JP2011190961A - Earth solar system (basement-compatible type) - Google Patents

Earth solar system (basement-compatible type) Download PDF

Info

Publication number
JP2011190961A
JP2011190961A JP2010056192A JP2010056192A JP2011190961A JP 2011190961 A JP2011190961 A JP 2011190961A JP 2010056192 A JP2010056192 A JP 2010056192A JP 2010056192 A JP2010056192 A JP 2010056192A JP 2011190961 A JP2011190961 A JP 2011190961A
Authority
JP
Japan
Prior art keywords
hot water
basement
storage tank
air
water storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010056192A
Other languages
Japanese (ja)
Other versions
JP5505837B2 (en
Inventor
▲高▼▲橋▼龍夫
Tatsuo Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takahashi Kanri KK
Original Assignee
Takahashi Kanri KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takahashi Kanri KK filed Critical Takahashi Kanri KK
Priority to JP2010056192A priority Critical patent/JP5505837B2/en
Publication of JP2011190961A publication Critical patent/JP2011190961A/en
Application granted granted Critical
Publication of JP5505837B2 publication Critical patent/JP5505837B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Roof Covering Using Slabs Or Stiff Sheets (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)
  • Central Air Conditioning (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air conditioner capable of suppressing waste consumption of artificial energies such as petroleum, gas and electricity, effectively utilizing solar heat and ground heat in the ground to control a room temperature of a house, reducing energy costs, and simplifying a structure. <P>SOLUTION: A hot water heat storage tank space 35 provided with a hot water heat storage tank 14 is constructed in a basement 6. In winter, hot water heated by a solar water heater 2 is utilized in a bathtub 26, then the hot water is stored in the hot water heat storage tank installed in the hot water heat storage tank space in the basement to heat the hot water heat storage tank space in the basement, the air in the hot water heat storage tank space heated (cooled) by the underground heat is mixed with the air in the basement, and the air in the basement is supplied to each of living rooms to perform a weak heating operation in each living room. In summer, the hot water remaining in the bathtub is not supplied to the hot water heat storage tank, the outside air distributed into the hot water heat storage tank space from a total heat exchange type ventilator 4 is supplied to the basement to be mixed with the air in the basement cooled by the underground heat, and the air is distributed to the living room of each story from the basement through a duct to condition a room temperature. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、全熱交換型換気扇と、地下室の一部の空間を仕切り、温水蓄熱槽を設置した温水蓄熱槽空間を構築し、冬期には、太陽熱温水器で温められたお湯を風呂で利用した後、地下室内の温水蓄熱槽空間に設置した温水蓄熱槽に溜湯し、地下室内の温水蓄熱槽空間を暖めると共に、何れかの階層の全熱交換型換気扇から温水蓄熱槽空間に送り込まれた外気を、温水蓄熱槽空間に設けられたガラリより地下室に供給し、地下室内の弱温風の空気と混ぜ合わされ、その地下室内の空気をダクトを通じて各室に供給して弱温風運転を行うと共に、夏期には、温水蓄熱槽に風呂の残り湯を供給せず、全熱交換型換気扇から温水蓄熱槽空間に送り込まれた外気を、温水蓄熱槽空間に設けられたガラリより地下室に供給し、地中熱により冷やされた地下室内の空気と混ぜ合わされた後、地下室内の空気をダクトを通して各室に供給して弱冷風運転を行うための装置に関するものである。   The present invention creates a hot water storage tank space that partitions the total heat exchange type ventilation fan and a part of the basement space and installs a hot water storage tank, and uses hot water warmed by solar water heaters in the winter After that, hot water is stored in the hot water storage tank installed in the hot water storage tank space in the basement, warming the hot water storage tank space in the basement, and sent to the hot water storage tank space from the total heat exchange type exhaust fan at any level. The outside air is supplied to the basement from the gallery installed in the hot water storage tank space, mixed with the air of the low temperature air in the basement, and the air in the basement is supplied to each room through the duct for low temperature air operation. In the summer, the remaining hot water in the bath is not supplied to the hot water storage tank, but the outside air sent from the total heat exchange type exhaust fan to the hot water storage tank space is supplied to the basement from the galleries provided in the hot water storage tank space. And underground cooled by geothermal heat After being mixed with air inside, to an apparatus for performing the weak cold air operated underground room air is supplied to each chamber through the duct.

従来の、小規模な住宅における室温調整は、夏期にはクーラーを使用し、冬期には電気、ガス、石油等のエネルギーを利用して冷暖房を行って来たが、近年では地球温暖化防止の観点から、エネルギー消費に伴うCO2排出量の削減が急務となり、エネルギー消費量の削減や、さらに自然エネルギーへの代替が早急に望まれている。   Conventional room temperature adjustment in small houses has been using air conditioners in the summer and cooling and heating using energy such as electricity, gas, and oil in the winter. From the viewpoint, it is an urgent need to reduce CO2 emissions accompanying energy consumption, and reduction of energy consumption and further replacement with natural energy are urgently desired.

これに伴い、自然エネルギーの利用手段として、現在、一般的に普及しているものは、太陽エネルギーを利用した、太陽熱温水器(熱効率50〜60%)と太陽光発電(変換効率10〜15%)があるが、いずれも、太陽エネルギーだけを利用する省エネ技術は天候に左右され易く、不安定な点から単独では利用が出来ず、他のエネルギーと兼用して利用されて来たため、なお一層の改良が求められている。   Along with this, as a means of utilizing natural energy, what is currently widely used is a solar water heater (thermal efficiency 50-60%) and solar power generation (conversion efficiency 10-15%) using solar energy. However, in both cases, energy-saving technology that uses only solar energy is easily affected by the weather and cannot be used alone because of instability, and has been used in combination with other energy. There is a need for improvements.

これに対して、地下4〜5mの地中は、年間を通じて安定した温度を保つことから、夏期は外気と比べて低温となり、冬期は外気と比べて暖温となる。そのため、従来からこのような地中熱を利用した設備は、大型の建物や公共設備等で実験的に施工されているが、その利用方法は、冬の間に自然界で出来た氷を保存しておき、その氷を夏期に地下に設けた蓄熱槽に移して冷水を作り、その冷水を各室に循環させて冷房を行うことが一般的であり、大掛かりな工事が必要となり、しかも、定期的に蓄熱層に氷を補充しなければならず、小規模な住宅用としては不向きであった。   On the other hand, the underground 4 to 5 m underground maintains a stable temperature throughout the year, so that it is cooler than the outside air in the summer and warmer than the outside in the winter. For this reason, facilities that use geothermal heat have been experimentally constructed in large buildings and public facilities, but the method of use is to preserve the ice made in nature during the winter. In general, it is common to transfer the ice to a heat storage tank in the basement in the summer to make cold water, circulate the cold water to each room and cool it. Therefore, it was necessary to replenish the heat storage layer with ice, which was not suitable for small-scale housing.

さらに、地中熱を利用したヒートポンプ方式で、家庭内の給湯と、室内の冷暖房を行う方法も行われているが、水平ループ方式(地中に深さ1〜2mの堀を堀り、そこに採熱用パイプを這わせて埋設する)では、建て坪100mの住宅の熱源を得るために400〜600mの採熱用パイプを埋設することが必要であり、又、垂直ループ方式(地中に深さ50〜100mの井戸を堀り、そこに採熱用パイプを埋設する)では2本の井戸が必要となり、一般住宅用で300〜500万円の費用を要すると共に、ヒートポンプの稼動コスト(電気代)が、深夜電力を利用した電気温水器の約75%かかるといった問題があった。 Furthermore, a heat pump system that uses geothermal heat is also used to supply hot water in the home and to cool and heat the room, but a horizontal loop system (deep a 1-2 m deep moat in the ground, In order to obtain a heat source for a house with a floor area of 100 m 2 , it is necessary to embed a 400 to 600 m heat collecting pipe, and a vertical loop system (ground) 2 holes are needed for digging 50-50m deep wells, and pipes for heat collection are buried in them, and it costs 3 to 5 million yen for general housing, and the heat pump is operated. There was a problem that the cost (electricity cost) was about 75% of that of an electric water heater using midnight power.

また、平成15年7月に建築基準法が改正され、「シックハウス対策」として、居室の24時間換気(1時間で居室体積の0.5回分を換気させる事)が義務づけられた。   In July 2003, the Building Standards Law was amended to require 24-hour ventilation of the room (to ventilate 0.5 times the volume of the room in one hour) as a “sick house measure”.

そこで、本出願人は、特許文献1に記載された、建築基準法に対応できる「アース・ソーラーシステム(二層式)」を発明し出願した。この発明によれば、貯水タンクと、貯温水タンクの2つのタンクを地中に埋設し、その双方のタンク内に、外気取入口から各室の24時間給気パイプに連通する熱交換パイプを配管し、貯水タンクを雨水又は地下水又は水道水で満たすと共に、貯温水タンクは太陽熱温水器からの温水で満たし、前記、熱交換パイプに設けた開閉バルブを操作する事により、夏期においては、冬期の冷たい外気で冷やしておいた貯水タンク内の冷水を利用して、外気を貯水タンク内の熱交換パイプを経由させ、暑い外気を冷やして各室に送り込むため、効率よく冷風運転を行うことが出来る。また、冬期においては、夏期の暑い外気で温めておいた貯水タンクの弱温水に冷たい外気を熱交換バイプを経由して暖めると共に、さらに太陽熱温水器を利用した、貯温水タンク内の温水中の熱交換パイプを経由するため、各室に温風を送り込むことが可能となる。
特願2007‐42895
Therefore, the present applicant invented and applied for an “earth / solar system (two-layer type)” described in Patent Document 1 and capable of complying with the Building Standard Law. According to the present invention, two tanks, a water storage tank and a hot water storage tank, are buried in the ground, and heat exchange pipes that communicate with the 24 hour air supply pipes of each room from the outside air intake are provided in both tanks. Plumbing and filling the storage tank with rain water, ground water or tap water, filling the storage tank with hot water from the solar water heater, and operating the opening / closing valve provided in the heat exchange pipe in the summer, in the winter Using cold water in the storage tank that has been cooled with cold outside air, the outside air is passed through the heat exchange pipe in the storage tank, and the hot outside air is cooled and sent to each room, so efficient cold wind operation can be performed I can do it. In the winter season, warm water in the water storage tank that has been warmed by hot outdoor air in the summer is warmed to the low temperature water via the heat exchange vapour. Since it passes through the heat exchange pipe, it becomes possible to send warm air into each room.
Japanese Patent Application No. 2007-42895

しかしながら、本出願人の出願した特許においては、貯水タンクと貯温水タンクの2つのタンクを必要としたため、配管が複雑になり、開閉バルブの数も増え、高価格になると共に、施工するための工期も長く必要であった。   However, in the patent filed by the present applicant, two tanks, a water storage tank and a hot water storage tank, are required, which complicates the piping, increases the number of open / close valves, increases the price, and increases the cost. The construction period was also long.

