JP5751599B2 - Hot water heating / cooling system - Google Patents

Hot water heating / cooling system Download PDF

Info

Publication number
JP5751599B2
JP5751599B2 JP2013186071A JP2013186071A JP5751599B2 JP 5751599 B2 JP5751599 B2 JP 5751599B2 JP 2013186071 A JP2013186071 A JP 2013186071A JP 2013186071 A JP2013186071 A JP 2013186071A JP 5751599 B2 JP5751599 B2 JP 5751599B2
Authority
JP
Japan
Prior art keywords
heat
pipe
hot water
water supply
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013186071A
Other languages
Japanese (ja)
Other versions
JP2015052434A (en
Inventor
進 益子
進 益子
暁弐 益子
暁弐 益子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kraftwerk KK
Original Assignee
Kraftwerk KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kraftwerk KK filed Critical Kraftwerk KK
Priority to JP2013186071A priority Critical patent/JP5751599B2/en
Publication of JP2015052434A publication Critical patent/JP2015052434A/en
Application granted granted Critical
Publication of JP5751599B2 publication Critical patent/JP5751599B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/40Geothermal heat-pumps

Landscapes

  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明は、太陽熱、地中熱などの自然エネルギーや生活および経済活動で生じる排熱などをヒートポンプによって集めたり圧縮して高めたりして移動させ、熱媒を高温や低温として蓄熱し、商用電力などの人工エネルギーの消費を少なくして省エネルギー化対策や環境共生を効果的に行うことのできるヒートポンプを用いた給湯冷暖房システムに関するものである。   The present invention moves natural energy such as solar heat and geothermal heat and exhaust heat generated in daily life and economic activities by collecting or compressing it with a heat pump and moving it, storing the heat medium as high or low temperature, The present invention relates to a hot water supply / cooling / heating system using a heat pump that can effectively perform energy saving measures and symbiosis with the environment by reducing consumption of artificial energy.

今日、地球温暖化対策などが重要視され、次世代省エネルギー基準も国土交通省から告示されており、地域によって家屋の熱損失係数の適正値が定められて断熱住宅による居住空間における生活エネルギーの無駄な消費を少なくする試みが種々行われている。   Today, emphasis is placed on global warming countermeasures, and next-generation energy-saving standards have been announced by the Ministry of Land, Infrastructure, Transport and Tourism. Various attempts have been made to reduce unnecessary consumption.

そして、近年、次世代省エネルギー基準のIII地域やIV地域では冷房設備と暖房設備の両者を備えることが多くなり、生活エネルギーの年間消費量が増大している為、自然エネルギーを利用するシステムを組み込んだ家屋や住宅が多くなっている。   In recent years, the III and IV areas of the next-generation energy conservation standards are often equipped with both cooling and heating facilities, and the annual consumption of living energy has increased, so a system that uses natural energy has been incorporated. There are more houses and houses.

また、夏の冷房に関しても、近年、空気熱を利用したヒートポンプ方式の冷房が普及し、家庭や工場などにおいて屋内の熱を屋外に排出して屋内を快適な状態とすることが多くなっている。   In addition, with regard to cooling in summer, in recent years, heat pump type cooling using air heat has become widespread, and indoor heat is discharged to the outdoors to make the indoors comfortable. .

これらの自然エネルギーの利用としては、空気熱以外に太陽熱や地中熱を冷暖房のエネルギーに利用するもの(例えば特許文献1)があり、本件出願人は、地中熱などを効果的に利用し、冷暖房及び給湯を効果的に行って商用電力の消費を極めて少なくすることのできるヒートポンプを用いた給湯冷暖房システム(例えば特許文献2)を提案している。   As for the use of these natural energies, there is one that uses solar heat or geothermal heat in addition to air heat as energy for air conditioning (for example, Patent Document 1). The present applicant effectively uses geothermal heat and the like. In addition, a hot water supply and cooling system using a heat pump that can effectively reduce the consumption of commercial power by effectively performing air conditioning and hot water supply (for example, Patent Document 2) has been proposed.

特開2008−185323号公報JP 2008-185323 A 特開2011−133122号公報JP 2011-133122 A

ヒートポンプを利用したヒートポンプシステムは、空気熱、地中熱又は生活排水や工業排水、河川の水などの水熱を有効に利用することができ、更に、太陽熱も合せて利用することにより、商用電力などの人工エネルギーの消費を大きく削減することができる。   A heat pump system using a heat pump can effectively use water heat such as air heat, underground heat, domestic wastewater, industrial wastewater, and river water, and also uses solar heat together with commercial power. The consumption of artificial energy such as can be greatly reduced.

しかし、空気熱を利用した冷暖房の普及により生活排熱が増大し、夏場にはヒートアイランド現象等の問題が生じ、異常気象などの影響が生じているといわれるようになっている。   However, due to the widespread use of air-conditioning and heating using air heat, exhaust heat from daily life has increased, and problems such as the heat island phenomenon have occurred in the summer, and it is said that the effects of abnormal weather and the like have occurred.

また、太陽熱の利用は、季節や天候に大きく左右されるため、不十分となっている状態である。   Moreover, since the use of solar heat is greatly influenced by the season and the weather, it is in a state where it is insufficient.

本発明は、地中熱や水熱の利用と合わせ、太陽熱の利用を効果的に行い、人工エネルギーの消費をより少なくし、また、生活に際して排出される熱を再利用して人工的排出熱を減少させつつ、快適な生活を可能とする給湯冷暖房システムを提供するものである。   The present invention, combined with the use of geothermal and hydrothermal, effectively uses solar heat, reduces the consumption of artificial energy, and reuses the heat discharged during daily life to regenerate artificial heat. It is intended to provide a hot water supply / cooling / heating system that enables a comfortable life while reducing the above.

本発明に係る給湯冷暖房システムは、太陽集熱パネルと、ヒートポンプと、地中又は水中配設熱交換パイプと、給湯タンクと、蓄熱タンクと、冷暖房機と、切換制御盤と、を備え、前記切換制御盤は、前記太陽集熱パネルへの配管を、前記ヒートポンプへの配管、前記地中又は水中配設熱交換パイプへの配管、前記給湯タンクへの配管、前記蓄熱タンクへの配管の各々に接続及び切断することを可能とし、前記ヒートポンプへの配管である放熱回路配管を、前記太陽集熱パネルへの配管の他、前記地中又は水中配設熱交換パイプへの配管前記蓄熱タンクへの配管との各々に接続及び切断することを可能とし、前記ヒートポンプへの配管である吸熱回路配管を、前記地中又は水中配設熱交換パイプへの配管前記給湯タンクへの配管前記蓄熱タンクへの配管との各々に接続及び切断することを可能とし、前記蓄熱タンクへの管を前記冷暖房機への配管に接続及び切断することを可能としたことを特徴とする。
Hot water heating and cooling system according to the present invention comprises a solar collector panel, a heat pump, the ground or water disposed heat exchange pipe, a hot water tank, a heat storage tank, and air conditioners, a switching control panel, the said switching control board, the piping to the solar collector panel, piping to the heat pump, each of the piping to the ground or piping into the water disposed heat exchange pipe, the pipe to the hot water supply tank, the heat storage tank possible to connect and disconnect the the, the heat dissipation circuit piping is piping to the heat pump, the other pipe to the solar collector panel, the piping and the heat storage to the ground or water disposed heat exchange pipe it possible to connect and disconnect each of the pipe to the tank, the piping of the heat absorbing circuit piping is piping to the heat pump, the pipe and the hot water tank to the ground or water disposed heat exchange pipe It said蓄and It possible to connect and disconnect each of the pipe into the tank, characterized in that the tube into the heat storage tank made it possible to connect and disconnect the piping to the air conditioners.

更に、この給湯冷暖房システムは、前記蓄熱タンク内に熱媒循環配管を有し、且つ、前記給湯タンク内には2個の熱媒循環配管を有し、前記切換制御盤は、前記太陽集熱パネルへの配管を前記給湯タンクへの配管に接続するに際し、2個の熱媒循環配管の内の常に一方の熱媒循環配管に接続し、また、前記太陽集熱パネルへの配管を前記蓄熱タンクへの配管に接続するに際し、前記蓄熱タンク内に設けた熱媒循環配管に接続することがある。Further, the hot water supply / cooling / heating system has a heat medium circulation pipe in the heat storage tank, and two heat medium circulation pipes in the hot water supply tank, and the switching control panel has the solar heat collection system. When connecting the piping to the panel to the piping to the hot water supply tank, it is always connected to one of the two heating medium circulation pipings, and the piping to the solar heat collecting panel is connected to the heat storage When connecting to the piping to the tank, it may be connected to the heat medium circulation piping provided in the heat storage tank.

そして、この給湯冷暖房システムは、前記太陽集熱パネルの熱媒が太陽熱により暖められ、前記太陽集熱パネルの熱媒温度が35℃以下の場合、前記切換制御盤は、前記太陽集熱パネルの熱媒を前記地中又は水中配設熱交換パイプを介して前記放熱回路配管に送って前記太陽集熱パネルに戻すように、前記太陽集熱パネルへの配管を前記地中又は水中配設熱交換パイプへの配管及び前記ヒートポンプへの配管である前記放熱回路配管に接続し、且つ、前記地中又は水中配設熱交換パイプへの配管と前記放熱回路配管とを直列に接続し、このとき、前記ヒートポンプの前記吸熱回路配管を、前記給湯タンクへの配管又は前記蓄熱タンクへの配管へ接続、又は、前記給湯タンクへの配管と前記蓄熱タンクへの配管とを直列として両配管と前記吸熱回路配管とを接続し、前記太陽集熱パネルの熱媒温度が35℃〜60℃、及び60℃以上の場合、前記太陽集熱パネルの熱媒を前記給湯タンクへの配管又は前記蓄熱タンクへの配管に送って前記太陽集熱パネルに戻す、又は、前記給湯タンクへの配管と前記蓄熱タンクへの配管とを直列として両配管を介した熱媒を前記太陽集熱パネルに戻すように、前記太陽集熱パネルへの配管を前記給湯タンクへの配管及び前記蓄熱タンクへの配管の一方又は両方に接続することを特徴とするものである。In the hot water supply / cooling / heating system, when the heat medium of the solar heat collection panel is heated by solar heat and the heat medium temperature of the solar heat collection panel is 35 ° C. or less, the switching control panel The piping to the solar heat collection panel is routed to the solar heat collection panel so that the heat medium is sent to the heat radiation circuit piping through the underground or underwater heat exchange pipe and returned to the solar heat collection panel. Connect the pipe to the exchange pipe and the heat radiating circuit pipe which is the pipe to the heat pump, and connect the pipe to the underground or underwater heat exchange pipe and the heat radiating circuit pipe in series, The heat absorption circuit pipe of the heat pump is connected to the pipe to the hot water supply tank or the pipe to the heat storage tank, or the pipe to the hot water supply tank and the pipe to the heat storage tank are connected in series to both the pipe and the heat absorption When the heat medium temperature of the solar heat collecting panel is 35 ° C. to 60 ° C. and 60 ° C. or higher, the heat medium of the solar heat collecting panel is connected to the hot water supply tank or the heat storage tank. To return to the solar heat collection panel, or to return the heat medium through both pipes to the solar heat collection panel in series with the pipe to the hot water tank and the pipe to the heat storage tank, The piping to the solar heat collecting panel is connected to one or both of the piping to the hot water supply tank and the piping to the heat storage tank.

そして、前記切換制御盤は、前記太陽集熱パネルへの配管を、前記ヒートポンプへの配管、前記地中又は水中配設熱交換パイプへの配管、前記給湯タンクへの配管、前記蓄熱タンクへの配管の各々に接続及び切断するに際し、前記地中又は水中配設熱交換パイプへの配管と前記放熱回路配管と前記蓄熱タンクへの配管とを直列に接続した状態で前記太陽集熱パネルへの配管に接続し、前記太陽集熱パネルへの配管と前記放熱回路配管や前記給湯タンクへの配管とは切断し、前記太陽集熱パネルからの熱媒を前記地中又は水中配設熱交換パイプを介して前記放熱回路配管に送り、前記放熱回路配管から前記蓄熱タンクへの配管を介して熱媒を前記太陽集熱パネルに戻し、前記ヒートポンプの前記吸熱回路配管を前記給湯タンクへの配管に接続することもある。
Then, the switching control panel, a piping to the solar collector panel, piping to the heat pump, piping to the ground or water disposed heat exchange pipe, the pipe to the hot water supply tank, into the heat storage tank upon connection and disconnection to each of the pipe, in a state where the piping to the ground or pipes and the radiator circuit pipe and the heat storage tank in water disposed heat exchange pipe connected in series to the solar collector panel Connect to the piping, disconnect the piping to the solar heat collection panel and the piping to the heat dissipation circuit piping and the hot water tank, and heat transfer pipe from the solar heat collection panel to the underground or underwater To the heat dissipation circuit piping, and return the heat medium to the solar heat collecting panel via the piping from the heat dissipation circuit piping to the heat storage tank, and the heat absorption circuit piping of the heat pump to the piping to the hot water supply tank connection to Sometimes.

また、前記給湯タンクは、50℃乃至60℃以上の温水を蓄えることを特徴とする。   The hot water tank stores hot water of 50 ° C. to 60 ° C. or more.

そして、前記蓄熱タンクは、50℃程度の温熱媒又は10℃程度の冷熱媒を蓄えることを特徴とする。   The heat storage tank stores a heat medium of about 50 ° C. or a cold medium of about 10 ° C.

更に、前記冷暖房機は、前記切換制御盤から前記冷暖房機への配管との接続を遮断し、前記冷暖房機内での熱媒の循環を可能とする熱媒回路を備えることが有る。   Further, the air conditioner may include a heat medium circuit that cuts off the connection with the piping from the switching control panel to the air conditioner and allows the heat medium to circulate in the air conditioner.

本発明は、太陽集熱パネルへの配管をヒートポンプへの配管や給湯タンクへの配管、蓄熱タンクへの配管に切換制御盤により接続するものであるため、太陽集熱パネルにより高温の熱媒が得られるときは給湯タンク内の温水温度や蓄熱タンク内の熱媒温度を上げることができ、太陽集熱パネルによる熱媒温度が低い時も、ヒートポンプにより熱媒の温度を上昇させて給湯タンク内の温水温度や蓄熱タンク内の熱媒温度を上げることができ、太陽集熱パネルにより暖められる熱媒の温度が低くても有効に利用することができる。   In the present invention, the pipe to the solar heat collection panel is connected to the pipe to the heat pump, the pipe to the hot water tank, and the pipe to the heat storage tank by a switching control panel. When it can be obtained, the hot water temperature in the hot water tank and the heat medium temperature in the heat storage tank can be raised, and even when the heat medium temperature by the solar heat collection panel is low, the temperature of the heat medium is raised by the heat pump to increase the temperature in the hot water tank. The temperature of the hot water and the temperature of the heat medium in the heat storage tank can be increased, and the heat medium can be effectively utilized even if the temperature of the heat medium heated by the solar heat collecting panel is low.

そして、蓄熱タンク内に熱媒循環配管を設けると共に給湯タンク内に2個の熱媒循環配管を設け、太陽集熱パネルへの配管を給湯タンクへの配管に接続するに際し常に一方の熱媒循環配管に接続すると共に蓄熱タンク内に設けた熱媒循環配管に接続するものとすれば、太陽集熱パネルにより熱媒が高温となったとき、給湯タンクに通常供給する中温度のヒートポンプからの熱媒と異なる熱媒循環配管により水を加温し、蓄熱タンク内の中温度の熱媒と混ぜることなく蓄熱タンク内の熱媒を加温することができ、太陽集熱パネルの熱媒温度が中温度から高温度の種々の温度の場合に効率よく使用することができる。A heat medium circulation pipe is provided in the heat storage tank and two heat medium circulation pipes are provided in the hot water supply tank. When connecting the pipe to the solar heat collecting panel to the pipe to the hot water supply tank, one heat medium circulation is always performed. If connected to the piping and to the heat medium circulation piping provided in the heat storage tank, the heat from the medium temperature heat pump normally supplied to the hot water tank when the heat medium becomes hot by the solar heat collecting panel Water is heated by a heat medium circulation pipe different from the medium, and the heat medium in the heat storage tank can be heated without mixing with the medium temperature heat medium in the heat storage tank. It can be used efficiently at various temperatures from medium temperature to high temperature.

また、太陽集熱パネルの熱媒が35℃以下の場合、熱交換パイプを介して放熱回路によりヒートポンプの蒸発器に熱媒を送るようにすれば、熱交換パイプにより地中に熱を蓄えるようにしてヒートポンプに10℃〜20℃程度の熱媒を送り、ヒートポンプの熱交換率を高くして効率よく熱の移動を行わせることができる。In addition, when the heat medium of the solar heat collecting panel is 35 ° C. or less, if the heat medium is sent to the evaporator of the heat pump through the heat exchange pipe through the heat exchange pipe, the heat exchange pipe can store heat in the ground. Thus, a heat medium of about 10 ° C. to 20 ° C. can be sent to the heat pump, and the heat exchange rate of the heat pump can be increased to efficiently transfer heat.

