JP3185552U - Air conditioning system - Google Patents

Air conditioning system Download PDF

Info

Publication number
JP3185552U
JP3185552U JP2013003277U JP2013003277U JP3185552U JP 3185552 U JP3185552 U JP 3185552U JP 2013003277 U JP2013003277 U JP 2013003277U JP 2013003277 U JP2013003277 U JP 2013003277U JP 3185552 U JP3185552 U JP 3185552U
Authority
JP
Japan
Prior art keywords
pipe
air
building
soil
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2013003277U
Other languages
Japanese (ja)
Inventor
哲三 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2013003277U priority Critical patent/JP3185552U/en
Application granted granted Critical
Publication of JP3185552U publication Critical patent/JP3185552U/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Central Heating Systems (AREA)
  • Building Environments (AREA)

Abstract

【課題】地中に埋設したパイプ内の空気を土壌にて熱交換して暖気する際の改善を図るる空調システムを提供する。
【解決手段】建築物Kの外部から吸引した外気を空調した空調済み外気として建築物内部に導くに当たり、基礎凸部KTで取り囲まれた基礎部分の土壌の表面に複数の電気抵抗加熱パネル102を設置し、この電気抵抗加熱パネル102により土壌Dを蓄熱状態とする。熱交換用パイプ300は、電気抵抗加熱パネル102により蓄熱状態とされる土壌Dに埋設され、熱交換用パイプ300の直径と埋設経路長は、空調済み外気の導出対象の住居域J3の内容積に応じて定められている。よって、熱交換用パイプ300は、外気吸引管部310からパイプ内に給気済みの外気を、蓄熱状態の土壌と熱交換して空調し、空調済み外気を、送気管部320を経て住居域J3に導出する。
【選択図】図6
An air conditioning system is provided for improving the warming of the air in a pipe buried in the ground by exchanging heat with soil.
When introducing outside air sucked from the outside of a building K into the building as air-conditioned outside air that has been air-conditioned, a plurality of electric resistance heating panels 102 are provided on the soil surface of the foundation portion surrounded by the foundation protrusion KT. It installs and the soil D is made into a heat storage state by this electrical resistance heating panel 102. The heat exchanging pipe 300 is embedded in the soil D which is in a heat storage state by the electric resistance heating panel 102, and the diameter and the embedding path length of the heat exchanging pipe 300 are the inner volume of the residential area J3 from which the conditioned outside air is derived It is determined according to. Therefore, the heat exchanging pipe 300 heats the outside air supplied into the pipe from the outside air suction pipe section 310 with the heat-stored soil for air conditioning, and the conditioned outside air passes through the air supply pipe section 320 to be a residential area. Derived to J3.
[Selection] Figure 6

Description

本考案は、空調システムに関する。   The present invention relates to an air conditioning system.

近年になり、地中熱を利用した空調システムが種々提案されている(例えば、特許文献1等)。   In recent years, various air conditioning systems using underground heat have been proposed (for example, Patent Document 1).

特開2003−35456号公報JP 2003-35456 A 特開2005−283007号公報JP 2005-283007 A 特開2007−33360号公報JP 2007-33360 A 特許第4694168号公報Japanese Patent No. 4694168

地中熱を空調に利用するに当たっては、熱交換の対象となる地中熱が外気温に左右されることなく一定であることが望ましい。よって、上記の特許文献2〜3では、図示された住居規模から推定されるように、数m程度の高深度にパイプを埋設したり、数十mを超える管路に亘ってパイプが配設されているので、施工性に改善の余地がある。その一方、特許文献1では、土間コンクリートを厚くしてパイプの埋設深度を浅くでき、その分だけ、施工性を高めている。しかしながら、コンクリートは、土壌に比べると蓄熱性に劣るので、特許文献1の空調システムでは、特に冬期に十分な空気の昇温が困難なことが危惧される。特許文献4は、ヒーターを用いて土壌を蓄熱状態としていることから、この蓄熱土壌を地中埋設のパイプ内の空気との熱交換の熱源とすることが想定し得るが、蓄熱土壌でのパイプ埋設やその保持、発熱体とパイプとの関連づけ等を図る構成において、改善の余地が残されている。この他、空調システムの構造の簡略化や、防カビ対策も要請されている。   When using geothermal heat for air conditioning, it is desirable that the geothermal heat to be exchanged is constant without being influenced by the outside air temperature. Therefore, in the above Patent Documents 2 to 3, as estimated from the illustrated residence scale, the pipe is embedded at a depth of about several meters, or the pipe is disposed over a pipe line exceeding several tens of meters. As a result, there is room for improvement in workability. On the other hand, in patent document 1, the concrete between concrete can be made thick and the embedding depth of a pipe can be made shallow, and workability is improved by that much. However, concrete is inferior in heat storage as compared with soil, and therefore, it is feared that the air conditioning system of Patent Document 1 has difficulty in raising the temperature of air sufficiently, particularly in winter. In Patent Document 4, since the soil is in a heat storage state using a heater, it can be assumed that this heat storage soil is used as a heat source for heat exchange with the air in the underground pipe. There is still room for improvement in the construction for embedding and holding the heater and associating the heating element with the pipe. In addition, simplification of the structure of the air conditioning system and anti-mold measures are also required.

上記した課題の少なくとも一部を達成するために、本考案は、以下の形態として実施することができる。   In order to achieve at least a part of the above-described problems, the present invention can be implemented as the following forms.

(1)本考案の一形態によれば、空調システムが提供される。この空調システムは、建築物外部から吸引した外気を空調して建築物内部に導く空調システムであって、建築物の土台の受けとなる基礎凸部で取り囲まれた土壌の表面もしくは該土壌の表面を覆う基礎コンクリートの表面に設置され、通電を受けて発熱して前記土壌を蓄熱状態とする複数の発熱体と、前記土壌に埋設される熱交換用パイプであって、前記外気の導出対象の前記建築物内部の内容積或いは前記建築物内部で求められる換気度合いに応じて定めた直径と、前記内容積或いは前記換気度合いに応じて定めた埋設長さとを有する熱交換用パイプと、該熱交換用パイプに前記外気を建築物外部から給気する給気手段と、前記熱交換用パイプを通過する間における前記土壌との熱交換を経て空調された空調済み外気を、前記導出対象の前記建築物内部に送気する送気手段とを備える。上記形態の空調システムでは、複数の発熱体の発する熱により土壌を蓄熱状態とでき、この蓄熱状態の土壌に埋設した熱交換用パイプにより、パイプ内に給気済みの外気を、蓄熱状態の土壌との熱交換を経て空調する。複数の発熱体による土壌の蓄熱状態は、発熱体の加熱制御により種々変更できるので、上記形態の空調システムによれば、厳冬期であっても、十分に暖めた外気を建築物内部に導くことができる。しかも、上記形態の空調システムでは、熱交換用パイプの直径や埋設長さを空調済み外気の導出対象の建築物内部の内容積或いは換気度合いに応じて規定済みであることから、外気との間での熱交換不足を抑制でき、建築物内部への暖気済みの外気の導出の実効性を高めることができる。   (1) According to one aspect of the present invention, an air conditioning system is provided. This air-conditioning system is an air-conditioning system that air-conditions outside air sucked from the outside of the building and guides it into the building. The surface of the soil is surrounded by a foundation convex portion that receives the foundation of the building, or the surface of the soil. A plurality of heating elements that are energized to generate heat and store the soil in a heat storage state, and heat exchange pipes that are buried in the soil, A heat exchanging pipe having a diameter determined according to the internal volume of the building or the degree of ventilation required inside the building, and a buried length determined according to the internal volume or the degree of ventilation; Air supply means for supplying the outside air to the replacement pipe from the outside of the building, and air-conditioned outside air that has been air-conditioned through heat exchange with the soil while passing through the heat exchange pipe, before the derivation target And a gas supply means for supplying air to the inside building. In the air conditioning system of the above-mentioned form, the soil can be stored in heat by heat generated by a plurality of heating elements, and the heat exchange pipe embedded in the heat-stored soil allows the outside air already supplied in the pipe to be stored in the heat-stored soil. Air-conditioning through heat exchange. Since the heat storage state of the soil by multiple heating elements can be changed in various ways by heating control of the heating elements, the air conditioning system of the above embodiment can guide the warmed outside air into the building even in the severe winter season Can do. In addition, in the air conditioning system of the above embodiment, the diameter and embedment length of the heat exchange pipe are already defined according to the internal volume or the degree of ventilation inside the building from which air-conditioned outside air is derived, so Insufficient heat exchange in the building can be suppressed, and the effectiveness of the derivation of warm outside air into the building can be enhanced.

加えて、上記形態の空調システムでは、発熱体の熱を、発熱体を覆う表層コンクリートと基礎コンクリートとを暖めるほか、基礎コンクリートの下の土壌にも伝えて土壌を蓄熱状態とし、土壌に蓄熱された熱と、表層コンクリートおよび基礎コンクリートを暖めた熱とを、建築物床の下面との間の間隙に放射して建築物床を暖め、建築物床暖房を図ることができる。この結果、上記の形態の空調システムによれば、建築物に対しての床暖房を図った上で、十分に暖気済みの外気を建築物内部に導くので、建築物内部の暖房効率が高まる。   In addition, in the air conditioning system of the above form, the heat of the heating element is heated to the surface concrete and the foundation concrete covering the heating element, and is also transmitted to the soil under the foundation concrete so that the soil is in a heat storage state and is stored in the soil. The building floor can be heated by radiating the heat and the heat that warms the surface layer concrete and the foundation concrete to the gap between the lower surface of the building floor and heating the building floor. As a result, according to the air conditioning system of the above embodiment, the floor heating of the building is attempted, and the outside air that has been sufficiently warmed is guided to the inside of the building, so that the heating efficiency inside the building is increased.

また、上記形態の空調システムでは、暖房を要しない例えば夏期等においては発熱体の通電を停止して土壌を蓄熱状態としないようにできるため、夏期等におけるパイプ内に給気済みの外気と土壌との熱交換により、給気済み外気を冷却できる。よって、上記形態の空調システムによれば、暖房を要しない夏期等において、冷却済み空気を建築物内部に導出でき、建築物内部の冷房もしくは冷房装置による冷房の助力ができる。   Further, in the air conditioning system of the above embodiment, since heating is not required, for example, in summer, the energization of the heating element can be stopped so that the soil is not in a heat storage state. Heat exchange with the outside air can be cooled. Therefore, according to the air conditioning system of the said form, in the summer etc. which do not require heating, cooled air can be derived | led-out inside a building and the air_conditioning | cooling inside a building or the assistance of air_conditioning | cooling by a cooling device can be performed.