そこで、本出願人は、特許文献2に記載された、「アース・ソーラーシステム(一層式)」を発明し出願した。この発明によれば、建物の下部の地中に、建物の基礎部と一体に構成されたコンクリート製タンクを構築し、コンクリート製タンク内に熱交換パイプを配管し、コンクリート製タンク内を雨水、又は水道水、又は地下水で満たし、全熱交換型換気扇からの供給空気をコンクリート製タンク内の熱交換パイプに導き、夏期は、全熱交換型換気扇からの供給空気を、地中熱で冷やされたコンクリート製タンク内の水と、熱交換パイプとの間で熱交換して冷やした後、給気パイプを経由して各階に給気し、冬期は、太陽熱温水器からの温水を、コンクリート製タンク内に循環させて、コンクリート製タンク内を温水状態とし、全熱交換型換気扇からの供給空気を、コンクリート製タンク内の熱交換パイプに導き、コンクリート製タンク内の温水と、熱交換パイプとの間で熱交換して暖めた後、給気パイプを経由して各階に給気した事により、各室に温風を送り込むことが可能となる。
特願2008‐134783
Therefore, the present applicant invented and applied for the “earth / solar system (single layer type)” described in Patent Document 2. According to the present invention, in the lower part of the building, a concrete tank constructed integrally with the foundation of the building is constructed, the heat exchange pipe is piped in the concrete tank, and the rain water is laid in the concrete tank. Or, it is filled with tap water or groundwater, and the supply air from the total heat exchange type exhaust fan is led to the heat exchange pipe in the concrete tank, and in the summer, the supply air from the total heat exchange type exhaust fan is cooled by the underground heat. After heat exchange between the water in the concrete tank and the heat exchange pipe, it is cooled and then supplied to each floor via the air supply pipe.In winter, the hot water from the solar water heater is made of concrete. Circulate in the tank to make the concrete tank warm, and supply air from the total heat exchange ventilator to the heat exchange pipe in the concrete tank. After warming to heat exchange with the replacement pipe, by which the air supply to each floor through the supply pipe, it is possible to feed the hot air in each room.
Japanese Patent Application No. 2008-134783

しかしながら、本出願人の出願した特許文献2の発明においても、コンクリート製タンクを必要としたため、高価格になると共に、施工するための工期も長く必要であった。   However, in the invention of Patent Document 2 filed by the present applicant, a concrete tank is required, so that the price is high and a construction period for construction is also long.

そこで、本出願人は、特許文献3に記載された、「アース・ソーラーシステム(地中熱回収パイプ方式)」を発明して出願した。この発明によれば、建物の基礎部に外部との通気口を設置せず、1階床下内部の空気を外気と遮断して密封状態とし、建物の室内に取付けた全熱交換型換気扇が室内側に供給する新鮮な外気を、建物の1階床下内部に送り込むと共に、1階床下の基礎底盤に下部をU字形に成形した複数の地中熱回収パイプを、両端を基礎底盤より1階床下部に突き出すように地中に埋設し、地中熱回収パイプの一端には送風機を取付け、その送風機を作動させる事により1階床下内部の空気が地中熱回収パイプに吸い込まれ、その地中熱回収パイプに吸い込まれた空気は、冬期は地中熱により地中熱回収パイプの中で暖められると共に、さらに、1階床下部に設けた温水蓄熱槽に太陽熱温水器で温めた温水を循環させて1階床下内部の空気を暖め、また、夏期は1階床下部に設けた温水蓄熱槽に太陽熱温水器からの温水を循環させず、地中熱により地中熱回収パイプの中で冷やされた空気が1階床下内部に供給され、その1階床下の空気をダクトを通して各階の天井内部に供給し、天井内部に供給された空気を各室天井に設けたガラリより室内に供給した事により、冬期には弱暖房された暖かい空気を各室に供給すると共に、夏期には弱冷風された涼しい空気を各室に送り込むことが可能となった。
特願2009‐158863
Therefore, the present applicant invented and filed an application of “Earth Solar System (Ground Heat Recovery Pipe System)” described in Patent Document 3. According to the present invention, there is provided a total heat exchange type ventilation fan installed in a room of a building without installing a vent hole to the outside at the foundation of the building and blocking the air inside the first floor under the outside air to be in a sealed state. Fresh outside air supplied to the inside is sent to the inside of the first floor under the building, and a plurality of underground heat recovery pipes with a U-shaped lower part formed on the foundation floor under the first floor, both ends of the floor below the foundation floor. It is buried in the ground so as to protrude into the section, a blower is attached to one end of the underground heat recovery pipe, and the air inside the first floor is sucked into the underground heat recovery pipe by operating the blower, and the underground The air sucked into the heat recovery pipe is warmed in the ground heat recovery pipe by the underground heat in the winter season, and further, the hot water warmed by the solar water heater is circulated in the hot water heat storage tank provided at the bottom of the first floor Let the air inside the first floor under the floor warm, and summer The hot water from the solar water heater is not circulated in the hot water storage tank provided at the lower part of the first floor, and the air cooled in the underground heat recovery pipe by the underground heat is supplied to the inside of the first floor, part 1 Air under the floor is supplied to the ceiling of each floor through a duct, and the air supplied to the interior of the ceiling is supplied to the room from the gallery installed in the ceiling of each room. In addition, it has become possible to send cool air, which was weakly chilled, into each room in summer.
Japanese Patent Application No. 2009-158863

しかしながら、本出願人の出願した特許文献3の発明においても、雨や曇りの日が続いた場合、太陽熱温水器のお湯の温度が上がらず、雨や曇りの日と、晴天の日の温度差が大きいといった問題が発生した。さらに、地下室付の住宅に対しては、1階床下部に設置する温水蓄熱槽のスペースの問題や、地中熱回収パイプを設置する場所の問題等、多数の問題が生じ、特許文献3のアース・ソーラーシステム(地中熱回収パイプ方式)を地下室付の住宅に対応させる事は事実上不可能であった。   However, even in the invention of Patent Document 3 filed by the present applicant, when the rainy or cloudy day continues, the temperature of the hot water of the solar water heater does not rise, and the temperature difference between the rainy and cloudy day and the sunny day The problem that is large occurred. Furthermore, for a house with a basement, there are a number of problems such as the problem of the space of the hot water storage tank installed in the lower part of the first floor and the problem of the location where the underground heat recovery pipe is installed. It was practically impossible to make an earth / solar system (ground heat recovery pipe system) compatible with a house with a basement.

また、従来より地中熱交換機を利用した建物の空調換気システムとして知られている、特許文献4に記載したジオパワーシステムの場合は、冬期において、地中熱だけでは暖房効果(地下5mでも地中温度は約18度前後だから、外気を地中熱により暖めても、それ以下の温度にしかならない)が低く、さらに価格が高く、一般住宅に施工する場合はコストの面で問題があった。
特開2007‐303693
In addition, in the case of the geopower system described in Patent Document 4, which has been conventionally known as a building air-conditioning ventilation system that uses a geothermal heat exchanger, in the winter season, only the underground heat alone can produce a heating effect (even underground 5m) The medium temperature is around 18 degrees, so even if the outside air is warmed by underground heat, the temperature is only lower than that), and the price is high. .
JP2007-303693A

さらに、太陽エネルギーを利用するソーラーシステムとして知られている、特許文献5に記載したOMソーラーの場合、雨や曇りの日が続いた場合には暖房効果が下がるため補助暖房装置が必要になるといった問題と、さらに、夏期においては冷風運転が出来ないといった欠点があった。
特開平08‐005161
Furthermore, in the case of the OM solar described in Patent Document 5, which is known as a solar system using solar energy, an auxiliary heating device is required because the heating effect is reduced when rainy or cloudy days continue. There was a problem, and further, there was a drawback that cold wind operation was not possible in summer.
JP 08-005161

本発明は、このような、従来の欠点に鑑みて、自然との調和を図る事を目的とし、石油、ガス、電気等の人工エネルギーの浪費を抑え、太陽熱や、風呂の温かい残り湯や、地中の地熱を有効に利用して、住宅の室温調整を行うものであり、エネルギーコストが低く、構造が簡単な冷暖房装置を提供する事を課題とする。   In view of such conventional drawbacks, the present invention aims at harmony with nature, suppresses waste of artificial energy such as oil, gas, electricity, solar heat, hot remaining hot water in the bath, An object of the present invention is to provide a cooling / heating device with a low energy cost and a simple structure that adjusts the room temperature of a house by effectively using geothermal heat in the ground.

本出願人の出願した特許文献1、特許文献2、特許文献3による発明では、上記のような問題が発生したため、当社では、新たに、冬期において、風呂の残り湯を、地下室の温水蓄熱槽空間に設置された温水蓄熱槽に流して温水蓄熱槽に温かい風呂の残り湯を溜湯させた装置を発明すると同時に、新製品の発売に踏み切る事とした。   In the invention according to Patent Document 1, Patent Document 2, and Patent Document 3 filed by the present applicant, the above-mentioned problems have occurred. Therefore, in our company, in the winter, the remaining hot water in the bath is newly used as a hot water storage tank in the basement. Invented a device in which hot water remaining in the hot water storage tank was poured into a hot water storage tank installed in the space, and at the same time, it was decided to launch a new product.

かかる課題を解決するため、建物の、各階の室内に取付けた全熱交換型換気扇が室内側に供給する新鮮な外気の、何れかの階層からの外気を地下室に送り込むと共に、地下室の一部の空間を仕切り、温水蓄熱槽を設置した温水蓄熱槽空間を構築し、冬期には、その温水蓄熱槽に太陽熱温水器で温められた温水を風呂で使用した後、温かい風呂の残り湯を温水蓄熱槽の中に流して溜湯させる事により温水蓄熱槽空間の空気が暖められると共に、このようにして暖められた温水蓄熱槽空間に、別の階層の全熱交換型換気扇から室内側に供給される新鮮な外気を送り込む事により、その温水蓄熱槽空間に送り込まれた外気は、風呂の残り湯が溜湯された温かい温水蓄熱槽空間により暖められ、暖められた外気は温水蓄熱槽空間に設けられたガラリより地下室に供給され、地中熱により暖められた地下室内の空気と混ぜ合わされた後、各階天井内部に設けられたダクトの送風機を作動させる事により、地下室からダクトを経由して各階の天井内部に送られ、天井に設けたガラリより室内に供給されて室内を暖めると共に、夏期においては、温水蓄熱槽に風呂の残り湯を供給せず、全熱交換型換気扇から温水蓄熱槽空間に送り込まれた外気を、温水蓄熱槽空間に設けられたガラリより地下室に供給し、地中熱により冷やされた地下室内の空気と混ぜ合わされた後、各階天井内部に設けられたダクトの送風機を作動させる事により、地下室からダクトを経由して各階の天井内部に送られ、天井に設けたガラリより室内に供給されて各室を冷やした事を特徴とする。   In order to solve this problem, fresh heat supplied to the indoor side by a total heat exchange type ventilation fan installed in the room on each floor of the building is sent to the basement from outside, and a part of the basement Building a hot water storage tank space that partitions the space and installed a hot water storage tank. In the winter, hot water heated by a solar water heater is used in the hot water storage tank in the bath, and then the remaining hot water in the hot bath is stored in hot water The air in the hot water storage tank space is warmed by flowing it into the tank and allowing the hot water to be stored, and the warm water storage tank space heated in this way is supplied indoors from a total heat exchange type exhaust fan at another level. By sending fresh outside air, the outside air sent to the hot water storage tank space is warmed by the warm hot water storage tank space where the remaining hot water of the bath is stored, and the warmed outside air is provided in the hot water storage tank space The gallery After being supplied to the basement and mixed with the air in the basement warmed by the underground heat, the duct blower provided inside the ceiling of each floor is operated to enter the ceiling of each floor from the basement via the duct. It was sent to the room from the gallery installed on the ceiling to warm the room, and in the summer, the remaining hot water of the bath was not supplied to the hot water heat storage tank, and it was sent from the total heat exchange type exhaust fan to the hot water heat storage tank space. By supplying outside air to the basement from the gallery provided in the hot water storage tank space and mixing it with the air in the basement cooled by underground heat, by operating the duct blower provided inside each floor ceiling It is characterized in that it is sent from the basement to the ceiling of each floor via a duct and supplied to the room from the gallery provided on the ceiling to cool each room.