更に、太陽集熱パネルへの配管を、熱交換パイプへの配管と放熱回路配管とに接続する場合、太陽集熱パネルによる熱媒の昇温が十数℃乃至30℃程度以下の低温であっても、地中熱と合せて放熱回路配管によりヒートポンプの蒸発器に送り、ヒートポンプでの熱移動により50℃程度への昇温を効率よく行い、給湯タンク内の温水温度や蓄熱タンクの熱媒温度を50℃程度に保つことができる。
Furthermore , when connecting the pipe to the solar heat collecting panel to the pipe to the heat exchange pipe and the heat radiating circuit pipe, the temperature of the heating medium by the solar heat collecting panel is a low temperature of about a dozen to 30 ° C. or less. However, together with the underground heat, it is sent to the evaporator of the heat pump by the heat dissipation circuit piping, and the temperature is efficiently raised to about 50 ° C. by the heat transfer by the heat pump, the hot water temperature in the hot water tank and the heat transfer tank heat medium The temperature can be maintained at about 50 ° C.

そして、太陽集熱パネルへの配管を、蓄熱タンクへの配管と熱交換パイプへの配管と放熱回路配管とに接続する場合、太陽集熱パネルによる熱媒の昇温が十数℃乃至30℃程度以下の低温であっても、地中熱と合せて放熱回路配管によりヒートポンプの蒸発器に送り、ヒートポンプで熱を放出して10℃程度の低温熱媒を蓄熱タンクに蓄え、ヒートポンプでの熱移動により50℃程度への昇温を効率よく行い、給湯タンク内の温水温度を50℃程度に保つことができる。   And when connecting the pipe to the solar heat collection panel to the pipe to the heat storage tank, the pipe to the heat exchange pipe, and the heat radiation circuit pipe, the temperature increase of the heat medium by the solar heat collection panel is several tens to 30 ° C. Even at a low temperature of less than or equal to the temperature, it is sent to the evaporator of the heat pump through the heat dissipation circuit piping together with the underground heat, the heat is released by the heat pump, the low temperature heat medium of about 10 ° C is stored in the heat storage tank, and the heat in the heat pump By moving, the temperature can be efficiently raised to about 50 ° C., and the hot water temperature in the hot water tank can be kept at about 50 ° C.

、太陽集熱パネルへの配管を、給湯タンクへの配管と蓄熱タンクへの配管とに接続する場合、太陽集熱パネルにより60℃以上の高温の熱媒が得られるとき、人工エネルギーを殆んど用いることなく給湯タンク内の温水温度や蓄熱タンクの熱媒温度を50℃程度や50℃以上に保つことができる。
When connecting the pipe to the solar heat collection panel to the pipe to the hot water supply tank and the pipe to the heat storage tank, when the high-temperature heat medium of 60 ° C or higher is obtained by the solar heat collection panel, most of the artificial energy is used. The hot water temperature in the hot water tank and the heat medium temperature in the heat storage tank can be kept at about 50 ° C. or 50 ° C. or more without using them.

また、給湯タンクの水温を50℃乃至60℃以上とすることにより、ヒートポンプによって50℃程度に温めて生活温水としての必要な温水を確保しつつヒートポンプの負荷を小さくし、太陽集熱パネルの太陽熱により生活温水の温度をより高くすることもできる。   Moreover, by setting the water temperature of the hot water supply tank to 50 ° C. to 60 ° C. or higher, the heat pump is heated to about 50 ° C. to secure the necessary hot water as living hot water, and the load of the heat pump is reduced. By this, the temperature of the hot water can be made higher.

そして、蓄熱タンクに蓄える熱媒の温度を50℃程度の温熱媒又は10℃程度の冷熱媒とすることにより、ヒートポンプの負荷を小さく、且つ、効率的な運転を行って冷暖房を可能とすることができる。   And the temperature of the heat medium stored in the heat storage tank is set to about 50 ° C. or about 10 ° C., so that the load of the heat pump is reduced and efficient operation is performed to enable air conditioning. Can do.

更に、冷暖房機を切換制御盤からの配管との接続を遮断して冷暖房機内での熱媒の循環を可能とする熱媒回路を備えれば、冷暖房機に使用する蓄熱タンク内の熱媒温度が高温であっても低温であっても、冷暖房機内での熱媒の循環を行わせて熱媒温度を適温に保って屋内冷暖房を行うことができる。   Furthermore, if a heating medium circuit is provided that cuts off the connection between the air conditioning unit and the piping from the switching control panel and enables circulation of the heating medium in the cooling and heating unit, the temperature of the heating medium in the heat storage tank used for the cooling and heating unit Whether the temperature is high or low, the heat medium is circulated in the air conditioner to keep the heat medium temperature at an appropriate temperature for indoor air conditioning.

本発明の実施の形態に係る給湯冷暖房システムの概要を示す全体構成図。BRIEF DESCRIPTION OF THE DRAWINGS The whole block diagram which shows the outline | summary of the hot water supply air-conditioning system which concerns on embodiment of this invention. 本発明の実施の形態に係る給湯冷暖房システムにおける切換制御盤の一例を示す概要図。The schematic diagram which shows an example of the switching control board in the hot water supply air-conditioning system which concerns on embodiment of this invention. 本発明の実施の形態に係る給湯冷暖房システムによる太陽集熱パネルと蓄熱タンクを接続する状態の概要を示す全体構成図。BRIEF DESCRIPTION OF THE DRAWINGS The whole block diagram which shows the outline | summary of the state which connects the solar heat collection panel and heat storage tank by the hot water supply air-conditioning system which concerns on embodiment of this invention. 本発明の実施の形態に係る給湯冷暖房システムによる太陽集熱パネルと蓄熱タンクを接続する状態における切換制御盤の概要を示す図。The figure which shows the outline | summary of the switching control board in the state which connects the solar heat collection panel and heat storage tank by the hot water supply air-conditioning system which concerns on embodiment of this invention. 本発明の実施の形態に係る給湯冷暖房システムによる熱交換パイプと蓄熱タンクとをヒートポンプを介して接続する状態の概要を示す全体構成図。The whole block diagram which shows the outline | summary of the state which connects the heat exchange pipe and heat storage tank by the hot-water supply air-conditioning system which concerns on embodiment of this invention via a heat pump. 本発明の実施の形態に係る給湯冷暖房システムによる熱交換パイプと蓄熱タンクとをヒートポンプを介して接続する状態における切換制御盤の概要を示す図。The figure which shows the outline | summary of the switching control board in the state which connects the heat exchange pipe and heat storage tank by the hot-water supply air-conditioning system which concerns on embodiment of this invention via a heat pump. 本発明の実施の形態に係る給湯冷暖房システムによる熱交換パイプと給湯タンクとをヒートポンプを介して接続する状態の概要を示す全体構成図。The whole block diagram which shows the outline | summary of the state which connects the heat exchange pipe and hot water supply tank by the hot water supply air-conditioning system which concerns on embodiment of this invention via a heat pump. 本発明の実施の形態に係る給湯冷暖房システムによる熱交換パイプと給湯タンクとをヒートポンプを介して接続する状態における切換制御盤の概要を示す図。The figure which shows the outline | summary of the switching control board in the state which connects the heat exchange pipe and hot water supply tank by the hot water supply air-conditioning system which concerns on embodiment of this invention via a heat pump. 本発明の実施の形態に係る給湯冷暖房システムによる熱交換パイプと給湯タンクとをヒートポンプを介して接続すると共に太陽集熱パネルを蓄熱タンクと接続する状態における切換制御盤の概要を示す図。The figure which shows the outline | summary of the switching control board in the state which connects the heat exchange pipe and hot water supply tank by the hot water supply air-conditioning system which concerns on embodiment of this invention via a heat pump, and connects a solar heat collecting panel with a thermal storage tank. 本発明の実施の形態に係る給湯冷暖房システムによる熱交換パイプと蓄熱タンクとをヒートポンプを介して接続すると共に太陽集熱パネルを蓄熱タンクに接続する状態における切換制御盤の概要を示す図。The figure which shows the outline | summary of the switching control board in the state which connects the heat exchange pipe and the thermal storage tank by the hot-water supply cooling / heating system which concerns on embodiment of this invention via a heat pump, and connects a solar heat collecting panel to a thermal storage tank. 本発明の実施の形態に係る給湯冷暖房システムによる太陽集熱パネルを熱交換パイプとヒートポンプに接続してヒートポンプを給湯タンクと接続する状態の概要を示す全体構成図。BRIEF DESCRIPTION OF THE DRAWINGS The whole block diagram which shows the outline | summary of the state which connects the solar heat collection panel by the hot water supply air-conditioning system which concerns on embodiment of this invention to a heat exchange pipe and a heat pump, and connects a heat pump with a hot water supply tank. 本発明の実施の形態に係る給湯冷暖房システムによる太陽集熱パネルを熱交換パイプとヒートポンプに接続してヒートポンプを給湯タンクと接続する状態における切換制御盤の概要を示す図。The figure which shows the outline | summary of the switching control board in the state which connects the solar heat collection panel by the hot water supply air-conditioning system which concerns on embodiment of this invention to a heat exchange pipe and a heat pump, and connects a heat pump with a hot water supply tank. 本発明の実施の形態に係る給湯冷暖房システムによる太陽集熱パネルを給湯タンクと蓄熱タンクとに接続する状態の概要を示す全体構成図。BRIEF DESCRIPTION OF THE DRAWINGS The whole block diagram which shows the outline | summary of the state which connects the solar heat collecting panel by the hot water supply air-conditioning system which concerns on embodiment of this invention to a hot water supply tank and a thermal storage tank. 本発明の実施の形態に係る給湯冷暖房システムによる太陽集熱パネルを給湯タンクと蓄熱タンクとに接続する状態における切換制御盤の概要を示す図。The figure which shows the outline | summary of the switching control board in the state which connects the solar heat collecting panel by the hot-water supply air-conditioning system which concerns on embodiment of this invention to a hot-water supply tank and a thermal storage tank. 本発明の実施の形態に係る給湯冷暖房システムによる太陽集熱パネルを給湯タンクに接続する状態の概要を示す全体構成図。BRIEF DESCRIPTION OF THE DRAWINGS The whole block diagram which shows the outline | summary of the state which connects the solar heat collecting panel by the hot water supply air-conditioning system which concerns on embodiment of this invention to a hot water supply tank. 本発明の実施の形態に係る給湯冷暖房システムによる太陽集熱パネルを給湯タンクに接続する状態における切換制御盤の概要を示す図。The figure which shows the outline | summary of the switching control board in the state which connects the solar heat collecting panel by the hot water supply air-conditioning system which concerns on embodiment of this invention to a hot water supply tank. 本発明の実施の形態に係る給湯冷暖房システムによる給湯タンクと蓄熱タンクとをヒートポンプを介して接続する状態の概要を示す全体構成図。BRIEF DESCRIPTION OF THE DRAWINGS The whole block diagram which shows the outline | summary of the state which connects the hot water supply tank and heat storage tank by the hot water supply air-conditioning system which concerns on embodiment of this invention via a heat pump. 本発明の実施の形態に係る給湯冷暖房システムによる給湯タンクと蓄熱タンクとをヒートポンプを介して接続する状態における切換制御盤の概要を示す図。The figure which shows the outline | summary of the switching control board in the state which connects the hot water supply tank and heat storage tank by the hot water supply air-conditioning system which concerns on embodiment of this invention via a heat pump. 本発明の実施の形態に係る給湯冷暖房システムによる太陽集熱パネルを熱交換パイプ及びヒートポンプと蓄熱タンクに接続し、ヒートポンプを給湯タンクに接続する状態の概要を示す全体構成図。BRIEF DESCRIPTION OF THE DRAWINGS The whole block diagram which shows the outline | summary of the state which connects the solar heat collection panel by the hot water supply air-conditioning system which concerns on embodiment of this invention to a heat exchange pipe, a heat pump, and a thermal storage tank, and connects a heat pump to a hot water supply tank. 本発明の実施の形態に係る給湯冷暖房システムによる太陽集熱パネルを熱交換パイプ及びヒートポンプと蓄熱タンクに接続し、ヒートポンプを給湯タンクに接続する状態における切換制御盤の概要を示す図。The figure which shows the outline | summary of the switching control board in the state which connects the solar heat collection panel by the hot water supply air-conditioning system which concerns on embodiment of this invention to a heat exchange pipe, a heat pump, and a thermal storage tank, and connects a heat pump to a hot water supply tank. 本発明の実施の形態に係る給湯冷暖房システムによる熱交換パイプと蓄熱タンクとをヒートポンプを介して接続する状態の概要を示す全体構成図。The whole block diagram which shows the outline | summary of the state which connects the heat exchange pipe and heat storage tank by the hot-water supply air-conditioning system which concerns on embodiment of this invention via a heat pump. 本発明の実施の形態に係る給湯冷暖房システムによる熱交換パイプと蓄熱タンクとを接続する状態における切換制御盤の概要を示す図。The figure which shows the outline | summary of the switching control board in the state which connects the heat exchange pipe and heat storage tank by the hot water supply air-conditioning system which concerns on embodiment of this invention. 本発明の実施の形態に係る給湯冷暖房システムによる熱交換パイプと蓄熱タンクとを接続する状態の概要を示す全体構成図。The whole block diagram which shows the outline | summary of the state which connects the heat exchange pipe and heat storage tank by the hot water supply air-conditioning system which concerns on embodiment of this invention. 本発明の実施の形態に係る給湯冷暖房システムによる熱交換パイプと蓄熱タンクとを接続する状態における切換制御盤の概要を示す図。The figure which shows the outline | summary of the switching control board in the state which connects the heat exchange pipe and heat storage tank by the hot water supply air-conditioning system which concerns on embodiment of this invention. 本発明の実施の形態に係る給湯冷暖房システムによる太陽集熱パネルをヒートポンプと蓄熱タンク及び熱交換パイプに接続してヒートポンプを給湯タンクと接続する状態の概要を示す図。The figure which shows the outline | summary of the state which connects the solar heat collection panel by the hot water supply air-conditioning system which concerns on embodiment of this invention to a heat pump, a thermal storage tank, and a heat exchange pipe, and connects a heat pump with a hot water supply tank. 本発明の実施の形態に係る給湯冷暖房システムによる太陽集熱パネルをヒートポンプと熱交換パイプに接続してヒートポンプを給湯タンクと接続する状態の概要を示す図。The figure which shows the outline | summary of the state which connects the solar heat collection panel by the hot water supply air-conditioning system which concerns on embodiment of this invention to a heat pump and a heat exchange pipe, and connects a heat pump with a hot water supply tank.

本発明に係る給湯冷暖房システム100の実施形態は、地中熱または水中熱や太陽熱などの自然エネルギーを利用するものであって、図1に示すように、地中または水中に埋設する熱変換パイプ130、太陽温水器を用いた太陽集熱パネル140、ヒートポンプ110、温熱媒又は冷熱媒を蓄える蓄熱タンク150、生活温水を蓄える給湯タンク160、冷暖房空調機である送風冷暖房機170、及び、床冷暖房器や壁冷暖房器とする放熱冷暖房機180を切換制御盤200に接続し、地中熱または水熱、更に太陽熱や冷房排熱などの有効利用を可能とするものである。   An embodiment of a hot water supply / cooling / heating system 100 according to the present invention uses natural energy such as underground heat or underwater heat or solar heat, and as shown in FIG. 1, a heat conversion pipe embedded in the ground or underwater. 130, solar heat collecting panel 140 using a solar water heater, heat pump 110, heat storage tank 150 for storing a heating medium or a cooling medium, hot water supply tank 160 for storing hot water for daily life, blower air conditioner 170 as an air conditioning air conditioner, and floor cooling and heating A heat-dissipating air conditioner 180 such as an air conditioner or a wall air conditioner is connected to the switching control panel 200 to enable effective use of underground heat or water heat, solar heat, cooling exhaust heat, and the like.

尚、熱交換パイプ130を浄化槽や排水槽などの地下水槽に設置し、生活排熱を再利用することもある。   In addition, the heat exchange pipe 130 may be installed in a groundwater tank such as a septic tank or a drain tank to reuse the waste heat from daily life.