(2)上記形態の空調システムにおいて、前記熱交換用パイプは、前記建築物が住居域を有する住宅建築物であると、前記内容積に応じて定めた100〜150mmの直径と10〜15mの埋設長さと有するようにできる。こうすれば、外気との間での熱交換不足をより確実に抑制できるので、建築物内部への暖気済みの外気の導出の実効性をより高めることができる。   (2) In the air conditioning system of the above aspect, the heat exchange pipe has a diameter of 100 to 150 mm and 10 to 15 m determined according to the internal volume, if the building is a residential building having a residential area. Can have a buried length. By so doing, heat exchange shortage with the outside air can be more reliably suppressed, so that the effectiveness of the derivation of the warmed outside air into the building can be further enhanced.

(3)上記したいずれかの形態の空調システムにおいて、前記熱交換用パイプは、前記基礎凸部を貫通して前記土壌に埋設されることで、前記基礎凸部により保持されているようにできる。こうすれば、熱交換用パイプの埋設軌跡を確保できるので、地震等により外部からの力が熱交換用パイプに及んでも、パイプ軌跡のズレを抑制できる。   (3) In any one of the above-described air conditioning systems, the heat exchanging pipe may be held by the basic convex portion by being embedded in the soil through the basic convex portion. . In this way, since the embedment locus of the heat exchange pipe can be ensured, the displacement of the pipe locus can be suppressed even when an external force reaches the heat exchange pipe due to an earthquake or the like.

(4)上記したいずれかの形態の空調システムにおいて、前記熱交換用パイプは、防カビ性の薬剤にてパイプ内壁が被覆されているようにできる。こうすれば、蓄熱状態の土壌との熱交換を経て暖気済みの外気が仮に冷えてパイプ内壁に結露が生じても、カビの発生を抑制でき、カビによる異臭についてもこれを抑制できる。   (4) In any one of the above-described air conditioning systems, the heat exchange pipe may be coated with an inner wall of the mold with an antifungal agent. In this way, even if the heated outside air is cooled through heat exchange with the heat-storing soil and dew condensation occurs on the inner wall of the pipe, generation of mold can be suppressed, and abnormal odor due to mold can be suppressed.

(5)上記したいずれかの形態の空調システムにおいて、前記給気手段の側のパイプ端部に向けて下り勾配のパイプ経路で前記土壌に埋設されると共に、前記パイプ経路の末端の前記パイプ端部から分岐した分岐官からパイプ内水分を前記熱交換用パイプの管路外に排出するようにできる。こうすれば、パイプ内での水分残留を抑制できるので、カビ発生の抑制、異臭抑制の上から有益となる。   (5) In the air conditioning system according to any one of the forms described above, the pipe end is embedded in the soil in a downwardly inclined pipe path toward the pipe end portion on the air supply means side, and the pipe end at the end of the pipe path The moisture in the pipe can be discharged from the branch of the heat exchanging pipe from the branching officer branched from the section. If it carries out like this, since the water | moisture residue in a pipe can be suppressed, it becomes useful from the suppression of mold | fungi generation | occurrence | production and a malodor control.

(6)上記した形態の空調システムにおいて、前記熱交換用パイプは、前記パイプ内水分を、前記建築物の外部の排水用枡に前記分岐官から排出するようにできる。こうすれば、熱交換用パイプから外部に一旦排出した水分を水蒸気の状態としても熱交換用パイプ内に戻りがたくできるので、異臭抑制の上からより有益となる。   (6) In the air conditioning system of the above-described form, the heat exchange pipe can discharge the moisture in the pipe from the branch officer to a drainage basin outside the building. In this way, moisture once discharged from the heat exchanging pipe to the outside can hardly be returned to the heat exchanging pipe even if it is in the state of water vapor, which is more beneficial from the viewpoint of suppressing a strange odor.

なお、本考案は、種々の形態で実現することが可能であり、例えば、複数の住居域を有する住宅建築物の他、体育館、講演会会場、映画館等の大規模建築物にも適用できる。   The present invention can be realized in various forms. For example, the present invention can be applied to a large-scale building such as a gymnasium, a lecture hall, a movie theater as well as a residential building having a plurality of residential areas. .

本考案の実施形態としての床暖房兼用空調システム100を用いた床暖房建築物の概要を説明するための説明図である。It is explanatory drawing for demonstrating the outline | summary of the floor heating building using the floor heating combined use air conditioning system 100 as embodiment of this invention. 床暖房兼用空調システム100の構成と建築物床との関係を説明するための説明図である。It is explanatory drawing for demonstrating the relationship between the structure of a floor heating combined use air conditioning system 100, and a building floor. 電気抵抗加熱パネル102の設置領域と熱交換用パイプ300の埋設経路を概略的に斜視にて示す説明図である。It is explanatory drawing which shows the installation area | region of the electrical resistance heating panel 102, and the embedment path | route of the heat exchange pipe 300 in a perspective. 電気抵抗加熱パネル102の設置の様子を概略的に平面視にて示す説明図である。It is explanatory drawing which shows the mode of installation of the electrical resistance heating panel 102 in a planar view schematically. 熱交換用パイプ300の埋設経路の様子を概略的に平面視にて示す説明図である。It is explanatory drawing which shows the mode of the embedding path | route of the pipe 300 for heat exchange roughly by planar view. 本実施形態の床暖房兼用空調システム100における熱交換用パイプ300の埋設の様子を概略的に縦断面視して示す説明図である。It is explanatory drawing which shows the mode of embedding of the pipe 300 for heat exchange in the floor heating combined use air conditioning system 100 of this embodiment in a schematic longitudinal cross-sectional view. 外気吸引管部310を建築物Kの内側に設けた実施形態の床暖房兼用空調システム100Aにおける熱交換用パイプ300の埋設の様子を概略的に縦断面視して示す説明図である。It is explanatory drawing which shows the mode of embedding of the pipe 300 for heat exchange in the floor heating combined use air conditioning system 100A of embodiment which provided the external air suction pipe part 310 inside the building K in a schematic longitudinal cross-sectional view. また別の実施形態の床暖房兼用空調システム100Bにおける熱交換用パイプ300の埋設の様子を概略的に縦断面視して示す説明図である。Moreover, it is explanatory drawing which shows the mode of embedding of the pipe 300 for heat exchange in the floor heating combined use air conditioning system 100B of another embodiment roughly by a longitudinal cross-sectional view.

以下、本考案の実施の形態について、図面に基づき説明する。図1は本考案の実施形態としての床暖房兼用空調システム100を用いた床暖房建築物の概要を説明するための説明図、図2は床暖房兼用空調システム100の構成と建築物床との関係を説明するための説明図である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an explanatory diagram for explaining an outline of a floor heating building using a floor heating combined air conditioning system 100 as an embodiment of the present invention, and FIG. 2 shows a configuration of the floor heating combined air conditioning system 100 and a building floor. It is explanatory drawing for demonstrating a relationship.

図示するように、建築物Kは、住人の住居域を複数有する住宅建築物であって、建築物Kの基礎部分に、実施形態としての床暖房兼用空調システム100を備え、その制御装置200を、例えば基礎部分や建築物壁面に有する。本実施形態では、制御装置200は、防塵と防水機能を有する図示しない開閉式のボックス内に組み込まれ、このボックスごと基礎部分に埋設されている。制御装置200を建築物壁面に設置する場合には、操作可能な適宜箇所に設置すればよい。床暖房兼用空調システム100は、建築物Kの下の土壌を蓄熱状態とするためのものであり、図2に詳しく示すように、建築物Kの基礎部分の土壌Dの上面に、電気抵抗加熱パネル102と、コンクリート層105と、断熱体107と、熱交換用パイプ300とを有する。この場合、電気抵抗加熱パネル102は、土壌Dを覆うよう施工済みの基礎コンクリートの上面に配設することも可能であり、施工済み基礎コンクリートは、少なくとも100〜150mmの厚みを有することが、強度および後述の土壌Dの蓄熱に当たって望ましい。以下の説明に当たっては、土壌Dの表面に電気抵抗加熱パネル102を配設する構成について行い、施工済み基礎コンクリートの表面に電気抵抗加熱パネル102を配設する構成については、その説明を省略する。   As shown in the figure, the building K is a residential building having a plurality of residents' residential areas, and is provided with a floor heating combined air-conditioning system 100 as an embodiment at the foundation of the building K, and the control device 200 is provided. , For example, on the foundation or building wall. In the present embodiment, the control device 200 is incorporated in an openable / closable box (not shown) having a dustproof and waterproof function, and the box is embedded in the base portion. When the control device 200 is installed on a building wall surface, it may be installed at an appropriate place where it can be operated. The floor heating combined air conditioning system 100 is for making the soil under the building K in a heat storage state. As shown in detail in FIG. 2, electric resistance heating is performed on the upper surface of the soil D of the foundation portion of the building K. It has the panel 102, the concrete layer 105, the heat insulating body 107, and the pipe 300 for heat exchange. In this case, the electrical resistance heating panel 102 can be disposed on the upper surface of the foundation concrete that has been constructed so as to cover the soil D, and the foundation foundation concrete that has been constructed has a thickness of at least 100 to 150 mm. And it is desirable in the heat storage of the soil D mentioned later. In the following description, the configuration in which the electrical resistance heating panel 102 is disposed on the surface of the soil D is performed, and the description of the configuration in which the electrical resistance heating panel 102 is disposed on the surface of the foundation concrete that has been applied is omitted.

電気抵抗加熱パネル102は、平板状を成し、水密性を持って折り返し備えた電気抵抗加熱線により、面状に発熱する構成を備え、土壌Dの表面或いは施工済みの基礎コンクリートの表面に後述するように複数設置されている。電気抵抗加熱パネル102を覆うコンクリート層105は、建築物Kの建築物床150の下面との間に間隙Tを50〜300mmの範囲で確保した上で、100〜300mmの厚みで電気抵抗加熱パネル102を覆い、その下層への水の浸入回避、下層保護等の機能を果たす。断熱体107は、土壌Dから立ち上がって建築物Kの土台150Dの受けとなる基礎凸部KTに装着され、この基礎凸部KTで取り囲まれた後述の建築物床下領域の断熱を図る。なお、基礎凸部KTは、布基礎として構成されても良いほか、ベタ基礎として構成されても良い。また、断熱体107については、省略してもよい。   The electric resistance heating panel 102 has a flat plate shape and is configured to generate heat in a planar shape by an electric resistance heating wire that is folded back with watertightness, and is described later on the surface of the soil D or the surface of the foundation concrete that has already been constructed. There are multiple installations. The concrete layer 105 covering the electric resistance heating panel 102 has a gap T of 50 to 300 mm between the lower surface of the building floor 150 of the building K and a thickness of 100 to 300 mm. 102 is covered, and functions such as prevention of water intrusion into the lower layer and protection of the lower layer are performed. The heat insulating body 107 is mounted on the base convex portion KT that rises from the soil D and receives the base 150D of the building K, and insulates the below-mentioned building floor area, which will be described later, surrounded by the base convex portion KT. In addition, the foundation convex part KT may be configured as a cloth foundation or a solid foundation. Further, the heat insulator 107 may be omitted.