請求項2に記載の発明は、請求項1に記載の構成に加え、地下室内の天井下の天井梁に囲まれた空間に温水蓄熱槽を配置した温水蓄熱槽空間を設置した事を特徴とする。   The invention according to claim 2 is characterized in that, in addition to the configuration according to claim 1, a hot water heat storage tank space in which the hot water heat storage tank is arranged is installed in a space surrounded by ceiling beams under the ceiling in the basement. To do.

請求項3に記載の発明は、地下室内の置き床や、壁面に対して二重壁やボードを施行せず、地下室の床と壁のコンクリートを介して地中熱を地下室に取り込む事を特徴とする。   The invention according to claim 3 is characterized in that the underground heat is taken into the basement through the basement floor and the concrete of the wall without enforcing a double wall or a board on the floor or wall in the basement. To do.

請求項1に記載の発明によれば、冬期においては、太陽熱温水器からのお湯をお風呂で利用した後、地下室の一部の空間に設けられた温水蓄熱槽空間の中の温水蓄熱槽に流して溜湯したため、雨や曇りが続いた場合においても、温水蓄熱槽空間を暖かく保つ事が可能となり、これまで排水溝に流していた温かい風呂の残り湯のエネルギーを再利用する事が可能となり、CO2の削減と省エネに貢献する事が出来るようになった。さらに、全熱交換型換気扇から室内側に供給される外気を、建物の階層別に、地下室と温水蓄熱槽空間の、それぞれに送り込み、地中熱により暖められた地下室内の全熱交換型換気扇からの空気と、温水蓄熱槽空間の中の温水蓄熱槽により暖められた弱温風が、地下室内で混ぜ合わされて各居室に供給される事により、地下室全体を地中熱を回収するための蓄熱層空間として利用する事が可能となり、安価で簡単な設備で、お風呂の残り湯の熱と地中熱を回収して利用する事が可能となった。   According to invention of Claim 1, after using hot water from a solar water heater in a bath in winter, in the warm water storage tank in the warm water storage tank space provided in the partial space of the basement The hot water storage tank space can be kept warm even when rain or cloudy weather continues because the water has been poured and stored, and the energy of the remaining hot water in the hot bath that has been flowing through the drainage can be reused. It became possible to contribute to CO2 reduction and energy saving. Furthermore, outside air supplied to the indoor side from the total heat exchange type exhaust fan is sent to each of the basement and hot water storage tank space according to the level of the building, from the total heat exchange type exhaust fan in the underground room heated by the underground heat Heat to collect the underground heat in the entire basement by mixing the air in the basement and the warm air heated by the hot water storage tank in the hot water storage tank space and mixing them in the basement. It became possible to use as a layered space, and it was possible to collect and use the heat of the remaining hot water of the bath and the underground heat with inexpensive and simple equipment.

請求項2に記載の発明によれば、地下室内の天井下の天井梁に囲まれた空間に温水蓄熱槽を配置した温水蓄熱槽空間を設置した事により、温水蓄熱槽空間の下部も居室として利用可能となり、地下室空間を有効に利用する事が可能となった。さらに、地下室内の天井下の天井梁に囲まれた空間に温水蓄熱槽を配置したため、温水蓄熱槽からの排水もポンプアップせずに直接排水溝に流す事が出来るようになり、排水をポンプアップするための装置も不要となり、工期も短縮して安価に製作する事が可能となった。   According to invention of Claim 2, the lower part of warm water thermal storage tank space was also made into the living room by having installed the warm water thermal storage tank space which arranged the warm water thermal storage tank in the space surrounded by the ceiling beam under the ceiling in the basement. It became possible to use the basement space effectively. Furthermore, because the hot water storage tank is located in the space surrounded by the ceiling beam under the ceiling in the basement, the drainage from the hot water storage tank can be directly flowed to the drainage channel without pumping up, and the drainage can be pumped. The equipment for upgrading is no longer necessary, and the construction period can be shortened and can be manufactured at low cost.

請求項3に記載の発明によれば、地下室内の置き床や、壁面に対して二重壁やボードを施行せず、地下室の床面はCFシートを施工し、壁面はコンクリートに直接壁紙仕上げとしたため、地下室の床と壁のコンクリートを介して地中熱を、直接地下室に取り込む事が可能となったため、これまでのように地下室を冬期に暖かく、夏期に涼しい居室として利用するだけではなく、地下室を建物全体の温度調整槽として有効利用する事が可能となった。   According to the third aspect of the present invention, a double wall or a board is not applied to the floor or the wall surface in the basement, the CF floor is applied to the floor surface of the basement, and the wall surface is directly applied to the concrete with a wallpaper finish. As a result, it has become possible to take underground heat directly into the basement through the basement floor and concrete on the wall, so that the basement is not only used as a warm room in the winter and cool in the summer, The basement can be effectively used as a temperature control tank for the entire building.

以下、この発明の実施の形態1について説明する。
[発明の実施の形態1]
Embodiment 1 of the present invention will be described below.
Embodiment 1 of the Invention

図1及至図6には、この発明の実施の形態を示す。    1 to 6 show an embodiment of the present invention.

図1は、本発明の太陽熱温水器と温水蓄熱槽と全熱交換型換気扇を利用した、地下室付住宅の分解解説図である。以下に、太陽熱と地中熱を利用した冷暖房システムを説明する。   FIG. 1 is an exploded explanatory view of a house with a basement using a solar water heater, a hot water heat storage tank, and a total heat exchange type exhaust fan according to the present invention. Hereinafter, an air conditioning system using solar heat and underground heat will be described.

図1は、本発明のアース・ソーラーシステム(地下室対応型)を分かり易く説明するため、アース・ソーラーシステム(地下室対応型)を組み込んだ地下室付住宅1を分解解説図で示したものである。屋根3の上に太陽熱温水器2を設置すると共に、地下室内部18には仕切壁24で囲われた温水蓄熱槽空間35を構築し、温水蓄熱槽空間35には温水蓄熱槽14が設置され、この温水蓄熱槽14には風呂26の残り湯を供給するための残り湯パイプ31が配管され、さらに、その温水蓄熱槽空間35には、何れかの階層に設置された全熱交換型換気扇4からの外気(室外側吸込空気)を外気導入ダクト30を経由して送り込むと共に、温水蓄熱槽空間35に送り込まれた外気(室外側吸込空気)はガラリ15から矢印22方向に送られ、地下室内部18に供給される。さらに、地下室内部18に対しても、別の階層に設置された全熱交換型換気扇5からの外気(室外側吸込空気)を外気導入ダクト27を経由して送り込む。このようにして地下室内部18に送り込まれた、全熱交換型換気扇4、全熱交換型換気扇5からの外気(室外側吸込空気)はダクトスペース9に設けられたガラリ10から吸い込まれて給気ダクト8を経由して各居室に供給される。   FIG. 1 is an exploded explanatory view showing a house 1 with a basement in which an earth / solar system (basement-compatible type) is incorporated for easy understanding of the earth-solar system (basement-compatible type) of the present invention. The solar water heater 2 is installed on the roof 3, and a warm water storage tank space 35 surrounded by a partition wall 24 is constructed in the basement 18, and the warm water storage tank 14 is installed in the warm water storage tank space 35, This hot water heat storage tank 14 is provided with a remaining hot water pipe 31 for supplying the remaining hot water of the bath 26, and further, in the hot water heat storage tank space 35, the total heat exchange type exhaust fan 4 installed at any level. The outside air (outdoor outside intake air) is sent through the outside air introduction duct 30 and the outside air (outside outside intake air) sent into the hot water heat storage tank space 35 is sent from the gallery 15 in the direction of the arrow 22, 18 is supplied. Furthermore, the outside air (outside air sucked air) from the total heat exchange type ventilation fan 5 installed at another level is also sent into the basement 18 via the outside air introduction duct 27. The outside air (outdoor air sucked in) from the total heat exchange type ventilation fan 4 and the total heat exchange type ventilation fan 5 sent into the underground room 18 in this way is sucked from the louver 10 provided in the duct space 9 and supplied. It is supplied to each room via the duct 8.

このように構成されたアース・ソーラーシステム(地下室対応型)は、太陽熱温水器2で温められた温水が温水パイプ28を経由して風呂26に給湯され、さらに、風呂26で利用された後の温かい残り湯は、風呂26に備え付けられた残り湯パイプ31用の風呂に設置された排水栓(図示せず)を抜く事により、残り湯パイプ31を経由して温水蓄熱槽14に流され溜湯される。   In the earth solar system (basement-compatible type) configured in this way, hot water heated by the solar water heater 2 is supplied to the bath 26 via the hot water pipe 28 and further used after being used in the bath 26. The hot remaining hot water is drained and stored in the hot water storage tank 14 via the remaining hot water pipe 31 by removing a drain plug (not shown) installed in the bath for the remaining hot water pipe 31 provided in the bath 26. It gets hot.

以上のような構成において、図2により夏期における各室の冷風運転について説明する。   With the configuration as described above, the cold air operation of each room in summer will be described with reference to FIG.