この切換制御盤200は、太陽集熱パネル140が接続される太陽温熱媒体回路配管145を、蓄熱タンク150内に組み込まれる蓄熱循環パイプ159を含むタンク内部循環配管156や給湯タンク160内に組み込まれる給湯循環下部パイプ167を含む給湯下部循環回路配管167a、地中または水中に配した熱交換パイプ130を含む熱交換回路配管135に適宜切換接続するものである。
This switching control panel 200 incorporates a solar heating medium circuit pipe 145 to which a solar heat collecting panel 140 is connected into a tank internal circulation pipe 156 and a hot water supply tank 160 including a heat storage circulation pipe 159 incorporated into the heat storage tank 150. The hot water supply lower circulation circuit pipe 167a including the hot water supply lower pipe 167 and the heat exchange circuit pipe 135 including the heat exchange pipe 130 disposed in the ground or in water are appropriately switched and connected.

更に、この切換制御盤200は、ヒートポンプ110の蒸発器116と接続される放熱回路配管123やヒートポンプ110の凝縮器と接続される吸熱回路配管128を、蓄熱タンク150への蓄熱タンク配管155や給湯タンク160への給湯上部循環回路配管164a、等に接続切換を適宜行い、送風冷暖房機170への送風冷暖房用回路配管179及び放熱冷暖房機180への放熱冷暖房用回路配管189を、適宜蓄熱タンク150への蓄熱タンク配管155に接続するものである。   Further, the switching control panel 200 includes a heat radiation circuit pipe 123 connected to the evaporator 116 of the heat pump 110 and a heat absorption circuit pipe 128 connected to the condenser of the heat pump 110, a heat storage tank pipe 155 to the heat storage tank 150, and a hot water supply. The connection is appropriately switched to the hot water supply upper circulation circuit pipe 164a to the tank 160, etc., and the blower air conditioner circuit pipe 179 to the blower air conditioner 170 and the heat dissipating air conditioner circuit pipe 189 to the heat dissipating air conditioner 180 are appropriately connected to the heat storage tank 150. To the heat storage tank piping 155.

尚、蓄熱タンク配管155は、蓄熱タンク150内に蓄える熱媒を蓄熱タンク150内から取り出し、放熱または吸熱により温度が変化した熱媒を蓄熱タンク150内に戻すものである。   The heat storage tank pipe 155 takes out the heat medium stored in the heat storage tank 150 from the heat storage tank 150, and returns the heat medium whose temperature has changed due to heat dissipation or heat absorption to the heat storage tank 150.

また、給湯タンク160は、給湯タンク160内に配置されるコイル状の給湯循環上部パイプ164を含む給湯上部循環回路配管164a、及び、給湯タンク160内に配置されるコイル状の給湯循環下部パイプ167を含む給湯下部循環回路配管167aを有し、熱媒循環配管である給湯上部循環回路配管164aや給湯下部循環回路配管167aに熱媒送り、熱交換器としての給湯循環上部パイプ164や給湯循環下部パイプ167により給湯タンク160内の水を温めるものである。   The hot water supply tank 160 includes a hot water supply upper circulation circuit pipe 164a including a coiled hot water supply circulation upper pipe 164 disposed in the hot water supply tank 160, and a coiled hot water supply circulation lower pipe 167 disposed in the hot water supply tank 160. The hot water supply lower circulation circuit pipe 167a including the hot water supply upper circulation circuit pipe 164a and the hot water supply lower circulation circuit pipe 167a, which are heat medium circulation pipes, and the hot water supply circulation upper pipe 164 and the hot water circulation lower part as a heat exchanger. The pipe 167 warms the water in the hot water supply tank 160.

そして、給湯タンク160内部下部に接続される給水パイプ161を介して水道水などの水を給湯タンク160内に送り、常に給湯タンク160内を温水で満たし、温められた温水を取り出すための温水取出しパイプ162を給湯タンク160の上部で給湯タンク160の内部と接続するように設け、この温水取出しパイプ162を屋内の温水用蛇口などに接続するものである。   Then, hot water is taken out to supply hot water such as tap water to the hot water tank 160 via the water pipe 161 connected to the lower part of the hot water tank 160, and always fill the hot water tank 160 with hot water and take out the warm water. A pipe 162 is provided at the upper part of the hot water supply tank 160 so as to be connected to the inside of the hot water supply tank 160, and this hot water take-out pipe 162 is connected to an indoor hot water faucet or the like.

また、切換制御盤200は複数個の電磁弁を用いており、この電磁弁の開閉切換制御は、マイクロコンピュータを用いた切換制御部310により行い、切換制御部310は、太陽集熱パネル140に設けられて太陽集熱パネル140内の熱媒温度を検出する太陽温熱媒温度計301と接続され、蓄熱タンク150内に蓄えられる熱媒の温度を検出する蓄熱タンク熱媒温度計303や給湯タンク160内の水温を検出する温水温度計305と接続され、太陽集熱パネル140により加温された熱媒温度、蓄熱タンク150内に蓄えられる熱媒の温度、給湯タンク160内の水温により、また、暖房運転の設定か冷房運転の設定かなどに合わせて切換制御盤200の電磁弁の開閉や切換を行って各配管相互の接続・切断を制御するものである。   The switching control panel 200 uses a plurality of solenoid valves, and the switching control of the solenoid valves is performed by a switching control unit 310 using a microcomputer. The switching control unit 310 is connected to the solar heat collecting panel 140. A heat storage tank heat medium thermometer 303 or a hot water supply tank that is connected to a solar heat medium thermometer 301 that detects the temperature of the heat medium in the solar heat collection panel 140 and detects the temperature of the heat medium stored in the heat storage tank 150 It is connected to a hot water thermometer 305 that detects the water temperature in 160, the heat medium temperature heated by the solar heat collecting panel 140, the temperature of the heat medium stored in the heat storage tank 150, the water temperature in the hot water supply tank 160, and The connection / disconnection of the pipes is controlled by opening / closing or switching the electromagnetic valve of the switching control panel 200 according to the setting of the heating operation or the cooling operation.

そしてこの切換制御盤200は、複数個の三方電動弁を用いて形成し、図2に示すように、15個の制御弁と1個の開閉弁を用いるものである。尚、制御弁や開閉弁の数及び弁相互の接続は、図2に示すものには限らない。   The switching control panel 200 is formed by using a plurality of three-way motorized valves, and uses 15 control valves and one on-off valve as shown in FIG. Note that the number of control valves and on-off valves and the connection between the valves are not limited to those shown in FIG.

この図2に示した切換制御盤200は、第1制御弁211のa開口を第8制御弁218のc開口及び第12制御弁222のb開口に接続し、第1制御弁211のb開口は制御盤外部のヒートポンプ110における蒸発器116へ接続する放熱回路配管123のうちの放熱復路122に接続しているものである。   The switching control panel 200 shown in FIG. 2 connects the a opening of the first control valve 211 to the c opening of the eighth control valve 218 and the b opening of the twelfth control valve 222, and the b opening of the first control valve 211. Is connected to the heat dissipation return path 122 of the heat dissipation circuit piping 123 connected to the evaporator 116 in the heat pump 110 outside the control panel.

更に、第1制御弁211のc開口は第5制御弁215のa開口と第8制御弁218のa開口及び電動バルブである開閉制御弁231を介して第4制御弁214のa開口と熱交換パイプ130への熱交換回路配管135の内の熱交換往路131に接続している。   Further, the c opening of the first control valve 211 is connected to the a opening of the fourth control valve 214 via the a opening of the fifth control valve 215, the a opening of the eighth control valve 218, and the opening / closing control valve 231 which is an electric valve. The heat exchange circuit pipe 135 to the exchange pipe 130 is connected to the heat exchange forward path 131.

また、第2制御弁212のa開口は、第10制御弁220のc開口と、ヒートポンプ110の凝縮器118に接続される吸熱回路配管128の内の吸熱往路126及び給湯タンク160内に配置される給湯循環上部パイプ164を含む給湯上部循環回路配管164aの内の給湯上部循環第2配管166に接続している。   In addition, the opening a of the second control valve 212 is disposed in the opening c of the tenth control valve 220, the heat absorption path 126 in the heat absorption circuit pipe 128 connected to the condenser 118 of the heat pump 110, and the hot water supply tank 160. The hot water supply upper circulation circuit pipe 164a including the hot water supply circulation upper pipe 164 is connected to the hot water supply upper circulation second pipe 166.

そして、第2制御弁212のb開口は熱交換パイプ130に接続する熱交換回路配管135の内の熱交換復路132に接続し、第2制御弁212のc開口は第10制御弁220のa開口とヒートポンプ110の蒸発器116に接続される放熱回路配管123の内の放熱往路121とに接続している。   The b opening of the second control valve 212 is connected to the heat exchange return path 132 in the heat exchange circuit pipe 135 connected to the heat exchange pipe 130, and the c opening of the second control valve 212 is connected to the a of the tenth control valve 220. The opening is connected to the heat dissipation path 121 in the heat dissipation circuit pipe 123 connected to the evaporator 116 of the heat pump 110.

第3制御弁213のa開口は、第15制御弁225のc開口と給湯タンク160に配置される給湯循環下部パイプ167を含む給湯下部循環回路配管167aの内の給湯下部循環第2配管169に接続し、第3制御弁213のb開口は第4制御弁214のc開口に、第3制御弁213のc開口は給湯下部循環回路配管167aの内の給湯下部循環第1配管168に接続している。   The a opening of the third control valve 213 is connected to the hot water lower circulation second pipe 169 in the hot water lower circulation circuit pipe 167a including the hot water circulation lower pipe 167 disposed in the hot water supply tank 160 and the c opening of the fifteenth control valve 225. The b opening of the third control valve 213 is connected to the c opening of the fourth control valve 214, and the c opening of the third control valve 213 is connected to the hot water supply lower circulation first pipe 168 in the hot water supply lower circulation circuit pipe 167a. ing.

そして、第4制御弁214のa開口は熱交換回路配管135の内の熱交換往路131に、第4制御弁214のb開口は太陽集熱パネル140が接続される太陽温熱媒体回路配管145の内の太陽温熱媒復路142に接続し、第5制御弁215のb開口は第6制御弁216のb開口に、第5制御弁215のc開口は第7制御弁217のc開口に接続している。   The opening a of the fourth control valve 214 is connected to the heat exchanging path 131 in the heat exchange circuit pipe 135, and the opening b of the fourth control valve 214 is connected to the solar heating medium circuit pipe 145 to which the solar heat collecting panel 140 is connected. The fifth control valve 215 is connected to the b opening of the sixth control valve 216, and the c opening of the fifth control valve 215 is connected to the c opening of the seventh control valve 217. ing.

また、第6制御弁216のa開口は第15制御弁225のa開口に、第6制御弁216のc開口は太陽集熱パネル140が接続される太陽温熱媒体回路配管145の内の太陽温熱媒往路141と第7制御弁217のa開口とに接続し、第7制御弁217のb開口は蓄熱タンク150内に設けられる蓄熱循環パイプ159を含むタンク内部循環配管156の内の蓄熱循環第2配管158に接続している。   The opening a of the sixth control valve 216 is the opening a of the fifteenth control valve 225, and the opening c of the sixth control valve 216 is the solar heat in the solar heating medium circuit pipe 145 to which the solar heat collecting panel 140 is connected. The storage passage 141 is connected to the opening a of the seventh control valve 217, and the opening b of the seventh control valve 217 is connected to the heat storage circulation pipe 156 in the tank internal circulation pipe 156 including the heat storage circulation pipe 159 provided in the heat storage tank 150. Two pipes 158 are connected.

更に、第8制御弁218のb開口は第9制御弁219のc開口に、第9制御弁219のa開口は給湯タンク160に内蔵される給湯循環上部パイプ164を含む給湯上部循環回路配管164aの内の給湯上部循環第1配管165に、第9制御弁219のb開口はヒートポンプ110の凝縮器118が接続される吸熱回路配管128の内の吸熱復路127に接続している。   Further, the b opening of the eighth control valve 218 is the c opening of the ninth control valve 219, and the a opening of the ninth control valve 219 is the hot water supply upper circulation circuit piping 164a including the hot water circulation upper pipe 164 built in the hot water supply tank 160. The b opening of the ninth control valve 219 is connected to an endothermic return pipe 127 in the endothermic circuit pipe 128 to which the condenser 118 of the heat pump 110 is connected.

そして、第10制御弁220のb開口は第11制御弁221のb開口に、第11制御弁221のa開口は第12制御弁222のc開口と蓄熱タンク150に接続される蓄熱タンク配管155の内の蓄熱タンク150の上部に接続される蓄熱タンク150の上部第2配管152に接続している。   The b opening of the tenth control valve 220 is connected to the b opening of the eleventh control valve 221, and the a opening of the eleventh control valve 221 is connected to the c opening of the twelfth control valve 222 and the heat storage tank 150. The heat storage tank 150 is connected to the upper second pipe 152 of the heat storage tank 150.

また、第11制御弁221のc開口は、第12制御弁222のa開口と蓄熱タンク150に接続される蓄熱タンク配管155の内の蓄熱タンク150の下部に接続される蓄熱タンク150の下部第1配管153に接続し、第13制御弁223のa開口は第14制御弁224のc開口と蓄熱タンク配管155の内の蓄熱タンク150の上部に接続される蓄熱タンク150の上部第1配管151とに接続している。   In addition, the c opening of the eleventh control valve 221 is connected to the lower opening of the heat storage tank 150 connected to the lower opening of the heat storage tank 150 in the heat storage tank piping 155 connected to the a opening of the twelfth control valve 222 and the heat storage tank 150. The first opening 151 of the heat storage tank 150 is connected to one pipe 153, and the opening a of the thirteenth control valve 223 is connected to the opening c of the fourteenth control valve 224 and the upper part of the heat storage tank 150 of the heat storage tank pipe 155. And connected to.

更に、第13制御弁223のb開口は送風冷暖房機170が接続される送風冷暖房用回路配管179の内の送風冷暖房復路172と放熱冷暖房機180が接続される放熱冷暖房用回路配管189の内の放熱冷暖房復路182に接続し、第13制御弁223のc開口は第14制御弁224のa開口と蓄熱タンク150の下部に接続される蓄熱タンク配管155の内の蓄熱タンク150の下部第2配管154に接続している。   Further, the b opening of the thirteenth control valve 223 is provided in the radiant air conditioner circuit pipe 189 to which the blast air conditioner return path 172 and the radiant air conditioner 180 are connected. The c-opening of the thirteenth control valve 223 is connected to the radiant air-conditioning return path 182 and the lower second pipe of the heat storage tank 150 in the heat storage tank pipe 155 connected to the opening a of the fourteenth control valve 224 and the lower part of the heat storage tank 150. Connected to 154.

そして、第14制御弁224のb開口は送風冷暖房機170が接続される送風冷暖房用回路配管179の内の送風冷暖房往路171と放熱冷暖房機180が接続される放熱冷暖房用回路配管189の内の放熱冷暖房往路181に接続し、第15制御弁225のb開口は蓄熱タンク150に内蔵される蓄熱循環パイプ159の一端に接続されるタンク内部循環配管156の内の蓄熱循環第1配管157に接続している。   Further, the opening b of the fourteenth control valve 224 is provided in the radiant cooling / heating circuit pipe 189 to which the blast air-conditioning / outward path 171 in the blast air-conditioning / heating circuit pipe 179 to which the blast air-conditioning / cooling apparatus 170 is connected. Connected to the heat radiation cooling / heating forward path 181, the b opening of the fifteenth control valve 225 is connected to the heat storage circulation first pipe 157 in the tank internal circulation pipe 156 connected to one end of the heat storage circulation pipe 159 built in the heat storage tank 150. doing.

そして、図1に示したように、切換制御盤200とヒートポンプ110とを接続する吸熱回路配管128の内の吸熱往路126には、吸熱回路ポンプ129を配置し、切換制御盤200から吸熱往路126によりヒートポンプ110の凝縮器118に熱媒を送り、ヒートポンプ110の凝縮器118により昇温された熱媒を、吸熱復路127を介して切換制御盤200に戻すようにしている。   As shown in FIG. 1, an endothermic circuit pump 129 is arranged in the endothermic circuit 126 in the endothermic circuit pipe 128 connecting the switching control panel 200 and the heat pump 110, and the endothermic circuit 126 from the switching control panel 200. Thus, the heat medium is sent to the condenser 118 of the heat pump 110, and the heat medium heated by the condenser 118 of the heat pump 110 is returned to the switching control panel 200 via the heat absorption return path 127.

また、切換制御盤200とヒートポンプ110とを接続する放熱回路配管123の内の放熱復路122にも放熱回路ポンプ124を配置し、放熱往路121からヒートポンプ110の蒸発器116に熱媒を送り、蒸発器116で放熱することにより温度が低下した熱媒を、放熱復路122を介して切換制御盤200に戻すようにしている。   A heat dissipation circuit pump 124 is also arranged in the heat dissipation return path 122 of the heat dissipation circuit pipe 123 connecting the switching control panel 200 and the heat pump 110, and a heat medium is sent from the heat dissipation forward path 121 to the evaporator 116 of the heat pump 110 to evaporate. The heat medium whose temperature has been reduced by radiating heat with the vessel 116 is returned to the switching control panel 200 via the heat radiation return path 122.

尚、吸熱回路ポンプ129は、吸熱往路126に設ける場合に限ることなく、吸熱復路127に設けることもあり、放熱回路ポンプ124も、放熱復路122に設ける場合に限ることなく、放熱往路121に設けることもある。   Note that the endothermic circuit pump 129 is not limited to being provided in the endothermic forward path 126, but may be provided in the endothermic return path 127, and the radiating circuit pump 124 is not limited to being provided in the radiating return path 122, and is provided in the radiating forward path 121. Sometimes.

また、このヒートポンプ110では、ヒートポンプ110内で圧縮ポンプ112、凝縮器118、膨張弁114、蒸発器116による閉回路内を循環させる熱媒を有し、圧縮ポンプ112により熱媒を圧縮し、凝縮器118で外部循環の熱媒である吸熱回路配管128を通る熱媒に熱を伝達して放熱させ、膨張弁114を通して減圧させて蒸発器116で外部循環の熱媒である放熱回路配管123を通る熱媒から吸熱を行い、放熱回路配管123を通る熱媒を10℃〜十数℃の温度とし、吸熱回路配管128を通る熱媒を40℃〜60℃程度に加温するようにしている。   In addition, the heat pump 110 has a heat medium that circulates in the closed circuit of the compression pump 112, the condenser 118, the expansion valve 114, and the evaporator 116 in the heat pump 110. The heat medium is compressed by the compression pump 112 and condensed. Heat is transferred to the heat medium passing through the heat absorption circuit pipe 128, which is an external circulation heat medium, in the evaporator 118 to dissipate it, and the pressure is reduced through the expansion valve 114, and the heat dissipation circuit pipe 123, which is an external circulation heat medium, is formed in the evaporator 116. Heat is absorbed from the passing heat medium, the heat medium passing through the heat dissipation circuit pipe 123 is set to a temperature of 10 ° C. to several tens of degrees C., and the heat medium passing through the heat absorption circuit pipe 128 is heated to about 40 ° C. to 60 ° C. .

そして、太陽集熱パネル140と切換制御盤200とを接続する太陽温熱媒体回路配管145の太陽温熱媒往路141に太陽温熱媒回路ポンプ144を設けている。この太陽温熱媒回路ポンプ144は、太陽温熱媒体回路配管145の太陽温熱媒復路142に設けても良い。   A solar heating medium circuit pump 144 is provided in the solar heating medium forward path 141 of the solar heating medium circuit pipe 145 that connects the solar heat collecting panel 140 and the switching control panel 200. The solar heating medium circuit pump 144 may be provided in the solar heating medium return path 142 of the solar heating medium circuit pipe 145.

更に、送風冷暖房機170と切換制御盤200とを接続する送風冷暖房用回路配管179において、第1冷暖房用ポンプ174を送風冷暖房往路171に配置している。   Further, the first air conditioning / heating pump 174 is disposed in the air conditioning / heating route 171 in the air conditioning / heating circuit piping 179 that connects the air conditioning / heating device 170 and the switching control panel 200.

そして、放熱冷暖房用回路配管189においては、放熱冷暖房往路181と放熱冷暖房復路182との間に差圧調整弁197を配置し、放熱冷暖房往路181の端部には開閉弁を閉鎖弁195として配置して閉鎖弁195の一方の開口に接続し、放熱冷暖房復路182の端部には三方電動バルブを切換え弁193として配置し、該切換え弁193の一つの開口に放熱冷暖房復路182を接続している。   In the circuit pipe 189 for heat radiation air conditioning, a differential pressure regulating valve 197 is disposed between the heat radiation air conditioning forward path 181 and the heat radiation air conditioning return path 182, and an opening / closing valve is disposed as a closing valve 195 at the end of the heat radiation air conditioning heating forward path 181. Connected to one opening of the shut-off valve 195, a three-way electric valve is arranged as a switching valve 193 at the end of the heat radiation cooling and heating return path 182, and the heat radiation cooling and heating return path 182 is connected to one opening of the switching valve 193. Yes.

更に、この切換え弁193の他の一つの開口と閉鎖弁195とした開閉弁の他の一つの開口とを合わせた放熱冷暖房ポンプ入路183により第2冷暖房用ポンプ191の吸込み口に閉鎖弁195の一つの開口と切換え弁193の一つの開口とを接続し、第2冷暖房用ポンプ191の吐出口を放熱冷暖房ポンプ出路184によりヘッダー187を介して放熱冷暖房機180に接続するものである。   Further, the closing valve 195 is connected to the suction port of the second air conditioning / heating pump 191 by a heat radiation cooling / heating pump inlet 183 in which the other opening of the switching valve 193 and the other opening of the opening / closing valve as the closing valve 195 are combined. Is connected to one opening of the switching valve 193, and the discharge port of the second cooling / heating pump 191 is connected to the heat-dissipating air conditioner 180 via the header 187 by the heat-dissipating air-conditioning pump outlet 184.

そして、放熱冷暖房機180の熱媒出口側の回路は、ヘッダー187を介した後、放熱冷暖房出路185により切換え弁193とした三方弁の残る一つの開口に接続するものである。   The circuit on the heat medium outlet side of the heat radiating air conditioner 180 is connected to the remaining one opening of the three-way valve as the switching valve 193 through the header 187 and then through the heat radiating air conditioning outlet 185.

このため、放熱冷暖房機180は、切換え弁193により放熱冷暖房出路185と放熱冷暖房復路182とを接続して閉鎖弁195を開き、第2冷暖房用ポンプ191を作動させると、放熱冷暖房往路181により切換制御盤200からの熱媒を放熱冷暖房機180に送り、放熱冷暖房復路182を介して切換制御盤200に戻すことができる。   For this reason, the heat-dissipating air conditioner 180 connects the heat-dissipating air-conditioning outlet path 185 and the heat-dissipating air-conditioning return path 182 with the switching valve 193, opens the shut-off valve 195, and operates the second air-conditioning pump 191. The heat medium from the control panel 200 can be sent to the heat dissipation air conditioner 180 and returned to the switching control panel 200 via the heat dissipation air conditioner return path 182.

また、閉鎖弁195を閉じ、切替制御弁により放熱冷暖房出路185と放熱冷暖房ポンプ入路183を接続して第2冷暖房用ポンプ191を作動させ、放熱冷暖房機180内の熱媒を循環させることもできる。   In addition, the closing valve 195 is closed, the switching control valve connects the heat radiation cooling / heating outlet 185 and the heat radiation cooling / heating pump inlet 183, the second air conditioning pump 191 is operated, and the heat medium in the heat radiation cooling / heating machine 180 is circulated. it can.

このような給湯冷暖房システム100において、図3に示すように、切換制御盤200により太陽温熱媒往路141及び太陽温熱媒復路142である太陽温熱媒体回路配管145を、蓄熱タンク150内に配置した蓄熱循環パイプ159を備えるタンク内部循環配管156に接続し、太陽集熱パネル140で35℃〜60℃程度に温められた熱媒を蓄熱循環パイプ159内を通して太陽集熱パネル140に戻し、蓄熱タンク150内の熱媒を35℃〜50℃程度又は60℃程度に温めるものである。   In such a hot water supply / cooling system 100, as shown in FIG. 3, as shown in FIG. 3, the heat storage tank 150 is provided with the solar heating medium circuit pipe 145, which is the solar heating medium forward path 141 and the solar heating medium return path 142. It is connected to a tank internal circulation pipe 156 having a circulation pipe 159, and the heat medium heated to about 35 ° C. to 60 ° C. by the solar heat collection panel 140 is returned to the solar heat collection panel 140 through the heat storage circulation pipe 159, and the heat storage tank 150 The inner heating medium is heated to about 35 ° C. to 50 ° C. or about 60 ° C.

そして、この蓄熱タンク150の上部内部に接続される蓄熱タンク150の上部第1配管151を送風冷暖房往路171及び放熱冷暖房往路181に接続し、送風冷暖房復路172及び放熱冷暖房復路182を蓄熱タンク150の下部内部に接続される蓄熱タンク150の下部第2配管154に接続するものである。   Then, the upper first pipe 151 of the heat storage tank 150 connected to the upper part of the heat storage tank 150 is connected to the blower air-conditioning / outward path 171 and the heat-dissipation air-conditioning / outward path 181, and This is connected to the lower second pipe 154 of the heat storage tank 150 connected to the inside of the lower part.

従って、蓄熱タンク150の上部から35℃〜50℃程度や60℃程度に温められた熱媒を送風冷暖房機170や放熱冷暖房機180に送り、室内空気や床及び壁等を30℃〜40℃程度に温めることができ、体温又は体温よりも僅かに高い中温度に太陽光により暖められた太陽温熱媒体を使用して屋内暖房を行うことができる。   Therefore, the heating medium heated to about 35 ° C. to 50 ° C. or about 60 ° C. from the upper part of the heat storage tank 150 is sent to the blower air conditioner 170 or the radiant air conditioner 180, and the room air, floor, wall, etc. are sent to 30 ° C. to 40 ° C. Indoor heating can be performed using a solar heating medium that can be warmed to the extent that it is warmed by sunlight to an intermediate temperature that is slightly higher than body temperature or body temperature.

このとき、切換制御盤200においては、図4に示すように、第14制御弁224のb開口とc開口とを連通させて蓄熱タンク150の上部に接続される蓄熱タンク150の上部第1配管151を送風冷暖房往路171及び放熱冷暖房往路181に接続する。また、第13制御弁223のb開口とc開口とを連通させて蓄熱タンク150の下部に接続される蓄熱タンク150の下部第2配管154を送風冷暖房復路172及び放熱冷暖房復路182に接続する。   At this time, in the switching control panel 200, as shown in FIG. 4, the upper first piping of the heat storage tank 150 connected to the upper portion of the heat storage tank 150 by connecting the b opening and the c opening of the fourteenth control valve 224. 151 is connected to the blast air-conditioning / outward path 171 and the heat radiation air-conditioning / outward path 181. Further, the lower second pipe 154 of the heat storage tank 150 connected to the lower portion of the heat storage tank 150 by connecting the b opening and the c opening of the thirteenth control valve 223 is connected to the blower air conditioning return path 172 and the heat radiation air conditioning return path 182.

従って、第1冷暖房用ポンプ174を駆動することにより蓄熱タンク150の上部から蓄熱タンク150内の熱媒を送風冷暖房機170に送り、屋内暖房を行うことができる。また、放熱冷暖房往路181に設けた閉鎖弁195を開き、放熱冷暖房復路182と放熱冷暖房出路185を切換え弁193により接続して第2冷暖房用ポンプ191を駆動することにより、蓄熱タンク150の上部内部の熱媒を放熱冷暖房機180に送り、床や壁を温めて屋内暖房を行うことができる。   Therefore, by driving the first cooling / heating pump 174, the heat medium in the heat storage tank 150 can be sent from the upper part of the heat storage tank 150 to the blower air conditioner 170 to perform indoor heating. Further, by opening the shut-off valve 195 provided in the heat radiation air-conditioning outbound path 181 and connecting the heat radiation air-conditioning return path 182 and the heat radiation air-conditioning outlet path 185 with the switching valve 193 to drive the second air-conditioning pump 191, The heating medium can be sent to the heat dissipating air conditioner 180 to warm the floor and walls for indoor heating.

そして、放熱冷暖房機180を作動させるに際しては、閉鎖弁195を閉じ、切換え弁193により放熱冷暖房出路185と放熱冷暖房ポンプ入路183を接続すれば、蓄熱タンク150からの熱媒の循環を遮断して放熱冷暖房機180の内部で熱媒を循環させて放熱により適温に低下した熱媒により床や壁の温度を適温に保つことができる。   When operating the heat radiation air conditioner 180, the circulation of the heat medium from the heat storage tank 150 is interrupted by closing the shut-off valve 195 and connecting the heat radiation air conditioning heating outlet 185 and the heat radiation air conditioning pump inlet 183 by the switching valve 193. Thus, the temperature of the floor and walls can be maintained at an appropriate temperature by circulating the heat medium inside the heat radiating air conditioner 180 and reducing the temperature to an appropriate temperature by heat dissipation.

更に、放熱冷暖房機180の内部で循環する熱媒の温度が適温よりも低下したとき、閉鎖弁195を開き、切換え弁193を制御して放熱冷暖房出路185を放熱冷暖房ポンプ入路183との接続から放熱冷暖房復路182との接続に切り換えることにより、蓄熱タンク150の上部からの35℃〜60℃程度の熱媒を放熱冷暖房機180に送り、放熱冷暖房機180の内部で循環している熱媒に蓄熱タンク150からの熱媒を加え、床や壁を適温に温めることができる。   Furthermore, when the temperature of the heat medium circulating in the heat radiating air conditioner 180 is lower than the appropriate temperature, the closing valve 195 is opened, and the switching valve 193 is controlled to connect the heat radiating air conditioning outlet 185 to the heat radiating air conditioning pump inlet 183. Is switched to the connection to the radiant cooling / heating return path 182 so that a heat medium of about 35 ° C. to 60 ° C. from the upper part of the heat storage tank 150 is sent to the radiant cooling / heating unit 180 and is circulated inside the radiant cooling / heating unit 180. The heating medium from the heat storage tank 150 can be added to warm the floor and walls to an appropriate temperature.

そして、第7制御弁217のa開口とb開口とを連通させて太陽温熱媒往路141と蓄熱循環第2配管158を接続し、第3制御弁213のa開口とb開口とを連通させ第4制御弁214のb開口とc開口とを連通させると共に、第15制御弁225のb開口とc開口とを連通させることにより、太陽温熱媒復路142を第3制御弁213、第4制御弁214及び第15制御弁225を介して蓄熱循環第1配管157に接続することもある。   Then, the a-opening and b-opening of the seventh control valve 217 are connected to connect the solar heating medium forward passage 141 and the second heat storage circulation second pipe 158, and the a-opening and b-opening of the third control valve 213 are connected to each other. The b opening and the c opening of the 4 control valve 214 are communicated with each other, and the b opening and the c opening of the 15th control valve 225 are communicated, so that the solar heating medium return path 142 is connected to the third control valve 213 and the fourth control valve. The heat storage circulation first pipe 157 may be connected via the 214 and the fifteenth control valve 225.

従って、太陽温熱媒回路ポンプ144を駆動することにより、太陽集熱パネル140で温められた熱媒を蓄熱タンク150内の蓄熱循環パイプ159を介して太陽集熱パネル140に戻し、太陽集熱パネル140での熱媒温度が40℃前後の中温度であっても、蓄熱タンク150内の熱媒を温めて屋内暖房に利用することができる。   Therefore, by driving the solar heating medium circuit pump 144, the heating medium heated by the solar heat collecting panel 140 is returned to the solar heat collecting panel 140 through the heat storage circulation pipe 159 in the heat storage tank 150, and the solar heat collecting panel 140 Even if the heat medium temperature at 140 is a medium temperature around 40 ° C., the heat medium in the heat storage tank 150 can be warmed and used for indoor heating.

また、この冷暖房システムでは、図5に示すように、切換制御盤200によりヒートポンプ110の放熱往路121及び放熱復路122を熱交換パイプ130の熱交換往路131及び熱交換復路132に接続し、ヒートポンプ110の吸熱往路126を蓄熱タンク150の下部に接続される蓄熱タンク150の下部第1配管153に、吸熱復路127を蓄熱タンク150上部に接続される蓄熱タンク150の上部第2配管152に接続することもある。   In this air conditioning system, as shown in FIG. 5, the switching control panel 200 connects the heat radiation forward path 121 and the heat radiation return path 122 of the heat pump 110 to the heat exchange forward path 131 and the heat exchange return path 132 of the heat exchange pipe 130, The heat absorption outward path 126 is connected to the lower first pipe 153 of the heat storage tank 150 connected to the lower part of the heat storage tank 150, and the heat absorption return path 127 is connected to the upper second pipe 152 of the heat storage tank 150 connected to the upper part of the heat storage tank 150. There is also.

そして、このとき、蓄熱タンク150の上部に接続される蓄熱タンク150の上部第1配管151を送風冷暖房往路171及び放熱冷暖房往路181に接続し、蓄熱タンク150の下部第2配管154を送風冷暖房復路172及び放熱冷暖房復路182に接続することは、図3に示した実施形態と同様である。   At this time, the upper first pipe 151 of the heat storage tank 150 connected to the upper part of the heat storage tank 150 is connected to the blower air-conditioning / outward path 171 and the heat radiation air-conditioner / outward path 181, and the lower second pipe 154 of the heat storage tank 150 is connected to the air-conditioning / cooling return path. Connecting to 172 and the heat radiation cooling / heating return path 182 is the same as in the embodiment shown in FIG.

従って、この形態では、地中熱などにより十数℃とされた熱媒をヒートポンプ110の蒸発器116に送って循環させ、凝縮器118を通り、35℃乃至60℃程度に温められた熱媒を蓄熱タンク150を介して送風冷暖房機170や放熱冷暖房機180に送ることができる。   Therefore, in this embodiment, the heat medium heated to about tens of degrees Celsius due to underground heat or the like is sent to the evaporator 116 of the heat pump 110, circulated, passed through the condenser 118, and heated to about 35 to 60 degrees Celsius. Can be sent to the blower air conditioner 170 and the heat radiation air conditioner 180 through the heat storage tank 150.

このとき、切換制御盤200では、図6に示すように、第1制御弁211のb開口とc開口とを連通させて開閉制御弁231を開き、また、第2制御弁212のb開口とc開口とを連通させて熱交換回路配管135とヒートポンプ110の放熱回路配管123を接続し、第9制御弁219のb開口とc開口とを連通させると共に、第8制御弁218のb開口とc開口とを連通させ且つ第12制御弁222のb開口とc開口とを連通させて吸熱復路127と蓄熱タンク150の蓄熱タンク150の上部第2配管152を接続し、第10制御弁220のb開口とc開口とを連通させて第11制御弁221のb開口とc開口とを連通させることにより、吸熱往路126を蓄熱タンク150の下部第1配管153に接続するものである。   At this time, in the switching control panel 200, as shown in FIG. 6, the opening and closing control valve 231 is opened by connecting the b opening and the c opening of the first control valve 211, and the b opening of the second control valve 212 is opened. The c opening is connected to connect the heat exchange circuit pipe 135 and the heat dissipation circuit pipe 123 of the heat pump 110 to connect the b opening of the ninth control valve 219 and the c opening, and to the b opening of the eighth control valve 218. The c opening is communicated and the b opening and the c opening of the twelfth control valve 222 are communicated to connect the heat absorption return passage 127 and the upper second pipe 152 of the heat storage tank 150 of the heat storage tank 150, and the tenth control valve 220 By connecting the b opening and the c opening to make the b opening and the c opening of the eleventh control valve 221 communicate with each other, the endothermic heat passage 126 is connected to the lower first pipe 153 of the heat storage tank 150.

尚、第14制御弁224のb開口とc開口とを連通させて蓄熱タンク150の上部第1配管151を送風冷暖房往路171と放熱冷暖房往路181に、第13制御弁223のb開口とc開口とを連通させて蓄熱タンク150の下部第2配管154を送風冷暖房復路172と放熱冷暖房復路182に接続している。   The b opening and the c opening of the fourteenth control valve 224 are connected to each other so that the upper first pipe 151 of the heat storage tank 150 is connected to the blower air-conditioning / outward passage 171 and the radiant air-conditioning / outward passage 181, and the b opening and the c-opening of the thirteenth control valve 223. The lower second pipe 154 of the heat storage tank 150 is connected to the blower air conditioning return path 172 and the heat radiation air conditioning return path 182.

従って、ヒートポンプ110により地中熱を用いて35℃〜60℃程度とする中温程度の熱媒を蓄熱タンク150に蓄えておいて屋内暖房を行うことができる。   Therefore, it is possible to perform indoor heating by storing a heat medium having a medium temperature of about 35 ° C. to 60 ° C. in the heat storage tank 150 using the underground heat by the heat pump 110.

また、地中熱を用いて温水を蓄える場合、図7及び図8に示すように、第9制御弁219のa開口とb開口とを連通させて給湯循環上部パイプ164と吸熱復路127とを接続して給湯上部循環回路配管164aと吸熱回路配管128とによる閉回路を形成するものであり、ヒートポンプ110を作動させて給湯タンク160に50℃又は60℃程度の温水を蓄えることができる。   Further, when hot water is stored using underground heat, as shown in FIGS. 7 and 8, the a-opening and b-opening of the ninth control valve 219 are connected so that the hot water supply circulation upper pipe 164 and the endothermic return path 127 are connected. The hot water supply upper circulation circuit pipe 164a and the heat absorption circuit pipe 128 are connected to form a closed circuit, and the hot water can be stored in the hot water supply tank 160 by operating the heat pump 110.

このとき、放熱回路配管123を熱交換回路配管135と接続することは、図5及び図6に示した回路接続と同様である。   At this time, connecting the heat radiation circuit pipe 123 to the heat exchange circuit pipe 135 is the same as the circuit connection shown in FIGS.

また、図5及び図6や図7及び図9に示したように、放熱回路配管123を熱交換回路配管135に接続し、図5や図6に示したように、吸熱回路配管128を蓄熱タンク150の蓄熱タンク配管155に接続すると共に、図3及び図4に示したように、太陽集熱パネル140の太陽温熱媒体回路配管145を蓄熱タンク150のタンク内部循環配管156と接続するとこもある。   Further, as shown in FIGS. 5, 6, 7, and 9, the heat radiating circuit pipe 123 is connected to the heat exchange circuit pipe 135, and as shown in FIGS. 5 and 6, the heat absorbing circuit pipe 128 stores heat. In addition to being connected to the heat storage tank piping 155 of the tank 150, as shown in FIGS. 3 and 4, the solar heating medium circuit piping 145 of the solar heat collecting panel 140 may be connected to the tank internal circulation piping 156 of the heat storage tank 150. is there.

このときは、図9に示すように、第1制御弁211及び第2制御弁212により放熱回路配管128と熱交換回路配管135とを接続するものであり、第8制御弁218、第9制御弁219及び第12制御弁222や、第10制御弁220及び第11制御弁221により、吸熱回路配管128と蓄熱タンク配管155を、第3制御弁213と第4制御弁214及び第15制御弁225や、第7制御弁217により太陽温熱媒体回路配管145とタンク内部循環配管156とを接続するものである。   At this time, as shown in FIG. 9, the first control valve 211 and the second control valve 212 connect the heat radiation circuit pipe 128 and the heat exchange circuit pipe 135, and the eighth control valve 218 and the ninth control valve are connected. By the valve 219 and the twelfth control valve 222, the tenth control valve 220 and the eleventh control valve 221, the heat absorption circuit pipe 128 and the heat storage tank pipe 155, the third control valve 213, the fourth control valve 214 and the fifteenth control valve. 225 and the seventh control valve 217 connect the solar heating medium circuit pipe 145 and the tank internal circulation pipe 156 to each other.

従って、地中熱と合わせて50℃前後又は60℃前後の太陽集熱パネル140による熱媒により蓄熱タンク150に熱を蓄え、薄曇りなど、太陽集熱パネル140により高温の熱媒を得ることができない冬季であっても、太陽熱により有効な屋内暖房を行うことができる。   Therefore, it is possible to store heat in the heat storage tank 150 by the heat medium by the solar heat collecting panel 140 at around 50 ° C. or around 60 ° C. together with the underground heat, and obtain a high temperature heat medium by the solar heat collecting panel 140 such as thin cloudy. Even in the winter when it is impossible, effective indoor heating can be performed by solar heat.

また、この給湯冷暖房システム100では、35℃〜50℃程度又は60℃程度とされた中温度の太陽集熱パネル140の熱媒により蓄熱タンク150内の熱媒を加温しつつ、ヒートポンプ110により給湯タンク160内の水を温水とすることもできる。   Further, in the hot water supply / cooling / heating system 100, the heat pump 110 heats the heat medium in the heat storage tank 150 with the heat medium of the solar heat collecting panel 140 at an intermediate temperature of about 35 ° C. to 50 ° C. or about 60 ° C. The water in the hot water tank 160 may be warm water.

この場合は、図10に示すように、前記図9と比較して、第9制御弁219により吸熱回路配管128の吸熱復路127を給湯上部循環回路配管164aの給湯上部循環第1配管165に接続するものである。   In this case, as shown in FIG. 10, compared to FIG. 9, the ninth control valve 219 connects the endothermic return path 127 of the endothermic circuit pipe 128 to the hot water supply upper circulation first pipe 165 of the hot water supply upper circulation circuit pipe 164a. To do.

そして、太陽集熱パネル140による熱媒温度が35℃以下で十数℃となる場合、図11に示すように、太陽温熱媒復路142を熱交換回路配管135の熱交換往路131に、熱交換回路配管135の熱交換復路132を放熱回路配管123の放熱往路121に、放熱復路122を太陽温熱媒往路141に接続することがある。   Then, when the temperature of the heat medium by the solar heat collecting panel 140 is 35 ° C. or less and becomes several tens of degrees C., the solar heat medium return path 142 is exchanged with the heat exchange path 131 of the heat exchange circuit pipe 135 as shown in FIG. The heat exchange return path 132 of the circuit pipe 135 may be connected to the heat dissipation forward path 121 of the heat dissipation circuit pipe 123, and the heat dissipation return path 122 may be connected to the solar heating medium forward path 141.

従って、20℃〜30度程度に太陽集熱パネル140で温められた熱媒を熱交換パイプ130に送って十数℃の熱媒として太陽熱を地中等に蓄え、十数℃となった熱媒をヒートポンプ110の蒸発器116に送り、ヒートポンプ110の凝縮器118で50℃程度に昇温させた熱媒を図11に示したように吸熱回路配管128と給湯上部循環回路配管164aとを接続して給湯循環上部パイプ164に送り、給湯タンク160内の水を温めることができる。   Therefore, the heat medium heated by the solar heat collecting panel 140 at about 20 ° C. to 30 ° C. is sent to the heat exchange pipe 130 and the solar heat is stored in the ground as a heat medium of tens of degrees C. Is sent to the evaporator 116 of the heat pump 110, and the heat medium heated to about 50 ° C. by the condenser 118 of the heat pump 110 is connected to the heat absorption circuit pipe 128 and the hot water supply upper circulation circuit pipe 164a as shown in FIG. The hot water circulation upper pipe 164 can be sent to warm the water in the hot water tank 160.

このときは、図12に示すように、第1制御弁211のb開口とc開口とを連通させ、第5制御弁215のa開口とb開口とを連通させ且つ第6制御弁216のb開口とc開口とを連通させて放熱復路122と太陽温熱媒往路141を接続し、第4制御弁214のa開口とb開口とを連通させて太陽温熱媒復路142を熱交換往路131と接続し、第2制御弁212のb開口とc開口とを連通させて熱交換復路132と放熱往路121とを接続するものである。   At this time, as shown in FIG. 12, b opening and c opening of the first control valve 211 are communicated, a opening and b opening of the fifth control valve 215 are communicated, and b of the sixth control valve 216 is communicated. The opening C and the opening c are communicated to connect the heat dissipation return path 122 and the solar heating medium forward path 141, and the opening a and the opening b of the fourth control valve 214 are communicated to connect the solar heating medium return path 142 to the heat exchange forward path 131. Then, the b opening and the c opening of the second control valve 212 are communicated to connect the heat exchange return path 132 and the heat radiation return path 121.

そして、第9制御弁219のa開口とb開口とを連通させて吸熱復路127と給湯上部循環第1配管165を接続して吸熱回路配管128の熱媒を給湯タンク160の給湯循環上部パイプ164に送るものである。   Then, the a opening and the b opening of the ninth control valve 219 are communicated to connect the heat absorption return passage 127 and the hot water supply upper circulation first pipe 165, and the heat medium of the heat absorption circuit pipe 128 is used as the hot water supply circulation upper pipe 164 of the hot water supply tank 160. To send to.

尚、吸熱回路配管128は、給湯タンク160への給湯上部循環回路配管164aに接続するのではなく、図9に示したように、第8制御弁218、第9制御弁219、第10制御弁220、第11制御弁221、第12制御弁222を用いて蓄熱タンク150の上部第2配管152及び蓄熱タンク150の下部第1配管153である蓄熱タンク配管155に接続し、ヒートポンプ110により昇温された熱媒を蓄熱タンク150に蓄えておくようにすることもある。   The endothermic circuit pipe 128 is not connected to the hot water supply upper circulation circuit pipe 164a to the hot water supply tank 160, but as shown in FIG. 9, an eighth control valve 218, a ninth control valve 219, and a tenth control valve. 220, the eleventh control valve 221 and the twelfth control valve 222 are connected to the heat storage tank pipe 155 which is the upper second pipe 152 of the heat storage tank 150 and the lower first pipe 153 of the heat storage tank 150, and the temperature is raised by the heat pump 110 The heated heat medium may be stored in the heat storage tank 150.

また、太陽集熱パネル140により、60℃以上の高温の熱媒が得られるときは、図13に示すように、太陽温熱媒体回路配管145を給湯タンク160の給湯下部循環回路配管167aと蓄熱タンク150のタンク内部循環配管156とに接続し、太陽集熱パネル140で加温された熱媒により給湯タンク160内の生活水と蓄熱タンク150内の熱媒を加温することもある。   When a high-temperature heat medium of 60 ° C. or higher is obtained by the solar heat collecting panel 140, as shown in FIG. 13, the solar heating medium circuit pipe 145 is connected to the hot water supply lower circulation circuit pipe 167a of the hot water supply tank 160 and the heat storage tank. It is connected to 150 tank internal circulation pipes 156, and the water in the hot water supply tank 160 and the heat medium in the heat storage tank 150 may be heated by the heat medium heated by the solar heat collecting panel 140.

この配管接続は、図14に示すように、第3制御弁213のb開口とc開口とを連通させ、且つ、第4制御弁214のb開口とc開口とを連通させて太陽温熱媒復路142を給湯下部循環第1配管168に接続し、給湯循環下部パイプ167で熱交換を行って給湯下部循環第2配管169から第15制御弁225のb開口とc開口とを連通させて蓄熱循環第1配管を157を給湯下部循環第2配管169に接続し、第7制御弁217のa開口とb開口とを連通させて蓄熱循環第2配管158を太陽温熱媒往路141に接続するものである。   As shown in FIG. 14, the piping connection is made by connecting the b opening and the c opening of the third control valve 213 and the b opening and the c opening of the fourth control valve 214 to communicate with each other. 142 is connected to the hot water supply lower circulation first pipe 168, heat exchange is performed by the hot water supply circulation lower pipe 167, and the b opening and the c opening of the fifteenth control valve 225 are communicated with the hot water lower circulation second pipe 169 to store heat. The first pipe 157 is connected to the hot water supply lower circulation second pipe 169, and the a and b openings of the seventh control valve 217 are connected to connect the second heat storage circulation second pipe 158 to the solar heating medium forward path 141. is there.

従って、太陽集熱パネル140により熱媒を60度以上の高温に加温できるときは、太陽集熱パネル140高温に過熱された熱媒を給湯タンク160に送って生活温水を蓄え、更に、蓄熱タンク150内の蓄熱循環パイプ159に送って蓄熱タンク150内の熱媒を60℃近くに加温し、図14に示したように、第14制御弁224や第13制御弁223のb開口とc開口とを連通させて蓄熱タンク150内の上部の高温熱媒を送風冷暖房機170や放熱冷暖房機180に送って屋内暖房を行い、蓄熱タンク150の下部に温度が低下した熱媒を戻すことができる。   Accordingly, when the solar heat collecting panel 140 can heat the heat medium to a high temperature of 60 ° C. or more, the heat medium heated to the high temperature of the solar heat collecting panel 140 is sent to the hot water supply tank 160 to store hot water in the living room. The heat medium in the heat storage tank 150 is heated to close to 60 ° C. by sending it to the heat storage circulation pipe 159 in the tank 150, and as shown in FIG. 14, the b openings of the fourteenth control valve 224 and the thirteenth control valve 223 c Communicating with the opening, sending the high temperature heat medium in the upper part of the heat storage tank 150 to the blower air conditioner 170 or the radiant air conditioner 180 for indoor heating, and returning the heat medium whose temperature has dropped to the lower part of the heat storage tank 150 Can do.

また、太陽集熱パネル140で60度以上に熱媒を加温することができ、冷暖房が不要の場合は、図15及び図16に示すように、第3制御弁213及び第4制御弁214のb開口とc開口とを連通させて太陽温熱媒復路142を給湯下部循環第1配管168に接続し、第6制御弁216及び第15制御弁225のa開口とc開口とを連通させて給湯下部循環第2配管169を太陽温熱媒往路141と接続するものである。   In addition, when the heating medium can be heated to 60 degrees or more by the solar heat collecting panel 140 and air conditioning is not required, as shown in FIGS. 15 and 16, the third control valve 213 and the fourth control valve 214 are used. The solar heating medium return path 142 is connected to the hot water supply lower circulation first pipe 168, and the openings a and c of the sixth control valve 216 and the fifteenth control valve 225 are communicated. The hot water supply lower circulation second pipe 169 is connected to the solar heating medium forward path 141.

このように、地中熱などと合わせて太陽熱を利用し、太陽熱により熱媒を60度以上の高温に加温できる場合のみでなく、太陽熱により35℃〜50℃又は60℃程度の中温にしか加温できない場合、更には、十数℃〜30度程度の低温にしか加温できない場合などもヒートポンプ110と組み合わせて50℃又は60℃程度の生活温水を蓄えつつ、屋内暖房を行うことができる。   Thus, not only the case where solar heat is used in combination with geothermal heat and the heating medium can be heated to a high temperature of 60 ° C. or more by solar heat, but only a medium temperature of about 35 ° C. to 50 ° C. or 60 ° C. by solar heat. When it is not possible to heat, furthermore, when it can only be heated to a low temperature of about several tens of degrees Celsius to 30 degrees, indoor heating can be performed while storing hot water of about 50 ° C. or 60 ° C. in combination with the heat pump 110. .

また、生活温水を給湯タンク160に蓄えつつ屋内冷房を行うに際しては、図17に示すように、放熱回路配管123と蓄熱タンク配管155とを接続すると共に吸熱回路配管128を給湯上部循環回路配管164aに接続するものとし、放熱復路122を蓄熱タンク150の下部第1配管153に、放熱往路121を蓄熱タンク150の上部第2配管152に接続し、給湯上部第2配管を吸熱往路126に、給湯上部第1配管を吸熱復路127に接続し、ヒートポンプ110により給湯タンク160内の温水を加温しつつ蓄熱タンク150に冷熱媒を蓄えるものである。   When performing indoor cooling while storing hot water in the hot water supply tank 160, as shown in FIG. 17, the heat radiation circuit pipe 123 and the heat storage tank pipe 155 are connected and the heat absorption circuit pipe 128 is connected to the hot water supply upper circulation circuit pipe 164a. The heat radiation return path 122 is connected to the lower first pipe 153 of the heat storage tank 150, the heat radiation forward path 121 is connected to the upper second pipe 152 of the heat storage tank 150, and the hot water supply upper second pipe is connected to the heat absorption forward path 126. The upper first pipe is connected to the heat absorption return path 127, and the heat storage tank 150 stores the cooling medium while heating the hot water in the hot water supply tank 160 by the heat pump 110.

そして、この蓄熱タンク150に蓄えた冷熱媒は、蓄熱タンク150の下部第2配管154を送風冷暖房往路171や放熱冷暖房往路181に接続して屋内冷房を行って蓄熱タンク150の上部第1配管151により蓄熱タンク150の上部に戻すものである。   Then, the cooling medium stored in the heat storage tank 150 is connected to the lower second piping 154 of the heat storage tank 150 to the blower air-conditioning / outward path 171 and the radiant air-conditioning / outward path 181 to perform indoor cooling and the upper first pipe 151 of the heat storage tank 150. Thus, the heat storage tank 150 is returned to the top.

このとき、切換制御盤200では、図18に示すように、第1制御弁211のa開口とb開口とを連通させ、第12制御弁222のa開口とb開口とを連通させて放熱復路122を蓄熱タンク150の下部第1配管153に接続し、第10制御弁220及び第11制御弁221のa開口とb開口とを連通させて放熱往路121を蓄熱タンク150の上部第2配管152に接続し、第9制御弁219のa開口とb開口とを連通させて吸熱復路127を給湯上部循環第1配管165に接続するものである。   At this time, in the switching control panel 200, as shown in FIG. 18, the a opening and the b opening of the first control valve 211 are communicated, and the a opening and the b opening of the twelfth control valve 222 are communicated. 122 is connected to the lower first pipe 153 of the heat storage tank 150, and the openings a and b of the tenth control valve 220 and the eleventh control valve 221 are communicated to connect the heat radiation path 121 to the upper second pipe 152 of the heat storage tank 150. And the a-opening and b-opening of the ninth control valve 219 are communicated to connect the endothermic return path 127 to the hot water supply upper circulation first pipe 165.

また、蓄熱タンク150の下部第2配管154は第14制御弁224のa開口とb開口とを連通させて送風冷暖房往路171及び放熱冷暖房往路181に、蓄熱タンク150の上部第1配管151は第13制御弁223のa開口とb開口とを連通させて送風冷暖房復路172及び放熱冷暖房復路182に接続するものである。   The lower second pipe 154 of the heat storage tank 150 communicates the opening a and b of the fourteenth control valve 224 to the blower air-conditioning / outward path 171 and the radiant air-conditioning / outward path 181, and the upper first pipe 151 of the heat-storage tank 150 is the first The a opening and the b opening of the 13 control valve 223 are communicated with each other and connected to the blower air-conditioning return path 172 and the heat radiation air-conditioning return path 182.

従って、蒸発器116で放熱された放熱回路の10℃前後又は十数℃の熱媒を蓄熱タンク150に蓄えて屋内冷房を行い、凝縮器118で加熱された50℃前後の吸熱復路127の熱媒により給湯タンク160に生活温水を蓄えることができ、冷房排熱により生活温水を温めることができる。   Accordingly, a heat medium having a temperature of about 10 ° C. or a few dozen degrees C. of the heat radiation circuit radiated by the evaporator 116 is stored in the heat storage tank 150 for indoor cooling, and the heat of the heat absorption return path 127 around 50 ° C. heated by the condenser 118. The hot water can be stored in the hot water supply tank 160 by the medium, and the hot water can be heated by the cooling exhaust heat.

またこのとき、太陽集熱パネル140により60度以上の高温の熱媒が得られる場合は、図15及び図16に示したように、第3制御弁213、第4制御弁214、及び、第6制御弁216、第15制御弁225を用いて太陽集熱パネル140で加温された熱媒を給湯下部循環回路配管167aに送って温水の加温を行うこともできる。   At this time, when a heat medium having a high temperature of 60 ° C. or more is obtained by the solar heat collecting panel 140, as shown in FIGS. 15 and 16, the third control valve 213, the fourth control valve 214, and the The heating medium heated by the solar heat collecting panel 140 using the sixth control valve 216 and the fifteenth control valve 225 can be sent to the hot water supply lower circulation circuit pipe 167a to warm the hot water.

更に、太陽集熱パネル140による熱媒温度が十数℃〜35℃程度の低温の場合は、図19及び図20に示すように、切換制御盤200による接続制御を行うことがある。   Further, when the temperature of the heat medium by the solar heat collecting panel 140 is a low temperature of about several tens of degrees Celsius to 35 degrees Celsius, connection control by the switching control panel 200 may be performed as shown in FIGS.

この接続は、第4制御弁214のa開口とb開口とを連通させて太陽温熱媒復路142を熱交換往路131に、第2制御弁212のb開口とc開口とを連通させて熱交換復路132を放熱往路121に、第1制御弁211のb開口とc開口とを連通させると共に、第5制御弁215と第6制御弁216及び第15制御弁225のa開口とb開口とを連通させて、放熱復路122を蓄熱循環第1配管157に、第7制御弁217のa開口とb開口とを連通させて蓄熱循環第2配管158を太陽温熱媒往路141に接続する。   In this connection, the a-opening and b-opening of the fourth control valve 214 are communicated to connect the solar heating medium return path 142 to the heat exchanging forward path 131, and the b-opening and c-opening of the second control valve 212 are communicated to exchange heat. The return path 132 is connected to the heat radiation forward path 121 so that the b opening and the c opening of the first control valve 211 communicate with each other, and the a and b openings of the fifth control valve 215, the sixth control valve 216, and the fifteenth control valve 225 are connected. The heat return circulation path 122 is connected to the heat storage circulation first pipe 157, and the openings a and b of the seventh control valve 217 are connected to connect the heat storage circulation second pipe 158 to the solar heating medium forward path 141.

従って、太陽熱により20℃〜30℃前後に温められた熱媒を地中に送って十数℃とし、更に、蒸発器116を通して10℃前後の熱媒として蓄熱タンク150内に冷熱媒を蓄えることができる。   Therefore, a heating medium heated to around 20 ° C. to 30 ° C. by solar heat is sent to the ground to reach a dozen degrees C. Further, the cooling medium is stored in the heat storage tank 150 as a heating medium around 10 ° C. through the evaporator 116. Can do.

また、このとき、第9制御弁219のa開口とb開口とを連通させて吸熱復路127を給湯上部循環第1配管165に接続し、凝縮器118で発せられた熱を吸収した熱媒を給湯タンク160の給湯上部循環回路配管164aに送って給湯タンク160内の水を温めることができる。   At this time, the a-opening and b-opening of the ninth control valve 219 are communicated to connect the endothermic return passage 127 to the hot water supply upper circulation first pipe 165, and the heat medium that absorbs the heat generated by the condenser 118 is used. The water in the hot water supply tank 160 can be warmed by sending it to the hot water supply upper circulation circuit pipe 164a.

そして、第14制御弁224のa開口とb開口とを連通させて蓄熱タンク150の下部第2配管154により蓄熱タンク150下部の冷熱媒を送風冷暖房往路171や放熱冷暖房往路181に送って屋内冷房に使用し、第13制御弁223のa開口とb開口とを連通させて送風冷暖房復路172や放熱冷暖房復路182の熱媒を蓄熱タンク150の上部第1配管151により蓄熱タンク150上部に戻すものである。   Then, the a opening and the b opening of the fourteenth control valve 224 are connected to each other, and the cooling medium at the lower part of the heat storage tank 150 is sent to the blower air conditioning / outward path 171 and the heat radiation air conditioning / outward path 181 through the lower second pipe 154 of the heat storage tank 150. Used to connect the opening a and b of the thirteenth control valve 223 to return the heat medium in the air-conditioning / heating return path 172 and the heat radiation cooling / heating return path 182 to the upper part of the heat storage tank 150 by the upper first pipe 151 of the heat storage tank 150. It is.

このようにして、太陽集熱パネル140による昇温が20℃程度であっても、熱交換パイプ130を通して十数℃の熱媒として蒸発器116に送り、10℃程度の低温熱媒を蓄熱タンク150に蓄えつつ凝縮器118を通した50℃前後の熱媒により給湯タンク160に温水を蓄え、太陽熱の一部を地中に蓄えるようにすることもできる。   In this way, even if the temperature rise by the solar heat collecting panel 140 is about 20 ° C., it is sent to the evaporator 116 through the heat exchange pipe 130 as a heat medium of tens of degrees C. The low temperature heat medium of about 10 ° C. is sent to the heat storage tank. It is also possible to store hot water in the hot water supply tank 160 with a heat medium of about 50 ° C. through the condenser 118 while storing in 150, and store a part of solar heat in the ground.

また、図21及び図22に示すように、蓄熱タンク配管155を放熱回路配管123に接続し、吸熱回路配管128を熱交換回路配管135に接続して地中熱などによりヒートポンプ110による冷熱媒を蓄熱タンク150に蓄えることもある。   Further, as shown in FIGS. 21 and 22, the heat storage tank pipe 155 is connected to the heat radiating circuit pipe 123, the heat absorption circuit pipe 128 is connected to the heat exchange circuit pipe 135, and the cooling medium by the heat pump 110 is supplied by ground heat or the like. It may be stored in the heat storage tank 150.

この回路接続では、図22に示すように、第1制御弁211及び第12制御弁222のa開口とb開口とを連通させて放熱復路122を蓄熱タンク150の下部第1配管153に、第10制御弁220及び第11制御弁221のa開口とb開口とを連通させて蓄熱タンク150の上部第2配管152を放熱往路121に、第8制御弁218及び第9制御弁219のa開口とb開口とを連通させて吸熱復路127を熱交換往路131に、第2制御弁212のa開口とb開口とを連通させて熱交換復路132を吸熱往路126に接続するものである。   In this circuit connection, as shown in FIG. 22, the a opening and the b opening of the first control valve 211 and the twelfth control valve 222 are communicated so that the heat radiation return path 122 is connected to the lower first pipe 153 of the heat storage tank 150. The a opening and the b opening of the 10th control valve 220 and the 11th control valve 221 are communicated with each other so that the upper second pipe 152 of the heat storage tank 150 is connected to the heat release path 121, and the 8th control valve 218 and the 9th control valve 219 are opened. Are connected to the heat exchanging path 131, and the opening a and the b opening of the second control valve 212 are connected to the heat exchanging path 126.

従って、地中熱等による低温熱媒を用いたヒートポンプ110により10℃前後に冷却した冷熱媒を蓄熱タンク150に蓄え、第14制御弁224のa開口とb開口とを連通させて蓄熱タンク150の下部第2配管154からの冷熱媒を送風冷暖房往路171や放熱冷暖房往路181に送り、第13制御弁223のa開口とb開口とを連通させて送風冷暖房復路172や放熱冷暖房復路182の熱媒を蓄熱タンク150の上部第1配管151から蓄熱タンク150上部に戻すことができる。   Accordingly, the cooling medium cooled to about 10 ° C. by the heat pump 110 using a low-temperature heating medium such as underground heat is stored in the heat storage tank 150, and the a opening and the b opening of the fourteenth control valve 224 are communicated with each other. The cooling medium from the lower second pipe 154 is sent to the air-conditioning / outward passage 171 and the heat-dissipating air-conditioning / outward passage 181, and the opening a and b of the thirteenth control valve 223 are communicated with each other to heat The medium can be returned from the upper first pipe 151 of the heat storage tank 150 to the upper part of the heat storage tank 150.

更に、本実施の形態における給湯冷暖房システム100では、図23に示すような接続を行い、熱交換パイプ130により十数℃とされる熱媒を直接蓄熱タンク150に蓄えることもある。   Furthermore, in the hot water supply / cooling / heating system 100 according to the present embodiment, the connection shown in FIG. 23 is performed, and the heat medium that is set to several tens of degrees Celsius by the heat exchange pipe 130 may be directly stored in the heat storage tank 150.

この場合は、図24に示すように、第11制御弁221のa開口とb開口とを連通させると共に第10制御弁220のb開口とc開口とを連通させて蓄熱タンク150の上部第2配管152を吸熱往路126に、第9制御弁219のb開口とc開口とを連通させると共に第8制御弁218のa開口とb開口とを連通させ、開閉制御弁231を介して吸熱復路127を熱交換往路131に、第2制御弁212のb開口とc開口とを連通させて熱交換復路132を放熱往路121に、第1制御弁211及び第12制御弁222のa開口とb開口とを連通させて放熱復路122を蓄熱タンク150の下部第1配管153に接続し、ヒートポンプ110を作動させることなく、放熱回路ポンプ124または吸熱回路ポンプ129の両ポンプ又は少なくとも一方のポンプを駆動し、蓄熱タンク150上部の熱媒を熱交換パイプ130に送り、地中熱により十数℃程度として蓄熱タンク150に蓄えるものである。   In this case, as shown in FIG. 24, the a opening and the b opening of the eleventh control valve 221 are communicated with each other, and the b opening and the c opening of the tenth control valve 220 are communicated with each other. The piping 152 is connected to the heat absorption outward path 126 with the b opening and the c opening of the ninth control valve 219 and the a opening and the b opening of the eighth control valve 218 are communicated with each other. Is connected to the heat exchange forward path 131, the b opening and the c opening of the second control valve 212 are communicated, the heat exchange return path 132 is connected to the heat dissipation forward path 121, and the a and b openings of the first control valve 211 and the twelfth control valve 222 are opened. Is connected to the lower first pipe 153 of the heat storage tank 150 to drive both the heat pump 110 and / or the heat sink pump 129 without operating the heat pump 110. The heat medium in the upper part of the heat storage tank 150 is sent to the heat exchange pipe 130, It is intended to store the heat storage tank 150 as few ° C..

従って、第14制御弁224を介して蓄熱タンク150下部の冷熱媒を送風冷暖房往路171や放熱冷暖房往路181に送って屋内冷房に利用し、第13制御弁223を介して蓄熱タンク150の上部に戻すことができ、ヒートポンプ110自体を駆動することなく、少ない人工エネルギーで屋内冷房を行うことができる。   Therefore, the cooling medium at the lower part of the heat storage tank 150 is sent to the blower air-conditioning / outward path 171 and the radiant air-conditioning / outward path 181 via the fourteenth control valve 224 and used for indoor cooling, and is supplied to the upper part of the heat storage tank 150 via the thirteenth control valve 223. It is possible to return to the interior, and indoor cooling can be performed with less artificial energy without driving the heat pump 110 itself.

尚、図21乃至図24に示す冷房作動時に太陽集熱パネル140により60℃以上の高温の熱媒を得ることができる場合、図15及び図16に示したように、第3制御弁213及び第4制御弁214、第6制御弁216及び第15制御弁225を介して太陽温熱媒体回路配管145と給湯下部循環回路配管167aを接続し、給湯タンク160内の生活用水を加温することができる。   Note that when the high-temperature heat medium of 60 ° C. or higher can be obtained by the solar heat collecting panel 140 during the cooling operation shown in FIGS. 21 to 24, as shown in FIGS. 15 and 16, the third control valve 213 and The solar heating medium circuit pipe 145 and the hot water supply lower circulation circuit pipe 167a are connected via the fourth control valve 214, the sixth control valve 216, and the fifteenth control valve 225, and the domestic water in the hot water tank 160 can be heated. it can.

また、図面には示していないが、太陽光発電パネルとバッテリーを組み合わせた太陽光発電機を用い、ヒートポンプ110や放熱回路ポンプ124及び吸熱回路ポンプ129、更には太陽温熱媒回路ポンプ144第1及び第2冷暖房用ポンプ191などの適宜ポンプ、及び、送風冷暖房機170や放熱冷暖房機180、また、切換制御盤200等の配管切換を行う各電動弁及び切換制御盤200の制御を行う切換制御部310や集積回路等の電気的制御回路に電力を供給し、商用電力の消費を一層節約することもある。   Although not shown in the drawings, a solar power generator in which a solar power generation panel and a battery are combined is used, and the heat pump 110, the heat dissipation circuit pump 124, the heat absorption circuit pump 129, and the solar heating medium circuit pump 144 first and Appropriate pumps such as the second air conditioning / heating pump 191 and the switching control unit for controlling each motor-operated valve for switching the piping and the switching control panel 200 such as the blower air conditioning unit 170, the heat radiation air conditioning unit 180, and the switching control panel 200. In some cases, power is supplied to an electrical control circuit such as 310 or an integrated circuit to further reduce the consumption of commercial power.

更に、図2等に示した切換制御盤200とは三方電動弁や開閉電磁弁の個数及び接続回路は異なるも、太陽集熱パネル140、熱交換パイプ130、蓄熱タンク150、給湯タンク160、ヒートポンプ110、送風冷暖房機170、放熱冷暖房機180を適宜接続する切換制御盤200を用い、図25に示すように、太陽集熱パネル140の太陽温熱媒復路142をヒートポンプ110への放熱往路121に接続し、ヒートポンプ110からの放熱復路122を蓄熱循環第1配管157に、蓄熱循環第2配管158を熱交換往路131に、熱交換復路132を太陽集熱パネル140への太陽温熱媒往路141に接続し、ヒートポンプ110からの吸熱復路127を給湯タンク160への給湯上部循環第2配管166に、給湯タンク160からの給湯上部循環第1配管165を吸熱往路126に接続することもある。   Furthermore, although the number and connection circuit of three-way motorized valves and open / close solenoid valves are different from the switching control panel 200 shown in FIG. 2 etc., the solar heat collecting panel 140, the heat exchange pipe 130, the heat storage tank 150, the hot water supply tank 160, the heat pump 110, using a switching control panel 200 for appropriately connecting the blower air conditioner 170 and the heat radiation air conditioner 180, as shown in FIG. 25, the solar heating medium return path 142 of the solar heat collecting panel 140 is connected to the heat radiation forward path 121 to the heat pump 110. Then, the heat radiation return path 122 from the heat pump 110 is connected to the first heat storage circulation pipe 157, the second heat storage circulation pipe 158 is connected to the heat exchange forward path 131, and the heat exchange return path 132 is connected to the solar thermal medium forward path 141 to the solar heat collecting panel 140. Then, the endothermic return path 127 from the heat pump 110 may be connected to the hot water supply upper circulation second pipe 166 to the hot water supply tank 160, and the hot water supply upper circulation first pipe 165 from the hot water supply tank 160 may be connected to the heat absorption outward path 126.

この場合は、太陽集熱パネル140からの十数℃乃至20℃程度の低温の熱媒であっても、ヒートポンプ110により吸熱復路127の熱媒温度を50℃程度の温度として給湯タンク160の水を加温し、十数℃乃至20℃程度からヒートポンプ110の蒸発器を介して10℃程度又は10℃以下に冷やされた熱媒をタンク内部循環配管156により蓄熱タンク150の内部を循環させて蓄熱タンク150内部の熱媒を冷却し、熱交換パイプ130を介して太陽集熱パネル140に戻すことができる。   In this case, even in the case of a low-temperature heat medium of about tens to 20 ° C. from the solar heat collecting panel 140, the heat medium temperature in the endothermic return path 127 is set to a temperature of about 50 ° C. by the heat pump 110. The heat medium cooled to about 10 ° C. or below 10 ° C. through the evaporator of the heat pump 110 is circulated inside the heat storage tank 150 through the tank internal circulation pipe 156. The heat medium inside the heat storage tank 150 can be cooled and returned to the solar heat collecting panel 140 via the heat exchange pipe 130.

このため、太陽集熱パネル140による熱媒の加温が低い場合でも、ヒートポンプ110の負荷を少なくしつつ給湯タンク160に温水を蓄え、蓄熱タンク150に冷熱媒を蓄えることができる。   For this reason, even when the heating of the heat medium by the solar heat collecting panel 140 is low, hot water can be stored in the hot water supply tank 160 and the cooling medium can be stored in the heat storage tank 150 while reducing the load on the heat pump 110.

また、図26に示すように、太陽集熱パネル140の太陽温熱媒復路142をヒートポンプ110への放熱往路121に接続し、ヒートポンプ110からの放熱復路122を熱交換往路131に、熱交換復路132を太陽集熱パネル140への太陽温熱媒往路141に接続し、ヒートポンプ110からの吸熱復路127を給湯タンク160への給湯上部循環第2配管166に、給湯タンク160からの給湯上部循環第1配管165を吸熱往路126に接続することもある。   In addition, as shown in FIG. 26, the solar thermal medium return path 142 of the solar heat collecting panel 140 is connected to the heat dissipation forward path 121 to the heat pump 110, the heat dissipation return path 122 from the heat pump 110 is connected to the heat exchange outward path 131, and the heat exchange return path 132. Is connected to the solar heat transfer path 141 to the solar heat collecting panel 140, the endothermic return path 127 from the heat pump 110 is connected to the hot water upper circulation second pipe 166 to the hot water tank 160, and the hot water upper circulation first pipe from the hot water tank 160 is connected. 165 may be connected to the endothermic path 126.

この場合も、太陽集熱パネル140からの十数℃乃至20℃程度の低温の熱媒であっても、ヒートポンプ110により吸熱復路127の熱媒温度を50℃程度の温度として給湯タンク160の水を加温することができるものである。   Also in this case, even in the case of a low-temperature heat medium of about tens to 20 ° C. from the solar heat collecting panel 140, the heat medium temperature of the endothermic return path 127 is set to a temperature of about 50 ° C. by the heat pump 110. Can be heated.

そして、上記実施の形態では、熱交換パイプ130を地中に埋設して地中熱を利用するものとして説明しているも、熱交換パイプ130は、河川や湖沼に埋設して水熱を利用するヒートポンプ110を用いた給湯冷暖房システム100とすることもある。   In the above embodiment, the heat exchanging pipe 130 is buried in the ground to use the ground heat, but the heat exchanging pipe 130 is buried in a river or a lake and uses water heat. The hot water supply / cooling / heating system 100 using the heat pump 110 may be used.

更に、熱交換パイプ130は、下水や排水の浄化槽など埋設された水槽に設け、生活排水などの熱を利用することもできる。   Furthermore, the heat exchange pipe 130 can be provided in a buried water tank such as a sewage or wastewater septic tank, and can use heat from domestic wastewater.

そして、上記実施の形態では、熱交換パイプ130を1本として説明しているも、熱交換パイプ130を複数本設けて熱交換回路配管135の複数組を切換制御盤200に接続するものとし、各熱交換回路配管135をヒートポンプ110や太陽集熱パネル140等に接続・切断可能として各熱交換パイプ130を地中に埋設する場合や、熱交換パイプ130を地中と河川や湖沼、排水槽などの水中とに各々埋設する場合もある。
In the above embodiment, the heat exchange pipe 130 is described as one, but a plurality of heat exchange pipes 130 are provided to connect a plurality of sets of heat exchange circuit pipes 135 to the switching control panel 200. Each heat exchange circuit pipe 135 can be connected to and disconnected from the heat pump 110, the solar heat collecting panel 140, etc., and each heat exchange pipe 130 is buried in the ground, or the heat exchange pipe 130 is buried in the ground, rivers, lakes, and drains In some cases, they are buried underwater.

また、熱交換パイプ130を複数本設ける場合、1本の熱交換パイプ130は地中または水中に設け、1本の熱交換パイプは液体間で熱伝達を行う多管式熱交換器やプレート式熱交換器などの熱交換器とし、ボイラーなどの排熱による高温の熱媒から多少温度の低い高温度や中温度とする熱媒に熱伝達させた後、切換制御盤200を介して蓄熱タンク150、給湯タンク160、に熱媒を送るようにすることもできる。   In addition, when a plurality of heat exchange pipes 130 are provided, one heat exchange pipe 130 is provided in the ground or in water, and one heat exchange pipe is a multi-tube heat exchanger or plate type that transfers heat between liquids. A heat exchanger such as a heat exchanger is used to transfer heat from a high-temperature heat medium due to exhaust heat from a boiler or the like to a heat medium that has a slightly lower temperature, such as a high temperature or medium temperature, and then a heat storage tank via the switching control panel 200 It is also possible to send a heat medium to 150 and hot water supply tank 160.

そして、上記実施の形態では、給湯タンク160内に給湯循環上部パイプ164と給湯循環下部パイプ167との2つの熱交換パイプを配置して給湯タンク160内の水を温めているも、給湯循環上部パイプ164と給湯循環下部パイプ167の何れか一方だけとして切換制御盤200からの熱媒を給湯タンク160に送って給湯タンク160内の水を温めることもできる。   And in the said embodiment, although the two heat exchange pipes, the hot water supply circulation upper pipe 164 and the hot water supply circulation lower pipe 167, are arranged in the hot water supply tank 160 to warm the water in the hot water supply tank 160, It is also possible to warm the water in the hot water supply tank 160 by sending the heat medium from the switching control panel 200 to the hot water supply tank 160 as only one of the pipe 164 and the hot water supply circulation lower pipe 167.

もっとも、給湯循環上部パイプ164と給湯循環下部パイプ167とを設ければ、太陽集熱パネル140により熱媒が90℃等の高温とされたときは、ヒートポンプ110からの50℃程度の熱媒による水の加温と比較して高温による加温であるため、90℃等の高温の熱媒による水の加温は給湯タンク160内の下部に配置した熱交換器(熱交換パイプ)により加温を行い、50℃程度の熱媒による水の加温は、給湯タンク160内中間部又は中間部より上部に配置した熱交換器(熱交換パイプ)による加温が好ましい。   However, if the hot water supply circulation upper pipe 164 and the hot water supply circulation lower pipe 167 are provided, when the heat medium is heated to a high temperature of 90 ° C. or the like by the solar heat collecting panel 140, the heat medium is about 50 ° C. from the heat pump 110. Compared to the warming of water, it is warmed by a high temperature, so the warming of water by a high-temperature heat medium such as 90 ° C is warmed by a heat exchanger (heat exchange pipe) located in the lower part of the hot water tank 160 The heating of the water by the heat medium of about 50 ° C. is preferably performed by a heat exchanger (heat exchange pipe) disposed in the middle part of the hot water tank 160 or above the middle part.

また、上記実施の形態では、蓄熱タンク150内に蓄熱循環パイプ159を配置してヒートポンプ110により50℃程度又は60℃程度に加温される熱媒と、天候によっては90℃等の高温となった太陽集熱パネル140からの熱媒とを混合しないようにしているも、蓄熱循環パイプ159を省略し、蓄熱タンク150内の熱媒を太陽集熱パネル140に送り、太陽集熱パネル140で昇温された熱媒を蓄熱タンク150に戻すことや、給湯タンク160の給湯循環上部パイプ164又は給湯循環下部パイプ167を循環させるようにすることもできる。   Further, in the above embodiment, the heat storage circulation pipe 159 is disposed in the heat storage tank 150 and the heat medium heated to about 50 ° C. or about 60 ° C. by the heat pump 110, and depending on the weather, the temperature becomes as high as 90 ° C. The heat storage circulation pipe 159 is omitted, and the heat medium in the heat storage tank 150 is sent to the solar heat collection panel 140. The heated heat medium can be returned to the heat storage tank 150, or the hot water circulation upper pipe 164 or the hot water circulation lower pipe 167 of the hot water tank 160 can be circulated.

そして、上記実施の形態は、給湯タンク160内に配置する熱交換器を給湯循環上部パイプ164や給湯循環下部パイプ167との熱交換パイプとし、蓄熱タンク150内に配置する熱交換器を蓄熱循環パイプ159との熱交換パイプとしているも、熱交換器としてはパイプに限るものでなく、プレート型の熱交換として給湯タンク160や蓄熱タンク150に外付けして配置することもある。   In the above embodiment, the heat exchanger arranged in the hot water supply tank 160 is a heat exchange pipe with the hot water supply circulation upper pipe 164 and the hot water supply circulation lower pipe 167, and the heat exchanger arranged in the heat storage tank 150 is the heat storage circulation. Although the heat exchange pipe with the pipe 159 is used, the heat exchanger is not limited to the pipe, and may be externally disposed on the hot water supply tank 160 or the heat storage tank 150 as plate type heat exchange.

このように、本実施の形態とした給湯冷暖房システム100では、放熱往路121によりヒートポンプ110の蒸発器116に送る熱媒温度を十数℃〜30℃未満とし、蒸発器116を介して放熱復路122を戻る熱媒温度を10℃前後又は十数℃とすると共に、凝縮器118を介して吸熱復路127を戻る熱媒温度を50℃前後とすることにより、ヒートポンプ110の熱移動効率を高くして無駄な消費エネルギーを少なくすることができる。   As described above, in the hot water supply / cooling / heating system 100 according to the present embodiment, the temperature of the heat medium sent to the evaporator 116 of the heat pump 110 by the heat radiation forward path 121 is set to a temperature of more than a dozen to 30 ° C., and the heat radiation return path 122 is passed through the evaporator 116. The heat transfer temperature of the heat pump 110 is increased by setting the temperature of the heat medium returning to about 10 ° C. or several tens of degrees C. and the temperature of the heat medium returning to the endothermic return path 127 via the condenser 118 to about 50 ° C. Wasteful energy consumption can be reduced.

そして、太陽集熱パネル140により温熱媒体の温度を60℃以上の高温とできるときは、太陽エネルギーにより生活温水や暖房用の温熱媒を効率よく蓄えることができると共に、太陽集熱パネル140による温熱媒体の温度が35℃〜50℃程度の中温や30℃以下の低温であっても、ヒートポンプ110を介して吸熱復路127の熱媒温度を50℃程度に昇温し、又は50℃や60℃程度の中温度であればそのまま利用して、給湯タンク160内の生活温水を温めて蓄え、蓄熱タンク150には50℃前後の温熱媒を、又は、ヒートポンプ110や地中熱による10℃前後の冷熱媒を蓄えて太陽エネルギーを効果的に利用することができる。   When the temperature of the heating medium can be raised to 60 ° C. or higher by the solar heat collecting panel 140, the hot water for living or heating can be efficiently stored by solar energy, and the heating by the solar collecting panel 140 Even if the temperature of the medium is a medium temperature of about 35 ° C. to 50 ° C. or a low temperature of 30 ° C. or less, the heat medium temperature of the endothermic return path 127 is raised to about 50 ° C. via the heat pump 110, or 50 ° C. or 60 ° C. If it is at a moderate temperature, it is used as it is, and the hot water in the hot water supply tank 160 is warmed and stored, and the heat storage tank 150 has a heat medium of about 50 ° C., or about 10 ° C. by the heat pump 110 or underground heat. It can store the cooling medium and use solar energy effectively.

尚、上記実施の形態は、冷暖房機として、空調機等の送風冷暖房機170と床冷暖房機等の放熱冷暖房機180を用いているも、送風冷暖房機170又は放熱冷暖房機180のみを冷暖房機として切換制御盤200に接続した給湯冷暖房システム100とすることもある。   In addition, although the said embodiment uses the ventilation air-conditioning machine 170, such as an air conditioner, and the heat radiation air-conditioning machine 180, such as a floor air-conditioning machine, as an air-conditioning machine, only the air-conditioning air-conditioning machine 170 or the heat radiation air-conditioning machine 180 is used as an air-conditioning machine. The hot water supply / cooling / heating system 100 may be connected to the switching control panel 200.

100 給湯冷暖房システム
110 ヒートポンプ
112 圧縮ポンプ 114 膨張弁
116 蒸発器 118 凝縮器
121 放熱往路 122 放熱復路
123 放熱回路配管 124 放熱回路ポンプ
126 吸熱往路 127 吸熱復路
128 吸熱回路配管 129 吸熱回路ポンプ
130 熱交換パイプ
131 熱交換往路 132 熱交換復路
135 熱交換回路配管
140 太陽集熱パネル
141 太陽温熱媒往路 142 太陽温熱媒復路
144 太陽温熱媒回路ポンプ 145 太陽温熱媒体回路配管
150 蓄熱タンク
151 上部第1配管 152 上部第2配管
153 下部第1配管 154 下部第2配管
155 蓄熱タンク配管 156 タンク内部循環配管
157 蓄熱循環第1配管 158 蓄熱循環第2配管
159 蓄熱循環パイプ
160 給湯タンク
161 給水パイプ 162 温水取出しパイプ
164a 給湯上部循環回路配管 164 給湯循環上部パイプ
165 給湯上部循環第1配管 166 給湯上部循環第2配管
167 給湯循環下部パイプ 167a 給湯下部循環回路配管
168 給湯下部循環第1配管 169 給湯下部循環第2配管
170 送風冷暖房機
171 送風冷暖房往路 172 送風冷暖房復路
174 第1冷暖房用ポンプ 179 送風冷暖房用回路配管
180 放熱冷暖房機
181 放熱冷暖房往路 182 放熱冷暖房復路
183 放熱冷暖房ポンプ入路 184 放熱冷暖房ポンプ出路
185 放熱冷暖房出路 187 ヘッダー
189 放熱冷暖房用回路配管
191 第2冷暖房用ポンプ 193 切換え弁
195 閉鎖弁 197 差圧調整弁
200 切換制御盤
211 第1制御弁 212 第2制御弁
213 第3制御弁 214 第4制御弁
215 第5制御弁 216 第6制御弁
217 第7制御弁 218 第8制御弁
219 第9制御弁 220 第10制御弁
221 第11制御弁 222 第12制御弁
223 第13制御弁 224 第14制御弁
225 第15制御弁 231 開閉制御弁
301 太陽温熱媒温度計 303 蓄熱タンク熱媒温度計
305 温水温度計
310 切換制御部
DESCRIPTION OF SYMBOLS 100 Hot-water supply cooling / heating system 110 Heat pump 112 Compression pump 114 Expansion valve 116 Evaporator 118 Condenser 121 Heat radiation outward path 122 Heat radiation return path 123 Heat radiation circuit piping 124 Heat radiation circuit pump 126 Heat absorption forward path 127 Heat absorption return path 128 Heat absorption circuit piping 129 Heat absorption circuit pump 130 Heat exchange pipe 131 Heat Exchange Outward Route 132 Heat Exchange Return Route 135 Heat Exchange Circuit Piping 140 Solar Heat Collection Panel 141 Solar Heating Medium Outward Route 142 Solar Heating Medium Return Route 144 Solar Heating Medium Circuit Pump 145 Solar Heating Medium Circuit Piping 150 Heat Storage Tank 151 Upper First Piping 152 Upper Second piping 153 Lower first piping 154 Lower second piping 155 Thermal storage tank piping 156 Tank internal circulation piping 157 Thermal storage circulation first piping 158 Thermal storage circulation second piping 159 Thermal storage circulation pipe 160 Hot water supply tank 61 Hot water supply pipe 162 Hot water extraction pipe 164a Hot water supply upper circulation circuit pipe 164 Hot water supply circulation upper pipe 165 Hot water supply upper circulation first pipe 166 Hot water supply upper circulation second pipe 167 Hot water supply circulation lower pipe 167a Hot water supply lower circulation circuit pipe 168 Hot water supply lower circulation first pipe 169 Hot water supply lower circulation second pipe 170 Blower air conditioner 171 Blower air conditioner outbound path 172 Blower air conditioner return path 174 First air conditioner pump 179 Blower air conditioner circuit pipe 180 Heat dissipating air conditioner 181 Heat dissipating air conditioner air conditioner 182 Heat dissipating air conditioner air conditioner path 183 Radiation cooling and heating pump outlet 185 Heat radiation cooling and heating outlet 187 Header 189 Heat radiation cooling and heating circuit piping 191 Second cooling and heating pump 193 Switching valve 195 Closing valve 197 Differential pressure adjustment valve 200 Switching control panel 211 First control valve 212 2 control valve 213 3rd control valve 214 4th control valve 215 5th control valve 216 6th control valve 217 7th control valve 218 8th control valve 219 9th control valve 220 10th control valve 221 11th control valve 222 2nd 12 control valve 223 13th control valve 224 14th control valve 225 15th control valve 231 open / close control valve 301 solar thermal medium thermometer 303 thermal storage tank thermal medium thermometer 305 hot water thermometer 310 switching control unit

Claims (7)

太陽集熱パネルと、ヒートポンプと、地中又は水中配設熱交換パイプと、給湯タンクと、蓄熱タンクと、冷暖房機と、切換制御盤と、を備え、
前記切換制御盤は、
前記太陽集熱パネルへの配管を、前記ヒートポンプへの配管、前記地中又は水中配設熱交換パイプへの配管、前記給湯タンクへの配管、前記蓄熱タンクへの配管の各々に接続及び切断することを可能とし、
前記ヒートポンプへの配管である放熱回路配管を、前記太陽集熱パネルへの配管の他、前記地中又は水中配設熱交換パイプへの配管前記蓄熱タンクへの配管との各々に接続及び切断することを可能とし、
前記ヒートポンプへの配管である吸熱回路配管を、前記地中又は水中配設熱交換パイプへの配管前記給湯タンクへの配管前記蓄熱タンクへの配管との各々に接続及び切断することを可能とし、
前記蓄熱タンクへの管を前記冷暖房機への配管に接続及び切断することを可能としたことを特徴とする給湯冷暖房システム。
It includes a solar collector panel, a heat pump, the ground or water disposed heat exchange pipe, a hot water tank, a heat storage tank, and air conditioners, a switching control panel, and
The switching control panel is
The piping to the solar collector panel, piping to the heat pump, piping to the ground or water disposed heat exchange pipe, the pipe to the hot water supply tank, to connect and disconnect each of the piping to the heat storage tank Made possible
The radiator circuit pipe is a piping to the heat pump, the other pipe to the solar collector panel, connection and disconnection to each of the pipe to the pipe and the heat storage tank to the ground or water disposed heat exchange pipe To be able to
An endothermic circuit piping is piping to the heat pump, it allows to connect and disconnect each of the pipe to the pipe and the heat storage tank to the pipe and the hot water tank to the ground or water disposed heat exchange pipe And
A hot water supply / cooling / heating system characterized in that a pipe to the heat storage tank can be connected to and disconnected from a pipe to the air conditioner.
前記蓄熱タンク内に熱媒循環配管を有し、且つ、前記給湯タンク内には2個の熱媒循環配管を有し、前記切換制御盤は、前記太陽集熱パネルへの配管を前記給湯タンクへの配管に接続するに際し、2個の熱媒循環配管の内の常に一方の熱媒循環配管に接続し、また、前記太陽集熱パネルへの配管を前記蓄熱タンクへの配管に接続するに際し、前記蓄熱タンク内に設けた熱媒循環配管に接続することを特徴とする請求項1に記載の給湯冷暖房システム。 The heat storage tank has a heat medium circulation pipe, and the hot water supply tank has two heat medium circulation pipes, and the switching control panel connects the pipe to the solar heat collecting panel to the hot water supply tank. When connecting to the pipe to the heat storage tank, always connect to one of the two heat medium circulation pipes, and connect the pipe to the solar heat collecting panel to the pipe to the heat storage tank. The hot water supply / cooling / heating system according to claim 1, wherein the hot water supply / cooling / heating system is connected to a heat medium circulation pipe provided in the heat storage tank . 前記太陽集熱パネルの熱媒が太陽熱により暖められ、前記太陽集熱パネルの熱媒温度が35℃以下の場合、前記切換制御盤は、前記太陽集熱パネルの熱媒を前記地中又は水中配設熱交換パイプを介して前記放熱回路配管に送って前記太陽集熱パネルに戻すように、前記太陽集熱パネルへの配管を前記地中又は水中配設熱交換パイプへの配管及び前記ヒートポンプへの配管である前記放熱回路配管に接続し、且つ、前記地中又は水中配設熱交換パイプへの配管と前記放熱回路配管とを直列に接続し、このとき、前記ヒートポンプの前記吸熱回路配管を、前記給湯タンクへの配管又は前記蓄熱タンクへの配管へ接続、又は、前記給湯タンクへの配管と前記蓄熱タンクへの配管とを直列として両配管と前記吸熱回路配管とを接続し、
前記太陽集熱パネルの熱媒温度が35℃〜60℃、及び60℃以上の場合、前記太陽集熱パネルの熱媒を前記給湯タンクへの配管又は前記蓄熱タンクへの配管に送って前記太陽集熱パネルに戻す、又は、前記給湯タンクへの配管と前記蓄熱タンクへの配管とを直列として両配管を介した熱媒を前記太陽集熱パネルに戻すように、前記太陽集熱パネルへの配管を前記給湯タンクへの配管及び前記蓄熱タンクへの配管の一方又は両方に接続することを特徴とする請求項1又は請求項2に記載の給湯冷暖房システム。
When the heating medium of the solar heat collecting panel is warmed by solar heat and the heating medium temperature of the solar collecting panel is 35 ° C. or less, the switching control panel can transfer the heating medium of the solar collecting panel to the ground or underwater. Piping to the solar heat collecting panel is routed to the underground or underwater disposed heat exchanging pipe and the heat pump so as to be sent to the heat radiating circuit piping through the arranged heat exchanging pipe and returned to the solar heat collecting panel. And connecting to the underground or underwater heat exchange pipe and the heat dissipation circuit pipe in series, and at this time, the heat absorption circuit pipe of the heat pump. A pipe to the hot water tank or a pipe to the heat storage tank, or a pipe to the hot water tank and a pipe to the heat storage tank are connected in series with both pipes and the heat absorption circuit pipe,
When the heat medium temperature of the solar heat collection panel is 35 ° C. to 60 ° C. and 60 ° C. or more, the heat medium of the solar heat collection panel is sent to a pipe to the hot water supply tank or a pipe to the heat storage tank, and the solar Return to the solar heat collection panel, or return the heat medium via both pipes to the solar heat collection panel in series with the pipe to the hot water supply tank and the pipe to the heat storage tank. The hot water supply / cooling / heating system according to claim 1 or 2, wherein a pipe is connected to one or both of a pipe to the hot water supply tank and a pipe to the heat storage tank .
前記切換制御盤は、前記太陽集熱パネルへの配管を、前記ヒートポンプへの配管、前記地中又は水中配設熱交換パイプへの配管、前記給湯タンクへの配管、前記蓄熱タンクへの配管の各々に接続及び切断するに際し、
前記地中又は水中配設熱交換パイプへの配管と前記放熱回路配管と前記蓄熱タンクへの配管とを直列に接続した状態で前記太陽集熱パネルへの配管に接続し、前記太陽集熱パネルへの配管と前記放熱回路配管及び前記給湯タンクへの配管とは切断し、前記太陽集熱パネルからの熱媒を前記地中又は水中配設熱交換パイプを介して前記放熱回路配管に送り、前記放熱回路配管から前記蓄熱タンクへの配管を介して熱媒を前記太陽集熱パネルに戻し、前記ヒートポンプの前記吸熱回路配管を前記給湯タンクへの配管に接続することを特徴とする請求項1又は請求項2に記載した給湯冷暖房システム。
The switching control panel, a piping to the solar collector panel, piping to the heat pump, piping to the ground or water disposed heat exchange pipe, the pipe to the hot water supply tank, the piping to the heat storage tank When connecting and disconnecting each
Connect the pipe to the ground or the solar collector panel and the pipe in water disposed heat exchange pipe and the heat radiating circuit piping and piping to the thermal storage tank in a state connected in series, said solar collector panels And the piping to the heat dissipation circuit piping and the hot water supply tank are cut, and the heat medium from the solar heat collecting panel is sent to the heat dissipation circuit piping through the underground or underwater heat exchange pipe, 2. The heat medium is returned to the solar heat collecting panel through a pipe from the heat radiation circuit pipe to the heat storage tank, and the heat absorption circuit pipe of the heat pump is connected to a pipe to the hot water supply tank. Or the hot-water supply air conditioning system described in Claim 2 .
前記給湯タンクは、50℃乃至60℃以上の温水を蓄えることを特徴とする請求項1乃至請求項4の何れかに記載した給湯冷暖房システム。 The hot water supply / cooling / heating system according to any one of claims 1 to 4 , wherein the hot water supply tank stores hot water of 50 ° C to 60 ° C or more. 前記蓄熱タンクは、50℃程度の温熱媒又は10℃程度の冷熱媒を蓄えることを特徴とする請求項1乃至請求項5の何れかに記載した給湯冷暖房システム。 The hot water supply / cooling / heating system according to any one of claims 1 to 5 , wherein the heat storage tank stores a heating medium of about 50 ° C or a cooling medium of about 10 ° C. 前記冷暖房機は、前記切換制御盤から前記冷暖房機への配管との接続を遮断し、前記冷暖房機内での熱媒の循環を可能とする熱媒回路を備えることが有ることを特徴とする請求項1乃至請求項6の何れかに記載した給湯冷暖房システム。
The air conditioner may be provided with a heat medium circuit that cuts off a connection with a pipe from the switching control panel to the air conditioner and enables circulation of the heat medium in the air conditioner. The hot-water supply air conditioning system in any one of Claims 1 thru | or 6 .
JP2013186071A 2013-09-09 2013-09-09 Hot water heating / cooling system Active JP5751599B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013186071A JP5751599B2 (en) 2013-09-09 2013-09-09 Hot water heating / cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013186071A JP5751599B2 (en) 2013-09-09 2013-09-09 Hot water heating / cooling system

Publications (2)

Publication Number Publication Date
JP2015052434A JP2015052434A (en) 2015-03-19
JP5751599B2 true JP5751599B2 (en) 2015-07-22

Family

ID=52701583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013186071A Active JP5751599B2 (en) 2013-09-09 2013-09-09 Hot water heating / cooling system

Country Status (1)

Country Link
JP (1) JP5751599B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101795668B1 (en) * 2016-11-16 2017-11-08 주식회사 에너지컨설팅 Regenerative heat pump system converged new renewable energy

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017195885A1 (en) * 2016-05-12 2017-11-16 株式会社ライフル Floor air conditioning system
CN115143506B (en) * 2022-06-30 2023-04-14 合肥中南光电有限公司 Heat storage heating type solar photovoltaic photo-thermal system
JP7396725B1 (en) 2022-09-26 2023-12-12 クラフトワーク株式会社 Heat pump system and heat pump system control method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4224409B2 (en) * 2004-02-02 2009-02-12 サンポット株式会社 Hot water supply system using natural energy
KR101105561B1 (en) * 2010-05-13 2012-01-17 주식회사 경동나비엔 Solar heat system
JP5815419B2 (en) * 2012-01-10 2015-11-17 リンナイ株式会社 Heating system
JP5648002B2 (en) * 2012-01-24 2015-01-07 大和ハウス工業株式会社 Central hot water supply system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101795668B1 (en) * 2016-11-16 2017-11-08 주식회사 에너지컨설팅 Regenerative heat pump system converged new renewable energy

Also Published As

Publication number Publication date
JP2015052434A (en) 2015-03-19

Similar Documents

Publication Publication Date Title
KR101084569B1 (en) Hybrid hot water supplying system using solar collector and heat pump type air conditioner
JP5391499B2 (en) Heat exchanger type heat storage system
KR101516882B1 (en) Hybrid Heat Pump Boiler System
KR100996279B1 (en) Solar cooling and hot-water supplying system
GB2503781A (en) Hybrid heat pump boiler system
KR102362508B1 (en) Control system for a solar assisted heat pump system with hybrid solar collectors
KR100998483B1 (en) Module multi type air conditioning and heating system using geothermal heat pump
JP6249387B1 (en) Floor air conditioning system
KR101389361B1 (en) High efficiency hybrid cooling/heating and hot water supply system with absorption type
KR102120464B1 (en) Heat Pump System Using Hybrid Geothermal Heat Exchanger
JP5751599B2 (en) Hot water heating / cooling system
JP5067958B2 (en) Geothermal heat pump system and water heat pump system
GB2524551A (en) Heating and cooling system for passive buildings based on heat and cold storage
KR102523752B1 (en) Heat Pump Airconditioning and Heating Equipement using Geothermy
JP2010038507A (en) Heat pump utilizing underground heat reserve
KR101256869B1 (en) Hybrid absorption type air conditioning system using solar heat
JP2014025658A (en) Heat utilization system
CN102705927A (en) Ice storage and heat storage ultralow temperature heat pump air conditioner
EP2657619B1 (en) Method and device for controlling a hybrid heating and ventilation system
JP2010286144A (en) Heat storage type hot water supply air-conditioning system
KR101301223B1 (en) Air conditioning system having cooling function using the solar heat
JP6060463B2 (en) Heat pump system
JP6164537B2 (en) Cold / heat generator
JP2019128103A (en) Heat pump system
JP2004108759A (en) Heat storage type low-temperature energy saving thermal energy utilizing system for highly heat insulated and highly airtight housing

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150513

R150 Certificate of patent or registration of utility model

Ref document number: 5751599

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150