上記の床暖房兼用空調システム100を土壌Dに構築するに当たり、土壌Dの上面に、図示しない最下層砂層を小石の無い山砂等を用いて約30mmの厚みで形成して、この砂層に電気抵抗加熱パネル102を設置するようにすることもできる。また、電気抵抗加熱パネル102をコンクリート層105にて覆う前に、小石の無い山砂等を用いた約50mmの砂層(上部砂層)にて予め電気抵抗加熱パネル102を覆い尽くし、これをコンクリート層105にて覆うようにすることもできる。この場合には、電気抵抗加熱パネル102は、上部砂層とその上のコンクリート層105の2層で覆われることになる。なお、上部砂層とコンクリート層105との境界に、図示しない防湿フィルムを介在させるようにしてもよい。   In constructing the above-mentioned floor heating combined air-conditioning system 100 in the soil D, a lowermost sand layer (not shown) is formed on the upper surface of the soil D with a thickness of about 30 mm using mountain sand without pebbles and the like. A resistance heating panel 102 may be installed. Further, before covering the electric resistance heating panel 102 with the concrete layer 105, the electric resistance heating panel 102 is covered in advance with a sand layer (upper sand layer) of about 50 mm using mountain sand without pebbles and the like. It can also be covered with 105. In this case, the electric resistance heating panel 102 is covered with two layers of the upper sand layer and the concrete layer 105 thereon. A moisture-proof film (not shown) may be interposed at the boundary between the upper sand layer and the concrete layer 105.

上記構成を備える床暖房兼用空調システム100は、電気抵抗加熱パネル102への通電により当該パネルを発熱させ、土壌Dを蓄熱状態とし、この土壌Dに逆ドーム状の蓄熱層Dhを形成する。こうした蓄熱層Dhの形成の様子は、上記の特許文献4にて提案された既存構成と変わるものではない。   The floor heating / air-conditioning system 100 having the above-described configuration causes the panel to generate heat by energizing the electric resistance heating panel 102 to make the soil D into a heat storage state, and forms a reverse dome-shaped heat storage layer Dh on the soil D. The state of formation of such a heat storage layer Dh is not different from the existing configuration proposed in Patent Document 4 above.

熱交換用パイプ300は、電気抵抗加熱パネル102により逆ドーム状の蓄熱層Dhとされる土壌Dに所定の埋設深さDLで埋設される塩化ビニル製のパイプであり、内部の空気を土壌Dの蓄熱層Dhと熱交換する。熱交換用パイプ300の直径と埋設経路長PLは、建築物Kの居間等の空調済み外気の導出対象の内容積に応じて定められる。熱交換用パイプ300の埋設深さDLや直径、埋設経路長PLについては後述する。   The heat exchanging pipe 300 is a pipe made of vinyl chloride embedded at a predetermined embedding depth DL in the soil D, which is formed into an inverted dome-shaped heat storage layer Dh by the electric resistance heating panel 102, and the air inside the soil D Heat exchange with the heat storage layer Dh. The diameter of the heat exchanging pipe 300 and the embedment path length PL are determined according to the internal volume of the derivation target of the air-conditioned outside air such as the living room of the building K. The embedding depth DL and diameter of the heat exchange pipe 300 and the embedding path length PL will be described later.

次に、電気抵抗加熱パネル102と熱交換用パイプ300の設置の様子について説明する。図3は電気抵抗加熱パネル102の設置領域と熱交換用パイプ300の埋設経路を概略的に斜視にて示す説明図、図4は電気抵抗加熱パネル102の設置の様子を概略的に平面視にて示す説明図、図5は熱交換用パイプ300の埋設経路の様子を概略的に平面視にて示す説明図である。   Next, how the electric resistance heating panel 102 and the heat exchange pipe 300 are installed will be described. FIG. 3 is an explanatory view schematically showing an installation region of the electric resistance heating panel 102 and an embedding path of the heat exchange pipe 300 in a perspective view, and FIG. 4 is a schematic plan view showing the electric resistance heating panel 102 being installed. FIG. 5 is an explanatory diagram schematically showing a state of the burial path of the heat exchange pipe 300 in plan view.

図示するように、基礎凸部KTは、建築物Kの住空間区画において、土台150Dを区画する。こうして基礎凸部KTにて区画されて取り囲まれた領域は、本実施形態では、図3〜図4に示すように、第1床下領域R1〜第5床下領域R5とされ、第5床下領域R5は、玄関土間の土間基礎DKを除く領域とされている。そして、本実施形態の床暖房兼用空調システム100では、図4に示すように、第1床下領域R1〜第5床下領域R5の各床下領域ごとに、電気抵抗加熱パネル102を土壌Dの表面に複数設置して備える。こうして設置された電気抵抗加熱パネル102は、後述する制御装置200からの制御を受けて発熱して、その熱を土壌Dに伝え、土壌Dを蓄熱状態とする。第1床下領域R1〜第5床下領域R5の各床下領域ごとの電気抵抗加熱パネル102の設置枚数は、各床下領域の広さや建築物Kで各床下領域が占める位置に応じて設定される。この場合、建築物Kが体育館や公民館等の広い平屋状建築であれば、各床下領域は、ほぼ同じとなるので、同じ枚数の電気抵抗加熱パネル102を設置すればよい。なお、電気抵抗加熱パネル102による土壌Dの蓄熱化は、コンクリート層105(図1参照)にて覆われてからなされ、コンクリート層105からの反射熱も土壌Dに伝わる。   As shown in the drawing, the foundation convex portion KT partitions the foundation 150D in the living space section of the building K. In this embodiment, the area surrounded and divided by the basic convex portion KT is, as shown in FIGS. 3 to 4, a first underfloor area R1 to a fifth underfloor area R5, and a fifth underfloor area R5. Is an area excluding the soil foundation DK between the entrance soils. And in the floor heating combined use air-conditioning system 100 of this embodiment, as shown in FIG. 4, the electrical resistance heating panel 102 is put on the surface of the soil D for each underfloor region of the first underfloor region R1 to the fifth underfloor region R5. Prepare multiple installations. The electrical resistance heating panel 102 thus installed generates heat under the control of the control device 200 described later, transmits the heat to the soil D, and puts the soil D into a heat storage state. The number of installed electrical resistance heating panels 102 for each underfloor region in the first underfloor region R1 to the fifth underfloor region R5 is set according to the size of each underfloor region and the position occupied by each underfloor region in the building K. In this case, if the building K is a wide one-story building such as a gymnasium or a public hall, the areas under the floors are substantially the same, and therefore the same number of electrical resistance heating panels 102 may be installed. Note that heat storage of the soil D by the electric resistance heating panel 102 is performed after being covered with the concrete layer 105 (see FIG. 1), and reflected heat from the concrete layer 105 is also transmitted to the soil D.

建築物Kの建築物床150は、本実施形態では、図2に示すように、床暖房兼用空調システム100の側から、土台150D、大引151、根太152、床下地材153、フローリング材154を備え、土台150Dに掛け渡された大引151と根太152にて、建築物床150と床暖房兼用空調システム100の表層との間の間隙Tを形成する。つまり、大引151や根太152の寸法やその組構造を変えることで、或いはコンクリート層105の厚みを変えることで上記の間隙Tを種々のものとでき、この間隙Tは、床暖房兼用空調システム100の設置箇所での暖房の要請程度、詳しくは暖房温度や頻度等の他、住空間に導出する空調済み空気の空調程度と床暖房兼用空調システム100による土壌蓄熱の状況に応じて規定される。   In the present embodiment, the building floor 150 of the building K is, as shown in FIG. 2, from the floor heating / air conditioning system 100 side, a base 150D, a large draw 151, a joist 152, a floor base material 153, and a flooring material 154. A gap T between the building floor 150 and the surface layer of the floor heating / air-conditioning system 100 is formed by the large draw 151 and the joist 152 spanned over the base 150D. In other words, the gap T can be made various by changing the size of the large draw 151 and the joist 152, or by changing the thickness of the concrete layer 105. This gap T can be used as an air conditioning system for floor heating. It is defined according to the degree of heating demand at the installation location of 100, specifically the heating temperature and frequency, etc., the degree of air conditioning of air-conditioned air led out to the living space, and the state of soil heat storage by the floor heating combined air conditioning system 100 .

本実施形態では、最大面積の第3床下領域R3に対応する住空間、例えば、居間と台所が繋がった高内容積の住居域J3を、床暖房兼用空調システム100の熱交換用パイプ300による空調済み空気の導出対象とした。そして、この住居域J3は、縦横が約4mx10mで天井高が約3mの1階住居であり、本実施形態では、この住居域J3において、土壌Dに熱交換用パイプ300を埋設した。この熱交換用パイプ300については、最大面積の第3床下領域R3に対応する住居域J3の内容積(120m3)に応じて、パイプ直径を100〜150mmの市販の塩化ビニル製パイプ(例えば、120mm)とし、埋設経路長PLについては、15mとした。熱交換用パイプ300の埋設経路は、第3床下領域R3において任意に設定でき、本実施形態では、図3と図5に示すように、熱交換用パイプ300への外気吸引を基礎凸部KTの外部の外気吸引管部310で行うこと、および、最大面積の第3床下領域R3に対応する住居域J3へは、基礎凸部KTの内側であって建築物床150の下方において送気管部320にて行うことを考慮し、熱交換用パイプ300を上記の埋設経路長PLで図3と図5に示すようにコの字状に屈曲して土壌Dに埋設した。この際の土壌Dの表面からの埋設深さDL(図2参照)については、これを約100cmとした。こうして土壌Dに埋設された熱交換用パイプ300は、パイプ内に給気済みの外気を、蓄熱状態の土壌Dとの熱交換を埋設経路長PLに亘って行うことで空調する。熱交換用パイプ300における外気吸引と空調済み外気の導出、並びに、熱交換用パイプ300の経路勾配の様子については、後述する。なお、第3床下領域R3以外の床下領域に対応する住居域についても、熱交換用パイプ300を用いた空調済み空気の導出対象としてもよい。 In the present embodiment, a living space corresponding to the third floor area R3 having the largest area, for example, a high internal volume residential area J3 in which the living room and the kitchen are connected, is air-conditioned by the heat exchange pipe 300 of the floor heating / air conditioning system 100. Spent air was derived. And this dwelling area J3 is a 1st floor dwelling whose height and width are about 4mx10m and the ceiling height is about 3m. In this embodiment, the heat exchanging pipe 300 is embedded in the soil D in this dwelling area J3. About this heat exchange pipe 300, depending on the internal volume (120 m 3 ) of the residential area J3 corresponding to the third underfloor area R3 of the maximum area, a commercially available pipe made of vinyl chloride having a pipe diameter of 100 to 150 mm (for example, 120 mm), and the buried path length PL was 15 m. The burial path of the heat exchange pipe 300 can be arbitrarily set in the third underfloor region R3. In the present embodiment, as shown in FIGS. 3 and 5, outside air suction to the heat exchange pipe 300 is performed by the basic convex portion KT. The outside air suction pipe section 310 outside the building and the residential area J3 corresponding to the third floor area R3 having the largest area are inside the foundation convex part KT and below the building floor 150, the air supply pipe section In consideration of what is performed at 320, the heat exchanging pipe 300 was bent in a U-shape and embedded in the soil D as shown in FIGS. At this time, the embedding depth DL (see FIG. 2) from the surface of the soil D was about 100 cm. The heat exchange pipe 300 buried in the soil D thus air-conditions the outside air supplied in the pipe by performing heat exchange with the soil D in the heat storage state over the buried path length PL. The outside air suction in the heat exchange pipe 300, the derivation of the conditioned outside air, and the state of the path gradient of the heat exchange pipe 300 will be described later. Note that a residential area corresponding to an underfloor area other than the third underfloor area R3 may also be a derivation target of conditioned air using the heat exchange pipe 300.