最初に、全熱交換型換気扇65から室内側に供給される外気(室外側吸込空気)を地下室内Aに給気する方法について説明する。1階室内Bの室内側吐出空気(よごれた室内空気)は、全熱交換型換気扇65に吸い込まれて室外に排気される。その際、全熱交換型換気扇65が排気する室内の空気(室内側吐出空気)と、室内に給気する外気(室外側吸込空気)とが全熱交換型換気扇65の中で熱交換されると共に、吸い込んだ室外側吸込空気(新鮮な空気)は全て外気導入ダクト66を経由して地下室内Aに導かれる。同様にして、2階室内Cの室内側吐出空気(よごれた室内空気)は、全熱交換型換気扇103に吸い込まれて室外に排気される。その際、全熱交換型換気扇103が排気する室内の空気(室内側吐出空気)と、室内に給気する外気(室外側吸込空気)とが全熱交換型換気扇103の中で熱交換されると共に、吸い込んだ室外側吸込空気(新鮮な空気)は全て外気導入ダクト95を経由して温水蓄熱槽空間77に導かれる。さらに、3階室内Dの室内側吐出空気(よごれた室内空気)は、全熱交換型換気扇106に吸い込まれて室外に排気される。その際、全熱交換型換気扇106が排気する室内の空気(室内側吐出空気)と、室内に給気する外気(室外側吸込空気)とが全熱交換型換気扇106の中で熱交換されると共に、吸い込んだ室外側吸込空気(新鮮な空気)は全て外気導入ダクト99を経由して温水蓄熱槽空間77に導かれる。   First, a method for supplying outside air (outdoor air sucked air) supplied from the total heat exchange type ventilation fan 65 to the indoor side into the underground room A will be described. The room-side discharge air (contaminated room air) in the first floor room B is sucked into the total heat exchange type ventilation fan 65 and exhausted to the outside. At that time, indoor air exhausted by the total heat exchange type exhaust fan 65 (indoor discharge air) and outdoor air supplied to the room (outdoor intake air) are heat-exchanged in the total heat exchange type exhaust fan 65. At the same time, all of the sucked outdoor outside intake air (fresh air) is guided to the underground room A via the outside air introduction duct 66. Similarly, the indoor side discharge air (contaminated room air) in the second floor room C is sucked into the total heat exchange type exhaust fan 103 and exhausted to the outside. At that time, the indoor air exhausted by the total heat exchanging ventilator 103 (indoor discharge air) and the outside air supplied to the room (outdoor suction air) are heat-exchanged in the total heat exchanging ventilator 103. At the same time, all of the sucked outdoor outside intake air (fresh air) is guided to the hot water storage tank space 77 via the outside air introduction duct 95. Furthermore, the indoor side discharge air (contaminated room air) in the third floor room D is sucked into the total heat exchange type exhaust fan 106 and exhausted to the outside. At that time, the indoor air exhausted by the total heat exchanging ventilator 106 (indoor discharge air) and the outside air supplied to the room (outdoor intake air) are heat-exchanged in the total heat exchanging ventilator 106. At the same time, all of the sucked outdoor outside intake air (fresh air) is guided to the hot water storage tank space 77 via the outside air introduction duct 99.

このようにして、全熱交換型換気扇65、全熱交換型換気扇103、全熱交換型換気扇106を使用する事により、夏期における涼しい室内の空気を、外の暑い外気と入れ替える(換気する)際に、室内温度の上昇を最小限に抑える事が可能となる。   In this way, by using the total heat exchange type ventilation fan 65, the total heat exchange type ventilation fan 103, and the total heat exchange type ventilation fan 106, when the indoor air that is cool in the summer is replaced (ventilated) with hot outdoor air. In addition, it is possible to minimize the rise in room temperature.

続いて、このようにして地下室内Aに導入された全熱交換型換気扇65からの外気(室外側吸込空気)が、どのようにして地下室内Aで弱冷風になるかを説明する。当社で施工する地下室は、地下室の床面と天井スラブの高さを、標準仕様では2.8メートルとしているため、標準的な地下室を施工する場合、地下室が地表面から立ち上がっている部分を差引くと、地表面から耐圧盤(当社の場合は耐圧盤の厚さは約300cm)の下面までの深さは、概ね2.8メートルとなる。ちなみに、東京都足立区の、当社ショールーム(地下室付)では、毎日、地中深さ1メートル、3メートル、5メートルの3箇所の地中温度を測定しているが、その測定結果によると地中3メートルの温度は、4月に最低温度の14.7℃となり、10月に最高温度の20.6℃となる。外気の最低気温(2月頃)に対して地中の最低温度が4月にずれ込むのは、地表面の温度が地中に浸透するのに時間がかかるためです。夏期の場合も同様です。ちなみに、東京都台東区の、当社ショールーム(地下室付)の、8月の地中3メートルの温度は約19℃である。このように、夏の外気温度に対して夏の地中3メートルの温度は低いため、地下室の冷えた躯体コンクリートにより地下室内Aの空気も冷やされる。このため、全熱交換型換気扇65から外気導入ダクト66を経由して地下室に供給された外気(室外側吸込空気)は、地下室内Aの空気と混ぜ合わされ弱冷風となる。同様に、全熱交換型換気扇103、106から外気導入ダクト95、99を経由して温水蓄熱槽空間77に供給された外気(室外側吸込空気)は、ガラリ72から矢印75方向の地下室内Aに供給され地下室内Aの空気と混ぜ合わされ弱冷風となる。   Next, how the outside air (outdoor air sucked in) from the total heat exchange type ventilation fan 65 introduced into the underground room A in this way becomes a weak cold air in the underground room A will be described. In the basement constructed by our company, the height of the basement floor and ceiling slab is 2.8 meters in the standard specification, so when constructing a standard basement, there is a difference in the part where the basement stands up from the ground surface. When pulled, the depth from the ground surface to the lower surface of the pressure plate (in our case, the thickness of the pressure plate is about 300 cm) is approximately 2.8 meters. By the way, our showroom (with basement) in Adachi-ku, Tokyo measures the underground temperature of 1 meter, 3 meters, and 5 meters underground every day. The temperature of the middle 3 meters will be the lowest temperature of 14.7 ° C in April and the highest temperature of 20.6 ° C in October. The reason why the lowest underground temperature shifts in April to the lowest outside air temperature (around February) is because it takes time for the surface temperature to penetrate into the ground. The same is true for summer. By the way, the temperature of 3 meters underground in August in our showroom (with basement) in Taito-ku, Tokyo is about 19 ° C. Thus, since the temperature of the underground 3 meters in the summer is lower than the summer outdoor temperature, the air in the basement A is also cooled by the cold concrete in the basement. For this reason, the outside air (outdoor intake air) supplied from the total heat exchanging ventilation fan 65 to the basement via the outside air introduction duct 66 is mixed with the air in the basement A and becomes weak cold air. Similarly, the outside air (outside air sucked air) supplied from the total heat exchanging ventilation fans 103 and 106 to the hot water heat storage tank space 77 via the outside air introduction ducts 95 and 99 is sent from the gallery 72 to the underground room A in the direction of arrow 75. Is mixed with the air in the basement A and becomes a cool air.

このように地下室内Aで冷やされた外気(室外側吸込空気)は、送風機47を作動させる事によりダクト吸込口73から矢印71方向に吸い込まれ、給気ダクト50を経由して3階天井裏100に供給され、ガラリ49、ガラリ102より3階室内Dに給気されて3階室内Dを冷やす。同様にして、送風機54を作動させる事により、地下室内Aで冷やされた外気(室外側吸込空気)は、ダクト吸込口73から矢印71方向に吸い込まれ、給気ダクト55を経由して2階天井裏97に供給され、ガラリ53、ガラリ98より2階室内Cに給気されて2階室内Cを冷やす。同様にして、送風機59を作動させる事により、地下室内Aで冷やされた外気(室外側吸込空気)は、ダクト吸込口73から矢印71方向に吸い込まれ、給気ダクト61を経由して1階天井裏93に供給され、ガラリ58、ガラリ94より1階室内Bに給気されて1階室内Bを冷やす。   The outside air (outdoor suction air) cooled in the basement A in this way is sucked in the direction of arrow 71 from the duct suction port 73 by operating the blower 47, and passes through the air supply duct 50 to the third floor ceiling. 100 is supplied to the third-floor room D from the louver 49 and the louver 102 to cool the third-floor room D. Similarly, by operating the blower 54, the outside air cooled in the basement A (outside air suction air) is sucked in from the duct suction port 73 in the direction of arrow 71, and then passes through the air supply duct 55 to the second floor. Supplied to the ceiling 97 and supplied to the second-floor room C from the louvers 53 and 98 to cool the second-floor room C. Similarly, by operating the blower 59, the outside air cooled in the basement A (outside air suction air) is sucked in the direction of the arrow 71 from the duct suction port 73 and passes through the air supply duct 61 to the first floor. The air is supplied to the ceiling 93 and supplied to the first floor room B from the gallery 58 and gallery 94 to cool the first floor room B.

なお、夏期においては、温水蓄熱槽空間77に設置した温水蓄熱槽76には風呂の残り湯を供給せず、夏期においては温水蓄熱槽76は利用しない。   In the summer, the hot water storage tank 76 installed in the warm water storage tank space 77 is not supplied with hot water remaining in the bath, and in the summer, the hot water storage tank 76 is not used.

続いて、図3で示す、冬期における各室の弱温風運転について説明する。   Next, the operation of the warm air in each room in winter shown in FIG. 3 will be described.

最初に、全熱交換型換気扇65から室内側に供給される外気(室外側吸込空気)を地下室内Aに給気する方法について説明する。1階室内Bの室内側吐出空気(よごれた室内空気)は、全熱交換型換気扇65に吸い込まれて室外に排気される。その際、全熱交換型換気扇65が排気する室内の空気(室内側吐出空気)と、室内に給気する外気(室外側吸込空気)とが全熱交換型換気扇65の中で熱交換されると共に、吸い込んだ室外側吸込空気(新鮮な空気)は全て外気導入ダクト66を経由して地下室内Aに導かれる。   First, a method for supplying outside air (outdoor air sucked air) supplied from the total heat exchange type ventilation fan 65 to the indoor side into the underground room A will be described. The room-side discharge air (contaminated room air) in the first floor room B is sucked into the total heat exchange type ventilation fan 65 and exhausted to the outside. At that time, indoor air exhausted by the total heat exchange type exhaust fan 65 (indoor discharge air) and outdoor air supplied to the room (outdoor intake air) are heat-exchanged in the total heat exchange type exhaust fan 65. At the same time, all of the sucked outdoor outside intake air (fresh air) is guided to the underground room A via the outside air introduction duct 66.

このようにして地下室内Aに供給された外気(室外側吸込空気)は、前記、東京都足立区の、当社ショールーム(地下室付)で説明したように、当社ショールーム(地下室付)の2月の地中3メートルの温度は約16℃で、外気に比べて暖かいため、地下室の躯体コンクリートが温められると共に、地下室内Aの空気も温められる。このため、全熱交換型換気扇65から外気導入ダクト66を経由して地下室に供給された外気(室外側吸込空気)は、地下室内Aの空気と混ぜ合わされ弱温風となる。   The outside air (outside air intake air) supplied to the basement A in this way is the same as that described above in our showroom (with basement) in Adachi-ku, Tokyo, in February of our showroom (with basement). The temperature of the underground 3 meters is about 16 ° C, which is warmer than the outside air, so that the concrete in the basement is warmed and the air in the basement A is also warmed. For this reason, the outside air (outdoor air sucked air) supplied from the total heat exchange type ventilation fan 65 to the basement through the outside air introduction duct 66 is mixed with the air in the basement A and becomes low-temperature air.

