温風となり、送風機93により矢印94方向に示すように1階床下内部83に排気される。同様にして、地中熱回収パイプ96に取付けられた送風機98を稼動させる事により、1階床下内部83の空気は、矢印95方向から地中熱回収パイプ96に吸い込まれ、地中熱回収パイプ96の中で地中熱により暖められて弱温風となり、送風機98により矢印99方向に示すように1階床下内部83に排気される。同様にして、地中熱回収パイプ97に取付けられた送風機101を稼動させる事により、1階床下内部83の空気は、矢印100方向から地中熱回収パイプ97に吸い込まれ、地中熱回収パイプ97の中で地中熱により暖められて弱温風となり、送風機101により矢印102方向に示すように1階床下内部83に排気される。同様にして、地中熱回収パイプ104に取付けられた送風機108を稼動させる事により、1階床下内部83の空気は、矢印103方向から地中熱回収パイプ104に吸い込まれ、地中熱回収パイプ104の中で地中熱により暖められて弱温風となり、送風機108により矢印109方向に示すように1階床下内部83に排気される。  The outside air from the total heat exchange type ventilation fans 67 and 75 supplied from the ducts 71 and 86 is mixed with the air inside the first floor floor 83, and the blower 93 attached to the underground heat recovery pipe 92 is operated. The air in the first floor under floor 83 is sucked into the underground heat recovery pipe 92 from the direction of the arrow 91 and is warmed by the underground heat in the underground heat recovery pipe 92 to become low-temperature air. As shown in FIG. Similarly, by operating the blower 98 attached to the underground heat recovery pipe 96, the air in the first floor lower floor interior 83 is sucked into the underground heat recovery pipe 96 from the direction of the arrow 95, and the underground heat recovery pipe 96 In 96, it is warmed by the underground heat and becomes a low-temperature air, and is exhausted by the blower 98 to the first floor lower interior 83 as shown by the arrow 99 direction. Similarly, by operating the blower 101 attached to the underground heat recovery pipe 97, the air in the first floor lower floor interior 83 is sucked into the underground heat recovery pipe 97 from the direction of the arrow 100, and the underground heat recovery pipe In 97, it is warmed by the underground heat and becomes a low-temperature air, and is exhausted by the blower 101 to the first floor lower interior 83 as shown by the arrow 102 direction. Similarly, by operating the blower 108 attached to the underground heat recovery pipe 104, the air in the first floor lower floor interior 83 is sucked into the underground heat recovery pipe 104 from the direction of the arrow 103, and the underground heat recovery pipe In 104, it is warmed by underground heat and becomes a low temperature air, and is exhausted by the blower 108 to the first floor lower interior 83 as shown by the arrow 109 direction.
さらに、屋根66の上に取付けた太陽熱集熱器62の集熱盤63と屋根66の間の空気が太陽光により暖めら上昇して集熱箱64に集められ、送風機(図1で説明した送風機21)を稼動させる事により外気導入ダクト65と、室内に取付けられた室内ダクト(図1で説明した室内ダクト13)を経由して1階床下内部83に供給される。この場合、集熱箱64に取付けられ断熱材で保温された外気導入ダクト65は、冬期の寒い外気による温度低下を防ぐため屋根66の直下の壁面から室内に導入するように施工し、断熱材で保温された室内ダクトを経由して1階床下内部83に供給する事により、さらに1階床下内部83の空気を暖める。  Further, the air between the heat collecting plate 63 of the solar heat collector 62 mounted on the roof 66 and the roof 66 rises by sunlight and is collected in the heat collecting box 64, and the blower (described in FIG. 1). By operating the blower 21), the air is supplied to the first floor lower interior 83 via the outside air introduction duct 65 and the indoor duct (the indoor duct 13 described in FIG. 1) attached to the room. In this case, the outside air introduction duct 65 attached to the heat collection box 64 and kept warm by the heat insulating material is constructed so as to be introduced into the room from the wall surface immediately below the roof 66 in order to prevent a temperature drop due to cold outside air in winter. The air in the first floor lower interior 83 is further warmed by supplying it to the first floor lower interior 83 via the indoor duct kept warm.
このように、1階床下内部83で弱温風となった外気は、1階床を暖める事により1階の居室Aを暖めると共に、弱温風となった1階床下内部83の空気は、1階床下に取付けられた送風機82を稼動させる事により、ガラリ81から矢印80方向に給気されて1階室内を暖め、さらに1階床下内部83から2階床に配管されたダクト117の送風機114を稼動させる事により、1階床下内部83の弱温風はダクト117を経由してガラリ118より矢印72方向に給気され2階の居室Bを暖める。  In this way, the outside air that has become a warm air in the first floor under floor 83 warms the first floor room A by warming the first floor, and the air in the first floor under floor 83 that has become a warm air is By operating the blower 82 attached below the first floor, air is supplied from the gallery 81 in the direction of arrow 80 to warm the first floor room, and further, the blower of the duct 117 piped from the first floor lower interior 83 to the second floor. By operating 114, the warm air in the first floor under floor 83 is supplied through the duct 117 in the direction of the arrow 72 from the gallery 118 to warm the second floor room B.
つづいて、図3において夏期における居室の弱冷風運転について説明する。  Next, a description will be given of the operation of the cool air in the room in summer in FIG.
最初に、一般的な全熱交換型換気扇の使用方法では、全熱交換型換気扇の内部で熱交換を終えた新鮮な外気は居室に給気されるが、本発明のアース・ソーラーシステムでは全熱交換型換気扇の内部で熱交換を終えた新鮮な外気を1階床下内部83に給気する方法について説明する。1階の居室Aの室内側吐出空気(よごれた室内空気)は、全熱交換型換気扇75に吸い込まれダクト77を経由してフード78から室外に排気される。その際、全熱交換型換気扇75が排気する室内の空気(室内側吐出空気)と、フード78から室内に給気する外気(室外側吸込空気)とが全熱交換型換気扇75の内部で熱交換されると共に、吸い込んだ室外側吸込空気(新鮮な空気)は全てダクト86を経由して1階床下内部83に供給される。同様にして、2階の居室Bの室内側吐出空気(よごれた室内空気)は、全熱交換型換気扇67に吸い込まれダクト68を経由してフード69から室外に排気される。その際、全熱交換型換気扇67が排気する室内の空気(室内側吐出空気)と、フード69から室内に給気する外気(室外側吸込空気)とが全熱交換型換気扇67の中で熱交換されると共に、吸い込まれた室外側吸込空気(新鮮な空気)は全てダクト71を経由して1階床下内部83に供給される。  First, in a general method of using a total heat exchange type exhaust fan, fresh outside air that has finished heat exchange inside the total heat exchange type exhaust fan is supplied to the living room. A method of supplying fresh outside air having been heat exchanged inside the heat exchange type ventilation fan to the inside 1 floor under floor 83 will be described. The room-side discharged air (contaminated room air) of the first-floor room A is sucked into the total heat exchange type ventilation fan 75 and exhausted from the hood 78 to the outside through the duct 77. At that time, the indoor air exhausted by the total heat exchanging ventilation fan 75 (indoor discharge air) and the outside air supplied from the hood 78 into the room (outdoor suction air) are heated inside the total heat exchanging ventilation fan 75. While being exchanged, all of the sucked outdoor outside air (fresh air) is supplied to the first floor lower interior 83 via the duct 86. Similarly, the indoor side discharge air (contaminated room air) of the room B on the second floor is sucked into the total heat exchange type ventilation fan 67 and exhausted from the hood 69 to the outside through the duct 68. At that time, the indoor air exhausted by the total heat exchange type exhaust fan 67 (indoor discharge air) and the outside air supplied to the room from the hood 69 (outdoor intake air) are heated in the total heat exchange type exhaust fan 67. While being exchanged, all the sucked outdoor outdoor air (fresh air) is supplied to the first floor lower interior 83 via the duct 71.
