WO2015165476A1 - Method for heating and cooling buildings - Google Patents

Method for heating and cooling buildings Download PDF

Info

Publication number
WO2015165476A1
WO2015165476A1 PCT/EA2014/000011 EA2014000011W WO2015165476A1 WO 2015165476 A1 WO2015165476 A1 WO 2015165476A1 EA 2014000011 W EA2014000011 W EA 2014000011W WO 2015165476 A1 WO2015165476 A1 WO 2015165476A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heating
low
building
coolant
Prior art date
Application number
PCT/EA2014/000011
Other languages
French (fr)
Russian (ru)
Inventor
Сергей Евгеньевич УГЛОВСКИЙ
Татьяна Петровна БЕЛОБОЖНАЯ
Денис Дмитриевич ШАТАЛОВ
Original Assignee
Сергей Евгеньевич УГЛОВСКИЙ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сергей Евгеньевич УГЛОВСКИЙ filed Critical Сергей Евгеньевич УГЛОВСКИЙ
Priority to EA201600157A priority Critical patent/EA201600157A1/en
Priority to PCT/EA2014/000011 priority patent/WO2015165476A1/en
Publication of WO2015165476A1 publication Critical patent/WO2015165476A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D15/00Other domestic- or space-heating systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Definitions

  • the invention relates to methods for autonomous heating and cooling of buildings using low-potential sources.
  • panel heating In the prior art, panel heating is known in which heat is transferred to a heated room from heating panels, which are usually made of concrete, sealing heating elements in it in the form of steel pipes, through which the coolant circulates. Heating panels are located in the outer walls and in the window-sill space, since this neutralizes the action of flows of falling cold air and raises the temperature of the internal surfaces of the building envelope. The heating elements together with the heat-insulating layer are laid in the outer wall panel during its manufacture. Compared to other heating systems, panel heating achieves an increase in sanitary and hygienic qualities and an improvement in the interior of the room, as well as a reduction in metal consumption and installation labor costs.
  • a known method of constructing a geothermal building allows to minimize the amount of fuel required for heating in the winter months.
  • the construction of the building allows to maximize the amount of heat received from the soil through the basement, which has a relatively thin floor of heat-conducting and non-insulated material.
  • the basement is located at a depth significantly greater than the depth of freezing of the soil, one or several floors are located above the basement, passages are made in the floor of the residential floor for organizing convection air flows between the basement and the residential floor, the walls have the maximum permissible insulation both at the level of the basement and the residential floor, the ceiling of the first floor is also preferably insulated.
  • the disadvantage of this method is the complexity of influencing the temperature inside the building, as well as the additional building complexity of the building and the inconvenience during operation, associated with the location of the basement at a sufficient depth, ensuring thermal conductivity of the floor, with the device of passages for air.
  • a building with air heating is known (RF patent Ns 2293823, MKI F24D5 / 02, ⁇ 04 ⁇ 1 / 24) with a prefabricated metal frame and air heating in it, moreover, the support beams of the metal frame are box-shaped, the floor panels are hollow, the building heating system is air heat exchanger with the formation of an air duct inside the racks, connecting elements and support beams of the metal frame, the cavities of the floor panels and the space between the outer and inner wall panels for the circulation of heated air Second environment, heated room heated through the walls, floor and ceiling.
  • the disadvantage is the need for a source of high potential heat with a temperature sufficient to heat the walls, floor and ceiling with air.
  • a known method of heating buildings which consists in receiving heat from a high potential source installed inside the building, and a low potential source, characterized in that from the low potential heat source containing the earth pipe laid in the ground below the freezing depth of the soil, heat is transferred to the heat carrier in a volumetric radiator system, for which, inside the p-layer wall, m> 1 volume radiator systems with a coolant of a low-grade heat source are installed, the installation location of which is determined provided that the coordinates of the axial plane of the circulating coolant with a temperature t T inside the volumetric radiator system are determined from the temperature distribution diagram inside the ⁇ -layer wall from the condition that n ⁇ 3, at T > tco, where t T is the coolant temperature of the volumetric radiator system, to, is the selected temperature in the temperature distribution diagram along the axial plane of the circulating coolant, and t T is controlled by the capacity of the circulation pump depending on the set temperature inside the building and temperature fluctuations outdoor air tour (RF patent N22301944, MKI F24D 15, 2007
  • This method is the closest to the proposed, and therefore adopted as a prototype.
  • the task is to avoid increasing the temperature potential of a low-temperature coolant, and to abandon sophisticated technical equipment and a volume radiator heating system. Also, the task is to prevent depletion of the heat flux from the soil and eliminate the danger of freezing.