図6は本実施形態の床暖房兼用空調システム100における熱交換用パイプ300の埋設の様子を概略的に縦断面視して示す説明図である。図示するように、床暖房兼用空調システム100は、電気抵抗加熱パネル102により蓄熱状態とされる土壌Dに熱交換用パイプ300を埋設して備える。この熱交換用パイプ300は、第3床下領域R3(図5参照)を取り囲む基礎凸部KTを貫通して、土壌Dの内部に延び、コの字状に屈曲したパイプ経路を採る。基礎凸部KTを貫通した熱交換用パイプ300は、建築物Kの外側に位置する管路末端302から外気吸引管部310を立ち上げて備える。外気吸引管部310は、熱交換用パイプ300と同径の塩化ビニル製パイプであり、建築物Kの外壁に沿って上方に延び、その管路端部312に、吸引ファン機構314と開閉ダンパー316とを有する。吸引ファン機構314は、空調済み外気の導出や暖房が必要とされる時期や期間、例えば、晩秋から早春までの期間や、後述の床温センサー210の検知温度が所定の低温度域の場合に、後述の制御装置200の制御を受けて駆動して建築物Kの外部から外気を吸引し、その外気を熱交換用パイプ300に給気する。吸引ファン機構314の上流側には、図示しない防虫網が配設されているので、虫或いは虫程度のゴミが除去された外気が、熱交換用パイプ300に給気される。開閉ダンパー316は、空調済み外気の導出や暖房が不要とされる時期や期間、例えば、晩春から早秋までの期間や、後述の床温センサー210の検知温度が所定の高温度域の場合に、後述の制御装置200の制御を受けて駆動して、外気吸引管部310の管路を閉鎖する。この場合、開閉ダンパー316を、外気温に反応するサーモスタット内蔵式とし、低外気温時には管路を閉鎖するようにしてもよい。   FIG. 6 is an explanatory diagram schematically showing a state in which the heat exchange pipe 300 is embedded in the floor heating / air conditioning system 100 of the present embodiment, as viewed in a longitudinal section. As shown in the figure, the floor heating / air conditioning system 100 includes a heat exchange pipe 300 embedded in soil D which is stored in a heat storage state by an electric resistance heating panel 102. The heat exchanging pipe 300 takes a pipe path that penetrates the base convex portion KT that surrounds the third underfloor region R3 (see FIG. 5), extends into the soil D, and is bent in a U-shape. The heat exchanging pipe 300 penetrating the basic convex part KT is provided with an outside air suction pipe part 310 raised from a pipe end 302 located outside the building K. The outside air suction pipe section 310 is a pipe made of vinyl chloride having the same diameter as the heat exchange pipe 300, extends upward along the outer wall of the building K, and has a suction fan mechanism 314 and an open / close damper at the pipe end 312. 316. The suction fan mechanism 314 is used when the air-conditioned outside air is required to be derived or heated, for example, from late autumn to early spring, or when the detection temperature of the floor temperature sensor 210 described later is in a predetermined low temperature range. Then, it is driven under the control of the control device 200 to be described later, the outside air is sucked from the outside of the building K, and the outside air is supplied to the heat exchange pipe 300. Since an insect repellent net (not shown) is disposed on the upstream side of the suction fan mechanism 314, outside air from which insects or insect-like dust is removed is supplied to the heat exchange pipe 300. The opening / closing damper 316 is used when the derivation and heating of air-conditioned outside air are not required, for example, the period from late spring to early autumn, or when the detection temperature of the floor temperature sensor 210 described later is in a predetermined high temperature range. It is driven under the control of the control device 200 to be described later, and the conduit of the outside air suction pipe section 310 is closed. In this case, the open / close damper 316 may be a thermostat built-in type that reacts to the outside air temperature, and the pipe line may be closed at a low outside air temperature.

熱交換用パイプ300は、基礎凸部KTを貫通した管路末端302から土壌Dの内部にコの字状に屈曲したパイプ経路で延びるに当たり、各屈曲経路部を、図3の傾斜記号および図6のパイプ経路で示したように、外気吸引管部310との繋ぎ箇所である管路末端302に向けた下り勾配で土壌Dに埋設される。そして、熱交換用パイプ300は、管路末端302に分岐官330を有する。この分岐官330は、管路末端302において熱交換用パイプ300から分岐して、建築物Kの外部の排水枡HDまで延び、熱交換用パイプ300の内部の水を、建築物Kの外部の排水枡HDに排出する。   When the heat exchange pipe 300 extends from the pipe end 302 penetrating the base convex part KT to the inside of the soil D by a pipe path bent in a U-shape, each bent path part is indicated by an inclination symbol and a diagram in FIG. As shown by the pipe path 6, the pipe is buried in the soil D with a downward slope toward the pipe end 302, which is a connection point with the outside air suction pipe section 310. The heat exchange pipe 300 has a branching unit 330 at the pipe end 302. This branching branch 330 branches from the heat exchange pipe 300 at the pipe end 302 and extends to the drainage basin HD outside the building K, and the water inside the heat exchange pipe 300 is supplied to the outside of the building K. Discharge into drainage basin HD.

この他、熱交換用パイプ300は、下り勾配経路の最上部側のパイプ端部に、送気管部320を有する。送気管部320は、熱交換用パイプ300と同径の塩化ビニル製パイプであり、建築物床150の近傍まで上方に延び、その管路端部に、送気ファン機構322を備え、管路途中に開閉ダンパー326を有する。送気ファン機構322は、外気吸引管部310の吸引ファン機構314と協働して第一種機械換気を果たし、空調済み外気の導出や暖房が必要とされる上記の時期や期間、或いは低温度域の場合に、後述の制御装置200の制御を受けて駆動して熱交換用パイプ300の内部の空気を建築物床150の床下空間に送気する。建築物Kは、送気ファン機構322の前方領域を、区画した送気域327とし、この送気域327において、建築物床150にガラリ160を備え、送気ファン機構322の上方で建築物床150の下面に、断熱パネル162を備える。よって、熱交換用パイプ300は、送気管部320の送気ファン機構322により送気した空気、埋設経路長PLに亘る土壌Dとの熱交換を経た空調済み空気を、送気域327およびガラリ160を経て、住居域J3の内部に送気する。開閉ダンパー326は、外気吸引管部310の開閉ダンパー316と同様に駆動して、送気管部320の管路を閉鎖する。   In addition, the heat exchange pipe 300 has an air supply pipe section 320 at the pipe end on the uppermost side of the downward gradient path. The air supply pipe section 320 is a pipe made of vinyl chloride having the same diameter as the heat exchange pipe 300, extends upward to the vicinity of the building floor 150, and includes an air supply fan mechanism 322 at the end of the pipe line. An open / close damper 326 is provided on the way. The air supply fan mechanism 322 performs first type mechanical ventilation in cooperation with the suction fan mechanism 314 of the outside air suction pipe section 310, and the above-described period or period when the derivation and heating of the conditioned outside air are required or low. In the case of the temperature range, it is driven under the control of the control device 200 to be described later, and the air inside the heat exchange pipe 300 is sent to the underfloor space of the building floor 150. In the building K, a front area of the air supply fan mechanism 322 is defined as a divided air supply area 327. In the air supply area 327, the building floor 150 is provided with a gallery 160, and the building is located above the air supply fan mechanism 322. A heat insulating panel 162 is provided on the lower surface of the floor 150. Therefore, the heat exchange pipe 300 uses the air supplied by the air supply fan mechanism 322 of the air supply pipe section 320 and the air-conditioned air that has undergone heat exchange with the soil D over the buried path length PL as the air supply area 327 and the gallery. After 160, air is sent to the inside of the residential area J3. The open / close damper 326 is driven in the same manner as the open / close damper 316 of the outside air suction pipe section 310 to close the pipe line of the air supply pipe section 320.

上記した熱交換用パイプ300と、外気吸引管部310と、送気管部320とは、パイプ内壁に防カビ被膜308を有する。この防カビ被膜308は、防カビ性の薬剤、例えばイミダゾール系やピリジン系の防カビ性薬剤をパイプ内壁に塗布等して形成される。   The above-described heat exchange pipe 300, the outside air suction pipe section 310, and the air supply pipe section 320 have the anti-mold coating 308 on the pipe inner wall. The antifungal coating 308 is formed by applying an antifungal agent, for example, an imidazole or pyridine antifungal agent to the inner wall of the pipe.

制御装置200は、図1に示すように、定格送電線LAからの給電と図示しない非常用送電線からの給電が可能とされ、床暖房兼用空調システム100の電気抵抗加熱パネル102に通電を図る。非常用送電線としては、建築物Kに付随して設置され、或いは建築物Kが属する市町村内等に設置された図示しない風力発電装置から制御装置200まで架線されている。この他、非常用送電線として、建築物Kに付随して制御装置200から延びて架線され、内燃機関を利用して発電を図る図示しない発電機の発電電力を、制御装置200に送電するものを用意してもよい。発電機は、ポータブル式であって持ち運び自在であることから、通常時には建築物Kに付属しておく必要はなく、地震や津波等の天災による定格送電線LAからの給電喪失が起きた際に用意すればよい。   As shown in FIG. 1, the control device 200 is capable of supplying power from the rated transmission line LA and from an emergency transmission line (not shown), and energizes the electric resistance heating panel 102 of the floor heating / air conditioning system 100. . The emergency power transmission line is installed from the wind power generator (not shown) installed along with the building K or installed in the municipality to which the building K belongs to the control device 200. In addition, as an emergency power transmission line, the power transmission line of the generator (not shown) that extends from the control device 200 along with the building K and extends from the control device 200 and generates power using the internal combustion engine is transmitted to the control device 200. May be prepared. Since the generator is portable and portable, it is not usually necessary to attach it to the building K. When a power loss from the rated transmission line LA occurs due to a natural disaster such as an earthquake or tsunami Just prepare.