このようにして、全熱交換型換気扇67、75を使用する事により、夏期における涼しい室内の空気を、外の暑い外気と入れ替える(換気する)際に、涼しい室内の空気の温度の上昇を最小限に抑える事が可能となる。  In this way, by using the total heat exchange type exhaust fans 67 and 75, when the cool indoor air in the summer is replaced (ventilated) with the hot outdoor air, the rise in the temperature of the cool indoor air is minimized. It is possible to limit to the limit.
つづいて、このようにして1階床下内部83に供給された全熱交換型換気扇67、75からの外気(室外側吸込空気)が、どのようにして1階床下内部83で熱交換されて弱冷風になるかを説明する。ダクト71、86から供給された全熱交換型換気扇67、75からの外気は、1階床下内部83の空気と混ざり合い、地中熱回収パイプ92に取付けられた送風機93を稼動させる事により、1階床下内部83の空気は、矢印91方向から地中熱回収パイプ92に吸い込まれ、地中熱回収パイプ92の中で地中熱により冷やされて弱冷風となり、送風機93により矢印94方向で示すように1階床下内部83に排気される。同様にして、地中熱回収パイプ96に取付けられた送風機98を稼動させる事により、1階床下内部83の空気は、矢印95方向から地中熱回収パイプ96に吸い込まれ、地中熱回収パイプ96の中で地中熱により冷やされて弱冷風となり、送風機98により矢印99方向で示すように1階床下内部83に排気される。同様にして、地中熱回収パイプ97に取付けられた送風機101を稼動させる事により、1階床下内部83の空気は、矢印100方向から地中熱回収パイプ97に吸い込まれ、地中熱回収パイプ97の中で地中熱により冷やされて弱冷風となり、送風機101により矢印102方向で示すように1階床下内部83に排気される。同様にして、地中熱回収パイプ104に取付けられた送風機108を稼動させる事により、1階床下内部83の空気は、矢印103方向から地中熱回収パイプ104に吸い込まれ、地中熱回収パイプ104の中で地中熱により冷やされて弱冷風となり、送風機108により矢印109方向で示すように1階床下内部83に排気される。  Subsequently, how the outside air (outdoor air sucked) from the total heat exchange type exhaust fans 67 and 75 supplied to the first floor lower interior 83 in this way is heat-exchanged in the first floor lower interior 83 and weakened. Explain whether it will be cold. The outside air from the total heat exchange type ventilation fans 67 and 75 supplied from the ducts 71 and 86 is mixed with the air inside the first floor floor 83, and the blower 93 attached to the underground heat recovery pipe 92 is operated. The air in the first floor under floor 83 is sucked into the underground heat recovery pipe 92 from the direction of the arrow 91 and is cooled by the underground heat in the underground heat recovery pipe 92 to become weak cold air. As shown, the air is exhausted into the first floor floor interior 83. Similarly, by operating the blower 98 attached to the underground heat recovery pipe 96, the air in the first floor lower floor interior 83 is sucked into the underground heat recovery pipe 96 from the direction of the arrow 95, and the underground heat recovery pipe 96 In 96, it is cooled by underground heat to become weak cold air, and is exhausted by the blower 98 to the first floor lower interior 83 as shown by the arrow 99 direction. Similarly, by operating the blower 101 attached to the underground heat recovery pipe 97, the air in the first floor lower floor interior 83 is sucked into the underground heat recovery pipe 97 from the direction of the arrow 100, and the underground heat recovery pipe In 97, it is cooled by underground heat and becomes weak cold air, and is exhausted by the blower 101 to the first floor lower interior 83 as indicated by the arrow 102 direction. Similarly, by operating the blower 108 attached to the underground heat recovery pipe 104, the air in the first floor lower floor interior 83 is sucked into the underground heat recovery pipe 104 from the direction of the arrow 103, and the underground heat recovery pipe In 104, it is cooled by underground heat to become weak cold air, and is exhausted by the blower 108 to the first floor lower interior 83 as shown by the arrow 109 direction.
このようにして、1階床下内部83で弱冷風となった外気は、1階床を冷やす事により1階の居室Aを冷やすと共に、弱冷風となった1階床下内部83の空気は、1階床下に取付けられた送風機82を稼動させる事により、ガラリ81から矢印80方向に示すように1階の居室Aに給気され1階室内を冷やす。さらに1階床下内部83から2階床に配管されたダクト117に取付けられた送風機114を稼動させる事により、1階床下内部83の弱冷風はダクト117を経由してガラリ118から矢印72方向に示すように2階の居室Bに給気され2階の居室Bを冷やす。  In this way, the outside air that has become weakly cold in the first-floor interior 83 cools the first-floor room A by cooling the first-floor, and the air in the first-floor interior 83 that has become weakly-cooled air is 1 By operating the blower 82 attached under the floor, air is supplied from the gallery 81 to the first-floor room A as shown in the direction of the arrow 80 to cool the first-floor room. Further, by operating the blower 114 attached to the duct 117 piped from the first floor under floor 83 to the second floor, the cool air in the first floor bottom 83 passes through the duct 117 in the direction of arrow 72 from the gallery 118. As shown, the second floor room B is supplied with air and the second floor room B is cooled.
なお、夏期においては、図1で説明した太陽熱集熱器3の室内ダクト13に取付けられた送風機21を停止し、送風機21の送風口に断熱材を取付けたキャップを取付けて送風口を塞ぎ、太陽熱集熱器3からの暖かい温風が1階床下内部83に流れ込まないようにする。  In the summer, the blower 21 attached to the indoor duct 13 of the solar heat collector 3 described with reference to FIG. 1 is stopped, a cap attached with a heat insulating material is attached to the blower port of the blower 21, and the blower port is closed. The warm warm air from the solar heat collector 3 is prevented from flowing into the first floor lower interior 83.