さらに、2階室内Cの室内側吐出空気(よごれた室内空気)は、全熱交換型換気扇103に吸い込まれて室外に排気される。その際、全熱交換型換気扇103が排気する室内の空気(室内側吐出空気)と、室内に給気する外気(室外側吸込空気)とが全熱交換型換気扇103の中で熱交換されると共に、吸い込んだ室外側吸込空気(新鮮な空気)は全て外気導入ダクト95を経由して温水蓄熱槽空間77に導かれる。さらに、3階室内Dの室内側吐出空気(よごれた室内空気)は、全熱交換型換気扇106に吸い込まれて室外に排気される。その際、全熱交換型換気扇106が排気する室内の空気(室内側吐出空気)と、室内に給気する外気(室外側吸込空気)とが全熱交換型換気扇106の中で熱交換されると共に、吸い込んだ室外側吸込空気(新鮮な空気)は全て外気導入ダクト99を経由して温水蓄熱槽空間77に導かれる。   Further, the indoor side discharged air (contaminated room air) in the second floor room C is sucked into the total heat exchange type exhaust fan 103 and exhausted to the outside. At that time, the indoor air exhausted by the total heat exchanging ventilator 103 (indoor discharge air) and the outside air supplied to the room (outdoor suction air) are heat-exchanged in the total heat exchanging ventilator 103. At the same time, all of the sucked outdoor outside intake air (fresh air) is guided to the hot water storage tank space 77 via the outside air introduction duct 95. Furthermore, the indoor side discharge air (contaminated room air) in the third floor room D is sucked into the total heat exchange type exhaust fan 106 and exhausted to the outside. At that time, the indoor air exhausted by the total heat exchanging ventilator 106 (indoor discharge air) and the outside air supplied to the room (outdoor intake air) are heat-exchanged in the total heat exchanging ventilator 106. At the same time, all of the sucked outdoor outside intake air (fresh air) is guided to the hot water storage tank space 77 via the outside air introduction duct 99.

このようにして、全熱交換型換気扇65、全熱交換型換気扇103、全熱交換型換気扇106を使用する事により、冬期における室内の暖かい空気を、外の冷たい外気と入れ替える(換気する)際に、室内温度が下がるのを最小限に抑える事が可能となる。ちなみに三菱電機株式会社のホームページでは、ロスナイ(全熱交換型換気扇)の熱交換機能を、「外気温度0℃、室内温度20℃、温度交換効率75%の場合」、室内温度20℃の空気をロスナイ(全熱交換型換気扇)で換気した場合、外気(0℃)の空気の温度は熱交換機の働きで15℃となって室内に給気(新鮮空気)されると説明している。   In this way, by using the total heat exchange type ventilation fan 65, the total heat exchange type ventilation fan 103, and the total heat exchange type ventilation fan 106, when warm air in the room in winter is exchanged (ventilated) with cold outdoor air. In addition, it is possible to minimize the decrease in the room temperature. By the way, on the Mitsubishi Electric Corporation homepage, the heat exchange function of LOSSNAY (total heat exchange type exhaust fan) is changed to “when the outside air temperature is 0 ° C, the room temperature is 20 ° C, and the temperature exchange efficiency is 75%.” It is described that when the air is ventilated with LOSSNAY (total heat exchange type exhaust fan), the temperature of the air of the outside air (0 ° C.) becomes 15 ° C. due to the action of the heat exchanger and is supplied into the room (fresh air).

さらに、冬期では太陽熱温水器44で温められた温水を風呂89で使用した後、風呂89で利用された後の温かい残り湯は、風呂89に備え付けられた、温水蓄熱槽76に残り湯を供給するための、残り湯パイプ111用の排水栓(図示せず)を抜く事により、残り湯パイプ111を経由して温水蓄熱槽76に流され溜湯される。このようにして温水蓄熱槽76に溜湯された温かい風呂89の残り湯は温水蓄熱槽空間77の空気を暖める。なお、温水蓄熱槽76から溢れ出る、温水蓄熱槽76の底部の冷めた風呂の残り湯の排水は排水パイプ113を経由して矢印114方向に流れ排水溝81に排水される。   Further, in the winter season, hot water heated by the solar water heater 44 is used in the bath 89, and then the hot remaining hot water after being used in the bath 89 is supplied to the hot water heat storage tank 76 provided in the bath 89. For this purpose, a drain plug (not shown) for the remaining hot water pipe 111 is pulled out, so that the hot water is stored in the hot water storage tank 76 via the remaining hot water pipe 111. The remaining hot water in the warm bath 89 stored in the hot water heat storage tank 76 in this way warms the air in the hot water heat storage tank space 77. In addition, drainage of the remaining hot water in the bath that has overflowed from the hot water heat storage tank 76 and is cooled at the bottom of the hot water heat storage tank 76 flows in the direction of the arrow 114 via the drain pipe 113 and is drained into the drain groove 81.

このようにして、太陽熱温水器44で温められた温水を風呂89で使用した後に、風呂89で利用された後の温かい残り湯を、地下室の温水蓄熱槽空間77に設置した温水蓄熱槽76に流して溜湯させる事により、全熱交換型換気扇103、106から温水蓄熱槽空間77に供給された外気(室外側吸込空気)は、温水蓄熱槽94に溜湯された温かい風呂の残り湯により、さらに暖められ、温水蓄熱槽空間77に設けたガラリ72から地下室内Aに供給される。このようにして地下室内Aに供給された弱温風の空気は地下室内Aの空気と混ぜ合わされ、地下室内Aの空気を、さらに暖める。そして、このように地下室内Aで暖められた外気(室外側吸込空気)は、送風機47を作動させる事によりダクト吸込口73から矢印71方向に吸い込まれ、給気ダクト50を経由して3階天井裏100に供給され、ガラリ49、ガラリ102より3階室内Dに給気されて3階室内Dを暖める。同様にして、送風機54を作動させる事により、地下室内Aで暖められた外気(室外側吸込空気)は、ダクト吸込口73から矢印71方向に吸い込まれ、給気ダクト55を経由して2階天井裏97に供給され、ガラリ53、ガラリ98より2階室内Cに給気されて2階室内Cを暖める。同様にして、送風機59を作動させる事により、地下室内Aで暖められた外気(室外側吸込空気)は、ダクト吸込口73から矢印71方向に吸い込まれ、給気ダクト61を経由して1階天井裏93に供給され、ガラリ58、ガラリ94より1階室内Bに給気されて1階室内Bを暖める。   Thus, after using the hot water warmed by the solar water heater 44 in the bath 89, the hot remaining hot water after being used in the bath 89 is transferred to the hot water storage tank 76 installed in the hot water storage tank space 77 of the basement. The outside air (outdoor air suction air) supplied from the total heat exchange type exhaust fans 103 and 106 to the hot water storage tank space 77 by flowing and storing hot water is caused by the remaining hot water in the hot bath stored in the hot water storage tank 94. Then, it is further heated and supplied to the underground room A from the gallery 72 provided in the hot water storage tank space 77. The low-temperature air supplied to the basement A in this way is mixed with the air in the basement A to further warm the air in the basement A. And the outside air (outdoor suction air) warmed in the basement A in this way is sucked in the direction of arrow 71 from the duct suction port 73 by operating the blower 47, and the third floor via the air supply duct 50. Supplied to the ceiling 100 and supplied to the third-floor room D from the louver 49 and louver 102 to warm the third-floor room D. Similarly, by operating the blower 54, the outside air warmed in the basement A (outside air suction air) is sucked in the direction of the arrow 71 from the duct suction port 73, and passes through the air supply duct 55 to the second floor. Supplied to the ceiling 97 and supplied to the second-floor room C from the louvers 53 and 98 to warm the second-floor room C. Similarly, by operating the blower 59, the outside air warmed in the basement A (outside air suction air) is sucked in the direction of the arrow 71 from the duct suction port 73, and passes through the air supply duct 61 to the first floor. Supplied to the ceiling 93 and supplied to the first floor room B from the gallery 58 and gallery 94 to warm the first floor room B.

このように、冬期においては、太陽熱温水器44で温められた温水を風呂89で使用した後、風呂89で利用された後の温かい残り湯を、地下室の温水蓄熱槽空間77に設置した温水蓄熱槽76に流して溜湯させる事により、曇りや雨の日が続いた場合でも、風呂89で利用された後の温かい残り湯を温水蓄熱槽76に流して溜湯させる事により、地下室内Aの空気を暖める事が可能となる。   Thus, in the winter season, after using the hot water heated by the solar water heater 44 in the bath 89, the hot remaining hot water after being used in the bath 89 is installed in the hot water storage tank space 77 of the basement. Even if cloudy or rainy days continue by flowing into the bath 76 and storing hot water, the hot remaining hot water after being used in the bath 89 is poured into the hot water storage tank 76 to store hot water. It is possible to warm the air.

図4は、本発明における地下室付住宅41を、次世代省エネタイプの断熱で構成した状態を示す。屋根の断熱に関しては、屋根断熱材120(一般的には、厚さ160mmの発泡ウレタン)を屋根内側に施工する。外壁の断熱に関しては、外壁断熱材121(一般的には、厚さ75mmの発泡ウレタン)を外壁内側に施工する。窓のサッシに関しては、各社から発売されている断熱等級4(次世代省エネタイプ)の断熱サッシ122を使用する。基礎の断熱に関しては、基礎外断熱材123(一般的には、厚さ50mmの発泡スチロール板)を基礎コンクリートの外側に施工する。なお、地下室の外壁の外側に施工する基礎外断熱材123は、地表面から約10cmの深さまで施工する。その理由は、地下室の外壁全体に基礎外断熱材123を施工した場合、地下室コンクリートに地中熱が伝わりにくくなるためです。但し、ここに書かれた断熱材の種類と材質に関しては、例えば、発泡スチロール板であっても、密度の違いにより断熱効果に変化が生じるため、同一メーカーであっても、密度により厚さが変わる場合もある。   FIG. 4 shows a state in which the basement-equipped house 41 in the present invention is configured by next-generation energy-saving heat insulation. Regarding the heat insulation of the roof, the roof heat insulating material 120 (generally, urethane foam having a thickness of 160 mm) is applied to the inside of the roof. Regarding the heat insulation of the outer wall, the outer wall heat insulating material 121 (generally, urethane foam having a thickness of 75 mm) is applied to the inner side of the outer wall. As for the window sash, a heat insulation sash 122 of heat insulation grade 4 (next generation energy saving type) sold by each company is used. Regarding the heat insulation of the foundation, an outside foundation heat insulating material 123 (generally, a foamed polystyrene board having a thickness of 50 mm) is applied to the outside of the foundation concrete. In addition, the foundation outside heat insulating material 123 to be constructed outside the outer wall of the basement is constructed to a depth of about 10 cm from the ground surface. The reason for this is that when the foundation outer insulation 123 is installed on the entire outer wall of the basement, it is difficult for the underground heat to be transmitted to the basement concrete. However, regarding the type and material of the heat insulating material written here, for example, even if it is a polystyrene plate, the heat insulating effect changes due to the difference in density, so even the same manufacturer changes the thickness depending on the density In some cases.

本発明における地下室付住宅41の断熱に関しては、最大限の省エネ効果を得るためにも、図4で説明した次世代省エネタイプの断熱を施工する必要がある。   Regarding the heat insulation of the basement-equipped house 41 in the present invention, it is necessary to construct the next-generation energy-saving type heat insulation described in FIG. 4 in order to obtain the maximum energy saving effect.