制御装置200は、上記したように配設された個々の電気抵抗加熱パネル102を深夜電力の通電を受ける契約に基づく電力契約時間帯における深夜電力を用いて加熱制御すべく、CPU、ROM、RAM等の論理演算回路を備え、制御部202と、メモリ部204と、I/O部206と、入力部208、報知部209等を有する。メモリ部204は、電気抵抗加熱パネル102への通電プログラム等を記憶する。I/O部206は、建築物床150の温度(床温)を検出する床温センサー210や外気温度を検出する外気温センサー212等との接続を図る。入力部208は、上記の各送電線と接続され、制御部202の制御下で、給電を受ける送電線を選択する。制御装置200は、上記のセンサー入力に応じた電気抵抗加熱パネル102への通電制御等、床暖房兼用空調システム100の全体の制御を担う。この場合、入力部208については、手動による送電線選択を行うよう構成したり、定格送電線LAからの給電が天災等により停止すると、上記した非常用送電線からの給電に自動切り換えするよう構成できる。報知部209は、電気抵抗加熱パネル102が深夜電力にて加熱制御されると、当該制御が実行されている旨を、ランプ等にて点灯して報知する。   In order to control heating of each electrical resistance heating panel 102 arranged as described above using midnight power in a power contract time zone based on a contract for receiving energization of midnight power, a CPU, ROM, RAM And a control unit 202, a memory unit 204, an I / O unit 206, an input unit 208, a notification unit 209, and the like. The memory unit 204 stores an energization program for the electrical resistance heating panel 102 and the like. The I / O unit 206 is connected to the floor temperature sensor 210 that detects the temperature (floor temperature) of the building floor 150, the outside air temperature sensor 212 that detects the outside air temperature, and the like. The input unit 208 is connected to each of the power transmission lines described above, and selects a power transmission line that receives power supply under the control of the control unit 202. The control device 200 is responsible for overall control of the air conditioning system 100 for both floor heating and the like, such as energization control to the electric resistance heating panel 102 according to the sensor input. In this case, the input unit 208 is configured to perform manual transmission line selection, or configured to automatically switch to the power supply from the emergency power transmission line when power supply from the rated power transmission line LA is stopped due to a natural disaster or the like. it can. When the electrical resistance heating panel 102 is controlled to be heated at midnight power, the notification unit 209 notifies the fact that the control is being performed by turning on a lamp or the like.

本実施形態では、地震や津波等の天災による給電喪失に備え、制御装置200を既述したように基礎コンクリートに埋め込み設置したが、床暖房兼用空調システム100の制御を2系統に分けることもできる。具体的には、定格送電線LAからの深夜電力給電による電気抵抗加熱パネル102の制御系統と、非常用送電線からの非常時給電による制御系統とに分ける。そして、前者の制御系統についての制御装置200にあっては、建築物Kの外壁に設け、後者の制御系統の制御装置200を既述したように基礎コンクリートに埋設することもできる。こうすれば、定格送電線LAからの給電が有る通常時のメンテナンスが簡便となる。また、天災による電力喪失時にあっては、基礎コンクリートに埋設済みの制御装置200を用いて、非常用送電線からの給電による床暖房を継続もしくは開始することができる。   In this embodiment, in preparation for loss of power supply due to natural disasters such as earthquakes and tsunamis, the control device 200 is embedded in the foundation concrete as described above, but the control of the floor heating combined air conditioning system 100 can also be divided into two systems. . More specifically, the control system is divided into a control system for the electric resistance heating panel 102 using midnight power supply from the rated transmission line LA and a control system using emergency power supply from the emergency transmission line. In the control device 200 for the former control system, the control device 200 for the latter control system may be embedded in the foundation concrete as described above. If it carries out like this, the normal maintenance with the electric power feeding from rated power transmission line LA will become easy. In addition, when power is lost due to a natural disaster, floor heating by power feeding from the emergency power transmission line can be continued or started using the control device 200 already embedded in the foundation concrete.

ここで、上記した床暖房兼用空調システム100を有する建築物Kの施工手順について簡単に、説明する。まず、熱交換用パイプ300と、外気吸引管部310と、送気管部320とについては、予めパイプ内壁に防カビ被膜308を形成しておく。そして、基礎凸部KTの木枠組み形成を行いつつ、熱交換用パイプ300については、管路末端302の側で基礎凸部KTの木枠に組み付けた上で、埋設経路長PLの内の管路末端302を含む直線経路部パイプを、上記した下り勾配と埋設深さDLを確保して土壌Dに仮保持する。次いで、基礎凸部KTの木枠にコンクリートを流し込んで養生硬化させ、基礎凸部KTを形成し、その基礎凸部KT(図2参照)の内周壁に押出発泡ポリスチレンフォーム等のパネル状の市販の断熱体107を装着する。断熱体107の装着に際しては、基礎凸部KTの内周壁を適宜な工具にて平滑化して接着剤を塗布し、当該接着剤にて断熱体107を接着固定する。そして、断熱体107の装着を、図3〜図4に示した第1床下領域R1〜第5床下領域R5の各床下領域ごとに行うことで、基礎凸部KTで取り囲まれた第1床下領域R1〜第5床下領域R5各床下領域の断熱化を図る。この場合、施工対象が上屋喪失の建築物Kであれば、基礎凸部KTへの土台150Dの固定と並行して断熱体107の装着が可能である。そして、基礎凸部KTの天端と土台150Dとの間に気密シート等を配設することや、断熱体107を土台150Dの上面まで延ばして基礎凸部KTに装着することが、各床下領域の断熱確保の点から望ましい。   Here, the construction procedure of the building K having the above-described floor heating / air conditioning system 100 will be briefly described. First, with respect to the heat exchange pipe 300, the outside air suction pipe section 310, and the air supply pipe section 320, the anti-mold coating 308 is formed on the pipe inner wall in advance. Then, while forming the wooden framework of the basic convex portion KT, the heat exchange pipe 300 is assembled to the wooden frame of the basic convex portion KT on the pipe end 302 side, and then the pipe within the buried path length PL. The straight path portion pipe including the road end 302 is temporarily held in the soil D while securing the above-described downward slope and the embedment depth DL. Next, concrete is poured into the wooden frame of the base convex part KT and cured and hardened to form the base convex part KT, and a panel-shaped commercial product such as extruded polystyrene foam is formed on the inner peripheral wall of the base convex part KT (see FIG. 2). A heat insulator 107 is attached. When the heat insulating body 107 is mounted, the inner peripheral wall of the base convex portion KT is smoothed with an appropriate tool, an adhesive is applied, and the heat insulating body 107 is bonded and fixed with the adhesive. And the 1st underfloor area | region surrounded by the base convex part KT by performing mounting | wearing of the heat insulating body 107 for every underfloor area | region of 1st underfloor area | region R1-5th underfloor area | region R5 shown in FIGS. R1 to 5th underfloor region R5 Insulate each underfloor region. In this case, if the construction target is the building K with the roof lost, the heat insulator 107 can be mounted in parallel with the fixing of the base 150D to the foundation convex portion KT. In addition, it is possible to dispose an airtight sheet or the like between the top of the base convex portion KT and the base 150D, or to extend the heat insulating body 107 to the top surface of the base 150D and attach the base convex portion KT to the base convex portion KT. It is desirable from the viewpoint of ensuring heat insulation.

次いで、熱交換用パイプ300の埋設経路長PLの残余の経路部パイプを、上記した下り勾配と埋設深さDLを考慮して土壌Dに埋設し、熱交換用パイプ300の埋設済みの土壌Dを覆うよう、土壌表面に電気抵抗加熱パネル102を複数設置する。このパネル設置は、基礎凸部KTで取り囲まれた第1床下領域R1〜第5床下領域R5の各床下領域ごとに行われ(図4参照)、各領域でのパネル設置枚数は、既述したように各床下領域の広さや建築物Kで占める位置に応じて、或いは建築物形状や用途に応じて設定される。また、それぞれの電気抵抗加熱パネル102は、その接続箇所において、防水処置がなされる。   Subsequently, the remaining path portion pipe of the burial path length PL of the heat exchange pipe 300 is buried in the soil D in consideration of the above-described downward gradient and the embedment depth DL, and the soil D in which the heat exchange pipe 300 has been buried. A plurality of electrical resistance heating panels 102 are installed on the soil surface so as to cover the soil. This panel installation is performed for each underfloor area of the first underfloor area R1 to the fifth underfloor area R5 surrounded by the base convex portion KT (see FIG. 4), and the number of panel installations in each area is described above. Thus, it is set according to the area occupied by the area under the floor and the building K, or according to the building shape and application. In addition, each electrical resistance heating panel 102 is waterproofed at the connection location.

パネル設置後は、第1床下領域R1〜第5床下領域R5の各床下領域(図3〜図4参照)ごとの複数の電気抵抗加熱パネル102を覆うようコンクリートを流し込み、表面をならす。流し込まれたコンクリートは、その養生後に図2に示すコンクリート層105となることから、コンクリートの流し込みは、養生後のコンクリート層105の表面と建築物Kの建築物床150の下面との間に間隙Tを確保した上で、100〜300mmの厚みとなるようになされる。なお、土壌Dの蓄熱状態を把握するためのセンサーを設置する場合には、当該センサーを流し込んだコンクリートに埋設する。   After the panel is installed, the concrete is poured to cover the plurality of electrical resistance heating panels 102 in each of the underfloor regions (see FIGS. 3 to 4) of the first underfloor region R1 to the fifth underfloor region R5, and the surface is smoothed. Since the poured concrete becomes a concrete layer 105 shown in FIG. 2 after curing, the concrete is poured between the surface of the concrete layer 105 after curing and the lower surface of the building floor 150 of the building K. After securing T, the thickness is 100 to 300 mm. In addition, when installing the sensor for grasping | ascertaining the heat storage state of the soil D, it embeds in the concrete into which the said sensor was poured.