図4は、本発明における住宅60を、次世代省エネタイプの断熱材で施工(構成)した状態を示す。屋根の断熱に関しては、屋根断熱材123(一般的には、厚さ160mmの発泡ウレタン)を屋根裏側に施工する。外壁の断熱に関しては、外壁断熱材124(一般的には、厚さ75mmの発泡ウレタン)を壁内部に施工する。窓のサッシに関しては、各社から発売されている断熱等級4(次世代省エネタイプ)の断熱樹脂サッシ125を使用する。基礎の断熱に関しては、基礎外断熱材126(一般的には、厚さ50mmの発泡スチロール板)を基礎コンクリートの外側に施工したあと、発泡スチロール板の外側に無収縮コンクリートを厚さ10〜20ミリメートル施工する。但し、ここに書かれた断熱材の種類と材質に関しては、例えば、発泡スチロール板であっても、密度の違いにより断熱効果に変化が生じるため、同一メーカーであっても、密度により厚さが変わる場合がある。なお、次世代省エネタイプの住宅においては、1階床下、1階天井裏、2階天井裏に断熱材を施工しているが、本発明においては、住宅の各々室内同士の温度を出来るだけ均一に保つため、1階床下1や1階天井裏、2階天井裏には断熱材を施工しない。本発明における住宅60の断熱性能に関しては、最大限の省エネ効果を得るためにも、図4で説明した次世代省エネタイプの断熱を必ず施工する事が必要である。  FIG. 4 shows a state in which the house 60 according to the present invention is constructed (configured) with a next-generation energy-saving heat insulating material. Regarding the heat insulation of the roof, a roof heat insulating material 123 (generally, urethane foam having a thickness of 160 mm) is applied to the attic side. Regarding the heat insulation of the outer wall, the outer wall heat insulating material 124 (generally, urethane foam having a thickness of 75 mm) is applied to the inside of the wall. As for the window sash, a heat insulation resin sash 125 of heat insulation grade 4 (next generation energy saving type) sold by each company is used. For heat insulation of the foundation, after applying the non-foundation heat insulating material 126 (generally, a 50 mm-thick foamed polystyrene board) to the outside of the foundation concrete, non-shrinkable concrete is applied to the outside of the foamed polystyrene board to a thickness of 10 to 20 mm. To do. However, regarding the type and material of the heat insulating material written here, for example, even if it is a polystyrene plate, the heat insulating effect changes due to the difference in density, so even the same manufacturer changes the thickness depending on the density There is a case. In the next-generation energy-saving type housing, heat insulating material is installed under the first floor, under the first floor, and under the second floor. In the present invention, the temperature in each room of the house is as uniform as possible. Therefore, no heat insulation material is applied to the first floor under the first floor, the first floor ceiling, and the second floor ceiling. Regarding the heat insulation performance of the house 60 in the present invention, in order to obtain the maximum energy saving effect, the next-generation energy-saving type heat insulation described with reference to FIG.
つづいて、図5により、全熱交換型換気扇135の機能と、全熱交換型換気扇135の設置場所について説明する。  Next, the function of the total heat exchange type ventilation fan 135 and the installation location of the total heat exchange type ventilation fan 135 will be described with reference to FIG.
図5bに示すように、全熱交換型換気扇本体130の下面には室内空気取込口134が設けられ、室内空気取込口134から吸い込まれた室内の空気は、排気用配管138を経由して排気133方向(室外)に排気され、その際、全熱交換型換気扇135が排気133する室内の空気(室内側排出空気)と、外気取込配管131を経由して全熱交換型換気扇135に吸い込まれる外気132とが全熱交換型換気扇本体130の内部で熱交換されると共に、吸い込まれた外気132は4本の給気パイプ137に分岐されて各居室に給気136されるように構成される。  As shown in FIG. 5 b, an indoor air intake port 134 is provided on the lower surface of the total heat exchange type exhaust fan body 130, and the indoor air sucked from the indoor air intake port 134 passes through the exhaust pipe 138. Then, the exhaust air is exhausted in the direction of the exhaust air 133 (outside the room). At that time, the total heat exchange type exhaust fan 135 passes through the indoor air exhausted by the total heat exchange type exhaust fan 135 and the outside air intake pipe 131. Heat is exchanged with the outside air 132 sucked into the total heat exchange type exhaust fan main body 130, and the sucked outside air 132 is branched into four air supply pipes 137 and supplied to each living room 136. Composed.
このように構成された全熱交換型換気扇135を、図5a(図2、図3で説明した符号と同一符号で説明する)で示すように1階の天井部分に全熱交換型換気扇75(図5bで説明した全熱交換型換気扇153と同一製品)を取付け、全熱交換型換気扇75を稼働させる事により、居室Aの室内空気が矢印84方向から廊下Eに流れ込み全熱交換型換気扇75に吸い込まれ、吸い込まれた室内空気はダクト77を経由して室外に排気されると共に、全熱交換型換気扇75内部で新鮮な外気と熱交換され、全ての給気はダクト86を経由して1階床下内部83に供給される。同様に、2階の天井部分に全熱交換型換気扇67(図5bで説明した全熱交換型換気扇153と同一製品)を取付け、全熱交換型換気扇67を稼働させる事により、居室Bの室内空気が矢印76方向から廊下Dに流れ込み全熱交換型換気扇67に吸い込まれ、吸い込まれた室内空気はダクト68を経由して室外に排気されると共に、フード69から吸い込まれた外気は全熱交換型換気扇67内部で熱交換され、全ての外気はダクト71を経由して1階床下内部83に供給される。このようにして1階床下内部83に供給された新鮮な外気は、図2、図3で説明したように、1階床下内部83よりダクトとガラリを経由して1階の居室A、2階の居室Bに給気される。このようにして、各階に全熱交換型換気扇を1台づつ設置する事により、居室のみならず廊下も含めて建物全体の室温調節が可能となるばかりでなく、さらにフィルターの清掃作業も各階1台の清掃で済むようになる。  The total heat exchange type exhaust fan 135 configured as described above is shown in FIG. 5a (described with the same reference numerals as those described with reference to FIGS. 2 and 3). 5b is installed, and the total heat exchange type ventilation fan 75 is operated, and the total heat exchange type ventilation fan 75 is operated. As a result, the room air in the room A flows into the corridor E from the direction of the arrow 84 and the total heat exchange type ventilation fan 75. The indoor air sucked in is exhausted to the outside through the duct 77 and is also exchanged with fresh outside air inside the total heat exchange type ventilation fan 75, and all the supply air is routed through the duct 86. Supplied to the first floor under floor interior 83. Similarly, the total heat exchange type exhaust fan 67 (the same product as the total heat exchange type exhaust fan 153 described with reference to FIG. 5B) is attached to the ceiling part of the second floor, and the total heat exchange type exhaust fan 67 is operated, thereby Air flows into the corridor D from the direction of the arrow 76 and is sucked into the total heat exchange type ventilation fan 67. The sucked indoor air is exhausted to the outside through the duct 68, and the outdoor air sucked from the hood 69 is totally heat exchanged. Heat is exchanged inside the mold ventilation fan 67, and all outside air is supplied to the first floor lower interior 83 via the duct 71. The fresh outside air supplied to the first floor lower interior 83 in this way is from the first floor lower interior 83 via the duct and gallery as shown in FIGS. 2 and 3. Is in the room B. In this way, by installing one total heat exchange type ventilation fan on each floor, it is possible not only to adjust the room temperature of the whole building, including the hallway, but also to clean the filter. You will only need to clean the table.
図7は、図1で説明した屋根2の上に設置する太陽熱集熱器3の構造を示す。太陽熱集熱器3の集熱盤4は、黒色のガルバリウム鋼板の両端を、屋根2と集熱盤4の間の隙間が約3cmになるようにコの字形に折り曲げ(折り曲げ部148で示す)、集熱盤4の太陽光を受ける面には、集熱盤4を補強するためプレス機で約6mmの凸状の補強用折曲部143を形成し、集熱盤4の上部に位置する上端の接合部142には、集熱盤4と集熱箱5を接合するための複数の穴141を開けると共に、集熱箱5は黒色のガルバリウム鋼板を四角形の直方体に折り曲げ、集熱盤10の接合部174と重ねて接合するため、集熱箱3が集熱盤10の接合部174が接合する部分に約3cmの開口部を開けL形形状の接合部178を形成したうえ、集熱盤10に開けられた穴173に対応する位置に穴140を開け、集熱箱5の一方の直方体の部分はガルバリウム鋼板を折り曲げて塞ぎ、他方は、ガルバリウム鋼板を折り曲げて給気口144を開け、集熱箱5の接合部146と集熱盤4の接合部142を重ねて複数のビス139で固定したあと、接合部142と接合部146の接合部分をコーキング材で塞ぎ、このように構成した太陽熱集熱器3を屋根2の上に固定し、サイド部147と屋根2の隙間をコーキング材で塞ぎ、給気口144に外気導入ダクト7の取付部145を固定する事により、集熱盤4と屋根2の間の外気導入口11から外気が給気され、太陽光により集熱盤4と屋根2の間で暖められた外気は上昇して集熱箱5に集められ、このようにして集熱箱5に集められた暖かい外気は、図1で説明した送風機21を稼動させる事により外気導入ダクト7を経由して1階床下内部に給気される。なお、当社の埼玉県さいたま市緑区にある浦和支所の展示場において、本発明の太陽熱集熱器3を設置して温度測定を実施しているが、真冬(2月)の日中の外気温度が10℃の場合でも、日当たりの良い日中10時〜14時の時間帯において集熱箱3内の温度は約45度Cに達し、1時間当たり230立米の空気を送風する送風機を連続使用して集熱箱3内の空気を1階床下内部に給気しても、集熱箱3内部の外気の温度は下がらず約45度Cを保ったまま温度低下しない。この事実からも、冬期においては太陽熱集熱器を利用して1階床下内部に蓄熱する事により、夜間においても1階床下内部が暖かく保たれ、電気、ガス、石油等のエネルギーの消費を削減すると共に、省エネに大きく貢献する事が出来るようになった。  FIG. 7 shows the structure of the solar heat collector 3 installed on the roof 2 described in FIG. The heat collector 4 of the solar heat collector 3 is formed by folding both ends of a black galvanium steel plate into a U-shape so that the gap between the roof 2 and the heat collector 4 is about 3 cm (indicated by a bent portion 148). On the surface of the heat collecting plate 4 that receives sunlight, a convex bending portion 143 having a convex shape of about 6 mm is formed by a press to reinforce the heat collecting plate 4 and is located above the heat collecting plate 4. A plurality of holes 141 for joining the heat collecting plate 4 and the heat collecting box 5 are formed in the joining portion 142 at the upper end, and the heat collecting box 5 is formed by bending a black galvalume steel plate into a rectangular parallelepiped. Therefore, the heat collecting box 3 opens an approximately 3 cm opening at a portion where the joining portion 174 of the heat collecting board 10 joins to form an L-shaped joining portion 178 and then collects heat. A hole 140 is formed at a position corresponding to the hole 173 formed in the panel 10, and one of the heat collecting boxes 5 is formed. The rectangular parallelepiped portion is folded and closed with a Galvalume steel plate, and the other is bent with a Galvalume steel plate to open the air supply port 144, and the joint portion 146 of the heat collecting box 5 and the joint portion 142 of the heat collecting plate 4 are overlapped to form a plurality of screws 139. Then, the joint portion between the joint portion 142 and the joint portion 146 is closed with a caulking material, the solar heat collector 3 configured in this way is fixed on the roof 2, and the gap between the side portion 147 and the roof 2 is caulked. The outside air is supplied from the outside air introduction port 11 between the heat collecting plate 4 and the roof 2 by being closed with a material and fixing the mounting portion 145 of the outside air introduction duct 7 to the air supply port 144, and the heat collecting plate by sunlight. The outside air warmed between the roof 4 and the roof 2 rises and is collected in the heat collecting box 5, and the warm outside air collected in the heat collecting box 5 in this way operates the blower 21 described in FIG. Through the outside air introduction duct 7 Is the air supply to the internal ground floor underfloor Te. In addition, the solar heat collector 3 of the present invention is installed in the exhibition hall of the Urawa branch in Midori Ward, Saitama City, Saitama Prefecture, where temperature measurement is carried out. Even when the temperature is 10 ° C., the temperature in the heat collection box 3 reaches about 45 degrees C in the sunny daytime from 10:00 to 14:00, and the fan that blows 230 m2 of air per hour is continuously used. Even if the air in the heat collection box 3 is used to supply air to the interior under the first floor, the temperature of the outside air in the heat collection box 3 does not decrease and the temperature does not decrease while maintaining about 45 degrees C. From this fact, in the winter season, the inside of the first floor is stored warmly by using a solar heat collector, so that the interior of the first floor is kept warm even at night, reducing the consumption of energy such as electricity, gas and oil. In addition, it has become possible to greatly contribute to energy saving.
以下、この発明の実施の形態2について説明する。
[発明の実施の形態2]
The second embodiment of the present invention will be described below.
[Embodiment 2 of the Invention]
図8、図9は、この発明の実施の形態2を示す。上記発明の実施の形態1では、図2(冬期)、図3(夏期)の何れの季節においても、1階床下内部83の空気を1階の居室Aに給気する場合、1階床に穴を開け、その穴の床上部にガラリ81を取付けると共に、穴の床下内部に送風機82を取付け、送風機82を稼動させる事により1階床下内部83の空気を1階の居室Aに給気し、さらに1階床下内部83の空気を2階の居室Bに給気する場合は、1階床下内部83から2階床部にダクト117を取付け、ダクト117の2階床部にガラリ118を取付けると共に、1階床下内部83に送風機114を取付け、送風機114を稼動させる事により1階床下内部83の空気を2階の居室Bに給気していたのに対して、この発明の実施の形態2では、図8、図9で示すように、1階床下内部183から1階の居室Dと2階の居室Eに連通するダクト186を取付け、そのダクト186の1階の居室Dの天井下部に送風機185とガラリ184を取付けると共に、ダクト186の2階の居室Eの天井下部に送風機187とガラリ188を取付け、送風機185、187を稼動させる事により、1階床下内部183の空気を1階の居室Dと2階の居室Eに給気するように構成した。  8 and 9 show a second embodiment of the present invention. In the first embodiment of the present invention, when the air inside the first-floor interior 83 is supplied to the first-floor room A in any season of FIG. 2 (winter) and FIG. 3 (summer), A hole is opened, and a gallery 81 is attached to the upper floor of the hole. A blower 82 is attached to the lower floor of the hole, and the blower 82 is operated to supply air in the first floor lower floor interior 83 to the first floor room A. Further, when air in the first floor under floor 83 is supplied to the second floor living room B, a duct 117 is attached from the first floor under floor 83 to the second floor, and a gallery 118 is attached to the second floor of the duct 117. At the same time, an air blower 114 is attached to the first floor under floor 83 and the air is supplied to the second floor living room B by operating the fan 114. 