図5は、温水蓄熱槽131の正面図、平面図、A‐A断面図、B‐B断面図である。温水蓄熱槽131は、長方形に切断された2枚のゴム状シート(塩化ビニールシート等)の端部を溶着し、水枕状に構成される。上部に使用する上面ゴムシート132には取入口138、排水口135のための穴(図示せず)を開け、さらに、ゴム状のシートを四角形状に切断(約20cm×約25cmの大きさに切断)して中央部に風呂の残り湯の温水取入口の穴(図示せず)を開けて溶着部137を作成し、溶着部137に塩ビ管で製作した取入口138を塩ビ溶接すると共に、同様に、ゴム状のシートを四角形状に切断(約20cm×約25cmの大きさに切断)して中央部に排水口の穴(図示せず)を開けて溶着部134を作成し、溶着部134に塩ビ管で製作した排水口135を塩ビ溶接し、上面ゴムシート132に開けられた穴位置(図示せず)に合わせて、溶着部137、溶着部134を溶着して取り付ける。なお、現在では砂漠や高地に人造湖等を造る際に、砂漠や高地等に大きな穴を掘り、その穴の底面にゴムシートを敷き詰め、そのゴムシート同士を溶着して一枚の大きな防水シートに加工して水を貯める事も行われており、本発明のような温水蓄熱槽をゴムシートで作製した場合においても、長期の耐久性が保たれる。   FIG. 5 is a front view, a plan view, an AA sectional view, and a BB sectional view of the hot water heat storage tank 131. The hot water heat storage tank 131 is formed in a water pillow shape by welding the ends of two rubber-like sheets (vinyl chloride sheet or the like) cut into a rectangle. Holes (not shown) for the intake port 138 and the drain port 135 are made in the upper rubber sheet 132 used for the upper part, and the rubber sheet is cut into a square shape (about 20 cm × about 25 cm in size). And a hole (not shown) in the hot water inlet of the remaining hot water in the bath is created in the center to create a welded portion 137, and the inlet 138 made of a PVC pipe is welded to the welded portion 137 with PVC. Similarly, a rubber-like sheet is cut into a square shape (about 20 cm × about 25 cm in size) and a drain hole (not shown) is formed in the center to create a welded portion 134. A drainage port 135 made of a PVC pipe is welded to PVC 134, and a welded portion 137 and a welded portion 134 are welded and attached in accordance with a hole position (not shown) opened in the upper rubber sheet 132. Currently, when building artificial lakes in deserts and highlands, digging large holes in deserts and highlands, laying rubber sheets on the bottom of the holes, and welding the rubber sheets together into one large waterproof sheet Processing and storing water are also performed, and long-term durability is maintained even when a hot water heat storage tank like the present invention is made of a rubber sheet.

このようにして取付けた取入口138から温水蓄熱槽内部144への入口は、B‐B断面図で示すように、風呂の残り湯は、取入口138から溶着部137の直ぐ下に取付けられた固定部146をへて矢印145方向で示すように温水蓄熱槽内部144に流れ込み、温水蓄熱槽内部144の上側に温かい風呂の残り湯が溜湯される。このように温水蓄熱槽内部144に残り湯が供給された場合、温水蓄熱槽内部144の上部が温かく保たれ、温水蓄熱槽内部144の下部は、上部に比べて温度が低い状態となる。   As shown in the BB sectional view, the remaining hot water of the bath was attached to the inlet from the intake 138 thus installed to the inside of the hot water storage tank 144 immediately below the welded portion 137 from the intake 138. As shown by the arrow 145 direction through the fixing portion 146, the hot water remaining in the hot water storage tank 144 flows into the hot water storage tank interior 144, and the hot water remaining in the hot bath is stored on the upper side of the hot water storage tank interior 144. When the remaining hot water is supplied to the hot water storage tank interior 144 as described above, the upper part of the hot water storage tank interior 144 is kept warm, and the lower part of the hot water storage tank interior 144 is in a lower temperature than the upper part.

また、温水蓄熱槽内部144から排水される冷めた風呂の残り湯は、A‐A断面図で示すように、排水取込口149から曲げ加工された排水パイプ配管148により排水口135まで配管され、温水蓄熱槽内部144の冷めた風呂の残り湯は、温水蓄熱槽内部144の下部の排水取込口149から矢印150方向に吸い込まれ、排水パイプ配管148を経由して排水口135から排水される。なお、風呂の残り湯を流入する温水蓄熱槽131に取付ける取入口138の入口の高さと、冷えた風呂の残り湯が温水蓄熱槽131から排出される排水口135の出口の高さは、温水蓄熱槽131がゴム状のシートで製作されるため、温水蓄熱槽131に風呂の残り湯が流入される事により、温水蓄熱槽131が水枕状に膨らむため、温水蓄熱槽131に風呂の残り湯が満タン状態になるまで流入された状態で、温水蓄熱槽131の上面ゴムシート132の最上部位置より上部(上面ゴムシート132の上面より、約10〜約20cm高くなるのが良い)になるように構成されなければならない。   Moreover, the remaining hot water of the cooled bath drained from the hot water storage tank interior 144 is piped to the drain outlet 135 by the drain pipe pipe 148 bent from the drain intake port 149 as shown in the AA sectional view. The remaining hot water of the cold bath in the hot water storage tank interior 144 is sucked in the direction of the arrow 150 from the drain intake port 149 at the lower part of the hot water storage tank interior 144 and drained from the drain port 135 through the drain pipe 148. The In addition, the height of the inlet of the intake 138 attached to the hot water heat storage tank 131 into which the remaining hot water of the bath flows, and the height of the outlet of the drain outlet 135 from which the remaining hot water of the bath is discharged from the hot water heat storage tank 131 are Since the heat storage tank 131 is made of a rubber-like sheet, when the remaining hot water in the bath flows into the hot water heat storage tank 131, the hot water heat storage tank 131 swells in the shape of a water pillow. In the state where it is inflow until it reaches a full tank state, it is above the uppermost position of the upper surface rubber sheet 132 of the hot water heat storage tank 131 (may be about 10 to about 20 cm higher than the upper surface of the upper surface rubber sheet 132). Must be configured as follows.

このように温水蓄熱槽131を構成する事により、毎日、温かい風呂の残り湯が温水蓄熱槽131に供給され、雨や曇り日が続いた場合でも、地下室内の空気を暖める事が可能となる。さらに、排水取込口149を温水蓄熱槽内部144の底部に設置したため、風呂の残り湯の中に含まれる、温水蓄熱槽内部144の底部に蓄積する湯あか等を、冷めた風呂の残り湯と一緒に容易に排出する事が可能となる。   By configuring the hot water heat storage tank 131 in this manner, the hot water remaining in the hot bath is supplied to the hot water heat storage tank 131 every day, and even when rain or a cloudy day continues, the air in the basement can be warmed. . Further, since the drainage intake port 149 is installed at the bottom of the hot water storage tank interior 144, the hot water accumulated in the bottom of the hot water storage tank interior 144 contained in the remaining hot water of the bath is replaced with the remaining hot water of the cooled bath. It can be easily discharged together.

図6は、図5で説明した温水蓄熱槽が、どのような状態で地下室の温水蓄熱槽空間175に設置されるか示す。温水蓄熱槽空間175は、地下室内の空間として違和感が無いように、天井梁176の下面と同一面になるように温水蓄熱槽床174が構成され、温水蓄熱槽177は地下室内Aの天井梁176に囲まれた天井空間に設けられた温水蓄熱槽空間175の温水蓄熱槽床174の上面に設置されると共に、その温水蓄熱槽177に対して、風呂161に設置されている温水蓄熱槽用の排水栓(図示せず)を抜く事により、風呂161の残り湯が残り湯パイプ182を経由して矢印172方向に送られ温水蓄熱槽177に溜湯されると共に、温水蓄熱槽177から溢れ出る冷めた風呂の残り湯は排水パイプ171を経由して矢印170方向から排水溝165に排水される。   FIG. 6 shows how the hot water storage tank described in FIG. 5 is installed in the hot water storage tank space 175 of the basement. The hot water storage tank space 175 is configured to be flush with the lower surface of the ceiling beam 176 so that there is no sense of incongruity as a space in the underground room, and the hot water storage tank 177 is a ceiling beam in the underground room A. It is installed on the upper surface of the hot water heat storage tank floor 174 of the hot water heat storage tank space 175 provided in the ceiling space surrounded by 176 and for the hot water heat storage tank installed in the bath 161 with respect to the hot water heat storage tank 177 By removing the drain plug (not shown), the remaining hot water in the bath 161 is sent in the direction of the arrow 172 via the remaining hot water pipe 182 and stored in the hot water heat storage tank 177 and overflows from the hot water heat storage tank 177. The remaining hot water from the cooled bath is drained from the direction of the arrow 170 to the drain groove 165 via the drain pipe 171.

以下、この発明の実施の形態2について説明する。
[発明の実施の形態2]
The second embodiment of the present invention will be described below.
[Embodiment 2 of the Invention]

図7は、太陽熱温水器186に太陽熱温水器接続ユニット193を接続した場合の断面図である。給水管198より矢印196方向から矢印188方向に送られた水は、太陽熱温水器186の中で温められる。太陽熱温水器186の中で温められた温水は、温水パイプ192を矢印187方向から矢印190方向に送られて、太陽熱温水器接続ユニット193の中で給水管198から供給される水と混ぜ合わされて温度調整され、さらに風呂給湯器195を経由して風呂に給湯される。   FIG. 7 is a cross-sectional view when the solar water heater connection unit 193 is connected to the solar water heater 186. The water sent from the water supply pipe 198 in the direction of the arrow 196 to the arrow 188 is warmed in the solar water heater 186. The warm water warmed in the solar water heater 186 is sent through the hot water pipe 192 from the arrow 187 direction to the arrow 190 direction and mixed with the water supplied from the water supply pipe 198 in the solar water heater connection unit 193. The temperature is adjusted and hot water is supplied to the bath via a bath water heater 195.

太陽熱温水器接続ユニット193を使用するメリットは、雨や曇りの日が続いた場合、太陽熱温水器186の温度が風呂のお湯の適温まで達しない場合、太陽熱温水器186の温水は風呂給湯器195で加熱されて風呂に供給する事が可能となる。これらの太陽熱温水器接続ユニット193は、株式会社ノーリツ、リンナイ株式会社、株式会社長府製作所等の会社より発売されている。その他の、全熱交換型換気扇や、温水蓄熱槽空間の構造、さらに温水蓄熱槽空間に設置する温水蓄熱槽の構造、給気ダクトの構造に関しては、実施の形態1で説明した内容と同一である。   The merit of using the solar water heater connection unit 193 is that if the rainy or cloudy day continues, the temperature of the solar water heater 186 does not reach the appropriate temperature of the hot water of the bath, the hot water of the solar water heater 186 is the bath water heater 195 It can be heated and supplied to the bath. These solar water heater connection units 193 are sold by companies such as Noritz Corporation, Rinnai Corporation and Chofu Seisakusho Co., Ltd. The rest of the heat exchange type ventilation fan, the structure of the warm water storage tank space, the structure of the warm water storage tank installed in the warm water storage tank space, and the structure of the air supply duct are the same as those described in the first embodiment. is there.