コンクリート流し込みに次いで、或いはこれと相前後して、制御装置200を基礎凸部KTに埋設設置し、コンクリートの養生を図る。コンクリート養生後は、土台150Dの設置等、建築物Kの上屋を組み付けることで、建築物Kが完成する。   Following or after the concrete pouring, the control device 200 is embedded in the foundation convex portion KT to cure the concrete. After the concrete curing, the building K is completed by assembling the building K roof, such as the installation of the base 150D.

こうして完成した建築物Kでの電気抵抗加熱パネル102の給電制御は、制御装置200にて実行される。つまり、制御装置200は、内蔵するタイマーや床温センサー210からの検出温度等に基づき、暖房が必要とされる期間、例えば暦で定めた冬期から春先まで、或いは日付で定めた期間、外気温が所定温度を下回るようになってから所定温度を上回るようになった期間等において、電気抵抗加熱パネル102の給電制御を繰り返し実行する。この給電制御は、深夜電力の供給がなされていることを前提として実行され、制御装置200は、深夜電力の通電を受ける契約に基づく電力(契約規定電力)を床暖房兼用空調システム100の複数の電気抵抗加熱パネル102に与えて、土壌Dの蓄熱を図る。この際、制御装置200は、報知部209にて、電気抵抗加熱パネル102が深夜電力にて加熱制御されている旨をランプ等にて点灯して報知する。こうすることで、深夜電力による電気抵抗加熱パネル102の加熱制御を経た床暖房が実施されていることを認知させることができる。電気抵抗加熱パネル102の給電制御により蓄熱状態とされた土壌Dと熱交換用パイプ300を通過する外気との熱交換状況、即ち、送気管部320から送気域327およびガラリ160を経て住居域J3に導出される空気温度は、電気抵抗加熱パネル102の積算加熱期間や、吸引ファン機構314と送気ファン機構322とで構成される第一種機械換気での通風量等に基づき検知できる。よって、制御装置200は、図示しない温度設定機器から設定された温度の空気が住居域J3に送気されるよう、電気抵抗加熱パネル102を給電制御する。なお、自然災害や人為的な災害等により深夜電力の供給が不能な状況下では、制御装置200は、例えば風力発電装置と発電機のいずれかの発電電力を床暖房兼用空調システム100の複数の電気抵抗加熱パネル102に与えるよう、電力流力を切り換える。   The power supply control of the electric resistance heating panel 102 in the completed building K is executed by the control device 200. In other words, the control device 200 determines the outside air temperature based on the built-in timer, the detected temperature from the floor temperature sensor 210, etc., for a period during which heating is required, for example, from winter to early spring as determined by the calendar, or as determined by the date. The power supply control of the electrical resistance heating panel 102 is repeatedly executed in a period of time when the temperature of the electric resistance heating panel 102 exceeds the predetermined temperature. This power supply control is executed on the assumption that midnight power is being supplied, and the control device 200 supplies power based on a contract for receiving energization of midnight power (contract prescribed power) to a plurality of floor heating / air conditioning systems 100. It gives to the electrical resistance heating panel 102 and heat storage of the soil D is aimed at. At this time, the control device 200 notifies the notification unit 209 that the electric resistance heating panel 102 is controlled to be heated by midnight power with a lamp or the like. By doing so, it can be recognized that floor heating is performed through the heating control of the electric resistance heating panel 102 by midnight power. The heat exchange state between the soil D, which is in a heat storage state by the power supply control of the electric resistance heating panel 102, and the outside air passing through the heat exchange pipe 300, that is, the residential area from the air supply pipe section 320 through the air supply area 327 and the gallery 160 The air temperature derived to J3 can be detected based on the cumulative heating period of the electrical resistance heating panel 102, the ventilation rate in the first type mechanical ventilation configured by the suction fan mechanism 314 and the air supply fan mechanism 322, or the like. Therefore, the control device 200 controls the electric resistance heating panel 102 so that air having a temperature set by a temperature setting device (not shown) is sent to the residential area J3. Note that, in a situation where midnight power cannot be supplied due to natural disasters or man-made disasters, the control device 200 converts the generated power of, for example, a wind power generator or a generator to a plurality of floor heating / air conditioning systems 100. The electric power flow is switched to be applied to the electric resistance heating panel 102.

以上説明したように、建築物Kが備える本実施形態の床暖房兼用空調システム100では、深夜電力を用いた複数の電気抵抗加熱パネル102の熱により土壌Dを蓄熱状態とでき、この蓄熱状態の土壌Dに埋設した熱交換用パイプ300により、パイプ内に給気済みの外気を、埋設経路長PLにおいて蓄熱状態の土壌Dとの熱交換を経て空調する。複数の電気抵抗加熱パネル102による土壌の蓄熱状態は、制御装置200による電気抵抗加熱パネル102の給電・加熱制御により種々変更できるので、本実施形態の床暖房兼用空調システム100によれば、厳冬期であっても、十分に暖めた外気を建築物内部、具体的には第3床下領域R3に対応した住居域J3の内部に導くことができる。しかも、本実施形態の床暖房兼用空調システム100では、空調済み外気の導出対象の住居域J3の内容積に応じて、熱交換用パイプ300の直径を120mmとし埋設経路長PLを15mに規定したので、パイプ内に給気済みの外気と蓄熱状態の土壌Dとの熱交換不足を抑制でき、第3床下領域R3に対応した住居域J3の内部には、十分に暖気済みの外気を導出できる。   As explained above, in the floor heating combined use air conditioning system 100 of this embodiment with which the building K is equipped, the soil D can be made into a heat storage state by the heat of the plurality of electrical resistance heating panels 102 using midnight power, and this heat storage state The heat exchange pipe 300 embedded in the soil D air-conditions the outside air already supplied in the pipe through heat exchange with the heat storage state soil D in the embedded path length PL. Since the heat storage state of the soil by the plurality of electric resistance heating panels 102 can be variously changed by the power supply / heating control of the electric resistance heating panel 102 by the control device 200, according to the floor heating combined use air conditioning system 100 of this embodiment, the severe winter season Even so, the sufficiently warm outside air can be guided to the inside of the building, specifically, to the inside of the residential area J3 corresponding to the third underfloor region R3. Moreover, in the floor heating / air conditioning system 100 of the present embodiment, the diameter of the heat exchange pipe 300 is set to 120 mm and the buried path length PL is set to 15 m in accordance with the internal volume of the residential area J3 from which air-conditioned outside air is derived. Therefore, insufficient heat exchange between the outside air supplied into the pipe and the heat-stored soil D can be suppressed, and the sufficiently warmed outside air can be derived into the interior of the residential area J3 corresponding to the third underfloor area R3. .

本実施形態の床暖房兼用空調システム100では、電気抵抗加熱パネル102の熱を、電気抵抗加熱パネル102を覆うコンクリート層105を暖めるほか、当該コンクリート層の下の土壌Dにも伝えて土壌Dを蓄熱状態とし、土壌Dに蓄熱された熱と、コンクリート層105を暖めた熱とを、建築物床150の下面との間の間隙に放射して建築物床150を暖め、建築物Kの床暖房を図ることができる。この結果、本実施形態の床暖房兼用空調システム100によれば、建築物Kに対しての床暖房を図った上で、十分に暖気済みの外気を住居域J3の内部に導くので、高い効率で建築物内部を暖房できる。   In the floor heating combined air-conditioning system 100 of this embodiment, the heat of the electrical resistance heating panel 102 is heated to the concrete layer 105 covering the electrical resistance heating panel 102 and also transmitted to the soil D below the concrete layer. The building floor 150 is warmed by radiating the heat stored in the soil D and the heat that warms the concrete layer 105 to the gap between the lower surface of the building floor 150 and the building K 150. Heating can be achieved. As a result, according to the floor heating / air conditioning system 100 of the present embodiment, after the floor heating for the building K is attempted, the sufficiently warmed outside air is guided to the interior of the residential area J3. Can heat the inside of the building.

本実施形態の床暖房兼用空調システム100では、暖房を要しない例えば夏期等においては電気抵抗加熱パネル102への給電を停止して土壌Dを蓄熱状態としないようにできる。よって、本実施形態の床暖房兼用空調システム100によれば、夏期等におけるパイプ内に給気済みの外気と土壌Dとの熱交換により、給気済み外気を冷却できるので、暖房を要しない夏期等においては、冷却済み空気を住居域J3の内部に導出して、住居域J3の内部の冷房もしくは他の冷房装置による冷房を助力できる。   In the floor heating combined air-conditioning system 100 of this embodiment, heating is not required, for example, in summer, the power supply to the electric resistance heating panel 102 is stopped so that the soil D is not in a heat storage state. Therefore, according to the floor heating combined air-conditioning system 100 of the present embodiment, since the supplied outdoor air can be cooled by heat exchange between the outdoor air supplied to the pipe and the soil D in the summer, etc., the summer in which heating is not required In such a case, the cooled air can be led out to the interior of the residential area J3 to assist the cooling inside the residential area J3 or other cooling devices.

本実施形態の床暖房兼用空調システム100では、熱交換用パイプ300を土壌Dに埋設するに当たり、熱交換用パイプ300の一部を基礎凸部KTに貫通させた。よって、本実施形態の床暖房兼用空調システム100によれば、熱交換用パイプ300を基礎凸部KTにより保持した状態で土壌Dに埋設することで、熱交換用パイプ300の埋設軌跡を確保できるので、地震等により外部からの力が熱交換用パイプ300に及んでも、パイプ軌跡のズレを抑制できる。   In the floor heating / air-conditioning system 100 of the present embodiment, when the heat exchange pipe 300 is embedded in the soil D, a part of the heat exchange pipe 300 is penetrated through the base convex portion KT. Therefore, according to the floor heating combined use air conditioning system 100 of this embodiment, the embedding locus | trajectory of the heat exchange pipe 300 is securable by embed | buried in the soil D in the state hold | maintained with the basic convex part KT. Therefore, even if an external force reaches the heat exchanging pipe 300 due to an earthquake or the like, the displacement of the pipe trajectory can be suppressed.

本実施形態の床暖房兼用空調システム100では、土壌Dに埋設される熱交換用パイプ300を、そのパイプ内壁面に防カビ剤による防カビ被膜308を有するものとした。よって、本実施形態の床暖房兼用空調システム100によれば、蓄熱状態の土壌Dとの熱交換を経て暖気済みの外気が仮に冷えてパイプ内壁に結露が生じても、防カビ被膜308にてカビの発生を抑制でき、カビによる異臭についてもこれを抑制できる。   In the floor heating / air-conditioning system 100 of the present embodiment, the heat exchange pipe 300 embedded in the soil D is provided with the anti-mold coating 308 of the anti-mold agent on the inner wall surface of the pipe. Therefore, according to the floor heating combined use air conditioning system 100 of the present embodiment, even if the warmed outside air is cooled through the heat exchange with the soil D in the heat storage state and dew condensation occurs on the pipe inner wall, Generation | occurrence | production of mold | fungi can be suppressed and this can also be suppressed about the nasty smell by mold.