2, as shown in FIG. 8 and FIG. 83, a duct 186 communicating with the first floor room D and the second floor room E is attached to the lower floor of the first floor room D of the duct 186, and a blower 185 and a gall 184 are attached to the second floor room of the duct 186. A fan 187 and a louver 188 are attached to the lower part of the ceiling of E, and the fans 185 and 187 are operated, so that the air in the interior 183 under the first floor is supplied to the room D on the first floor and the room E on the second floor. .
このように構成する事により、図9で示す夏期の弱冷風運転において、1階床下内部183の空気をダクト186を経由して1階の居室Dと2階の居室Eの天井下部から給気する事が可能となり、弱冷気を居室の天井部分から床面に向かって給気する事により、冷房効果が一層増して効率よく居室を冷やす事が可能となる。なお、このように夏期において1階床下内部183の空気をダクト186を経由して1階の居室Dと2階の居室Eに給気する際は、1階の居室Dのガラリ168と2階の居室Eのガラリ189に蓋を取付け、送風機169と送風機180の稼動を停止させる。  With this configuration, air in the first floor under floor 183 is supplied from the lower ceiling of the first floor room D and the second floor room E via the duct 186 in the summer cold air operation shown in FIG. By supplying weak cold air from the ceiling portion of the room toward the floor, the cooling effect is further increased and the room can be efficiently cooled. In this way, in the summer, when the air inside the first floor under floor 183 is supplied to the first floor room D and the second floor room E via the duct 186, the gallery 168 and the second floor of the first floor room D A lid is attached to the gallery 189 of the living room E, and the operations of the blower 169 and the blower 180 are stopped.
さらに、図8で示すように、冬期において1階床下内部183の空気を、1階床下内部183の送風機169、送風機180を稼動させて1階の居室Dと2階の居室Eに給気する場合は、ダクト186の1階の居室Dのガラリ184と2階の居室Eのガラリ188に蓋を取付け、送風機185と送風機187の稼動を停止させる。このように1階床下内部183の空気を1階の居室Dと2階の居室Eに給気する際、夏期と冬期で給気するガラリの位置を変更する理由は、室温に比べ、熱い空気は上昇し、冷たい空気は下降するためである。その他の構造においては、この発明の実施の形態1と同様である。  Further, as shown in FIG. 8, the air in the first floor underfloor interior 183 is supplied to the first floor living room D and the second floor living room E by operating the blower 169 and the blower 180 in the first floor underfloor interior 183 in winter. In this case, a lid is attached to the gallery 184 of the first floor room D and the second room gallery E 188 of the duct 186, and the operation of the blower 185 and the blower 187 is stopped. As described above, when the air in the interior 183 under the first floor is supplied to the room D on the first floor and the room E on the second floor, the reason for changing the position of the louver supplied in the summer and winter is that the hot air is higher than the room temperature. This is because the air rises and the cold air descends. Other structures are the same as those of the first embodiment of the present invention.
最後に、当社が販売しているアース・ソーラーシステムを装備した注文住宅の場合、お客様の要望(例えば、冬期の暖房を強化してほしい等)に応じ、費用対効果を考慮して各種バリエーション(屋根の上に設置する太陽熱集熱器、地中に埋設して地熱を利用する地中熱回収パイプ、風呂の残り湯を利用する温水放熱パイプ)を組み合わしたアース・ソーラーシステムを販売中である。本発明におけるアース・ソーラーシステムは、その商品(バリエーション)の内の一つである。  Finally, in the case of custom-built homes equipped with an earth / solar system that we sell, various variations (for example, wanting to strengthen heating in the winter season) take into account cost-effectiveness. We are selling earth solar systems that combine solar heat collectors installed on the roof, underground heat recovery pipes that are buried in the ground and use geothermal heat, and hot water radiation pipes that use the remaining hot water in the bath) . The earth solar system in the present invention is one of the products (variations).
以上、実施の形態に基づいて、本発明に係るアース・ソーラーシステムについて詳細に説明してきたが、本発明は、以上の実施の形態に限定されるものではなく、発明の趣旨を逸脱しない範囲において各種の改変をなしても、本発明の技術的範囲に属するのはもちろんである。  As described above, the earth / solar system according to the present invention has been described in detail on the basis of the embodiment. However, the present invention is not limited to the above embodiment, and the scope of the invention is not deviated. It goes without saying that various modifications are included in the technical scope of the present invention.
図7において、集熱盤4にはガルバリウム鋼板を使用する、と説明したが、集熱盤4にガルバリウムの波板鋼板を使うことは、もちろん可能である。  Although it has been described in FIG. 7 that a galvalume steel plate is used for the heat collecting plate 4, it is of course possible to use a galvalume corrugated steel plate for the heat collecting plate 4.
図8、図9において、ダクト186の1階居室部分と2階居室部分に、それぞれ一台の送風機185と送風機187を取付けたが、コストを抑えるために1階居室の送風機185と2階居室の送風機187を取り外し、ダクト186の1階床下内部183の空気取込口に一台の送風機を取付け、1階居室と2階居室を同時に給気する事も、もちろん可能である。  8 and 9, a single fan 185 and a fan 187 are attached to the first-floor room portion and the second-floor room portion of the duct 186, respectively. To reduce costs, the first-floor fan 185 and the second-floor room are provided. Of course, it is possible to remove the blower 187 and attach a single blower to the air intake port of the interior 183 under the first floor of the duct 186 to supply air to the first-floor room and the second-floor room at the same time.