以上、実施の形態1、2に基づいて、本発明に係るアース・ソーラーシステム(地下室対応型)について詳細に説明してきたが、本発明は、以上の実施の形態に限定されるものではなく、発明の趣旨を逸脱しない範囲において各種の改変をなしても、本発明の技術的範囲に属するのはもちろんである。   As mentioned above, based on the first and second embodiments, the earth / solar system according to the present invention (basement-compatible type) has been described in detail, but the present invention is not limited to the above-described embodiments, Even if various modifications are made without departing from the spirit of the invention, it goes without saying that they belong to the technical scope of the present invention.

図1において、太陽熱温水器2からの温水を貯留するための温水蓄熱槽14の形状は立方体で描かれているが、この形状に限らず残り湯パイプ31と排水パイプ33との間を、長い塩ビパイプや、簡単に曲げて施工する事が可能なリブパイプ等を接続して温水蓄熱槽を構成する事も可能である。このような材質を使用して温水蓄熱槽を構成する事により、地下室の天井梁の高さが低い場合においても、簡単に温水蓄熱槽を構築する事が出来る。また、温水蓄熱槽の材質に関しても、この発明の実施の形態では、安価に作製するためゴム状としているが、耐久性を考えた場合にはFRP製の温水蓄熱槽、さらに、ステンレス等の金属で温水蓄熱槽を構成する事ももちろん可能である。   In FIG. 1, the shape of the hot water heat storage tank 14 for storing the hot water from the solar water heater 2 is drawn as a cube, but the shape is not limited to this shape, and the length between the remaining hot water pipe 31 and the drain pipe 33 is long. It is also possible to configure a hot water heat storage tank by connecting a PVC pipe or a rib pipe that can be bent and constructed easily. By constructing the hot water heat storage tank using such a material, even when the height of the ceiling beam in the basement is low, the hot water heat storage tank can be easily constructed. In addition, regarding the material of the hot water storage tank, in the embodiment of the present invention, it is rubber-like for manufacturing at a low cost. However, in consideration of durability, a hot water storage tank made of FRP, and a metal such as stainless steel are used. Of course, it is possible to configure a hot water storage tank.

図1及至図3において、太陽熱温水器2、太陽熱温水器44は太陽光の集熱板と貯湯槽が一体となった形式のもので説明したが、この形式に限らず、太陽光の集熱板と貯湯槽が分離され、太陽光の集熱板が屋根に設置されると共に、貯湯槽が地表面に固定されたタイプの太陽熱温水器を使用する事も可能である。   1 to 3, the solar water heater 2 and the solar water heater 44 have been described as having a solar heat collecting plate and a hot water tank in an integrated form. It is also possible to use a solar water heater of a type in which the plate and hot water tank are separated, a solar heat collecting plate is installed on the roof, and the hot water tank is fixed to the ground surface.

図2及至図4において、外気導入ダクト66、95、99、給気ダクト50、55、61の配管スペースは、壁内、床内、天井内、又は専用配管スペースにこだわらず、最適な位置に配管される事は、当然である。   2 to 4, the piping space of the outside air introduction ducts 66, 95, 99 and the air supply ducts 50, 55, 61 is not limited to the wall, floor, ceiling, or dedicated piping space, and is optimally positioned. It is natural to be piped.

図6において、1階に設置するユニットバスを、バリアフリー対応にする場合には、ユニットバスを設置する部分について、地下室の天上スラブを掘り込むように下げなければならない。このような場合には、天井スラブを下げた部分を温水蓄熱層空間として利用し、その温水蓄熱槽空間に温水蓄熱槽を設置して、風呂の残り湯を温水蓄熱槽に流して溜湯すると共に、温水蓄熱槽空間の下部にガラリを設けて、全熱交換型換気扇から供給される温水蓄熱槽空間の空気を、地下室に供給する事も可能である。このように構成する事により、温水蓄熱槽空間が温められ、その事により浴室を暖める事が可能となる。   In FIG. 6, when the unit bus installed on the first floor is adapted for barrier-free, the part where the unit bus is installed must be lowered so as to dig up the ceiling slab of the basement. In such a case, the part where the ceiling slab is lowered is used as a hot water heat storage layer space, a hot water heat storage tank is installed in the hot water heat storage tank space, and the remaining hot water in the bath is poured into the hot water heat storage tank to store hot water. At the same time, it is also possible to provide a louver in the lower part of the hot water storage tank space and supply the air in the hot water storage tank space supplied from the total heat exchange type ventilation fan to the basement. By comprising in this way, warm water thermal storage tank space is warmed and it becomes possible to warm a bathroom by that.

この発明の実施の形態については、一般的な住宅に関して説明してきたが、建築する住宅の種類に関しては、鉄骨住宅、RCコンクリート住宅等にも応用出来ることは、当然である。   Although the embodiment of the present invention has been described with respect to a general house, it is natural that the type of house to be constructed can be applied to a steel frame house, an RC concrete house, and the like.

この発明の実施の形態1に係るアース・ソーラーシステム(地下室対応型)の分解図である。It is an exploded view of the earth solar system (basement type) according to Embodiment 1 of the present invention. 同実施の形態に係る、夏期における住宅断面図の全熱交換型換気扇と地下室を利用したアース・ソーラーシステム(地下室対応型)の弱冷風システム図である。FIG. 4 is a system diagram of a weak cold wind of an earth solar system (basement-compatible type) using a total heat exchange type exhaust fan and a basement of a sectional view of a house in summer according to the same embodiment. 同実施の形態に係る、冬期における住宅断面図の全熱交換型換気扇と地下室と太陽熱温水器を利用したアース・ソーラーシステム(地下室対応型)の弱温風システム図である。It is a low temperature wind system figure of an earth solar system (basement correspondence type) using a total heat exchange type exhaust fan, a basement, and a solar water heater of a sectional view of a house in winter according to the embodiment. 同実施の形態に係る、地下付住宅に、屋根断熱材、外壁断熱材、断熱樹脂サッシ、基礎外断熱材を施工した状態の断面図である。It is sectional drawing of the state which constructed the roof heat insulating material, the outer wall heat insulating material, the heat insulation resin sash, and the foundation outer heat insulating material in the basement house based on the embodiment. 同実施の形態に係る、温水蓄熱槽の正面図、平面図、断面図である。It is a front view, a top view, and a sectional view of a hot water heat storage tank according to the embodiment. 同実施の形態に係る、風呂と温水蓄熱槽と、その風呂と温水蓄熱槽とを配管している配管図である。It is a piping figure which has piped the bath and warm water thermal storage tank and the bath and warm water thermal storage tank concerning the embodiment. この発明の実施の形態2に係る、太陽熱温水器に太陽熱温水器接続ユニットを接続した場合の断面図である。It is sectional drawing at the time of connecting a solar water heater connection unit to the solar water heater based on Embodiment 2 of this invention.

A 地下室内
B 1階室内
C 2階室内
D 3階室内
1 地下室付住宅
2 太陽熱温水器
3 屋根
4 全熱交換型換気扇
5 全熱交換型換気扇
6 地下室
7 矢印
8 給気ダクト
9 ダクトスペース
10 ガラリ
11 矢印
12 地表面
13 階段
14 温水蓄熱槽
15 ガラリ
16 地下室スラブ
17 地下室耐圧盤
18 地下室内部
19 天井梁
20 地下室外壁
21 矢印
22 矢印
23 排水溝
24 仕切壁
25 排水パイプ
26 風呂
27 外気導入ダクト
28 温水パイプ
29 水栓
30 外気導入ダクト
31 残り湯パイプ
32 矢印
33 排水パイプ
34 排水溝
35 温水蓄熱槽空間
41 地下室付住宅
42 屋根
43 太陽
44 太陽熱温水器
45 矢印
46 矢印
47 送風機
48 矢印
49 ガラリ
50 給気ダクト
51 矢印
52 矢印
53 ガラリ
54 送風機
55 給気ダクト
56 矢印
57 矢印
58 ガラリ
59 送風機
60 矢印
61 給気ダクト
62 矢印
63 1階床下
64 地下室スラブ
65 全熱交換型換気扇
66 外気導入ダクト
67 地表面
68 矢印
69 地下室外壁
70 地下室耐圧盤
71 矢印
72 ガラリ
73 ダクト吸込口
74 仕切壁
75 矢印
76 温水蓄熱槽
77 温水蓄熱槽空間
78 温水蓄熱槽床
79 矢印
80 排水パイプ
81 排水溝
82 給水管
83 矢印
84 矢印
85 開閉バルブ
86 矢印
87 矢印
88 矢印
89 風呂
90 蛇口
91 水栓
92 矢印
93 1階天井裏
94 ガラリ
95 外気導入ダクト
96 矢印
97 2階天井裏
98 ガラリ
99 外気導入ダクト
100 3階天井裏
101 矢印
102 ガラリ
103 全熱交換型換気扇
104 温水パイプ
105 給水パイプ
106 全熱交換型換気扇
107 矢印
108 矢印
111 残り湯パイプ
112 矢印
113 排水パイプ
114 矢印
120 屋根断熱材
121 外壁断熱材
122 断熱サッシ
123 基礎外断熱材
124 1階床下
125 1階天井裏
126 2階天井裏
127 3階天井裏
131 温水蓄熱槽
132 上面ゴムシート
133 下面ゴムシート
134 溶着部
135 排水口
136 溶着部
137 溶着部
138 取入口
139 矢印
140 矢印
141 矢印
142 矢印
143 矢印
144 温水蓄熱槽内部
145 矢印
146 固定部
147 固定部
148 排水パイプ配管
149 排水取込口
150 矢印
160 温水パイプ
161 風呂
162 矢印
163 排水パイプ
164 矢印
165 排水溝
166 地下室外壁
167 地下室耐圧盤
169 矢印
170 矢印
171 排水パイプ
172 矢印
173 下面ゴムシート
174 温水蓄熱槽床
175 温水蓄熱槽空間
176 天井梁
177 温水蓄熱槽
178 1階床
180 地下室スラブ
181 上面ゴムシート
182 残り湯パイプ
183 矢印
184 蛇口
185 水栓
186 太陽熱温水器
187 矢印
188 矢印
189 矢印
190 矢印
191 給水パイプ
192 温水パイプ
193 太陽熱温水器接続ユニット
195 風呂給湯器
196 矢印
197 開閉バルブ
198 給水管
199 蛇口
200 風呂
A basement room B 1st floor room C 2nd floor room D 3rd floor room 1 house with basement 2 solar water heater 3 roof 4 total heat exchange type ventilation fan 5 total heat exchange type ventilation fan 6 basement room 7 arrow 8 air supply duct 9 duct space 10 gallery 11 arrow 12 ground surface 13 stairs 14 hot water storage tank 15 gallery 16 basement slab 17 basement pressure panel 18 basement interior 19 ceiling beam 20 basement outer wall 21 arrow 22 arrow 23 drainage groove 24 partition wall 25 drainage pipe 26 bath 27 outdoor air introduction duct 28 hot water Pipe 29 Faucet 30 Outside air introduction duct 31 Remaining hot water pipe 32 Arrow 33 Drainage pipe 34 Drainage groove 35 Warm water storage tank space 41 Housing with basement 42 Roof 43 Sun 44 Solar water heater 45 Arrow 46 Arrow 46 Blower 48 Arrow 49 Garage 50 Air supply Duct 51 Arrow 52 Arrow 53 4 blower 55 air supply duct 56 arrow 57 arrow 58 gallery 59 blower 60 arrow 61 air supply duct 62 arrow 63 first floor under floor 64 basement slab 65 total heat exchange type exhaust fan 66 outside air introduction duct 67 ground surface 68 arrow 69 basement outer wall pressure 70 Panel 71 Arrow 72 Slot 73 Duct inlet 74 Partition wall 75 Arrow 76 Warm water storage tank 77 Warm water heat storage tank space 78 Warm water storage tank floor 79 Arrow 80 Drain pipe 81 Drain groove 82 Water supply pipe 83 Arrow 84 Arrow 85 Open / close valve 86 Arrow 87 Arrow 88 arrow 89 bath 90 faucet 91 faucet 92 arrow 93 first floor ceiling back 94 gallery 95 outside air introduction duct 96 arrow 97 second floor ceiling 98 gallery 99 outside air introduction duct 100 third floor ceiling 101 arrow 102 gallery 103 total heat exchange type exhaust fan 104 Hot water pipe DESCRIPTION OF SYMBOLS 105 Water supply pipe 106 Total heat exchange type exhaust fan 107 Arrow 108 Arrow 111 Remaining hot water pipe 112 Arrow 113 Drain pipe 114 Arrow 120 Roof heat insulating material 121 Outer wall heat insulating material 122 Heat insulating sash 123 Outside base heat insulating material 124 1st floor under floor 125 1st floor ceiling back 126 2nd floor ceiling 127 127 3rd floor ceiling 131 Hot water heat storage tank 132 Upper surface rubber sheet 133 Lower surface rubber sheet 134 Welding part 135 Drainage port 136 Welding part 137 Welding part 138 Inlet 139 Arrow 140 Arrow 141 Arrow 142 Arrow 143 Arrow 144 144 Hot water heat storage tank Internal 145 Arrow 146 Fixed portion 147 Fixed portion 148 Drain pipe piping 149 Drain intake port 150 Arrow 160 Hot water pipe 161 Bath 162 Arrow 163 Drain pipe 164 Arrow 165 Drain groove 166 Basement outer wall 167 Basement Platen 169 Arrow 170 Arrow 171 Drain pipe 172 Arrow 173 Bottom rubber sheet 174 Hot water heat storage tank floor 175 Hot water heat storage tank space 176 Ceiling beam 177 Hot water storage tank 178 First floor floor 180 Basement slab 181 Top rubber sheet 182 Remaining hot water pipe 18 183 185 Water faucet 186 Solar water heater 187 Arrow 188 Arrow 189 Arrow 190 Arrow 191 Water supply pipe 192 Hot water pipe 193 Solar water heater connection unit 195 Bath water heater 196 Arrow 197 Open / close valve 198 Water supply pipe 199 Faucet 200 Bath