本実施形態の床暖房兼用空調システム100では、熱交換用パイプ300を、外気吸引管部310の側の管路末端302に向けて下り勾配のパイプ経路で土壌Dに埋設する。その上で、本実施形態の床暖房兼用空調システム100は、管路末端302から分岐した分岐官330からパイプ内水分を、熱交換用パイプ300の管路外の排水枡HDに排出する。よって、本実施形態の床暖房兼用空調システム100によれば、パイプ内での水分残留を抑制できるので、カビ発生の抑制、異臭抑制の上から有益となる。また、分岐官330から排出されたパイプ内水分は、排水枡HDを経て建築物Kの範囲外に流され、排水枡HDには留まりがたい。よって、本実施形態の床暖房兼用空調システム100によれば、熱交換用パイプ300から外部に一旦排出した水分を水蒸気の状態としても熱交換用パイプ300に戻りがたくできるので、異臭抑制の上からより有益となる。   In the floor heating / air conditioning system 100 of the present embodiment, the heat exchange pipe 300 is embedded in the soil D through a pipe path having a downward slope toward the pipe end 302 on the outside air suction pipe section 310 side. In addition, the floor heating / air conditioning system 100 of the present embodiment discharges moisture in the pipe from the branching branch 330 branched from the pipe end 302 to the drainage pipe HD outside the pipe of the heat exchange pipe 300. Therefore, according to the floor heating combined use air conditioning system 100 of this embodiment, since the water | moisture residue in a pipe can be suppressed, it becomes useful from the suppression of mold | generation of mold | fungi and a strange odor. Further, the moisture in the pipe discharged from the branching officer 330 flows outside the range of the building K through the drainage basin HD, and it is difficult to stay in the drainage basin HD. Therefore, according to the floor heating / air conditioning system 100 of the present embodiment, the moisture once discharged from the heat exchange pipe 300 to the outside can hardly be returned to the heat exchange pipe 300 even in the state of water vapor. Will be more useful.

次に、他の実施形態について説明する。図7は外気吸引管部310を建築物Kの内側に設けた実施形態の床暖房兼用空調システム100Aにおける熱交換用パイプ300の埋設の様子を概略的に縦断面視して示す説明図である。図示するように、この実施形態の床暖房兼用空調システム100Aは、熱交換用パイプ300を全て基礎凸部KTの内部の土壌Dに埋設して備え、外気吸引管部310は、熱交換用パイプ300の管路末端302から、建築物Kの内壁158と外壁159との間において立ち上がる。そして、送気管部320は、基礎凸部KTを貫通して排水枡HDに到る。この実施形態の床暖房兼用空調システム100Aによっても、既述した効果を奏することができる。そして、この実施形態の床暖房兼用空調システム100Aによれば、基礎凸部KTに対しては分岐官330の貫通を施せば良いので、上屋喪失の建築物Kを再建する際の床暖房兼用空調システム100Aの組み込み適用が容易となる。   Next, another embodiment will be described. FIG. 7 is an explanatory diagram schematically showing a state in which the heat exchange pipe 300 is embedded in the floor heating / air conditioning system 100A according to the embodiment in which the outside air suction pipe portion 310 is provided inside the building K. . As shown in the figure, the floor heating / air conditioning system 100A of this embodiment includes all the heat exchange pipes 300 embedded in the soil D inside the foundation convex part KT, and the outside air suction pipe part 310 is a heat exchange pipe. From the 300 pipe end 302, it rises between the inner wall 158 and the outer wall 159 of the building K. And the air supply pipe part 320 penetrates the basic | foundation convex part KT, and reaches the drainage basin HD. The above-described effects can also be achieved by the floor heating / air conditioning system 100A of this embodiment. And according to the floor heating combined use air-conditioning system 100A of this embodiment, since the branching unit 330 should just be penetrated with respect to the base convex part KT, the floor heating combined use at the time of rebuilding the building K which lost a roof is also carried out. The built-in application of the air conditioning system 100A becomes easy.

図8はまた別の実施形態の床暖房兼用空調システム100Bにおける熱交換用パイプ300の埋設の様子を概略的に縦断面視して示す説明図である。この実施形態の床暖房兼用空調システム100Bは、建築物床150の床下に設けた外気ピットAPに外気を一旦給気し、ピット内外気を熱交換用パイプ300に送気して住居域J3に直接導出する点に特徴がある。図示するように、この床暖房兼用空調システム100Bは、建築物Kの外側に当たる基礎凸部KTと基礎凸部KTとの間に外気ピットAPを備え、外気吸引管部310をこの外気ピットAPから建築物Kの外部に延ばす。外気吸引管部310については、これを、その経路に亘って、ガラスウール等の保温材にて保温するようにしてもよい。外気ピットAPは、図における紙面奥側と手前側にて区画されており、外気吸引管部310がその吸引ファン機構314から給気した外気を貯め置く。外気ピットAPには、除湿器350が装着されており、この除湿器350は、制御装置200の制御を受けて駆動し、外気ピットAPの内部の空気を除湿する。除湿後の水分は、建築物Kの外部に排出される。   FIG. 8 is an explanatory diagram schematically showing a state in which the heat exchange pipe 300 is buried in the floor heating / air conditioning system 100B of another embodiment. The floor heating / air conditioning system 100B of this embodiment temporarily supplies outside air to the outside air pit AP provided under the floor of the building floor 150, and sends the inside and outside air of the pit to the heat exchange pipe 300 to enter the residential area J3. It is characterized in that it is derived directly. As shown in the figure, this floor heating combined air-conditioning system 100B includes an outside air pit AP between the foundation convex part KT and the foundation convex part KT that hit the outside of the building K, and the outside air suction pipe part 310 is connected to the outside air pit AP. Extend outside building K. About the outside air suction pipe part 310, you may make it keep this with heat insulating materials, such as glass wool, over the path | route. The outside air pit AP is partitioned on the back side and the near side in the drawing, and the outside air suction pipe section 310 stores outside air supplied from the suction fan mechanism 314. A dehumidifier 350 is attached to the outside air pit AP, and the dehumidifier 350 is driven under the control of the control device 200 to dehumidify the air inside the outside air pit AP. The moisture after dehumidification is discharged to the outside of the building K.

熱交換用パイプ300は、管路末端302の側を下り勾配にして直線状の埋設経路で土壌Dに埋設され、その埋設経路長PLについては、住居域J3の内容積に応じて定められている。また、熱交換用パイプ300は、管路末端302にピット内吸引ファン機構340を備え、このピット内吸引ファン機構340は、除湿器350にて除湿済みのピット内空気を吸引して、熱交換用パイプ300に送り込む。送気管部320は、熱交換用パイプ300の最上端から建築物床150を貫通して住居域J3の内部まで立ち上がり、蓄熱状態の土壌Dと熱交換済みのパイプ内空気を、住居域J3に直接導出する。この場合、送気管部320を建築物Kの2階住居域まで建築物壁内にて延ばし、2階住居域にパイプ内空気(空調済み空気)を導出してもよい。   The heat exchanging pipe 300 is embedded in the soil D by a linear embedded path with the pipe end 302 side as a downward slope, and the embedded path length PL is determined according to the internal volume of the residential area J3. Yes. The heat exchanging pipe 300 includes an in-pit suction fan mechanism 340 at the pipe end 302. The in-pit suction fan mechanism 340 sucks the air in the pit that has been dehumidified by the dehumidifier 350 to perform heat exchange. Into the pipe 300. The air supply pipe section 320 rises from the uppermost end of the heat exchange pipe 300 through the building floor 150 to the inside of the residential area J3, and heat-stored soil D and heat-exchanged air in the pipe are transferred to the residential area J3. Derived directly. In this case, the air pipe 320 may be extended to the second floor residential area of the building K within the building wall, and the air in the pipe (air conditioned air) may be led to the second floor residential area.

この他、床暖房兼用空調システム100Bは、外気ピットAPに、ガラリ402と、点検口404と、除湿器350と、調湿部位500とを有する。ガラリ402は、制御装置200の制御を受けて開閉駆動し、暖房を要する冬期等にあっては閉鎖され、室内空気の循環が求められる夏期等にあっては開放される。点検口404は、外気ピットAPに貯まった虫や埃等の除去のために、或いは、調湿部位500の交換等のために、定期的或いは不定期に開閉される。調湿部位500は、外気ピットAPの底部であって分岐官330の末端の側に配設され、木炭や竹炭等の多孔質基材であって調湿性を有するものとされたり、調湿性を呈する珪藻土等とされている。   In addition, the floor heating / air conditioning system 100 </ b> B includes a louver 402, an inspection port 404, a dehumidifier 350, and a humidity control part 500 in the outside air pit AP. The gallery 402 is driven to open and close under the control of the control device 200. The gallery 402 is closed during the winter season when heating is required, and is opened during the summer season when indoor air circulation is required. The inspection port 404 is opened or closed periodically or irregularly for removing insects or dust accumulated in the outside air pit AP or for exchanging the humidity control part 500. The humidity control portion 500 is disposed at the bottom of the outside air pit AP and on the end side of the branching officer 330, and is a porous base material such as charcoal or bamboo charcoal and has humidity control properties. It is considered to be diatomaceous earth.

この実施形態の床暖房兼用空調システム100Bによっても、十分に暖気した空気の住居域J3への導出等の既述した効果を奏することができるほか、除湿済みの空気を土壌Dとの熱交換を経て暖気して住居域J3に導出するので、湿気を押さえた暖気導出により、快適感を高めることができる。   The floor heating combined use air conditioning system 100B of this embodiment can achieve the effects described above, such as derivation of sufficiently warmed air to the residential area J3, and heat exchange of the dehumidified air with the soil D. After warming up and deriving to the residential area J3, comfort can be enhanced by deriving the warm air while suppressing moisture.

本考案は、上述の実施形態に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、考案の概要の欄に記載した各形態中の技術的特徴に対応する実施形態の技術的特徴は、上述の課題の一部又は全部を解決するために、或いは、上述の効果の一部又は全部を達成するために、適宜、差し替えや、組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。   The present invention is not limited to the above-described embodiment, and can be realized with various configurations without departing from the spirit of the invention. For example, the technical feature of the embodiment corresponding to the technical feature in each form described in the column of the summary of the invention is to solve part or all of the above-described problems or part of the above-described effect. Or, in order to achieve the whole, it is possible to replace or combine as appropriate. Further, if the technical feature is not described as essential in the present specification, it can be deleted as appropriate.

上記した実施形態では、床暖房兼用空調システム100〜100Bを、住人の住居域を複数有する住宅や事務所等の建築物Kに適用したが、保育園や学校等の体育館や公民館といった住居域を有しない住居外建築物に適用してもよい。このような住居外建築物に適用する場合には、当該建築物の内容積に応じて熱交換用パイプ300の直径や埋設経路長PLを規定するほか、住居外建築物に求められる換気の度合いに応じて規定してもよい。例えば、住居該建築物の内部の空気の半分を1時間に一度換気することが求めあれる換気度合いであれば、この換気度合いをも考慮して、熱交換用パイプ300の直径や埋設経路長PLを規定すればよい。   In the above-described embodiment, the floor heating / air conditioning system 100 to 100B is applied to a building K such as a house or office having a plurality of residential areas of residents, but has a residential area such as a gymnasium or a public hall such as a nursery school or a school. It may be applied to non-residential buildings. When applied to such a non-residential building, in addition to prescribing the diameter of the heat exchange pipe 300 and the buried path length PL according to the internal volume of the building, the degree of ventilation required for the non-residential building You may prescribe according to. For example, if the ventilation level is such that it is required to ventilate half of the air inside the house once an hour, the diameter of the heat exchanging pipe 300 and the length of the buried path are also taken into consideration. What is necessary is just to prescribe | regulate PL.

上記した実施形態では、電気抵抗加熱パネル102を、深夜電力の通電を受ける契約に基づく電力契約時間帯における深夜電力を用いて加熱制御したが、他の電力契約により電気抵抗加熱パネル102を加熱制御してもよい。例えば、一日の内で通電可能な時間枠を19時間もしくは22時間というように定める電力契約に基づく電力を用いて加熱制御してもよい。   In the above-described embodiment, the electrical resistance heating panel 102 is heated and controlled using the late-night power in the power contract time period based on the contract for receiving midnight power. However, the electrical resistance heating panel 102 is controlled to be heated by another power contract. May be. For example, heating control may be performed using electric power based on an electric power contract that defines a time frame in which power can be energized within a day as 19 hours or 22 hours.

100、100A、100B…床暖房兼用空調システム
102…電気抵抗加熱パネル
105…コンクリート層
107…断熱体
150…建築物床
150D…土台
151…大引
152…根太
153…床下地材
154…フローリング材
158…内壁
159…外壁
160…ガラリ
162…断熱パネル
200…制御装置
202…制御部
204…メモリ部
206…I/O部
208…入力部
209…報知部
210…床温センサー
212…外気温センサー
300…熱交換用パイプ
302…管路末端
308…防カビ被膜
310…外気吸引管部
312…管路端部
314…吸引ファン機構
316…開閉ダンパー
320…送気管部
322…送気ファン機構
326…開閉ダンパー
327…送気域
330…分岐官
340…ピット内吸引ファン機構
350…除湿器
402…ガラリ
404…点検口
500…調湿部位
K…建築物
D…土壌
T…間隙
R1〜R5…第1床下領域〜第5床下領域
J3…住居域
LA…定格送電線
HD…排水枡
DK…土間基礎
DL…埋設深さ
PL…埋設経路長
AP…外気ピット
KT…基礎凸部
Dh…蓄熱層
DESCRIPTION OF SYMBOLS 100, 100A, 100B ... Floor heating combined air-conditioning system 102 ... Electrical resistance heating panel 105 ... Concrete layer 107 ... Thermal insulation 150 ... Building floor 150D ... Base 151 ... Large drawing 152 ... joist 153 ... Floor base material 154 ... Flooring material 158 ... Inner wall 159 ... Outer wall 160 ... Gully 162 ... Heat insulation panel 200 ... Control device 202 ... Control unit 204 ... Memory unit 206 ... I / O unit 208 ... Input unit 209 ... Notification unit 210 ... Floor temperature sensor 212 ... Outside air temperature sensor 300 ... Heat exchange pipe 302 ... Pipe end 308 ... Antifungal coating 310 ... Outside air suction pipe part 312 ... Pipe end part 314 ... Suction fan mechanism 316 ... Opening and closing damper 320 ... Air supply pipe part 322 ... Air supply fan mechanism 326 ... Opening and closing damper 327 ... Air supply area 330 ... Divider 340 ... Suction fan mechanism in the pit 50 ... Dehumidifier 402 ... Garari 404 ... Inspection port 500 ... Humidity control part K ... Building D ... Soil T ... Gap R1-R5 ... First to fifth floor area J3 ... Residential area LA ... Rated transmission line HD ... Drainage basin DK ... Soil foundation DL ... Embedment depth PL ... Embedding path length AP ... Outside air pit KT ... Base convexity Dh ... Heat storage layer

Claims (6)

建築物外部から吸引した外気を空調して建築物内部に導く空調システムであって、
建築物の土台の受けとなる基礎凸部で取り囲まれた土壌の表面もしくは該土壌の表面を覆う基礎コンクリートの表面に設置され、通電を受けて発熱して前記土壌を蓄熱状態とする複数の発熱体と、
前記土壌に埋設される熱交換用パイプであって、前記外気の導出対象の前記建築物内部の内容積或いは前記建築物内部で求められる換気度合いに応じて定めた直径と、前記内容積或いは前記換気度合いに応じて定めた埋設長さとを有する熱交換用パイプと、
該熱交換用パイプに前記外気を建築物外部から給気する給気手段と、
前記熱交換用パイプを通過する間における前記土壌との熱交換を経て空調された空調済み外気を、前記導出対象の前記建築物内部に送気する送気手段とを備える
空調システム。
An air conditioning system that air-conditions outside air sucked from outside the building and guides it into the building,
A plurality of heat generations that are installed on the surface of the soil surrounded by the foundation protrusions that receive the foundation of the building or the surface of the foundation concrete that covers the surface of the soil, and generate heat when energized to bring the soil into a heat storage state. Body,
A pipe for heat exchange embedded in the soil, the diameter determined according to the internal volume of the building from which the outside air is derived or the degree of ventilation required inside the building, and the internal volume or the A heat exchange pipe having a buried length determined according to the degree of ventilation;
An air supply means for supplying the outside air to the heat exchange pipe from outside the building;
An air-conditioning system comprising air-supplying means for supplying air-conditioned outdoor air that has been air-conditioned through heat exchange with the soil while passing through the heat-exchange pipe to the inside of the building to be derived.
前記熱交換用パイプは、前記建築物が住居域を有する住宅建築物であると、前記内容積に応じて定めた100〜150mmの直径と10〜15mの埋設長さと有する請求項1に記載の空調システム。   2. The heat exchange pipe according to claim 1, wherein the heat exchange pipe has a diameter of 100 to 150 mm and an embedded length of 10 to 15 m determined according to the internal volume, when the building is a residential building having a residential area. Air conditioning system. 前記熱交換用パイプは、前記基礎凸部を貫通して前記土壌に埋設されることで、前記基礎凸部により保持されている請求項1または請求項2に記載の空調システム。   The air conditioning system according to claim 1 or 2, wherein the heat exchanging pipe is held by the base convex portion by being embedded in the soil through the base convex portion. 前記熱交換用パイプは、防カビ性の薬剤にてパイプ内壁が被覆されている請求項1ないし請求項3のいずれか一項に記載の空調システム。   The air conditioning system according to any one of claims 1 to 3, wherein the heat exchange pipe has a pipe inner wall coated with a mold-proofing agent. 前記熱交換用パイプは、前記給気手段の側のパイプ端部に向けて下り勾配のパイプ経路で前記土壌に埋設されると共に、前記パイプ経路の末端の前記パイプ端部から分岐した分岐官からパイプ内水分を前記熱交換用パイプの管路外に排出する請求項1ないし請求項4のいずれか一項に記載の空調システム。   The heat exchange pipe is embedded in the soil in a downwardly inclined pipe path toward the pipe end on the side of the air supply means, and from a branching branch branched from the pipe end at the end of the pipe path The air conditioning system according to any one of claims 1 to 4, wherein moisture in the pipe is discharged out of a pipe line of the heat exchange pipe. 前記熱交換用パイプは、前記パイプ内水分を、前記建築物の外部の排水用枡に前記分岐官から排出する請求項5に記載の空調システム。   The air conditioning system according to claim 5, wherein the heat exchange pipe discharges the moisture in the pipe from the branch officer to a drainage basin outside the building.
JP2013003277U 2013-06-10 2013-06-10 Air conditioning system Expired - Lifetime JP3185552U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013003277U JP3185552U (en) 2013-06-10 2013-06-10 Air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013003277U JP3185552U (en) 2013-06-10 2013-06-10 Air conditioning system

Publications (1)

Publication Number Publication Date
JP3185552U true JP3185552U (en) 2013-08-22

Family

ID=50429310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013003277U Expired - Lifetime JP3185552U (en) 2013-06-10 2013-06-10 Air conditioning system

Country Status (1)

Country Link
JP (1) JP3185552U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015206506A (en) * 2014-04-18 2015-11-19 哲三 福田 air conditioning system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015206506A (en) * 2014-04-18 2015-11-19 哲三 福田 air conditioning system

Similar Documents

Publication Publication Date Title
US8152608B1 (en) Solar energy intercept and waste heat recovery system
JP2009264721A (en) Earth solar system (single layer type)
WO2011033325A1 (en) Cooling, heating, surface-radiating and air exchanging building system with low energy consumption for energy-saving houses with increased passive quality
JP2006266575A (en) House using geothermal heat
JP2012172966A (en) Earth solar zero-energy house
JP5176209B2 (en) Hot air floor heating system and installation method thereof
JP2013068340A (en) Air conditioning system and air conditioning method using the same
JP6135905B2 (en) Earth / Solar system
JP3185552U (en) Air conditioning system
JP2001311232A (en) Temperature and humidity adjustment function attached house
JP2007139236A (en) Underfloor air-conditioning device and method
JP6135906B2 (en) Earth / Solar system
JP2015206506A (en) air conditioning system
JP2012097459A (en) Ventilation system of building
JP6541740B2 (en) Underfloor air conditioner
JP5945146B2 (en) Floor heating building and floor heating construction method of building
JP2011190961A (en) Earth solar system (basement-compatible type)
JP6135907B2 (en) Earth / Solar system
JP3123276U (en) Housing structure
Dewsbury et al. Thermal performance for timber-framed residential construction: building comfortable and energy-efficient timber houses
JP7343465B2 (en) Building
CN105220906B (en) A kind of packaged type tent hotel based on geothermal heat pump air-conditioning system
JP3016027B1 (en) Energy-saving building
Becchio et al. Towards nZEBs: experiences in Italy
JP2001234604A (en) Energy-saving building

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Ref document number: 3185552

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term