この発明の実施の形態1に係る、アース・ソーラーシステムの立体図である。It is a three-dimensional view of the earth solar system based on Embodiment 1 of this invention. 同実施の形態に係る、冬期の住宅断面図における太陽熱集熱器と全熱交換型換気扇と地中熱回収パイプを利用したアース・ソーラーシステムの弱温風システム図である。FIG. 3 is a system diagram showing a low temperature air system for an earth / solar system using a solar heat collector, a total heat exchange type ventilation fan, and a ground heat recovery pipe in a sectional view of a house in winter according to the embodiment. 同実施の形態に係る、夏期の住宅断面図におけると全熱交換型換気扇と地中熱回収パイプを利用したアース・ソーラーシステムの弱冷風システム図である。FIG. 3 is a diagram showing a weak cold air system of an earth / solar system using a total heat exchanging ventilation fan and a ground heat recovery pipe in the summer sectional view of the house according to the embodiment. 同実施の形態に係る、住宅に屋根断熱材、外壁断熱材、断熱樹脂サッシ、基礎外断熱材を施工した状態の断面図である。It is sectional drawing of the state which constructed the roof heat insulating material, the outer wall heat insulating material, the heat insulation resin sash, and the foundation outer heat insulating material to the house based on the embodiment. 同実施の形態に係る、天井取付専用型の全熱交換型換気扇を設置する場所を示した住宅断面図である。It is sectional drawing of a house which showed the place which installs the total heat exchange type exhaust fan only for ceiling mounting based on the embodiment. 同実施の形態に係る、地中熱回収パイプと1階床下空間の空気の流れを説明した斜視図である。It is the perspective view explaining the flow of the air of a underground heat recovery pipe and the 1st floor underfloor space based on the embodiment. 同実施の形態に係る、太陽熱集熱器の斜視図である。冬期において居室を暖めるための弱温風の給気経路を示す住宅断面図である。It is a perspective view of the solar-heat collector based on the embodiment. It is a house sectional view showing the supply path of weak warm air for warming a living room in winter. この発明の実施の形態2に係る、冬期において居室を暖めるための弱温風の給気経路を示す住宅断面図である。It is house sectional drawing which shows the supply path | route of the low temperature air for warming a living room based on Embodiment 2 of this invention in winter. 同実施の形態に係る、夏期において居室を冷やすための弱冷風の給気経路を示す住宅断面図である。It is a house sectional view showing an air supply route of weak cold air for cooling a living room in the summer according to the embodiment.
1 住宅
2 屋根
3 太陽熱集熱器
4 集熱盤
5 集熱箱
6 矢印
7 外気導入ダクト
8 矢印
9 フード
10 矢印
11 外気導入口
12 外気導入ダクト
13 室内ダクト
14 ダクト
15 90°エルボ
17 90°エルボ
18 送風機
19 矢印
20 矢印
21 送風機
22 矢印
23 矢印
24 基礎底盤
25 90°エルボ
26 基礎
27 90°エルボ
28 送風機
29 矢印
30 矢印
31 地中熱回収パイプ
32 矢印
33 90°エルボ
34 矢印
35 地中熱回収パイプ
36 矢印
37 90°エルボ
38 送風機
39 矢印
40 矢印
41 地中熱回収パイプ
42 矢印
43 地中熱回収パイプ
44 矢印
45 排水溝
46 排水パイプ
47 90°エルボ
48 90°エルボ
49 送風機
50 矢印
51 排水パイプ
52 風呂
53 給水管
54 風呂給湯器
55 矢印
60 住宅
61 太陽
62 太陽熱集熱器
63 集熱盤
64 集熱箱
65 外気導入ダクト
66 屋根
67 全熱交換型換気扇
68 ダクト
69 フード
70 矢印
71 ダクト
72 矢印
73 矢印
74 矢印
75 全熱交換型換気扇
76 矢印
77 ダクト
78 フード
79 矢印
80 矢印
81 ガラリ
82 送風機
83 1階床下内部
84 矢印
85 矢印
86 ダクト
87 風呂
88 矢印
89 基礎底盤
90 基礎
91 矢印
92 地中熱回収パイプ
93 送風機
94 矢印
95 矢印
96 地中熱回収パイプ
97 地中熱回収パイプ
98 送風機
99 矢印
100 矢印
101 送風機
102 矢印
103 矢印
104 地中熱回収パイプ
105 塩ビパイプ
106 エルボ
107 塩ビパイプ
108 送風機
109 矢印
110 排水溝
111 上水道
112 矢印
113 給水管
114 送風機
115 風呂給湯器
116 矢印
117 ダクト
118 ガラリ
119 矢印
123 屋根断熱材
124 外壁断熱材
125 断熱樹脂サッシ
126 基礎外断熱材
130 全熱交換型換気扇本体
131 外気取込配管
132 外気
133 排気
134 室内空気取込口
135 全熱交換型換気扇
136 給気
137 給気パイプ
139 ビス
140 穴
141 穴
142 接合部
143 補強用折曲部
144 給気口
145 取付部
146 接合部
147 サイド部
148 折り曲げ部
150 太陽
151 太陽熱集熱器
152 外気導入ダクト
153 屋根
154 室内ダクト
155 全熱交換型換気扇
156 ダクト
157 矢印
158 ダクト
159 全熱交換型換気扇
160 ダクト
161 フード
162 矢印
163 フード
164 矢印
165 矢印
166 ダクト
167 矢印
168 ガラリ
169 送風機
170 地中熱回収パイプ
171 送風機
172 地中熱回収パイプ
173 送風機
174 地中熱回収パイプ
175 送風機
176 地中熱回収パイプ
177 送風機
178 矢印
179 矢印
180 送風機
181 送風機
182 ダクト
183 1階床下内部
184 ガラリ
185 送風機
186 ダクト
187 送風機
188 ガラリ
189 ガラリ
190 矢印
191 矢印
192 矢印
193 矢印
DESCRIPTION OF SYMBOLS 1 House 2 Roof 3 Solar collector 4 Collector board 5 Heat collection box 6 Arrow 7 Outside air introduction duct 8 Arrow 9 Hood 10 Arrow 11 Outside air introduction port 12 Outside air introduction duct 13 Indoor duct 14 Duct 15 90 ° elbow 17 90 ° elbow 18 Blower 19 Arrow 20 Arrow 21 Blower 22 Arrow 23 Arrow 24 Foundation Bottom 25 25 ° Elbow 26 Foundation 27 90 ° Elbow 28 Blower 29 Arrow 30 Arrow 31 Geothermal Recovery Pipe 32 Arrow 33 90 ° Elbow 34 Arrow 35 Geothermal Recovery Pipe 36 Arrow 37 90 ° elbow 38 Blower 39 Arrow 40 Arrow 41 Geothermal recovery pipe 42 Arrow 43 Geothermal recovery pipe 44 Arrow 45 Drain groove 46 Drain pipe 47 90 ° elbow 48 90 ° elbow 49 Blower 50 Arrow 51 Drain pipe 52 Bath 53 Water supply pipe 54 Bath water heater 55 Arrow 60 House 61 Sun 62 Sun Heat collector 63 Heat collector 64 Heat collection box 65 Outside air introduction duct 66 Roof 67 Total heat exchange type exhaust fan 68 Duct 69 Hood 70 Arrow 71 Duct 72 Arrow 73 Arrow 74 Arrow 75 Total heat exchange type exhaust fan 76 Arrow 77 Duct 78 Hood 79 arrow 80 arrow 81 louver 82 blower 83 first floor under floor 84 arrow 85 arrow 86 duct 87 bath 88 arrow 89 foundation bottom 90 foundation 91 arrow 92 ground heat recovery pipe 93 blower 94 arrow 95 arrow 96 ground heat recovery pipe 97 ground Middle heat recovery pipe 98 Blower 99 Arrow 100 Arrow 101 Blower 102 Arrow 103 Arrow 104 Ground heat recovery pipe 105 PVC pipe 106 Elbow 107 PVC pipe 108 Blower 109 Arrow 110 Drain 111 Water supply 112 Arrow 113 Water supply pipe 114 Blower 115 Bath water heater 116 Arrow 117 Duct 118 Gull 119 Arrow 123 Roof insulation material 124 Outer wall insulation material 125 Thermal insulation resin sash 126 Base external insulation material 130 Total heat exchange type ventilation fan body 131 Outside air intake pipe 132 Outside air 133 Exhaust 134 Indoor air intake port 135 Total heat exchange type ventilation fan 136 Air supply 137 Air supply pipe 139 Screw 140 Hole 141 Hole 142 Joining portion 143 Reinforcement bent portion 144 Air supply port 145 Mounting portion 146 Joining portion 147 Side portion 148 Bending portion 150 Sun 151 Solar heat collector 152 Outside air introduction duct 153 Roof 154 Indoor duct 155 Total heat exchange ventilator 156 Duct 157 Arrow 158 Duct 159 Total heat exchange ventilator 160 Duct 161 Hood 162 Arrow 163 Hood 164 Arrow 165 Arrow 166 Duct 167 Arrow 168 Garage 169 Blower 170 Ground heat recovery pi 171 Blower 172 Geothermal Recovery Pipe 173 Blower 174 Geothermal Recovery Pipe 175 Blower 176 Geothermal Recovery Pipe 177 Blower 178 Arrow 179 Arrow 180 Blower 181 Blower 182 Duct 183 First Floor Underfloor Interior 184 Garage 185 Blower 186 Blower 188 Blower 188 Gara 189 Gara 190 Arrow 191 Arrow 192 Arrow 193 Arrow

Claims (1)

  1. 建物の室内に取付けた全熱交換型換気扇が室内に給気する新鮮な外気を、建物の1階床下に送り込むと共に、1階床下の基礎底盤に、下部をU字形に構成した内径100ミリメートル、地中に埋め込む深さ4メートルの塩ビパイプの地中熱回収パイプの両端を、基礎底盤より1階床下内部に突き出すように地中に埋設し、地中熱回収パイプの一端に送風機を取付けて作動させる事により、1階床下内部の空気が地中熱回収パイプに吸い込まれ、その地中熱回収パイプに吸い込まれた空気は、冬期においては地中熱により地中熱回収パイプの中で暖められて1階床下内部を暖めると共に、屋根に黒色のガルバリウム鋼板の両側を屋根と集熱盤の間の隙間が3cmになるようにコの字形に折り曲げ、前記集熱盤の太陽光を受ける面には、集熱盤を補強するため6mmの凸状の補強用折曲部を形成し、集熱盤の上端には太陽光で暖められた暖かい空気を集めるため、黒色のガルバリウム鋼板を直 方体に成形した集熱箱を取付けた太陽熱集熱器を取付け、太陽光で暖められた太陽熱集熱器の内部の暖かい空気を1時間当り230立米、送風機で1階床下内部に給気して1階床下内部を暖め、このようにして暖められた1階床下内部の空気を各階の室内に給気して室内を暖め、また、夏期においては地中熱により地中熱回収パイプの中で冷やされた1階床下内部の空気を各階の室内に給気して室内を冷やした事を特徴とするアース・ソーラーシステム。A fresh heat that is supplied to the room by a total heat exchange type ventilation fan installed in the room of the building sends the fresh air outside the floor of the first floor of the building . Embed both ends of the ground heat recovery pipe of the PVC pipe with a depth of 4 meters embedded in the ground so that it protrudes from the foundation bottom to the bottom of the first floor, and attach a blower to one end of the ground heat recovery pipe. By operating, the air inside the first floor under the floor is sucked into the ground heat recovery pipe, and the air sucked into the ground heat recovery pipe is warmed in the ground heat recovery pipe by the ground heat in winter. The floor under the first floor is warmed, and both sides of the black galvalume steel plate are folded into a U-shape so that the gap between the roof and the heat collector is 3 cm, and the solar collector receives the sunlight. In the heat collector The convex reinforcing bent portion of 6mm formed for strong, since the upper end of the heat collecting plate collecting warm air warmed by sunlight, the heat collection box of galvanized steel black was molded into a straight rectangular parallelepiped A solar heat collector attached with a solar heat collector is installed, warm air inside the solar heat collector heated by sunlight is 230 sq.m per hour, and the air is supplied to the inside of the first floor under a blower to warm the inside of the first floor under the floor, The interior of the first floor under the ground floor heated in this way is supplied to the interior of each floor to warm the interior, and in the summer, the interior of the first floor under the floor is cooled in the underground heat recovery pipe by underground heat. Earth solar system characterized by cooling the room by supplying the air of each floor into the room.
JP2012289457A 2012-12-27 2012-12-27 Earth / Solar system Active JP6135906B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012289457A JP6135906B2 (en) 2012-12-27 2012-12-27 Earth / Solar system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012289457A JP6135906B2 (en) 2012-12-27 2012-12-27 Earth / Solar system