  • the tasks are achieved using the present method of heating and cooling buildings.
  • a distinctive feature of the proposed method is that a high-temperature carrier is not used, nor is an increase in the temperature of a low-grade coolant used.
  • a distinctive feature of the proposed method is that any source of natural heat, as well as man-made sources, can serve as a source of low-grade heat.
  • a distinctive feature of the proposed method is that the low-grade coolant is circulated between the external and internal cladding in a specially laid pipeline or inside the frame of a heated building, the frame is placed between the external and internal cladding, forming a fixed formwork, and the external cladding is insulated from the internal.
  • a distinctive feature of the proposed method is that the same coolant is used for cooling in the summer, while the accumulation of heat in the soil occurs, which prevents the exhaustion of the heat flux from the soil and eliminates the risk of freezing.
  • Figure 1 shows a diagram of a method of heating and cooling a building.
  • Figure 1 shows an embodiment of a method of heating and cooling a building.
  • the diagram shows: a low-potential source (1) that transfers heat to the coolant, a metal frame (2) inside which the coolant is circulated, and a circulation pump (3), which regulate the coolant temperature and circulate it.
  • Figure 2 shows the elements of the building envelope: the frame (4), which is located between the inner lining (5) and the outer lining (6).
  • Fig.3 shows a variant of the method in which the coolant circulates in several separate circulation circuits (7).
  • Figure 4 shows a variant of the method in which each circulation circuit (7) is a loop along the perimeter of the building.
  • the method is carried out by selecting low-grade heat from the soil using a closed circulation system with a coolant.
  • the same heat carrier is used to cool the building during the summer period, while the accumulation of heat in the soil occurs, which prevents the exhaustion of the heat flux from the soil and eliminates the risk of freezing.
  • the temperature of the coolant is regulated by the performance of one or more circulation pumps, depending on the set temperature inside the building and the fluctuation of outdoor temperatures.
  • the heated object is a frame building with heating inside the frame.
  • the cavities inside the frame, interconnected, ensure uniform passage of the coolant and heating of the planes that bound the room, including walls, floor and ceiling, creating an effective heating system.
  • a variant of the heating method is possible, in which the coolant circulates in pipelines that are not part of the building frame.
  • a variant of the method is possible in which any source of natural heat and / or anthropogenic sources are used as a source of low-grade heat.
  • the heat collection loop may include a system of vertical wells, or collectors placed in horizontal trenches from tubes rolled up in rings, or otherwise organized heat collection. With this heating method, it is advisable to use high-quality thermal insulation and heat recovery of ventilation air. In many cases, a low-temperature heating regime is sufficient, while ensuring thermal protection of the building in accordance with modern building standards.
  • the building heating system is made with a heat exchanger, with the formation of air ducts inside the building frame for circulation of the heated air, heating the room through walls, floor and ceiling.
  • a variant of the method is possible in which, in addition to the soil, heat of solar radiation is used, which is perceived by the solar collector and used for heating or to accumulate heat in the soil, in addition to the soil, which prevents depletion of the heat flux from the soil and eliminates the risk of freezing.
  • a variant of the method is also possible in which, to maintain the required level of comfortable temperature inside the building, devices are used to increase the temperature potential of a low-grade heat source or independent sources of high-temperature heat are used.

Abstract

The invention relates to methods for autonomously heating and cooling buildings using low-potential sources. The method is carried out by recovering low-potential heat from the ground using a closed circulation system with a heat carrier. The same heat carrier is used for cooling a building during the summer, wherein heat is accumulated in the ground, which prevents the depletion of heat flow from the ground and eliminates the risk of the ground freezing. The low-potential heat carrier is circulated between an inner siding and an outer siding in a specially laid pipeline, or within a framework of a building to be heated; the framework is positioned between the inner siding and the outer siding, forming a non-removable formwork, and the outer siding is thermally insulated from the inner siding. The aim consists in avoiding an increase in the temperature potential of a low-temperature heat carrier, doing away with complex technical equipment and doing away with a volumetric radiator heating system. The aim also consists in preventing the depletion of heat flow from the ground and eliminating the risk of the ground freezing.