Claims (3)

建物の、各階の室内に取付けた全熱交換型換気扇が室内側に供給する新鮮な外気の、何れかの階層からの外気を地下室に送り込むと共に、地下室の一部の空間を仕切り、温水蓄熱槽を設置した温水蓄熱槽空間を構築し、冬期には、その温水蓄熱槽に太陽熱温水器で温められた温水を風呂で使用した後、温かい風呂の残り湯を温水蓄熱槽の中に流して溜湯させる事により温水蓄熱槽空間の空気が暖められると共に、このようにして暖められた温水蓄熱槽空間に、別の階層の全熱交換型換気扇から室内側に供給される新鮮な外気を送り込む事により、その温水蓄熱槽空間に送り込まれた外気は、風呂の残り湯が溜湯された温かい温水蓄熱槽空間により暖められ、暖められた外気は温水蓄熱槽空間に設けられたガラリより地下室に供給され、地中熱により暖められた地下室内の空気と混ぜ合わされた後、各階天井内部に設けられたダクトの送風機を作動させる事により、地下室からダクトを経由して各階の天井内部に送られ、天井に設けたガラリより室内に供給されて室内を暖めると共に、夏期においては、温水蓄熱槽に風呂の残り湯を供給せず、全熱交換型換気扇から温水蓄熱槽空間に送り込まれた外気を、温水蓄熱槽空間に設けられたガラリより地下室に供給し、地中熱により冷やされた地下室内の空気と混ぜ合わされた後、各階天井内部に設けられたダクトの送風機を作動させる事により、地下室からダクトを経由して各階の天井内部に送られ、天井に設けたガラリより室内に供給されて各室を冷やした事を特徴とするアース・ソーラーシステム(地下室対応型)。   The building's total heat exchange type ventilation fan installed in the room on each floor sends fresh outside air from any level of the fresh air supplied to the room into the basement, and also partitions a part of the basement into a hot water storage tank. In the winter, use hot water warmed by a solar water heater in the bath, and then flow the remaining hot water from the hot bath into the hot water storage tank. Hot water warms the air in the hot water storage tank space, and sends fresh outside air supplied to the indoor side from a total heat exchange type exhaust fan at another level into the warm water storage tank space heated in this way. Therefore, the outside air sent to the warm water storage tank space is warmed by the warm warm water storage tank space where the remaining hot water of the bath is stored, and the warmed outside air is supplied to the basement from the gallery provided in the warm water storage tank space Geothermal heat After being mixed with warmer air in the basement, the duct blower installed inside each floor ceiling is operated to send it from the basement to the ceiling inside each floor via the duct. In the summer, the remaining hot water in the bath is not supplied to the hot water storage tank, and the outdoor air sent from the total heat exchange type exhaust fan to the hot water storage tank space is supplied to the hot water storage tank space. After supplying to the basement from the installed gallery and mixing with the air in the basement cooled by underground heat, by operating the duct blower provided in the ceiling of each floor, from the basement via the duct Earth solar system (basement-compatible type), which is sent to the ceiling of each floor and supplied to the room from the gallery on the ceiling to cool each room. 地下室内の天井下の天井梁に囲まれた空間に温水蓄熱槽を配置した温水蓄熱槽空間を設置した事を特徴とする請求項1に記載のアース・ソーラーシステム(地下室対応型)。   The earth / solar system (basement-compatible type) according to claim 1, wherein a hot water storage tank space is provided in a space surrounded by ceiling beams under the ceiling in the basement. 地下室内の置き床や、壁面に対して二重壁やボードを施行せず、地下室の床と壁のコンクリートを介して地中熱を地下室に取り込む事を特徴とする請求項1又は2に記載のアース・ソーラーシステム(地下室対応型)。   3. The underground heat is taken into the basement through the basement floor and the concrete of the wall without enforcing a double wall or board on the floor or wall in the basement. Earth / solar system (basement compatible).
JP2010056192A 2010-03-12 2010-03-12 Earth / Solar system (basement compatible) Expired - Fee Related JP5505837B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010056192A JP5505837B2 (en) 2010-03-12 2010-03-12 Earth / Solar system (basement compatible)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010056192A JP5505837B2 (en) 2010-03-12 2010-03-12 Earth / Solar system (basement compatible)

Publications (2)

Publication Number Publication Date
JP2011190961A true JP2011190961A (en) 2011-09-29
JP5505837B2 JP5505837B2 (en) 2014-05-28

Family

ID=44796085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010056192A Expired - Fee Related JP5505837B2 (en) 2010-03-12 2010-03-12 Earth / Solar system (basement compatible)

Country Status (1)

Country Link
JP (1) JP5505837B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102444955A (en) * 2011-12-27 2012-05-09 中海阳新能源电力股份有限公司 Photovoltaic construction solar system integrated with vertical water discharge, water collecting and air changing
CN111852077A (en) * 2020-06-17 2020-10-30 上海乾林建设工程有限公司 Green energy-saving steel structure building
WO2021002483A3 (en) * 2019-06-15 2021-03-18 竜也 新谷 Invention for more convenient living

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60207841A (en) * 1984-03-30 1985-10-19 Misawa Homes Co Ltd Dew condensation protection and method of heating building with basement
JP2002115342A (en) * 2000-10-06 2002-04-19 Sekisui House Ltd Floor structure of dwelling house
JP2005172342A (en) * 2003-12-10 2005-06-30 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Heat exchanging system and heat exchanging method using heat storage material
JP2009264721A (en) * 2008-04-23 2009-11-12 Takahashi Kanri:Kk Earth solar system (single layer type)

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60207841A (en) * 1984-03-30 1985-10-19 Misawa Homes Co Ltd Dew condensation protection and method of heating building with basement
JP2002115342A (en) * 2000-10-06 2002-04-19 Sekisui House Ltd Floor structure of dwelling house
JP2005172342A (en) * 2003-12-10 2005-06-30 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Heat exchanging system and heat exchanging method using heat storage material
JP2009264721A (en) * 2008-04-23 2009-11-12 Takahashi Kanri:Kk Earth solar system (single layer type)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102444955A (en) * 2011-12-27 2012-05-09 中海阳新能源电力股份有限公司 Photovoltaic construction solar system integrated with vertical water discharge, water collecting and air changing
WO2021002483A3 (en) * 2019-06-15 2021-03-18 竜也 新谷 Invention for more convenient living
CN111852077A (en) * 2020-06-17 2020-10-30 上海乾林建设工程有限公司 Green energy-saving steel structure building
CN111852077B (en) * 2020-06-17 2021-06-29 上海乾林建设工程有限公司 Green energy-saving steel structure building

Also Published As

Publication number Publication date
JP5505837B2 (en) 2014-05-28

Similar Documents

Publication Publication Date Title
JP5505836B2 (en) Improved earth / solar system (Ground heat recovery pipe method)
JP5742009B2 (en) Earth / Solar / Zero Energy Housing
JP2009264721A (en) Earth solar system (single layer type)
JP5067730B2 (en) Earth / Solar system
JP2006266575A (en) House using geothermal heat
US20140014302A1 (en) Heat energy system for heating or maintaining thermal balance in the interiors of buildings or building parts
WO2011033325A1 (en) Cooling, heating, surface-radiating and air exchanging building system with low energy consumption for energy-saving houses with increased passive quality
JP6135905B2 (en) Earth / Solar system
JP4785098B2 (en) Underground heat exchanger buried structure
JP5505837B2 (en) Earth / Solar system (basement compatible)
JP2005061786A (en) Indoor temperature adjusting structure using geotherm
JP2014167369A (en) Building structure
JP5351210B2 (en) Thermal storage air conditioning system
JP2010151351A (en) Underground heat exchanger burying structure
CN208312591U (en) Build heat circulating system
JP6135906B2 (en) Earth / Solar system
JP6135907B2 (en) Earth / Solar system
JP6249221B2 (en) Air-conditioning equipment using geothermal heat
JP5344343B2 (en) Earth solar system (Ground heat recovery pipe method)
JP2011226750A (en) Air conditioning mechanism configured by integrating in-ground heat exchanger and building
JP5833064B2 (en) Thermal storage air conditioning system
JP2014015711A (en) Radiant heat heating and cooling system of building utilizing in-wall-body vent layer
KR101656731B1 (en) Total heat exchange ventilating system using geothermal
JP2020063847A (en) Air conditioning system and dwelling facility comprising air conditioning system
JP2006153304A (en) Geotherm utilizing installation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140307

R150 Certificate of patent or registration of utility model

Ref document number: 5505837

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees