WO2017195885A1 - Floor air conditioning system - Google Patents

Floor air conditioning system Download PDF

Info

Publication number
WO2017195885A1
WO2017195885A1 PCT/JP2017/018004 JP2017018004W WO2017195885A1 WO 2017195885 A1 WO2017195885 A1 WO 2017195885A1 JP 2017018004 W JP2017018004 W JP 2017018004W WO 2017195885 A1 WO2017195885 A1 WO 2017195885A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
pipe
control valve
water
floor
Prior art date
Application number
PCT/JP2017/018004
Other languages
French (fr)
Japanese (ja)
Inventor
矢野 昭彦
Original Assignee
株式会社ライフル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ライフル filed Critical 株式会社ライフル
Priority to JP2017541983A priority Critical patent/JP6249387B1/en
Priority to TW106139097A priority patent/TWI646291B/en
Publication of WO2017195885A1 publication Critical patent/WO2017195885A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/12Tube and panel arrangements for ceiling, wall, or underfloor heating
    • F24D3/16Tube and panel arrangements for ceiling, wall, or underfloor heating mounted on, or adjacent to, a ceiling, wall or floor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S90/00Solar heat systems not otherwise provided for
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/12Hot water central heating systems using heat pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Definitions

  • the present invention relates to a floor air conditioning system for buildings.
  • a solid foundation is provided under the floor board 1.
  • Layer 2 and heat insulation layer 92 are arranged in this order, solar hot water collector panel 12 is installed outdoors as a heat source, and hot water is applied to the inside of solar hot water collector panel 12 and the inside of base layer 2 by pumps 20, 23, 33.
  • the solid base layer 2 functions as a heat dissipation layer by providing the circulating heat transfer path 13
  • the heat storage layer 5 is provided under the heat insulating layer 92, and the heat transfer path 13 is the solar hot water collecting panel 12.
  • the heat storage path 16 through which hot water circulates inside the heat storage layer 5 and the inside of the heat storage layer 5 and the heat dissipation path 17 through which the hot water circulates inside the solid storage layer 16 and the inside of the solid base layer 2 are proposed. To have.
  • Patent Document 2 there is a structure with low energy cost for controlling the room temperature of a house by suppressing waste of artificial energy such as oil, gas, electricity, etc., and effectively using solar heat and underground geothermal heat.
  • the challenge is to provide a simple air-conditioning system.
  • the fresh outside air taken in by the total heat exchange type ventilation fan installed in the building is sent to the lower part of the first floor of the building, and the base floor under the first floor is U.
  • Multiple underground heat recovery pipes shaped into a letter shape are embedded, and a blower is attached to one end of the underground heat recovery pipe. The air sucked into the underground heat recovery pipe is recovered by underground heat in the winter.
  • An object of the present invention is to provide a floor air-conditioning system having a low energy cost and a simple structure.
  • the invention according to claim 1 is a floor air conditioning system, a solar heat collector, a first tank that stores water heated by the solar heat collector, a heat pump device, A second tank for storing water heated by the heat pump device, a connecting pipe connecting the upper part of the first tank and the bottom part of the second tank, and a lower part of the floor, and one end part of which is connected to the first tank.
  • the second directional control valve connected to the other end of the first directional control valve is switched between the first directional control valve and the second directional control valve, whereby the water stored in the first tank is supplied to the second tank and the first directional control valve.
  • Switch to a route that goes through a pipe to supply to the first tank, or a water supply pipe The water supplied, and supplying the first tank by switching the path through the second pipe and the first pipe.
  • the first tank is filled with the water filled therein, and the hot water heated by the solar heat collecting device is in a state of staying upward. Moreover, the 2nd tank is satisfy
  • the water stored in the first tank forms a path to the first tank via the second tank and the first pipe. Is done. That is, a path for circulating water is formed.
  • the hot water stored in the second tank is supplied to the first pipe.
  • the hot water exchanges heat with the air in the internal space below the floor, and the temperature of the internal space below the floor rises, while the temperature of the hot water decreases.
  • the warm water whose temperature has been reduced returns to the first tank.
  • the water in the first tank heated by the solar heat collecting device warm water stays in the upper part and water having a relatively high specific gravity stays in the lower part.
  • the hot water remaining in the upper part of the first tank is supplied to the second tank via the connection pipe. In this way, since the operation of the heat pump device is reduced by supplying hot water having a relatively high temperature to the second tank, the energy cost in winter can be reduced.
  • a floor air conditioning system stores the solar heat collector, the 1st tank which stores the water heated with the solar heat collector, the heat pump apparatus, and the water heated with the heat pump apparatus.
  • a second tank a connecting pipe that connects the upper part of the first tank and the bottom of the second tank, a first pipe that is disposed under the floor and has one end connected to the first tank, and a water source pipe
  • a first direction control valve connected to one end of the second pipe and the first tank, a second direction connected to the second tank, the other end of the first pipe, and the other end of the second pipe.
  • a control valve is provided, and by switching between the first directional control valve and the second directional control valve, the water stored in the first tank is switched to a path passing through the second tank and the first pipe. Or the water supplied from the water source pipe to the second pipe and the second pipe. Because it is providing to the first tank by switching the path through the tube, it is possible to structure provides a simple floor air-conditioning system.
  • the invention according to claim 2 is the floor air conditioning system according to claim 1, further comprising a third direction control valve connected to one end of the first pipe, the first tank, and the second tank, in the third direction. By switching the control valve, water passing through one end of the first pipe is supplied to the first tank or supplied to the second tank.
  • the apparatus further includes the third direction control valve connected to the one end of the first pipe and the first tank and the second tank, and by switching the third direction control valve, Since the water passing through the end portion can be supplied to either the first tank or the second tank, the temperature of the water staying at the upper portion of the first tank causes one end portion of the first pipe to When the temperature is lower than the temperature of the passing water, water can be supplied to the second tank, and when it is higher, the water can be supplied to the first tank. Thereby, water with relatively high temperature can be supplied to the second tank. As a result, since the operation of the heat pump device is further reduced, the energy cost can be further reduced.
  • the invention according to claim 3 is the floor air conditioning system according to claim 1 or 2, further comprising a first control unit connected to the first directional control valve and the second directional control valve, The flow of water passing through the first tank, the second tank, the first pipe, and the second pipe is controlled.
  • the first control unit connected to the first directional control valve and the second directional control valve, the first tank, the second tank, the first pipe, and the second pipe are passed. Since the flow of water is controlled, the path used for the floor air conditioning system in winter and summer can be easily configured.
  • the temperature sensor provided at one end of the first tank, the second tank, and the first pipe, and the third direction control valve A second control unit connected to the second control unit, wherein the second control unit is configured to supply water passing through the first pipe to the first tank based on a detection value of the temperature sensor or to supply the second tank; It is characterized by doing.
  • the second control unit includes the temperature sensor provided at one end of the first tank, the second tank, and the first pipe, and the second control unit connected to the third direction control valve.
  • the unit controls the flow of supplying water passing through the first pipe to the first tank or the flow of supplying the second tank based on the detection value of the temperature sensor, so that the energy cost can be reduced.
  • the air conditioning system can operate automatically.
  • the invention according to claim 5 is the floor air-conditioning system according to any one of claims 1 to 4, wherein no air vent with outside air is installed in the lower part of the floor, and air inside the lower part of the floor is shut off from the outside.
  • the air vent is structured to be openable and closable, and the air vent is opened and closed to make a sealed state.
  • the outside air is not installed under the floor by blocking the air inside the bottom of the floor from the outside air, or by closing the air vent so that the air vent can be opened and closed. It will be in the sealing state which does not flow directly into a part, and floor air-conditioning by solar energy becomes efficient.
  • the invention according to claim 6 is characterized in that, in the floor air conditioning system according to any one of claims 1 to 5, a heat shield sheet is laid under the first pipe.
  • the floor air-conditioning system 1 includes a water source pipe 100 that supplies tap water, a solar heat collector 2, a first tank 3 that stores hot water heated by the solar heat collector 2, and a heat pump.
  • the apparatus 5 the second tank 4 that stores the hot water heated by the heat pump apparatus 5, the connection pipe p ⁇ b> 1 that supplies the hot water stored in the first tank 3 to the second tank 4, and the first provided in the lower floor 9.
  • a directional control valve 71, a second directional control valve 72, a third directional control valve 73, a first control unit 81 that controls these three valves, a second control unit 82, and temperature sensors 32 and 62 are configured. Has been. Thereby, it becomes possible to adjust the temperature inside the floor lower part 9 with warm water or water.
  • the first tank 3 is full of water supplied from the water source pipe 100.
  • the second tank 4 is water supplied from a connection pipe p ⁇ b> 1 that connects the upper part of the first tank 3 and the bottom part of the second tank 4, and is in a full state like the first tank 3.
  • the solar heat collector 2 is a closed circuit in which a solar heat collector 21, a heat exchanger 22, and a heat collection pump 24 are connected in series by pipes 26, 27, and 28.
  • the heat exchanger 22 is provided inside the first tank 3.
  • the heat collection pump 24 When the heat collection pump 24 is operated, the heat medium circulates between the solar heat collector 21 and the heat exchanger 22.
  • the heat medium flowing into the solar heat collector 21 is heated by solar heat while passing through the solar heat collector 21, and is sent to the heat exchanger 22.
  • the heat medium that has flowed into the heat exchanger 22 is heat-exchanged to lower the temperature, while the water stored in the first tank 3 in a full state is heated.
  • the heat medium whose temperature has been lowered is sent again to the solar heat collector 21 and heated.