Publications (2)

Publication Number Publication Date
JP2014129992A JP2014129992A (en) 2014-07-10
JP6135906B2 true JP6135906B2 (en) 2017-05-31

Family

ID=51408510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012289457A Active JP6135906B2 (en) 2012-12-27 2012-12-27 Earth / Solar system

Country Status (1)

Country Link
JP (1) JP6135906B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107228436A (en) * 2017-06-13 2017-10-03 武汉科技大学 A kind of air-conditioning system cold with ground based on solar energy

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0692844B2 (en) * 1986-06-26 1994-11-16 株式会社東芝 Pneumatic solar heat collection roof
JPH09317017A (en) * 1996-05-27 1997-12-09 Sekisui Chem Co Ltd Solar system building
JP3848655B2 (en) * 2004-02-13 2006-11-22 株式会社オーエムソーラー協会 Solar system house
JP3878636B2 (en) * 2004-09-30 2007-02-07 株式会社オーエム研究所 Solar system house ventilation method
JP4851147B2 (en) * 2005-09-21 2012-01-11 株式会社白岩工務所 Building air conditioning system
JP5505836B2 (en) * 2010-03-12 2014-05-28 株式会社 ▲高▼▲橋▼監理 Improved earth / solar system (Ground heat recovery pipe method)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107228436A (en) * 2017-06-13 2017-10-03 武汉科技大学 A kind of air-conditioning system cold with ground based on solar energy

Also Published As

Publication number Publication date
JP2014129992A (en) 2014-07-10

Similar Documents

Publication Publication Date Title
US8286441B2 (en) System for collecting and delivering solar and geothermal heat energy with thermoelectric generator
Monghasemi et al. A review of solar chimney integrated systems for space heating and cooling application
Roberts Effects of climate change on the built environment
Ferrante et al. Zero energy balance and zero on-site CO2 emission housing development in the Mediterranean climate
Samuel et al. Passive alternatives to mechanical air conditioning of building: A review
US6225705B1 (en) Convection energy generator
Wu et al. Net-zero nation: HVAC and PV systems for residential net-zero energy buildings across the United States
US20100198414A1 (en) Systems and methods for controlling interior climates
US20100025008A1 (en) Geothermal Heating, Ventilating and Cooling System
JP6250530B2 (en) Thermal energy system for heating inside a building or construction material or for maintaining thermal equilibrium
Kazanci et al. Exergy performance of different space heating systems: A theoretical study
SI20343A (en) Air conditioning system for buildings and air-conditioned building, especially a zero energy house
Doiron et al. Energy performance, comfort and lessons learned from a near net-zero energy solar house
DE102009047908B4 (en) Apparatus and method for supplying a cold district heating network with heat
PL183921B1 (en) Power supply equipment for buildings
Hastings Solar air systems: a design handbook
WO2012037291A2 (en) Multipurpose utility structure
US8152608B1 (en) Solar energy intercept and waste heat recovery system
CN102589078A (en) Ventilation system and operation method thereof
TWI646291B (en) Floor air conditioning system
JP3878636B2 (en) Solar system house ventilation method
Bojić et al. Decreasing energy use and influence to environment by radiant panel heating using different energy sources
JP2008076015A (en) Building air-conditioning system by geothermal use
NL2001816C2 (en) Method for controlling the climate in a building, as well as associated building.
Bevilacqua et al. Are Trombe walls suitable passive systems for the reduction of the yearly building energy requirements?

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170412

R150 Certificate of patent or registration of utility model

Ref document number: 6135906

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250