Description

СПОСОБ ОТОПЛЕНИЯ И ОХЛАЖДЕНИЯ ЗДАНИЙ  METHOD FOR HEATING AND COOLING BUILDINGS
ОПИСАНИЕ DESCRIPTION
Изобретение относится к способам автономного отопления и охлаждения зданий с использованием низкопотенциальных источников. The invention relates to methods for autonomous heating and cooling of buildings using low-potential sources.
Из уровня техники известно панельное отопление, при котором тепло в отапливаемое помещение передаётся от отопительных панелей, которые обычно делают из бетона, заделывая в него нагревательные элементы в виде стальных труб, по которым циркулирует теплоноситель. Отопительные панели располагают в наружных стенах и в подоконном пространстве, т. к. это нейтрализует действие потоков ниспадающего холодного воздуха и повышает температуру внутренних поверхностей ограждающих конструкций. Нагревательные элементы вместе с теплоизоляционным слоем закладывают в наружную стеновую панель в процессе её изготовления. По сравнению с другими отопительными системами при панельном отоплении достигаются повышение санитарно-гигиенических качеств и улучшение интерьера помещения, а также снижение расхода металла и трудовых затрат на монтаж. In the prior art, panel heating is known in which heat is transferred to a heated room from heating panels, which are usually made of concrete, sealing heating elements in it in the form of steel pipes, through which the coolant circulates. Heating panels are located in the outer walls and in the window-sill space, since this neutralizes the action of flows of falling cold air and raises the temperature of the internal surfaces of the building envelope. The heating elements together with the heat-insulating layer are laid in the outer wall panel during its manufacture. Compared to other heating systems, panel heating achieves an increase in sanitary and hygienic qualities and an improvement in the interior of the room, as well as a reduction in metal consumption and installation labor costs.
Первые системы отопления с нагревателями из труб, заделанных в бетон, были осуществлены в Саратове в 1905 русским инженером В. А. Яхимовичем. Через 10 лет их уже было более ста по всей России; однако дальнейшее развитие и совершенствование панельного отопления относится лишь к 1950-м гг. (Ливчак И. Ф., Системы отопления с бетонными отопительными панелями, М., 1956). В современном строительстве панельное отопление используется в зданиях, к которым предъявляют повышенные санитарно-гигиенические и эстетические требования (Шаповалов И. С, Проектирование панельно-лучистого отопления, М., 1966; Туркин В. П.. Отопление жилых, общественных и сельскохозяйственных зданий. Челябинск, 1970). The first heating systems with pipe heaters embedded in concrete were implemented in Saratov in 1905 by a Russian engineer V. A. Yakhimovich. After 10 years, there were already more than one hundred throughout Russia; however, the further development and improvement of panel heating refers only to the 1950s. (Livchak I.F., Heating systems with concrete heating panels, M., 1956). In modern construction, panel heating is used in buildings that are subject to increased sanitary and hygienic and aesthetic requirements (I. Shapovalov, Design of panel-radiant heating, M., 1966; Turkin V.P. Heating of residential, public and agricultural buildings. Chelyabinsk, 1970).
Известен способ конструкции геотермального здания (патент США N° 4176788, 1979 г., МКИ F24D15/00) позволяющего свести к минимуму количество топлива, необходимого для обогрева в зимние месяцы. Конструкция здания позволяет максимально увеличить количество тепла, получаемого от грунта посредством подвала, имеющего сравнительно тонкий пол из теплопроводящего и неизолированного материала. При этом подвал расположен на глубине, значительно превышающей глубину промерзания грунта, над подвалом располагаются один или несколько этажей, в полу жилого этажа выполнены проходы для организации конвекционных потоков воздуха между подвалом и жилым этажом, стены имеют максимально допустимую изоляцию как на уровне подвала, так и жилого этажа, потолок первого этажа также предпочтительно теплоизолирован. A known method of constructing a geothermal building (US patent N ° 4176788, 1979, MKI F24D15 / 00) allows to minimize the amount of fuel required for heating in the winter months. The construction of the building allows to maximize the amount of heat received from the soil through the basement, which has a relatively thin floor of heat-conducting and non-insulated material. Moreover, the basement is located at a depth significantly greater than the depth of freezing of the soil, one or several floors are located above the basement, passages are made in the floor of the residential floor for organizing convection air flows between the basement and the residential floor, the walls have the maximum permissible insulation both at the level of the basement and the residential floor, the ceiling of the first floor is also preferably insulated.
Недостатком способа является сложность влияния на температуру внутри здания, а также дополнительная строительная сложность здания и неудобства в процессе эксплуатации, связанные с расположением подвала на достаточной глубине, с обеспечением теплопроводности пола, с устройством проходов для воздуха. The disadvantage of this method is the complexity of influencing the temperature inside the building, as well as the additional building complexity of the building and the inconvenience during operation, associated with the location of the basement at a sufficient depth, ensuring thermal conductivity of the floor, with the device of passages for air.
Известно здание с воздушным отоплением (патент РФ Ns 2293823, МКИ F24D5/02, Е04В1/24) с быстровозводимым металлическим каркасом и воздушным отоплением в нем, причем опорные балки металлического каркаса выполнены коробчатой формы, панели перекрытий - полыми, система отопления здания выполнена воздушной с теплообменником с образованием воздуховода внутри стоек, соединительных элементов и опорных балок металлического каркаса, полостей панелей перекрытий и пространства между наружными и внутренними стеновыми панелями для циркуляции нагретой воздушной среды, отапливающей помещения через нагретые стены, пол и потолок. A building with air heating is known (RF patent Ns 2293823, MKI F24D5 / 02, Е04В1 / 24) with a prefabricated metal frame and air heating in it, moreover, the support beams of the metal frame are box-shaped, the floor panels are hollow, the building heating system is air heat exchanger with the formation of an air duct inside the racks, connecting elements and support beams of the metal frame, the cavities of the floor panels and the space between the outer and inner wall panels for the circulation of heated air Second environment, heated room heated through the walls, floor and ceiling.
Недостатком является необходимость в источнике высокопотенциального тепла с температурой, достаточной для нагрева посредством воздуха стен, пол и потолка. The disadvantage is the need for a source of high potential heat with a temperature sufficient to heat the walls, floor and ceiling with air.
Известен способ отопления зданий, заключающийся в получении тепла от высокопотенциального источника, установленного внутри здания, и низкопотенциального источника, отличающийся тем, что от низкопотенциального источника тепла, содержащего уложенный в грунт ниже глубины замерзания почвы земляной трубопровод, передают тепло теплоносителю в объемной радиаторной системе, для чего внутри п- слойной стены устанавливают т>1 объемных радиаторных систем с теплоносителем низкопотенциального источника тепла, место установки которых определяют при условии, что координаты осевой плоскости циркулирующего теплоносителя с температурой tT внутри объемной радиаторной системы определяют по графику распределения температур внутри η-слойной стены из условия, что п^З, a tT>tco, где tT - температура теплоносителя объемной радиаторной системы, to, - выбранная температура на графике распределения температур по осевой плоскости циркулирующего теплоносителя, причем tT регулируют производительностью циркуляционного насоса в зависимости от заданной температуры внутри здания и колебания температур наружного воздуха (патент РФ N22301944, МКИ F24D 15, 2007). A known method of heating buildings, which consists in receiving heat from a high potential source installed inside the building, and a low potential source, characterized in that from the low potential heat source containing the earth pipe laid in the ground below the freezing depth of the soil, heat is transferred to the heat carrier in a volumetric radiator system, for which, inside the p-layer wall, m> 1 volume radiator systems with a coolant of a low-grade heat source are installed, the installation location of which is determined provided that the coordinates of the axial plane of the circulating coolant with a temperature t T inside the volumetric radiator system are determined from the temperature distribution diagram inside the η-layer wall from the condition that n ^ 3, at T > tco, where t T is the coolant temperature of the volumetric radiator system, to, is the selected temperature in the temperature distribution diagram along the axial plane of the circulating coolant, and t T is controlled by the capacity of the circulation pump depending on the set temperature inside the building and temperature fluctuations outdoor air tour (RF patent N22301944, MKI F24D 15, 2007).
Недостатком данного способа является необходимость использования msl объемных радиаторных систем. The disadvantage of this method is the need to use msl surround radiator systems.
Данный способ является наиболее близким к предлагаемому, а потому принят за прототип. Задачей является уход от повышения температурного потенциала низкотемпературного теплоносителя, отказ от сложного технического оборудования и объемной радиаторной системы отопления. Также, задачей является предотвращение истощения теплового потока от грунта и исключение опасности его промерзания. Поставленные задачи достигаются с помощью настоящего способа отопления и охлаждения зданий. This method is the closest to the proposed, and therefore adopted as a prototype. The task is to avoid increasing the temperature potential of a low-temperature coolant, and to abandon sophisticated technical equipment and a volume radiator heating system. Also, the task is to prevent depletion of the heat flux from the soil and eliminate the danger of freezing. The tasks are achieved using the present method of heating and cooling buildings.
Отличительной особенностью предлагаемого способа является то, что высокотемпературный носитель не используется, также не используется повышение температуры низкопотенциального теплоносителя. Отличительной особенностью предлагаемого способа является то, что в качестве источника низкопотенциального тепла может служить любой источник природного тепла, а также и техногенные источники. Отличительной особенностью предлагаемого способа является то, что циркуляцию низкопотенциального теплоносителя осуществляют между внешней и внутренней обшивками в специально проложенном трубопроводе либо внутри каркаса отапливаемого здания, каркас размещают между внешней и внутренней обшивками, образующими несъемную опалубку, внешнюю обшивку теплоизолируют от внутренней. Также, отличительной особенностью предлагаемого способа является то, что тот же теплоноситель используется для охлаждения в летний период, при этом происходит аккумулирование теплоты в грунте, что предотвращает истощение теплового потока от грунта и исключает опасность его промерзания. A distinctive feature of the proposed method is that a high-temperature carrier is not used, nor is an increase in the temperature of a low-grade coolant used. A distinctive feature of the proposed method is that any source of natural heat, as well as man-made sources, can serve as a source of low-grade heat. A distinctive feature of the proposed method is that the low-grade coolant is circulated between the external and internal cladding in a specially laid pipeline or inside the frame of a heated building, the frame is placed between the external and internal cladding, forming a fixed formwork, and the external cladding is insulated from the internal. Also, a distinctive feature of the proposed method is that the same coolant is used for cooling in the summer, while the accumulation of heat in the soil occurs, which prevents the exhaustion of the heat flux from the soil and eliminates the risk of freezing.
Сущность изобретения поясняется чертежом (Фиг.1), где показана схема осуществления способа отопления и охлаждения здания. The invention is illustrated in the drawing (Figure 1), which shows a diagram of a method of heating and cooling a building.
На Фиг.1 показан вариант осуществления способа отопления и охлаждения здания. На схеме показаны: низкопотенциальный источник (1), передающий тепло теплоносителю, металлический каркас (2), внутри которого осуществляют циркуляцию теплоносителя, циркуляционный насос (3), которым регулируют температуру теплоносителя и осуществляют его циркуляцию. На Фиг.2 показаны элементы ограждающей конструкции здания: каркас (4), который располагают между внутренней обшивкой (5) и внешней обшивкой (6). На Фиг.З показан вариант способа, при котором теплоноситель циркулирует в нескольких отдельных циркуляционных контурах (7). На Фиг.4 показан вариант способа, при котором каждый циркуляционный контур (7) представляет собой петлю вдоль периметра здания. Figure 1 shows an embodiment of a method of heating and cooling a building. The diagram shows: a low-potential source (1) that transfers heat to the coolant, a metal frame (2) inside which the coolant is circulated, and a circulation pump (3), which regulate the coolant temperature and circulate it. Figure 2 shows the elements of the building envelope: the frame (4), which is located between the inner lining (5) and the outer lining (6). On Fig.3 shows a variant of the method in which the coolant circulates in several separate circulation circuits (7). Figure 4 shows a variant of the method in which each circulation circuit (7) is a loop along the perimeter of the building.
Раскрытие и осуществление изобретения: Disclosure and implementation of the invention:
Способ осуществляют, производя отбор из грунта низкопотенциального тепла с использованием замкнутой циркуляционной системы с теплоносителем. The method is carried out by selecting low-grade heat from the soil using a closed circulation system with a coolant.
з Тот же теплоноситель используется для охлаждения здания в летний период, при этом происходит аккумулирование теплоты в грунте, что предотвращает истощение теплового потока от грунта и исключает опасность его промерзания. Температуру теплоносителя регулируют производительностью одного или более циркуляционных насосов в зависимости от заданной температуры внутри здания и колебания температур наружного воздуха. s The same heat carrier is used to cool the building during the summer period, while the accumulation of heat in the soil occurs, which prevents the exhaustion of the heat flux from the soil and eliminates the risk of freezing. The temperature of the coolant is regulated by the performance of one or more circulation pumps, depending on the set temperature inside the building and the fluctuation of outdoor temperatures.
Отапливаемый объект представляет собой каркасное здание с отоплением внутри каркаса. Полости внутри каркаса, сообщающиеся между собой, обеспечивают равномерное прохождение теплоносителя и нагрев ограничивающих помещение плоскостей, включая стены, пол и потолок, создавая эффективную систему отопления. Возможен вариант способа отопления, при котором теплоноситель циркулирует в трубопроводах, не являющихся частью каркаса здания. Возможен вариант способа, при котором теплоноситель циркулирует в нескольких отдельных циркуляционных контурах (7), а также вариант способа, при котором каждый циркуляционный контур представляет собой петлю вдоль периметра здания. The heated object is a frame building with heating inside the frame. The cavities inside the frame, interconnected, ensure uniform passage of the coolant and heating of the planes that bound the room, including walls, floor and ceiling, creating an effective heating system. A variant of the heating method is possible, in which the coolant circulates in pipelines that are not part of the building frame. A possible variant of the method in which the coolant circulates in several separate circulation circuits (7), as well as a variant of the method in which each circulation circuit is a loop along the perimeter of the building.
Возможен вариант способа, при котором в качестве источника низкопотенциального тепла используют любой источник природного тепла и / или техногенные источники. При использовании грунта в качестве низкопотенциального источника тепла контур сбора тепла может содержать систему вертикальных скважин, или же размещенные в горизонтальных траншеях коллекторы из свернутых кольцами трубок, либо другим способом организованный теплосбор. При данном способе отопления целесообразно использовать высококачественную теплоизоляцию и рекуперацию тепла вентиляционного воздуха. Во многих случаях достаточно низкотемпературного режима отопления, при обеспечении теплозащиты здания в соответствии с современными строительными нормами. Возможен вариант способа, при котором система отопления здания выполнена с теплообменником, с образованием воздуховодов внутри каркаса здания для циркуляции нагретой воздушной среды, отапливающей помещения через стены, пол и потолок. Возможен вариант способа, при котором в качестве низкопотенциального источника тепла используют, помимо грунта, теплоту солнечного излучения, воспринимаемую солнечным коллектором и используемую для обогрева либо для аккумулирования теплоты в грунте, что предотвращает истощение теплового потока от грунта и исключает опасность его промерзания. A variant of the method is possible in which any source of natural heat and / or anthropogenic sources are used as a source of low-grade heat. When using soil as a low-grade heat source, the heat collection loop may include a system of vertical wells, or collectors placed in horizontal trenches from tubes rolled up in rings, or otherwise organized heat collection. With this heating method, it is advisable to use high-quality thermal insulation and heat recovery of ventilation air. In many cases, a low-temperature heating regime is sufficient, while ensuring thermal protection of the building in accordance with modern building standards. A variant of the method is possible in which the building heating system is made with a heat exchanger, with the formation of air ducts inside the building frame for circulation of the heated air, heating the room through walls, floor and ceiling. A variant of the method is possible in which, in addition to the soil, heat of solar radiation is used, which is perceived by the solar collector and used for heating or to accumulate heat in the soil, in addition to the soil, which prevents depletion of the heat flux from the soil and eliminates the risk of freezing.
Возможен также вариант способа, при котором для поддержания необходимого уровня комфортной температуры внутри здания используют устройства для повышения температурного потенциала низкопотенциального источника тепла либо используют независимые источники высокотемпературного тепла. A variant of the method is also possible in which, to maintain the required level of comfortable temperature inside the building, devices are used to increase the temperature potential of a low-grade heat source or independent sources of high-temperature heat are used.

Claims

ФОРМУЛА ИЗОБРЕТЕНИЯ  CLAIM
Способ отопления зданий, заключающийся в получении тепла от низкопотенциального источника с использованием замкнутой циркуляционной системы с теплоносителем и в регулировании температуры теплоносителя производительностью одного или более циркуляционных насосов, в зависимости от заданной температуры внутри здания и колебания температур наружного воздуха, отличающийся тем, что циркуляцию низкопотенциального теплоносителя осуществляют между внешней и внутренней обшивками в специально проложенном трубопроводе либо внутри каркаса отапливаемого здания, каркас размещают между внешней и внутренней обшивками, образующими несъемную опалубку, внешнюю обшивку теплоизолируют от внутренней, причем охлаждение в летний период осуществляют этим же теплоносителем. A method of heating buildings, which consists in receiving heat from a low-grade source using a closed circulation system with a coolant and in regulating the temperature of the coolant with the capacity of one or more circulation pumps, depending on the set temperature inside the building and outdoor temperature fluctuations, characterized in that the low-grade coolant is circulated carried out between the outer and inner cladding in a specially laid pipeline or inside the frame taplivaemogo building frame is placed between the outer and inner skins forming permanent formwork, insulate the outer skin from the inside, and cooling in the summer period is performed with the same coolant.
Способ отопления по п.1 , отличающийся тем, что в качестве низкопотенциального источника используют теплоту грунта. The heating method according to claim 1, characterized in that the heat of the soil is used as a low-potential source.
Способ отопления по п.1 , отличающийся тем, что в качестве низкопотенциального источника используют теплоту солнечного излучения, воспринимаемую солнечным коллектором и используемую для обогрева либо для аккумулирования теплоты в грунте. The heating method according to claim 1, characterized in that the heat of solar radiation, perceived by the solar collector and used for heating or for accumulating heat in the ground, is used as a low-potential source.
Способ отопления по п.1 , отличающийся тем, что теплоноситель циркулирует в нескольких отдельных циркуляционных контурах с отдельным циркуляционным насосом для каждого контура. The heating method according to claim 1, characterized in that the coolant circulates in several separate circulation circuits with a separate circulation pump for each circuit.
Способ отопления по п.4, отличающийся тем, что каждый циркуляционный контур представляет собой петлю вдоль периметра здания. The heating method according to claim 4, characterized in that each circulation circuit is a loop along the perimeter of the building.
PCT/EA2014/000011 2014-04-28 2014-04-28 Method for heating and cooling buildings WO2015165476A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EA201600157A EA201600157A1 (en) 2014-04-28 2014-04-28 METHOD OF HEATING AND COOLING OF BUILDINGS
PCT/EA2014/000011 WO2015165476A1 (en) 2014-04-28 2014-04-28 Method for heating and cooling buildings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EA2014/000011 WO2015165476A1 (en) 2014-04-28 2014-04-28 Method for heating and cooling buildings

Publications (1)

Publication Number Publication Date
WO2015165476A1 true WO2015165476A1 (en) 2015-11-05

Family

ID=54358202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EA2014/000011 WO2015165476A1 (en) 2014-04-28 2014-04-28 Method for heating and cooling buildings

Country Status (2)

Country Link
EA (1) EA201600157A1 (en)
WO (1) WO2015165476A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108870601A (en) * 2018-08-22 2018-11-23 天津城建大学 Based on underground pipe exterior-wall heat insulation cooling system
EP3645802A4 (en) * 2017-06-12 2021-04-28 Civis-Therm KFT. Geothermal insulation system and method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5687729A (en) * 1979-12-20 1981-07-16 Natl House Ind Co Ltd Cooling and heating system for building
RU2293823C2 (en) * 2005-05-03 2007-02-20 Михаил Федорович Харченко Building with forced-air heating
RU70354U1 (en) * 2006-03-13 2008-01-20 Дмитрий Прилидианович Орлов BUILDING WITH A HEATING DEVICE (OPTIONS)
WO2009016664A1 (en) * 2007-08-01 2009-02-05 Caebit S.R.L. Low energy consumption climate control system
CN101566376A (en) * 2009-05-21 2009-10-28 赵铭 Domestic central air-conditioning system controlled by centralized heat exchange households
JP2012172966A (en) * 2011-02-24 2012-09-10 Takahashi Kanri:Kk Earth solar zero-energy house
US20120291988A1 (en) * 2007-03-05 2012-11-22 Hamlin Iii Henry Lee Perimeter Temperature Controlled Heating and Cooling System
US20130061847A1 (en) * 2009-10-29 2013-03-14 GS Research LLC Geosolar Temperature Control Construction and Method Thereof
JP2014040989A (en) * 2012-07-24 2014-03-06 Hokusei Shoji:Kk Underground heat utilization system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5687729A (en) * 1979-12-20 1981-07-16 Natl House Ind Co Ltd Cooling and heating system for building
RU2293823C2 (en) * 2005-05-03 2007-02-20 Михаил Федорович Харченко Building with forced-air heating
RU70354U1 (en) * 2006-03-13 2008-01-20 Дмитрий Прилидианович Орлов BUILDING WITH A HEATING DEVICE (OPTIONS)
US20120291988A1 (en) * 2007-03-05 2012-11-22 Hamlin Iii Henry Lee Perimeter Temperature Controlled Heating and Cooling System
WO2009016664A1 (en) * 2007-08-01 2009-02-05 Caebit S.R.L. Low energy consumption climate control system
CN101566376A (en) * 2009-05-21 2009-10-28 赵铭 Domestic central air-conditioning system controlled by centralized heat exchange households
US20130061847A1 (en) * 2009-10-29 2013-03-14 GS Research LLC Geosolar Temperature Control Construction and Method Thereof
JP2012172966A (en) * 2011-02-24 2012-09-10 Takahashi Kanri:Kk Earth solar zero-energy house
JP2014040989A (en) * 2012-07-24 2014-03-06 Hokusei Shoji:Kk Underground heat utilization system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3645802A4 (en) * 2017-06-12 2021-04-28 Civis-Therm KFT. Geothermal insulation system and method
CN108870601A (en) * 2018-08-22 2018-11-23 天津城建大学 Based on underground pipe exterior-wall heat insulation cooling system

Also Published As

Publication number Publication date
EA201600157A1 (en) 2016-06-30

Similar Documents

Publication Publication Date Title
CN104296279B (en) A kind of movable screen type radiation air conditioning device with heat accumulation function
Lekhal et al. Thermal performance of a residential house equipped with a combined system: A direct solar floor and an earth–air heat exchanger
RU70354U1 (en) BUILDING WITH A HEATING DEVICE (OPTIONS)
JP2007183023A (en) Heating/cooling method and device utilizing geothermal heat
JP2011149690A (en) Underground heat exchanger burying structure
WO2015165476A1 (en) Method for heating and cooling buildings
US20100251710A1 (en) System for utilizing renewable geothermal energy
US20200103128A1 (en) Geothermal insulation system and method
RU2636018C2 (en) Heating and hot water supply system
JP2013064597A (en) Geothermal heat collecting apparatus
Figiel et al. Outer wall with thermal barrier. Impact of the barrier on heat losses and CO2 emissions
CN106766364B (en) A kind of energy pile-Concrete-filled Double Skin Steel Tube Columns geothermal heating system
JP2007127397A (en) Geothermal heat utilization system of house in cold area
Isanova et al. Optimization of operation of a heat-pump facade system of heating during observance of the required parameters of thermal comfort of residential buildings
JP5883685B2 (en) HEAT PUMP SYSTEM AND HEAT PUMP SYSTEM CONTROL METHOD
JP2017067335A (en) Heating system
KR20170126356A (en) Cooling and Heating system using the Geothermal Energy
Malyavina et al. Load on the air conditioning system in a room with non-round-the-clock working day in the warm season
JP5028638B1 (en) Geothermal utilization structure and geothermal heat exchanger buried structure
CN204063395U (en) Based on the substation secondary device arrangement system of geothermal source temperature control mode
Zamovskis et al. Performance evaluation of passive heat barrier system in Latvian climatic conditions
JP2005300120A (en) Heat pump heating system of high efficiency by low-temperature water
JP2013217562A (en) Heating/cooling system
EP2567039A2 (en) Building strata of the thermally insulating system with an air gap
JP2013174052A (en) Double pipe structure of air conditioning partition wall in architectural structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14890476

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 201600157

Country of ref document: EA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14890476

Country of ref document: EP

Kind code of ref document: A1