  • the heated water rises and stays in the upper part because its specific gravity is smaller than the surrounding water.
  • the water stored in the first tank 3 is heated, and the water whose temperature has risen stays in the upper part (see FIG. 5).
  • the heat pump device 5 is an inverter motor driven compressor that compresses the refrigerant, a refrigerant-water heat exchanger that heats water by exchanging heat with the compressed high-temperature refrigerant, and a refrigerant-water heat exchanger. It comprises an evaporator that evaporates the refrigerant condensed by the heat of ambient air, a motor-driven blower fan provided in the evaporator, an expansion valve, and the like.
  • the heat pump device 5, the circulation pump 56, and the second tank 4 constitute a closed circuit connected in series by heat pump pipes 52, 53, and 54.
  • the circulation pump 56 When the circulation pump 56 is operated, the water stored in the second tank 4 is heated by the heat pump device 5 via the heat pump pipes 54 and 53, and the heated water is supplied to the second tank via the heat pump pipe 52. Come back inside 4 By this heating circulation cycle, the water stored in the second tank 4 is uniformly heated.
  • the annual energy consumption efficiency can be greatly improved by combining the heat pump device 5 with the solar heat collector 2.
  • a heating element (not shown) may be provided inside the first tank 3, and the stored water may be heated by energizing the heating element using midnight power.
  • a heating element may be provided inside the first tank 3, and the stored water may be heated by energizing the heating element using midnight power.
  • the floor lower part 9 is not illustrated, it is composed of a foundation, a floor, and an internal space, and the internal space is sealed.
  • the inner side wall is provided with a heat insulating member by urethane foam spraying work or the like.
  • the foundation of the lower floor 9 is not installed with a vent to the outside so that air outside the building does not flow in, and the air in the interior space is shut off from the outside air and sealed. Since the lower floor 9 is used as a temperature control tank, the internal space of the lower floor 9 is configured to be in a sealed state so that outside air does not directly flow into the lower floor 9.
  • the structure In a foundation part under the floor of a general house, for example, a cloth foundation, the structure has good ventilation with the outside in order to prevent moisture in the lower floor 9, the ventilation opening can be opened and closed, and the ventilation opening is closed. Similar effects can be obtained.
  • the first pipe 6 is arranged so as to meander inside the lower floor 9.
  • the water passing through the first pipe 6 is supplied to the first tank 3 or the second tank 4 via the third direction control valve 73.
  • a heat shield sheet 11 is laid under the first pipe 6.
  • the heat shield sheet 11 is a sheet having heat insulation properties, and is preferably an aluminum sheet, for example.
  • a circulation pump 64 is provided in the first pipe 6. Thereby, the hot water supplied from the second tank 4 can be circulated in a stable state to the second tank 4 via the first pipe 6.
  • the second pipe 8 has one end connected to the first directional control valve 71 and the other end connected to the second directional control valve 72.
  • the water source pipe 100 The tap water supplied from is supplied to the second directional control valve 72 via the second pipe 8.
  • the first direction control valve 71 is a three-way valve, and includes a water source pipe 100 that supplies tap water, a pipe p5 that is connected to the first tank 3, and a second end that is connected to the second direction control valve 72 at one end. Connected to tube 8.
  • the first direction control valve 71 can supply the tap water supplied from the water source pipe 100 to either the pipe p5 or the second pipe 8 by switching.
  • the pipe p5 is preferably connected to the bottom of the first tank 3 where water having a relatively low temperature stays. Thereby, mixing with the warm water staying above the inside of the first tank 3 can be avoided.
  • the second direction control valve 72 is a three-way valve, and includes a pipe p2 that supplies hot water supplied from the second tank 4, a second pipe 8 that supplies tap water supplied from the water source pipe 100, and a first pipe. 6 is connected to the other end 6b.
  • the second direction control valve 72 can supply either the hot water supplied from the pipe p ⁇ b> 2 or the tap water supplied from the second pipe 8 to the first pipe 6 by switching.
  • the third direction control valve 73 is a three-way valve, and is connected to one end 6a of the first pipe 6, a pipe p3 connected to the first tank 3, and a pipe p4 connected to the second tank 4. By switching, the third direction control valve 73 can supply tap water or hot water supplied from the first pipe 6 to either the pipe p3 or the pipe p4.
  • the pipes p3 and p4 are preferably connected to the bottoms of the first tank 3 and the second tank 4. Thereby, mixing with the warm water staying above the first tank 3 and the second tank 4 can be avoided.
  • the first control unit 81 controls switching of the first directional control valve 71 and the second directional control valve 72, and may be either electronic control or mechanical control.
  • the first control unit 81 is operated to switch the first direction control valve 71 and the second direction control valve 72 so that the water supplied from the water source pipe 100 is A path passing through the second pipe 8 and the first pipe 6 is formed.
  • the second pipe 8 and the first pipe 6 are used to supply the first water. It is supplied to the bottom of one tank 3 or the second tank 4.
  • the tap water having a low temperature supplied to the first pipe 6 is heat-exchanged with the air stored in the internal space of the lower floor 9 to lower the temperature of the lower floor 9, while the temperature of the tap water increases.
  • the first control unit 81 In winter, when it is recognized that floor heating is necessary, the first control unit 81 is operated to switch the first directional control valve 71 and the second directional control valve 72 so that the hot water supplied from the second tank 4 Then, a path that circulates to the second tank 4 via the first pipe 6 is formed. At the same time, the circulation pump 64 is started. Thereby, the hot water supplied to the 1st pipe
  • the second control unit 82 is based on the detected values of the temperature sensor 32 provided in the first tank 3 and the temperature sensor 62 provided at one end 6 a of the first pipe 6.
  • the switching is controlled, and either electronic control or mechanical control may be used.
  • the third direction control valve 73 is switched, and hot water or tap water passing through the first pipe 6 is changed.
  • the first tank 3 is supplied via the pipe p3.
  • the third direction control valve 73 is switched to supply hot water or tap water passing through the first pipe 6.
  • the second tank 4 is supplied via the pipe p4.
  • hot water or tap water having a temperature higher than the hot water staying above the first tank 3 is supplied to the second tank 4 via the pipe p4.
  • the first control unit 81 is operated to switch the first direction control valve 71 and the second direction control valve 72.
  • a path through which the water supplied from the water source pipe 100 reaches the first tank 3 via the second pipe 8 and the first pipe 6 is formed. That is, by supplying hot water stored in the second tank 4 to the bath 10, a path through which tap water having a low temperature flows is formed in the first pipe 6.
  • tap water having a low temperature is supplied to the first pipe 6.
  • the tap water having a low temperature is subjected to heat exchange with the heat stored in the internal space of the lower floor 9, and the temperature of the internal space of the lower floor 9 is lowered, while the temperature of the tap water is increased.
  • the second control unit 82 is operated to switch the third direction control valve 73.
  • the hot water or tap water passing through the first pipe 6 is switched to a path for supplying the first tank 3 via the pipe p3.
  • hot water having a higher temperature staying above the first tank 3 is supplied to the second tank 4 via the connection pipe p1.
  • the detection value of the temperature sensor 62 exceeds the detection value of the temperature sensor 32
  • the hot water or tap water passing through the first pipe 6 is switched to a path for supplying the second tank 4 via the pipe p4.
  • hot water or tap water having a temperature higher than the hot water staying above the first tank 3 is supplied to the second tank 4 via the pipe p4.
  • the hot water supply to the bath 10 can be performed efficiently.
  • the inside of the second tank 4 is filled with warm water heated to a substantially constant temperature by the heat pump device 5.
  • the first control unit 81 is operated to switch between the first direction control valve 71 and the second direction control valve 72.
  • tube 6 is formed.
  • the circulation pump 64 is operated, the hot water stored in the second tank 4 passes through the first pipe 6.
  • the air in the internal space of the lower floor 9 is subjected to heat exchange, and the temperature of the internal space of the lower floor 9 is increased, while the temperature of the hot water in the first pipe is decreased.
  • the second control unit 82 is operated to switch the third direction control valve 73.
  • the hot water passing through the first pipe 6 is switched to a path for supplying the first tank 3 via the pipe p3.
  • a circulation path is formed in which the hot water stored in the second tank 4 returns to the second tank 4 again via the first pipe 6 and the first tank 3.
  • hot water having a higher temperature staying above the first tank 3 is supplied to the second tank 4 via the connection pipe p1.
  • the hot water passing through the first pipe 6 is switched to a path for supplying the second tank 4 via the pipe p4.
  • a circulation path is formed in which the hot water stored in the second tank 4 returns to the second tank 4 again via the first pipe 6. Further, hot water having a temperature higher than that of the hot water staying above the first tank 3 is supplied to the second tank 4 via the pipe p4. Thereby, floor air conditioning in winter can be performed efficiently.
  • the floor air-conditioning system according to the present invention has been described in detail on the basis of the present embodiment, but the present invention is not limited to the above-described embodiment, and various types can be made without departing from the spirit of the invention. Of course, even if it is modified, it belongs to the technical scope of the present invention.
  • the air conditioning of the lower floor 9 can be provided with energy saving, and its industrial utility value is great.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

Provided is a floor air conditioning system that has a simple structure and low energy costs. A floor air conditioning system 1 comprises: a solar heat collecting device 2; a first tank 3 that stores water heated by the solar heat collecting device 2; a heat pump device 5; a second tank 4 that stores water heated by the heat pump device 5; a connecting pipe p1 that connects the top of the first tank 3 to the bottom of the second tank; a first pipe 6 that is disposed in an underfloor 9; a first directional control valve 71 that is connected to a water supply pipe 100, a second pipe 8, and the first tank 3; a second directional control valve 72 that is connected to the second tank 4, the first pipe 6, and the second pipe 8; and a third directional control valve 73 that is connected to the first pipe 6 and piping p3, 4. By switching the first directional control valve 71, the second directional control valve 72, and the third directional control valve 73, water stored in the first tank 3 is supplied to the first tank 3 or the second tank 4 via the first pipe 6 or water supplied from the water supply pipe 100 is supplied to the first tank 3 or the second tank 4 via the first pipe 6.

Description

床空調システムFloor air conditioning system
 本発明は、建築物の床空調システムに関する。 The present invention relates to a floor air conditioning system for buildings.
 太陽熱等の自然エネルギーを利用した床空調システムについて、様々な装置が考えられている。 A variety of devices have been considered for floor air conditioning systems using natural energy such as solar heat.
 特許文献1の発明によれば、太陽光の熱エネルギーを蓄えておき、必要なときに取り出すことができ、設置空間を問題としない床暖房システムを提供するため、床板1の下に、べた基礎層2、断熱層92を順に配置し、熱源として太陽熱温水集熱パネル12を屋外に設置し、ポンプ20,23,33で太陽熱温水集熱パネル12の内部とべた基礎層2の内部を温水が循環する熱伝達経路13を備えることによって、べた基礎層2を放熱層として機能させる床暖房システムにおいて、断熱層92の下に蓄熱層5を設け、熱伝達経路13は、太陽熱温水集熱パネル12の内部と蓄熱層5の内部を温水が循環する蓄熱経路16、並びに蓄熱層16の内部とべた基礎層2の内部を温水が循環する放熱経路17を備えることを特徴とする発明が提案されている。 According to the invention of Patent Document 1, in order to provide a floor heating system in which the thermal energy of sunlight can be stored and taken out when necessary and the installation space is not a problem, a solid foundation is provided under the floor board 1. Layer 2 and heat insulation layer 92 are arranged in this order, solar hot water collector panel 12 is installed outdoors as a heat source, and hot water is applied to the inside of solar hot water collector panel 12 and the inside of base layer 2 by pumps 20, 23, 33. In the floor heating system in which the solid base layer 2 functions as a heat dissipation layer by providing the circulating heat transfer path 13, the heat storage layer 5 is provided under the heat insulating layer 92, and the heat transfer path 13 is the solar hot water collecting panel 12. The heat storage path 16 through which hot water circulates inside the heat storage layer 5 and the inside of the heat storage layer 5 and the heat dissipation path 17 through which the hot water circulates inside the solid storage layer 16 and the inside of the solid base layer 2 are proposed. To have.
 特許文献2の発明によれば、石油、ガス、電気等の人口エネルギーの浪費を抑え、太陽熱や地中の地熱を有効に活用して住宅の室温調節を行うための、エネルギーコストが低く構造が簡単な冷暖房装置を提供する事を課題として、建物の室内に取付けた全熱交換型換気扇が吸気した新鮮な外気を、建物の1階床下部に送り込むと共に、1階床下の基礎底盤にはU字形に成形した複数の地中熱回収パイプを埋設し、地中熱回収パイプの一端には送風機を取付け、地中熱回収パイプに吸い込まれた空気は、冬期は地中熱により地中熱回収パイプの中で暖められ、また、夏期は地中熱により地中熱回収パイプの中で冷やされ、1階床下部の空気の温度調整を行い、その温度調整された空気を、給気ダクトを経由して各階の天井内部に供給し、天井に設けたガラリより室内に供給するように構成した発明が提案されている。 According to the invention of Patent Document 2, there is a structure with low energy cost for controlling the room temperature of a house by suppressing waste of artificial energy such as oil, gas, electricity, etc., and effectively using solar heat and underground geothermal heat. The challenge is to provide a simple air-conditioning system. The fresh outside air taken in by the total heat exchange type ventilation fan installed in the building is sent to the lower part of the first floor of the building, and the base floor under the first floor is U. Multiple underground heat recovery pipes shaped into a letter shape are embedded, and a blower is attached to one end of the underground heat recovery pipe. The air sucked into the underground heat recovery pipe is recovered by underground heat in the winter. It is warmed in the pipe, and in the summer, it is cooled in the underground heat recovery pipe by underground heat, and the temperature of the air at the bottom of the first floor is adjusted, and the temperature adjusted air is supplied to the air supply duct. Supply to the ceiling inside each floor via the ceiling Configuration the invention is proposed to supply to the room from the louver provided.
特開2009-216264号公報JP 2009-216264 A 特開2012-172966号公報JP 2012-172966 A
 しかしながら、特許文献1では、建築構造の複雑化により設備のコストが増加し、上記の特許文献2では、地中熱の利用に力点が置かれており、床の空調に加えて太陽エネルギーの効率的な利用が未だ十分ではなかった。本発明は、エネルギーコストが低く、構造が簡単な床空調システムを提供することを課題とする。 However, in Patent Document 1, the cost of facilities increases due to the complexity of the building structure, and in Patent Document 2 above, emphasis is placed on the use of underground heat, and the efficiency of solar energy in addition to air conditioning of the floor Use is still not enough. An object of the present invention is to provide a floor air-conditioning system having a low energy cost and a simple structure.
 上記課題を解決するために、請求項1に係る発明は、床空調システムであって、太陽熱集熱装置と、太陽熱集熱装置で加熱された水を貯留する第1タンクと、ヒートポンプ装置と、ヒートポンプ装置で加熱された水を貯留する第2タンクと、第1タンクの上部と第2タンクの底部を接続する接続管と、床下部に配置するとともに、一方の端部が前記第1タンクに接続する第1管と、水道源管と第2管の一方の端部と第1タンクとに接続する第1方向制御弁と、第2タンクと第1管の他端部と前記第2管の他端部とに接続する第2方向制御弁を備え、第1方向制御弁と第2方向制御弁とを切り替えることにより、第1タンクに貯留されている水を、第2タンクおよび第1管を経由する経路に切り替えて第1タンクに供給し、または水道源管から供給される水を、第2管および第1管を経由する経路に切り替えて第1タンクに供給することを特徴とする。 In order to solve the above problems, the invention according to claim 1 is a floor air conditioning system, a solar heat collector, a first tank that stores water heated by the solar heat collector, a heat pump device, A second tank for storing water heated by the heat pump device, a connecting pipe connecting the upper part of the first tank and the bottom part of the second tank, and a lower part of the floor, and one end part of which is connected to the first tank. A first pipe to be connected; a first direction control valve connected to one end of the water source pipe and the second pipe; and the first tank; a second tank; the other end of the first pipe; and the second pipe. The second directional control valve connected to the other end of the first directional control valve is switched between the first directional control valve and the second directional control valve, whereby the water stored in the first tank is supplied to the second tank and the first directional control valve. Switch to a route that goes through a pipe to supply to the first tank, or a water supply pipe The water supplied, and supplying the first tank by switching the path through the second pipe and the first pipe.
 夏期における床空調について説明する。夏期においては、第1方向制御弁と第2方向制御弁を切り替えることによって、水道源管から供給される水は、第2管および第1管を経由する経路に切り替えて第1タンクに至る経路が形成される。これにより、第2タンクに貯留されている温水を給湯すると、温度の低い水道水が第1管に供給される。温度の低い水道水は、床下部の内部空間の蓄熱された空気と熱交換されて、床下部の内部空間の温度が低下し、一方、水道水の温度が上昇する。この温度の上昇した水道水が第1タンクに供給される。その結果、第1タンクの上部に滞留している温水が接続管を経由して第2タンクに供給される。このように、床下部は水道源管から供給される水道水で空調ができるとともに、第2タンクには相対的に温度の高い温水が供給されるため、夏季における床空調を効率的に行うことができ、エネルギーコストを低くすることができる。 Explanation of floor air conditioning in summer. In summer, by switching the first direction control valve and the second direction control valve, the water supplied from the water source pipe is switched to a path that passes through the second pipe and the first pipe to reach the first tank. Is formed. Thereby, when hot water stored in the second tank is supplied, tap water having a low temperature is supplied to the first pipe. The tap water having a low temperature is heat-exchanged with the heat stored in the internal space under the floor, and the temperature of the internal space under the floor is lowered, while the temperature of the tap water is raised. This elevated temperature tap water is supplied to the first tank. As a result, the hot water staying in the upper part of the first tank is supplied to the second tank via the connection pipe. In this way, the lower floor can be air-conditioned with tap water supplied from the water source pipe, and hot water having a relatively high temperature is supplied to the second tank, so that floor air conditioning can be efficiently performed in summer. Energy costs can be reduced.
 冬期における床空調について説明する。第1タンクは、内部に充填した水で満たされており、太陽熱集熱装置で加熱された温水が上方に滞留した状態となっている。また、第2タンクは、ヒートポンプ装置で加熱されて、ほぼ一定温度となった温水で満たされている。冬期においては、第1方向制御弁と第2方向制御弁を切り替えることによって、第1タンクに貯留されている水は、第2タンク、第1管を経由して第1タンクに至る経路が形成される。すなわち水が循環する経路が形成される。床空調システムを稼働すると、第2タンクに貯留されている温水は第1管に供給される。温水は、床下部の内部空間の空気と熱交換されて、床下部の内部空間の温度が上昇し、一方、温水の温度は低下する。この温度の低下した温水が第1タンクに還流する。太陽熱集熱装置で加熱された第1タンク内の水は、上部に温水が下部に相対的に比重が大きい温度の低い水が滞留している。温度が低下した温水が第1タンクに還流すると、第1タンクの上部に滞留している温水が接続管を経由して第2タンクに供給される。このように、第2タンクには相対的に温度の高い温水が供給されることによりヒートポンプ装置の稼働を低減するので、冬期におけるエネルギーコストを低くすることができる。 Describe floor air conditioning in winter. The first tank is filled with the water filled therein, and the hot water heated by the solar heat collecting device is in a state of staying upward. Moreover, the 2nd tank is satisfy | filled with the hot water which was heated with the heat pump apparatus and became substantially constant temperature. In winter, by switching between the first directional control valve and the second directional control valve, the water stored in the first tank forms a path to the first tank via the second tank and the first pipe. Is done. That is, a path for circulating water is formed. When the floor air conditioning system is operated, the hot water stored in the second tank is supplied to the first pipe. The hot water exchanges heat with the air in the internal space below the floor, and the temperature of the internal space below the floor rises, while the temperature of the hot water decreases. The warm water whose temperature has been reduced returns to the first tank. As for the water in the first tank heated by the solar heat collecting device, warm water stays in the upper part and water having a relatively high specific gravity stays in the lower part. When the hot water whose temperature has decreased returns to the first tank, the hot water remaining in the upper part of the first tank is supplied to the second tank via the connection pipe. In this way, since the operation of the heat pump device is reduced by supplying hot water having a relatively high temperature to the second tank, the energy cost in winter can be reduced.
 また、この構成によれば、床空調システムは、太陽熱集熱装置と、太陽熱集熱装置で加熱された水を貯留する第1タンクと、ヒートポンプ装置と、ヒートポンプ装置で加熱された水を貯留する第2タンクと、第1タンクの上部と第2タンクの底部を接続する接続管と、床下に配置するとともに、一方の端部が前記第1タンクに接続する第1管と、水道源管と第2管の一方の端部と第1タンクとに接続する第1方向制御弁と、第2タンクと第1管の他端部と前記第2管の他端部とに接続する第2方向制御弁を備え、第1方向制御弁と第2方向制御弁とを切り替えることにより、第1タンクに貯留されている水を、第2タンクおよび第1管を経由する経路に切り替えて第1タンクに供給し、または水道源管から供給される水を、第2管および第1管を経由する経路に切り替えて第1タンクに供給しているので、構造が簡単な床空調システムを提供することができる。 Moreover, according to this structure, a floor air conditioning system stores the solar heat collector, the 1st tank which stores the water heated with the solar heat collector, the heat pump apparatus, and the water heated with the heat pump apparatus. A second tank, a connecting pipe that connects the upper part of the first tank and the bottom of the second tank, a first pipe that is disposed under the floor and has one end connected to the first tank, and a water source pipe A first direction control valve connected to one end of the second pipe and the first tank, a second direction connected to the second tank, the other end of the first pipe, and the other end of the second pipe. A control valve is provided, and by switching between the first directional control valve and the second directional control valve, the water stored in the first tank is switched to a path passing through the second tank and the first pipe. Or the water supplied from the water source pipe to the second pipe and the second pipe. Because it is providing to the first tank by switching the path through the tube, it is possible to structure provides a simple floor air-conditioning system.
 請求項2に係る発明は、請求項1に記載の床空調システムにおいて、第1管の一方の端部と第1タンクと第2タンクに接続する第3方向制御弁をさらに備え、第3方向制御弁を切り替えることにより、第1管の一方の端部を通過する水を、第1タンクに供給し、または第2タンクに供給することを特徴とする The invention according to claim 2 is the floor air conditioning system according to claim 1, further comprising a third direction control valve connected to one end of the first pipe, the first tank, and the second tank, in the third direction. By switching the control valve, water passing through one end of the first pipe is supplied to the first tank or supplied to the second tank.
 この構成によれば、第1管の一方の端部と第1タンクと第2タンクに接続する第3方向制御弁をさらに備え、第3方向制御弁を切り替えることにより、第1管の一方の端部を通過する水を、第1タンク、または第2タンクのいずれかに供給することができるので、第1タンク上部に滞留している水の温度が、第1管の一方の端部を通過する水の温度に比べて低い場合は第2タンクに給水し、高い場合は第1タンクに供給することができる。これにより、相対的に温度が高い水を第2タンクに供給することができる。その結果、ヒートポンプ装置の稼働をより一層低減するので、より一層エネルギーコストを低減できる。 According to this configuration, the apparatus further includes the third direction control valve connected to the one end of the first pipe and the first tank and the second tank, and by switching the third direction control valve, Since the water passing through the end portion can be supplied to either the first tank or the second tank, the temperature of the water staying at the upper portion of the first tank causes one end portion of the first pipe to When the temperature is lower than the temperature of the passing water, water can be supplied to the second tank, and when it is higher, the water can be supplied to the first tank. Thereby, water with relatively high temperature can be supplied to the second tank. As a result, since the operation of the heat pump device is further reduced, the energy cost can be further reduced.
 請求項3に係る発明は、請求項1または2に記載の床空調システムにおいて、第1方向制御弁、および第2方向制御弁に接続された第1制御部を備え、第1制御部は、第1タンク、第2タンク、第1管、および第2管を通過する水の流れを制御することを特徴とする。 The invention according to claim 3 is the floor air conditioning system according to claim 1 or 2, further comprising a first control unit connected to the first directional control valve and the second directional control valve, The flow of water passing through the first tank, the second tank, the first pipe, and the second pipe is controlled.
 この構成によれば、第1方向制御弁、および第2方向制御弁に接続された第1制御部を備えることにより、第1タンク、第2タンク、第1管、および第2管を通過する水の流れを制御するので、冬期および夏期における床空調システムに用いる経路を簡単に構成することができる。 According to this configuration, by including the first control unit connected to the first directional control valve and the second directional control valve, the first tank, the second tank, the first pipe, and the second pipe are passed. Since the flow of water is controlled, the path used for the floor air conditioning system in winter and summer can be easily configured.
 請求項4に係る発明は、請求項2に記載の床空調システムにおいて、第1タンク、第2タンク、および第1管の一方の端部に設けられた温度センサと、第3方向制御弁に接続された第2制御部を備え、第2制御部は、温度センサの検出値に基づき、第1管を通過する水を第1タンクに供給する流れ、または前記第2タンクに供給する流れにすることを特徴とする。 According to a fourth aspect of the present invention, in the floor air-conditioning system of the second aspect, the temperature sensor provided at one end of the first tank, the second tank, and the first pipe, and the third direction control valve A second control unit connected to the second control unit, wherein the second control unit is configured to supply water passing through the first pipe to the first tank based on a detection value of the temperature sensor or to supply the second tank; It is characterized by doing.
 この構成によれば、第1タンク、第2タンク、および第1管の一方の端部に設けられた温度センサと、第3方向制御弁に接続された第2制御部を備え、第2制御部は、温度センサの検出値に基づき、第1管を通過する水を第1タンクに供給する流れ、または前記第2タンクに供給する流れのいずれかに制御するので、エネルギーコストを低減できる床空調システムを、自動的に動作することができる。 According to this configuration, the second control unit includes the temperature sensor provided at one end of the first tank, the second tank, and the first pipe, and the second control unit connected to the third direction control valve. The unit controls the flow of supplying water passing through the first pipe to the first tank or the flow of supplying the second tank based on the detection value of the temperature sensor, so that the energy cost can be reduced. The air conditioning system can operate automatically.
 請求項5に係る発明は、請求項1から4のいずれか1項に記載の床空調システムにおいて、床下部に外気との通気口を設置せず、床下部内部の空気を外部と遮断する、または通気口を開閉可能な構造とし通気口を開閉することにより、密閉状態にすることを特徴とする。 The invention according to claim 5 is the floor air-conditioning system according to any one of claims 1 to 4, wherein no air vent with outside air is installed in the lower part of the floor, and air inside the lower part of the floor is shut off from the outside. Alternatively, the air vent is structured to be openable and closable, and the air vent is opened and closed to make a sealed state.
 この構成によれば、床下部に外部との通気口を設置せず、床下部内部の空気を外気と遮断する、または通気口を開閉可能な構造とし通気口を閉鎖することにより、外気が床下部に直接流入しないような密封状態とすることとなり、太陽エネルギーによる床空調が効率的になる。 According to this configuration, the outside air is not installed under the floor by blocking the air inside the bottom of the floor from the outside air, or by closing the air vent so that the air vent can be opened and closed. It will be in the sealing state which does not flow directly into a part, and floor air-conditioning by solar energy becomes efficient.
 請求項6に係る発明は、請求項1から5のいずれか1項に記載の床空調システムにおいて、第1管の下に遮熱シートを敷設することを特徴とする。 The invention according to claim 6 is characterized in that, in the floor air conditioning system according to any one of claims 1 to 5, a heat shield sheet is laid under the first pipe.
 この構成によれば、第1管の下に遮熱シートが敷設されているので、第1管からの熱の逃散を防止でき、床空調を効率化できる。 According to this configuration, since the heat shielding sheet is laid under the first pipe, heat escape from the first pipe can be prevented, and the floor air conditioning can be made more efficient.
本実施形態の床空調システムのブロック図である。It is a block diagram of the floor air-conditioning system of this embodiment. 本実施形態の床空調システムの夏期の動作図である。It is an operation | movement figure of the summer of the floor air conditioning system of this embodiment. 本実施形態の床空調システムの冬期の動作図である。It is an operation | movement figure of the winter season of the floor air-conditioning system of this embodiment. 冬期において、風呂に給湯したときの動作図である。It is an operation | movement figure when supplying hot water to a bath in winter. 第1、2タンクに貯留している水の加熱状態を表す図である。It is a figure showing the heating state of the water stored in the 1st, 2nd tank.
 以下、図面を参照しながら、本発明の好ましい実施形態について説明する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
 図1に示すように、床空調システム1は、水道水を供給する水道源管100と、太陽熱集熱装置2と、太陽熱集熱装置2で加熱した温水を貯留する第1タンク3と、ヒートポンプ装置5と、ヒートポンプ装置5で加熱した温水を貯留する第2タンク4と、第1タンク3に貯留された温水を第2タンク4に供給する接続管p1と、床下部9に設けられた第1管6と、これら第1タンク3、第2タンク4、ヒートポンプ装置5、および第1管6間に接続された配管p2、p3、p4、p5、p6と、配管中の流れを切り替える第1方向制御弁71と、第2方向制御弁72と、第3方向制御弁73と、これら3つの弁を制御する第1制御部81と、第2制御部82と温度センサ32、62とから構成されている。これにより、床下部9の内部の温度を温水、または水によって調温することが可能となる。 As shown in FIG. 1, the floor air-conditioning system 1 includes a water source pipe 100 that supplies tap water, a solar heat collector 2, a first tank 3 that stores hot water heated by the solar heat collector 2, and a heat pump. The apparatus 5, the second tank 4 that stores the hot water heated by the heat pump apparatus 5, the connection pipe p <b> 1 that supplies the hot water stored in the first tank 3 to the second tank 4, and the first provided in the lower floor 9. A first pipe 6, a first tank 3, a second tank 4, a heat pump device 5, and pipes p 2, p 3, p 4, p 5, p 6 connected between the first pipe 6 and a first pipe for switching the flow in the pipe. A directional control valve 71, a second directional control valve 72, a third directional control valve 73, a first control unit 81 that controls these three valves, a second control unit 82, and temperature sensors 32 and 62 are configured. Has been. Thereby, it becomes possible to adjust the temperature inside the floor lower part 9 with warm water or water.
 第1タンク3は水道源管100から供給される水で満水状態となっている。また、第2タンク4は第1タンク3の上部と第2タンク4の底部を接続する接続管p1から供給される水で、第1タンク3と同様に満水状態となっている。 The first tank 3 is full of water supplied from the water source pipe 100. The second tank 4 is water supplied from a connection pipe p <b> 1 that connects the upper part of the first tank 3 and the bottom part of the second tank 4, and is in a full state like the first tank 3.
 太陽熱集熱装置2は、太陽熱集熱器21と、熱交換器22と、集熱ポンプ24が、配管26、27、28によって直列に接続された閉回路である。熱交換器22は、第1タンク3の内部に設けられている。集熱ポンプ24を稼働すると、太陽熱集熱器21と熱交換器22の間で熱媒体が循環する。太陽熱集熱器21へ流入した熱媒体は、太陽熱集熱器21を通過する間に太陽熱によって加熱され、熱交換器22に送られる。熱交換器22に流入した熱媒体は熱交換され温度が低下し、一方、第1タンク3に満水状態で貯留されている水は加熱される。温度低下した熱媒体は、再び太陽熱集熱器21に送られて加熱される。 The solar heat collector 2 is a closed circuit in which a solar heat collector 21, a heat exchanger 22, and a heat collection pump 24 are connected in series by pipes 26, 27, and 28. The heat exchanger 22 is provided inside the first tank 3. When the heat collection pump 24 is operated, the heat medium circulates between the solar heat collector 21 and the heat exchanger 22. The heat medium flowing into the solar heat collector 21 is heated by solar heat while passing through the solar heat collector 21, and is sent to the heat exchanger 22. The heat medium that has flowed into the heat exchanger 22 is heat-exchanged to lower the temperature, while the water stored in the first tank 3 in a full state is heated. The heat medium whose temperature has been lowered is sent again to the solar heat collector 21 and heated.
 加熱された水は、周囲の水に比べ比重が小さいので、上昇し上部に滞留する。その結果、第1タンク3に貯留されている水は、加熱されて温度が上昇した水が上部に滞留した状態となる(図5参照)。 The heated water rises and stays in the upper part because its specific gravity is smaller than the surrounding water. As a result, the water stored in the first tank 3 is heated, and the water whose temperature has risen stays in the upper part (see FIG. 5).
 ヒートポンプ装置5は、図示していないが、冷媒を圧縮するインバータモータ駆動の圧縮機、圧縮された高温の冷媒と熱交換して水を加熱する冷媒-水熱交換器、冷媒-水熱交換器で凝縮された冷媒を周囲空気の熱により蒸発させる蒸発器、蒸発器に設けられたモータ駆動の送風ファン、膨張弁などで構成されている。ヒートポンプ装置5と、循環ポンプ56と、第2タンク4は、ヒートポンプ管52、53、54によって直列に接続された閉回路を構成している。循環ポンプ56を稼働すると、第2タンク4に貯留されている水は、ヒートポンプ管54、53を経由してヒートポンプ装置5で加熱され、加熱された水はヒートポンプ管52を経由して第2タンク4の内部に戻ってくる。この加熱循環サイクルによって、第2タンク4に貯留されている水は均一に加熱された状態となる。 Although not shown, the heat pump device 5 is an inverter motor driven compressor that compresses the refrigerant, a refrigerant-water heat exchanger that heats water by exchanging heat with the compressed high-temperature refrigerant, and a refrigerant-water heat exchanger. It comprises an evaporator that evaporates the refrigerant condensed by the heat of ambient air, a motor-driven blower fan provided in the evaporator, an expansion valve, and the like. The heat pump device 5, the circulation pump 56, and the second tank 4 constitute a closed circuit connected in series by heat pump pipes 52, 53, and 54. When the circulation pump 56 is operated, the water stored in the second tank 4 is heated by the heat pump device 5 via the heat pump pipes 54 and 53, and the heated water is supplied to the second tank via the heat pump pipe 52. Come back inside 4 By this heating circulation cycle, the water stored in the second tank 4 is uniformly heated.
 太陽熱集熱装置2にヒートポンプ装置5を組み合わせることにより年間エネルギー消費効率を大幅に向上することができる。 The annual energy consumption efficiency can be greatly improved by combining the heat pump device 5 with the solar heat collector 2.
 また、第1タンク3の内部に発熱体(図示略)を設け、深夜電力を利用して発熱体を通電し、貯留されている水を加熱してもよい。これにより、天候不良等に起因して太陽熱集熱装置2を稼働しても、第1タンク3の内部に貯留されている水を十分に加熱できない場合でも、深夜の安い電気料金で、加熱することができる。 Alternatively, a heating element (not shown) may be provided inside the first tank 3, and the stored water may be heated by energizing the heating element using midnight power. As a result, even if the solar heat collecting device 2 is operated due to bad weather or the like, even if the water stored in the first tank 3 cannot be heated sufficiently, it is heated at a low electricity charge at midnight. be able to.
 床下部9は、図示していないが、基礎と、床と、内部空間で構成され、内部空間は密閉されている。内側の側壁にはウレタン発泡体の吹き付け工事等による断熱部材が設けられている。 Although the floor lower part 9 is not illustrated, it is composed of a foundation, a floor, and an internal space, and the internal space is sealed. The inner side wall is provided with a heat insulating member by urethane foam spraying work or the like.
 床下部9の基礎は、建物外部の空気が流入しないように外部との通気口を設置せず、内部空間の空気を外気と遮断し密封状態とする。床下部9を温度調整槽として利用するため、外気が床下部9に直接流入しないように床下部9の内部空間が密封状態となるように構成される。 The foundation of the lower floor 9 is not installed with a vent to the outside so that air outside the building does not flow in, and the air in the interior space is shut off from the outside air and sealed. Since the lower floor 9 is used as a temperature control tank, the internal space of the lower floor 9 is configured to be in a sealed state so that outside air does not directly flow into the lower floor 9.
 一般住宅の床下の基礎部、例えば、布基礎においては、床下部9の湿気を防ぐために外部と通気が良い構造とし、通気口を開閉可能な構造とし、通気口を閉鎖することで、前記と同様の効果を得られる。 In a foundation part under the floor of a general house, for example, a cloth foundation, the structure has good ventilation with the outside in order to prevent moisture in the lower floor 9, the ventilation opening can be opened and closed, and the ventilation opening is closed. Similar effects can be obtained.
 第1管6は、床下部9の内部を蛇行するように配置されている。第1管6を通過する水は第3方向制御弁73を経由して第1タンク3、または第2タンク4に供給される。また、第1管6の下には遮熱シート11が敷設されている。遮熱シート11は断熱性を有するシートであり、例えば、アルミニウムシートであることが好ましい。 The first pipe 6 is arranged so as to meander inside the lower floor 9. The water passing through the first pipe 6 is supplied to the first tank 3 or the second tank 4 via the third direction control valve 73. A heat shield sheet 11 is laid under the first pipe 6. The heat shield sheet 11 is a sheet having heat insulation properties, and is preferably an aluminum sheet, for example.
 また、第1管6に、循環ポンプ64が設けられている。これにより、第2タンク4から供給される温水を、第1管6を経由して第2タンク4に安定した状態で循環することができる。 Further, a circulation pump 64 is provided in the first pipe 6. Thereby, the hot water supplied from the second tank 4 can be circulated in a stable state to the second tank 4 via the first pipe 6.
 第2管8は、一方の端部は第1方向制御弁71に、他端部は第2方向制御弁72に接続しており、第1方向制御弁71を切り替えることにより、水道源管100から供給される水道水は、第2管8を経由して第2方向制御弁72に供給される。 The second pipe 8 has one end connected to the first directional control valve 71 and the other end connected to the second directional control valve 72. By switching the first directional control valve 71, the water source pipe 100 The tap water supplied from is supplied to the second directional control valve 72 via the second pipe 8.
 第1方向制御弁71は三方弁であり、水道水を供給する水道源管100と、第1タンク3に接続する配管p5と、一方の端部が第2方向制御弁72に接続する第2管8に接続している。第1方向制御弁71は、切り替えることにより、水道源管100から供給される水道水を、配管p5、または第2管8のいずれかに供給することができる。 The first direction control valve 71 is a three-way valve, and includes a water source pipe 100 that supplies tap water, a pipe p5 that is connected to the first tank 3, and a second end that is connected to the second direction control valve 72 at one end. Connected to tube 8. The first direction control valve 71 can supply the tap water supplied from the water source pipe 100 to either the pipe p5 or the second pipe 8 by switching.
 配管p5は、相対的に温度の低い水が滞留している第1タンク3の底部に接続することが好ましい。これにより、第1タンク3内部の上方に滞留している温水との混合を回避することができる。 The pipe p5 is preferably connected to the bottom of the first tank 3 where water having a relatively low temperature stays. Thereby, mixing with the warm water staying above the inside of the first tank 3 can be avoided.
 第2方向制御弁72は三方弁であり、第2タンク4から供給される温水を供給する配管p2と、水道源管100から供給される水道水を供給する第2管8と、第1管6の他端部6bに接続している。第2方向制御弁72は、切り替えることにより、配管p2から供給される温水、または第2管8から供給される水道水のいずれかを第1管6に供給することができる。 The second direction control valve 72 is a three-way valve, and includes a pipe p2 that supplies hot water supplied from the second tank 4, a second pipe 8 that supplies tap water supplied from the water source pipe 100, and a first pipe. 6 is connected to the other end 6b. The second direction control valve 72 can supply either the hot water supplied from the pipe p <b> 2 or the tap water supplied from the second pipe 8 to the first pipe 6 by switching.
 第3方向制御弁73は三方弁であり、第1管6の一方の端部6aと、第1タンク3に接続する配管p3と、第2タンク4に接続する配管p4に接続している。第3方向制御弁73は、切り替えることにより、第1管6から供給される水道水もしくは温水を、配管p3、または配管p4のいずれかに供給することができる。 The third direction control valve 73 is a three-way valve, and is connected to one end 6a of the first pipe 6, a pipe p3 connected to the first tank 3, and a pipe p4 connected to the second tank 4. By switching, the third direction control valve 73 can supply tap water or hot water supplied from the first pipe 6 to either the pipe p3 or the pipe p4.
 配管p3、p4は、第1タンク3、第2タンク4の底部に接続することが好ましい。これにより、第1タンク3、第2タンク4の上方に滞留している温水との混合を回避することができる。 The pipes p3 and p4 are preferably connected to the bottoms of the first tank 3 and the second tank 4. Thereby, mixing with the warm water staying above the first tank 3 and the second tank 4 can be avoided.
 第1制御部81は、第1方向制御弁71、および第2方向制御弁72の切り替えを制御するものであり、電子的制御、機械的制御のいずれでもよい。 The first control unit 81 controls switching of the first directional control valve 71 and the second directional control valve 72, and may be either electronic control or mechanical control.
 夏期において、床の冷却が必要と認められるときは、第1制御部81を操作して、第1方向制御弁71、第2方向制御弁72を切り替え、水道源管100から供給される水が第2管8、第1管6を通過する経路を形成する。風呂10に、第2タンク4に接続された配管p6を経由して給湯した場合、水道源管100から温度の低い水道水が供給され、第2管8、第1管6を経由して第1タンク3の底部または第2タンク4に供給される。第1管6に供給される温度の低い水道水が、床下部9の内部空間に蓄熱された空気と熱交換されて床下部9の温度が低下し、一方、水道水の温度が上昇する。 In the summer, when it is recognized that the floor needs to be cooled, the first control unit 81 is operated to switch the first direction control valve 71 and the second direction control valve 72 so that the water supplied from the water source pipe 100 is A path passing through the second pipe 8 and the first pipe 6 is formed. When hot water is supplied to the bath 10 via the pipe p 6 connected to the second tank 4, tap water having a low temperature is supplied from the water source pipe 100, and the second pipe 8 and the first pipe 6 are used to supply the first water. It is supplied to the bottom of one tank 3 or the second tank 4. The tap water having a low temperature supplied to the first pipe 6 is heat-exchanged with the air stored in the internal space of the lower floor 9 to lower the temperature of the lower floor 9, while the temperature of the tap water increases.
 冬期において、床の暖房が必要と認められるときは、第1制御部81を操作して、第1方向制御弁71、第2方向制御弁72を切り替え、第2タンク4から供給される温水が、第1管6を経由して第2タンク4に循環する経路を形成する。同時に、循環ポンプ64を始動させる。これにより、第1管6に供給される温水が、床下部9の内部空間の空気と熱交換されて、床下部9の内部空間の温度が上昇し、一方、温水の温度が低下する。 In winter, when it is recognized that floor heating is necessary, the first control unit 81 is operated to switch the first directional control valve 71 and the second directional control valve 72 so that the hot water supplied from the second tank 4 Then, a path that circulates to the second tank 4 via the first pipe 6 is formed. At the same time, the circulation pump 64 is started. Thereby, the hot water supplied to the 1st pipe | tube 6 is heat-exchanged with the air of the interior space of the floor lower part 9, and the temperature of the interior space of the floor lower part 9 rises, On the other hand, the temperature of warm water falls.
 第2制御部82は、第1タンク3の内部に設けられた温度センサ32、および第1管6の一方の端部6aに設けられた温度センサ62の検出値に基づき第3方向制御弁73の切り替えを制御するものであり、電子的制御、機械的制御のいずれでもよい。 The second control unit 82 is based on the detected values of the temperature sensor 32 provided in the first tank 3 and the temperature sensor 62 provided at one end 6 a of the first pipe 6. The switching is controlled, and either electronic control or mechanical control may be used.
 温度センサ62の検出値が、所定のしきい値、例えば、温度センサ32の検出値よりも小さい場合、第3方向制御弁73を切り替えて、第1管6を通過する温水または水道水を、配管p3を経由して第1タンク3に供給する。これにより、第1タンク3の上方に滞留しているより高い温度の温水が接続管p1を経由して第2タンク4に供給される。また、温度センサ62の検出値が、所定のしきい値、例えば、温度センサ32の検出値を上回る場合、第3方向制御弁73を切り替えて、第1管6を通過する温水または水道水を、配管p4を経由して第2タンク4に供給する。これにより、第1タンク3の上方に滞留している温水よりも高い温度の温水または水道水が配管p4を経由して第2タンク4に供給される。これにより、夏期における床空調を効率的に行うことができる。 When the detected value of the temperature sensor 62 is smaller than a predetermined threshold value, for example, the detected value of the temperature sensor 32, the third direction control valve 73 is switched, and hot water or tap water passing through the first pipe 6 is changed. The first tank 3 is supplied via the pipe p3. As a result, hot water having a higher temperature staying above the first tank 3 is supplied to the second tank 4 via the connection pipe p1. Further, when the detected value of the temperature sensor 62 exceeds a predetermined threshold value, for example, the detected value of the temperature sensor 32, the third direction control valve 73 is switched to supply hot water or tap water passing through the first pipe 6. The second tank 4 is supplied via the pipe p4. As a result, hot water or tap water having a temperature higher than the hot water staying above the first tank 3 is supplied to the second tank 4 via the pipe p4. Thereby, floor air conditioning in summer can be performed efficiently.
 夏期における床空調システム1の動作について、図2を参照しながら説明する。 The operation of the floor air conditioning system 1 in summer will be described with reference to FIG.
 夏期において、床の冷却が必要と認められるときは、第1制御部81を操作して、第1方向制御弁71と第2方向制御弁72を切り替える。これにより、水道源管100から供給される水が、第2管8、第1管6を経由して、第1タンク3に至る経路が形成される。すなわち、第2タンク4に貯留されている水を風呂10に給湯することによって、第1管6に温度の低い水道水が流れる経路が形成されている。第2タンク内の温水を風呂10に給湯すると、温度の低い水道水が第1管6に供給される。温度の低い水道水が床下部9の内部空間の蓄熱された空気と熱交換されて、床下部9の内部空間の温度が低下し、一方、水道水の温度が上昇する。 In summer, when it is recognized that the floor needs to be cooled, the first control unit 81 is operated to switch the first direction control valve 71 and the second direction control valve 72. As a result, a path through which the water supplied from the water source pipe 100 reaches the first tank 3 via the second pipe 8 and the first pipe 6 is formed. That is, by supplying hot water stored in the second tank 4 to the bath 10, a path through which tap water having a low temperature flows is formed in the first pipe 6. When hot water in the second tank is supplied to the bath 10, tap water having a low temperature is supplied to the first pipe 6. The tap water having a low temperature is subjected to heat exchange with the heat stored in the internal space of the lower floor 9, and the temperature of the internal space of the lower floor 9 is lowered, while the temperature of the tap water is increased.
 また、第2制御部82を動作して、第3方向制御弁73を切り替える。温度センサ62の検出値が、温度センサ32の検出値よりも小さい場合、第1管6を通過する温水または水道水を、配管p3を経由して第1タンク3に供給する経路に切り替える。これにより、第1タンク3の上方に滞留しているより高い温度の温水が接続管p1を経由して第2タンク4に供給される。温度センサ62の検出値が、温度センサ32の検出値を上回る場合、第1管6を通過する温水または水道水を、配管p4を経由して第2タンク4に供給する経路に切り替える。これにより、第1タンク3の上方に滞留している温水よりも高い温度の温水または水道水が配管p4を経由して第2タンク4に供給される。これにより、風呂10への給湯を効率的に行うことができる。 Also, the second control unit 82 is operated to switch the third direction control valve 73. When the detected value of the temperature sensor 62 is smaller than the detected value of the temperature sensor 32, the hot water or tap water passing through the first pipe 6 is switched to a path for supplying the first tank 3 via the pipe p3. As a result, hot water having a higher temperature staying above the first tank 3 is supplied to the second tank 4 via the connection pipe p1. When the detection value of the temperature sensor 62 exceeds the detection value of the temperature sensor 32, the hot water or tap water passing through the first pipe 6 is switched to a path for supplying the second tank 4 via the pipe p4. As a result, hot water or tap water having a temperature higher than the hot water staying above the first tank 3 is supplied to the second tank 4 via the pipe p4. Thereby, the hot water supply to the bath 10 can be performed efficiently.
 冬期における床空調システム1の動作について、図3を参照しながら説明する。 The operation of the floor air conditioning system 1 in winter will be described with reference to FIG.
 第2タンク4の内部は、ヒートポンプ装置5で加熱されて、ほぼ一定温度となった温水で満たされている。冬期において、床の暖房が必要と認められるときは、第1制御部81を操作して、第1方向制御弁71と第2方向制御弁72を切り替える。これにより、第2タンク4に貯留されている温水が、配管p2、第1管6を経由する経路が形成される。循環ポンプ64を動作すると、第2タンク4に貯留されている温水が第1管6を通過する。この過程で、床下部9の内部空間の空気が熱交換されて、床下部9の内部空間の温度が上昇し、一方、第1管内の温水の温度は低下する。 The inside of the second tank 4 is filled with warm water heated to a substantially constant temperature by the heat pump device 5. In winter, when it is recognized that floor heating is necessary, the first control unit 81 is operated to switch between the first direction control valve 71 and the second direction control valve 72. Thereby, the path | route through which the hot water stored in the 2nd tank 4 passes the piping p2 and the 1st pipe | tube 6 is formed. When the circulation pump 64 is operated, the hot water stored in the second tank 4 passes through the first pipe 6. In this process, the air in the internal space of the lower floor 9 is subjected to heat exchange, and the temperature of the internal space of the lower floor 9 is increased, while the temperature of the hot water in the first pipe is decreased.
 また、第2制御部82を動作して、第3方向制御弁73を切り替える。温度センサ62の検出値が、温度センサ32の検出値よりも小さい場合、第1管6を通過する温水を、配管p3を経由して第1タンク3に供給する経路に切り替える。これにより、第2タンク4の内部に貯留されている温水は、第1管6、第1タンク3を経由して再び第2タンク4に還流する循環経路が形成される。また、第1タンク3の上方に滞留しているより高い温度の温水が接続管p1を経由して第2タンク4に供給される。温度センサ62の検出値が、温度センサ32の検出値を上回る場合、第1管6を通過する温水を、配管p4を経由して第2タンク4に供給する経路に切り替える。これにより、第2タンク4の内部に貯留されている温水は、第1管6を経由して再び第2タンク4に還流する循環経路が形成される。また、第1タンク3の上方に滞留している温水よりも高い温度の温水が配管p4を経由して第2タンク4に供給される。これにより、冬期における床空調を効率的に行うことができる。 Also, the second control unit 82 is operated to switch the third direction control valve 73. When the detected value of the temperature sensor 62 is smaller than the detected value of the temperature sensor 32, the hot water passing through the first pipe 6 is switched to a path for supplying the first tank 3 via the pipe p3. Thereby, a circulation path is formed in which the hot water stored in the second tank 4 returns to the second tank 4 again via the first pipe 6 and the first tank 3. Further, hot water having a higher temperature staying above the first tank 3 is supplied to the second tank 4 via the connection pipe p1. When the detected value of the temperature sensor 62 exceeds the detected value of the temperature sensor 32, the hot water passing through the first pipe 6 is switched to a path for supplying the second tank 4 via the pipe p4. Thus, a circulation path is formed in which the hot water stored in the second tank 4 returns to the second tank 4 again via the first pipe 6. Further, hot water having a temperature higher than that of the hot water staying above the first tank 3 is supplied to the second tank 4 via the pipe p4. Thereby, floor air conditioning in winter can be performed efficiently.
 図4に示すように、風呂10への給湯を行う場合は、水道源管100から水道水が配管p5を経由して第1タンク3に供給される。同時に、第1タンク3の上方に滞留している温水が接続管p1を経由して第2タンク4の底部に供給される。これにより、水道水よりも高温の温水が、第2タンク4に供給されるので、風呂10への給湯を効率的に行うことができる。 As shown in FIG. 4, when hot water is supplied to the bath 10, tap water is supplied from the water source pipe 100 to the first tank 3 via the pipe p5. At the same time, hot water staying above the first tank 3 is supplied to the bottom of the second tank 4 via the connection pipe p1. Thereby, since hot water higher than tap water is supplied to the 2nd tank 4, the hot water supply to the bath 10 can be performed efficiently.
 以上、本実施形態に基づいて、本発明に係る床空調システムについて詳細に説明してきたが、本発明は、以上の実施形態に限定されるものではなく、発明の趣旨を逸脱しない範囲において各種の改変をなしても、本発明の技術的範囲に属するのはもちろんである。 As described above, the floor air-conditioning system according to the present invention has been described in detail on the basis of the present embodiment, but the present invention is not limited to the above-described embodiment, and various types can be made without departing from the spirit of the invention. Of course, even if it is modified, it belongs to the technical scope of the present invention.
 床下部9の空調を省エネルギーで提供でき、その産業上の利用価値は大である。 The air conditioning of the lower floor 9 can be provided with energy saving, and its industrial utility value is great.
1   :床空調システム
2   :太陽熱集熱装置
3   :第1タンク
4   :第2タンク
5   :ヒートポンプ装置
6   :第1管
8   :第2管
9   :床下部
11  :遮熱シート
32  :温度センサ
62  :温度センサ
71  :第1方向制御弁
72  :第2方向制御弁
73  :第3方向制御弁
81  :第1制御部
82  :第2制御部
100 :水道源管
p1  :接続管
1: Floor air conditioning system 2: Solar thermal collector 3: 1st tank 4: 2nd tank 5: Heat pump device 6: 1st pipe 8: 2nd pipe 9: Lower floor 11: Thermal insulation sheet 32: Temperature sensor 62: Temperature sensor 71: 1st direction control valve 72: 2nd direction control valve 73: 3rd direction control valve 81: 1st control part 82: 2nd control part 100: Water supply pipe p1: Connection pipe

Claims (6)

  1. 太陽熱集熱装置と、
    前記太陽熱集熱装置で加熱する水を貯留する第1タンクと、
    ヒートポンプ装置と、
    前記ヒートポンプ装置で加熱する水を貯留する第2タンクと、
    前記第1タンクの上部と前記第2タンクの底部を接続する接続管と、
    床下部に配置するとともに、一方の端部が前記第1タンクに接続する第1管と、
    水道源管と第2管の一方の端部と前記第1タンクとに接続する第1方向制御弁と、
    前記第2タンクと前記第1管の他端部と前記第2管の他端部とに接続する第2方向制御弁と、を備え、
    前記第1方向制御弁と前記第2方向制御弁とを切り替えることにより、前記第1タンクに貯留されている水を、前記第2タンクおよび前記第1管を経由する経路に切り替えて前記第1タンクに供給し、または前記水道源管から供給される水を、前記第2管および前記第1管を経由する経路に切り替えて前記第1タンクに供給することを特徴とする床空調システム。
    A solar heat collector,
    A first tank for storing water to be heated by the solar heat collector;
    A heat pump device;
    A second tank for storing water to be heated by the heat pump device;
    A connecting pipe connecting the top of the first tank and the bottom of the second tank;
    A first pipe arranged at the lower part of the floor and having one end connected to the first tank;
    A first direction control valve connected to one end of the water source pipe and the second pipe and the first tank;
    A second directional control valve connected to the second tank, the other end of the first pipe, and the other end of the second pipe;
    By switching between the first directional control valve and the second directional control valve, the water stored in the first tank is switched to a path passing through the second tank and the first pipe. A floor air-conditioning system that supplies water to the tank or supplies water from the water source pipe to the first tank by switching to a path that passes through the second pipe and the first pipe.
  2. 前記第1管の一方の端部と前記第1タンクと前記第2タンクとに接続する第3方向制御弁をさらに備え、
    前記第3方向制御弁を切り替えることにより、前記第1管の一方の端部を通過する水を、前記第1タンクに供給し、または前記第2タンクに供給することを特徴とする請求項1に記載の床空調システム。
    A third directional control valve connected to one end of the first pipe, the first tank, and the second tank;
    2. The water passing through one end of the first pipe is supplied to the first tank or supplied to the second tank by switching the third direction control valve. Floor air conditioning system as described in.
  3. 前記第1方向制御弁、および前記第2方向制御弁に接続された第1制御部を備え、
    前記第1制御部は、前記第1タンク、前記第2タンク、前記第1管、および前記第2管を通過する水の流れを制御することを特徴とする請求項1または2に記載の床空調システム。
    A first control unit connected to the first directional control valve and the second directional control valve;
    The floor according to claim 1, wherein the first control unit controls a flow of water passing through the first tank, the second tank, the first pipe, and the second pipe. Air conditioning system.
  4. 前記第1タンク、および前記第1管の一方の端部に設けられた温度センサと、
    前記第3方向制御弁に接続する第2制御部を備え、
    前記第2制御部は、前記温度センサの検出値に基づき、前記第1管を通過する水を前記第1タンクに供給する流れ、または前記第2タンクに供給する流れのいずれかに制御することを特徴とする請求項2に記載の床空調システム。
    A temperature sensor provided at one end of the first tank and the first pipe;
    A second control unit connected to the third directional control valve;
    The second control unit controls either a flow for supplying water passing through the first pipe to the first tank or a flow for supplying the second tank based on a detection value of the temperature sensor. The floor air-conditioning system according to claim 2.
  5. 前記床下部に外気との通気口を設置せず、前記床下部の内部の空気を外部と遮断する、または通気口を開閉可能な構造とし通気口を開閉することにより、密閉状態にすることを特徴とする請求項1から4のいずれか1項に記載の床空調システム。 Do not install outside air vents in the lower floor, block the air inside the lower floor from the outside, or make the air vents openable and closable, and open and close the air vents to make a sealed state The floor air-conditioning system according to any one of claims 1 to 4, wherein the floor air-conditioning system is characterized.
  6. 前記第1管の下に遮熱シートを敷設することを特徴とする請求項1から5のいずれか1項に記載の床空調システム。 The floor air-conditioning system according to any one of claims 1 to 5, wherein a heat shield sheet is laid under the first pipe.
PCT/JP2017/018004 2016-05-12 2017-05-12 Floor air conditioning system WO2017195885A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017541983A JP6249387B1 (en) 2016-05-12 2017-05-12 Floor air conditioning system
TW106139097A TWI646291B (en) 2016-05-12 2017-11-09 Floor air conditioning system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016095825 2016-05-12
JP2016-095825 2016-05-12

Publications (1)

Publication Number Publication Date
WO2017195885A1 true WO2017195885A1 (en) 2017-11-16

Family

ID=60266660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018004 WO2017195885A1 (en) 2016-05-12 2017-05-12 Floor air conditioning system

Country Status (3)

Country Link
JP (1) JP6249387B1 (en)
TW (1) TWI646291B (en)
WO (1) WO2017195885A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111156570A (en) * 2019-12-25 2020-05-15 佛山聚阳新能源有限公司 Direct condensing type air source heat pump floor heating system with solar photovoltaic panel
JP2021058096A (en) * 2019-10-03 2021-04-15 エコエネルギーシステムズ株式会社 Soil temperature control system, and cultivation method using the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110530038B (en) * 2019-08-19 2021-09-03 曹树梁 Method for constructing ceramic solar hot water energy storage device by punching hole in soil layer to bedrock
CN110486779B (en) * 2019-08-19 2020-11-24 东北电力大学 Solar energy comprehensive utilization system for cooling photovoltaic cell by utilizing soil cold energy
CN111121136A (en) * 2019-12-30 2020-05-08 日出东方控股股份有限公司 Heating system based on multi-mode heat supply
CN111336696A (en) * 2020-03-06 2020-06-26 西京学院 Solar hot water automatic control system based on Internet of things module

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006284071A (en) * 2005-03-31 2006-10-19 Daiwa House Ind Co Ltd Solar heating system
JP2009216264A (en) * 2008-03-07 2009-09-24 Kaname Suzuki Floor-heating system
JP2010145042A (en) * 2008-12-19 2010-07-01 Chofu Seisakusho Co Ltd Hot water supply device
JP2012172966A (en) * 2011-02-24 2012-09-10 Takahashi Kanri:Kk Earth solar zero-energy house
JP2013053800A (en) * 2011-09-02 2013-03-21 Kansai Electric Power Co Inc:The Heat pump type hot water supply system
JP2016186411A (en) * 2015-03-27 2016-10-27 矢崎エナジーシステム株式会社 Solar heat utilization hot water supply system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101476760B (en) * 2009-01-23 2012-04-18 曼瑞德自控系统(乐清)有限公司 Multi-heat source dwelling house comfortable integration system based on solar energy
TW201333391A (en) * 2012-02-06 2013-08-16 Great Star Air Conditioner Engineering Inc Heat pump conditioning system and air conditioning control method
TWM455845U (en) * 2013-02-08 2013-06-21 Power Solar Energy Service Co Ltd Thermal energy supply system
JP5751599B2 (en) * 2013-09-09 2015-07-22 クラフトワーク株式会社 Hot water heating / cooling system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006284071A (en) * 2005-03-31 2006-10-19 Daiwa House Ind Co Ltd Solar heating system
JP2009216264A (en) * 2008-03-07 2009-09-24 Kaname Suzuki Floor-heating system
JP2010145042A (en) * 2008-12-19 2010-07-01 Chofu Seisakusho Co Ltd Hot water supply device
JP2012172966A (en) * 2011-02-24 2012-09-10 Takahashi Kanri:Kk Earth solar zero-energy house
JP2013053800A (en) * 2011-09-02 2013-03-21 Kansai Electric Power Co Inc:The Heat pump type hot water supply system
JP2016186411A (en) * 2015-03-27 2016-10-27 矢崎エナジーシステム株式会社 Solar heat utilization hot water supply system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021058096A (en) * 2019-10-03 2021-04-15 エコエネルギーシステムズ株式会社 Soil temperature control system, and cultivation method using the same
CN111156570A (en) * 2019-12-25 2020-05-15 佛山聚阳新能源有限公司 Direct condensing type air source heat pump floor heating system with solar photovoltaic panel

Also Published As

Publication number Publication date
TW201901100A (en) 2019-01-01
JP6249387B1 (en) 2017-12-20
TWI646291B (en) 2019-01-01
JPWO2017195885A1 (en) 2018-05-31

Similar Documents

Publication Publication Date Title
JP6249387B1 (en) Floor air conditioning system
US11874021B2 (en) Fabricated air conditioner wall and operation method thereof
JP5067730B2 (en) Earth / Solar system
CN107062473A (en) A kind of solar air source heat pumps combined supply system
JP6805216B2 (en) Operation control method for solar heat utilization equipment
GB2247072A (en) Heating or cooling system
JPWO2008152786A1 (en) Residential water heater
JP2008076015A (en) Building air-conditioning system by geothermal use
JP2011141073A (en) Device and method of improving efficiency of air conditioning device
JP2012163239A (en) Geothermal heat utilization apparatus
JP3878636B2 (en) Solar system house ventilation method
JP5751599B2 (en) Hot water heating / cooling system
KR101131187B1 (en) Air condotioning equipment using underground air as the heat source and control method thereof
KR101562744B1 (en) Air handling system interworking with ventilation unit
JP6781560B2 (en) Ventilator
JP2006097425A (en) Method of ventilating solar system house
JP2016102644A (en) Air conditioned dwelling
JP2010270943A (en) Solar energy utilization system
KR100567603B1 (en) air conditioner using geo-thermal air
JP2008281319A (en) Air-conditioning outdoor unit connected type hot cold water system floor heating cooling unit
JP6423609B2 (en) Energy utilization system and building using solar power generation heat collecting composite panel
CN101220986B (en) Cooling capacity recovering method of air source heat pump hot water units
JP2008304167A (en) Hot-water supply facility for multiple dwelling house
KR101014843B1 (en) air conditioner with heat source supply
CN1300526C (en) Energy saving and environmental protective in the four seasons cooling and warming air conditioner possessing hot water function

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017541983

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17796243

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17796243

Country of ref document: EP

Kind code of ref document: A1