JP5391499B2 - Heat exchanger type heat storage system - Google Patents

Heat exchanger type heat storage system Download PDF

Info

Publication number
JP5391499B2
JP5391499B2 JP2006242210A JP2006242210A JP5391499B2 JP 5391499 B2 JP5391499 B2 JP 5391499B2 JP 2006242210 A JP2006242210 A JP 2006242210A JP 2006242210 A JP2006242210 A JP 2006242210A JP 5391499 B2 JP5391499 B2 JP 5391499B2
Authority
JP
Japan
Prior art keywords
heat
heat storage
medium
storage material
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006242210A
Other languages
Japanese (ja)
Other versions
JP2008064372A (en
Inventor
健児 梅津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GREEN FRONTIER TECHNOLOGY CORP.
Original Assignee
GREEN FRONTIER TECHNOLOGY CORP.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GREEN FRONTIER TECHNOLOGY CORP. filed Critical GREEN FRONTIER TECHNOLOGY CORP.
Priority to JP2006242210A priority Critical patent/JP5391499B2/en
Publication of JP2008064372A publication Critical patent/JP2008064372A/en
Application granted granted Critical
Publication of JP5391499B2 publication Critical patent/JP5391499B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/021Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material and the heat-exchanging means being enclosed in one container
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

本発明の技術が適用される技術分野は民生用、特に家庭用、業務用の空調機器と給湯機器を総合した分野での熱エネルギー有効利用を目指した次世代向けの新しい機器システムに関した分野である。この民生分野では現在でも多種多様の機器、システムが実用化されている。事例を挙げると、電力駆動冷凍サイクルを利用した空調機器及び冷凍機器や給湯機器、ガス石油を燃焼させて熱源とした暖房機器及び給湯機器や燃焼機器、ガス石油を動力駆動用燃料とした発電機や空調機器、太陽熱を熱源とした給湯機器など等である。特に近年、省エネルギー又は地球環境を重視するために機器のエネルギー効率の向上や自然エネルギーの活用のための新しい技術、機器、システムの検討が各方面で精力的に進められてきている。またエネルギー供給の社会インフラの特性から昼間電力の利用を抑えて夜間電力を利用するための技術や新らしい機器が開発され、実用化されて来ている。 The technical field to which the technology of the present invention is applied is a field related to a new equipment system for the next generation aiming at effective use of thermal energy in the field of general air conditioning equipment and hot water supply equipment for consumer use, particularly home use and business use. is there. In this consumer field, a wide variety of devices and systems are still in practical use. Examples include air-conditioning equipment and refrigeration equipment and hot water supply equipment that use power-driven refrigeration cycles, heating equipment and hot water supply equipment and combustion equipment that use gas oil as a heat source, and generators that use gas oil as power drive fuel. And air conditioning equipment, hot water supply equipment using solar heat as a heat source, and the like. Particularly, in recent years, in order to emphasize energy saving or the global environment, studies on new technologies, devices, and systems for improving energy efficiency of devices and utilizing natural energy have been energetically promoted in various fields. In addition, due to the characteristics of social infrastructure for energy supply, technologies and new equipment for using nighttime power while suppressing the use of daytime power have been developed and put into practical use.

それらのシステムに利用されるエネルギーは商用電力、石油、ガソリンなど、何時でも社会インフラとして何処でも入手できた高い密度の使いやすいエネルギーから、例えば深夜だけ割安で供給される深夜電力、晴天の昼間だけ供給される太陽光発電電力や太陽熱、地域発電を主体にシステム構成された各種コジェネレイション装置の排熱などなど、限られた時間帯のみに限られたエネルギー濃度や温度が低く、且つ運転サイト毎に特有で標準化されていない、いわば排熱を主体にした各種のエネルギーの利用へ向けての変化が除々にではあるが生じている。 The energy used in these systems is such as commercial power, oil, gasoline, etc., from high-density, easy-to-use energy that can be obtained anywhere as social infrastructure at any time, for example, late-night power supplied at low prices only in the middle of the night, sunny daytime The energy concentration and temperature are limited only for a limited time period, such as the supplied solar power, solar heat, and exhaust heat from various cogeneration systems configured mainly for regional power generation. There is a gradual change toward the use of various types of energy, mainly exhaust heat, that is not standardized.

そういった動勢を一層進展させ更に種々な面で有益なシステム機器を実現する為の一つのキー技術が蓄熱システムに関するものである。それは需要側と時間や濃度でずれた供給エネルギーを一旦熱エネルギーに蓄積し、使いたいときに使いたい密度で熱エネルギーを供給する事ができるものと位置づける事が出来るからである、今後の社会生活の変化を支える一つのキー技術とも言えよう。 One of the key technologies for further developing such a dynamic and realizing system equipment useful in various aspects is related to the heat storage system. This is because the supply energy, which deviates from the demand side in terms of time and concentration, is temporarily stored in heat energy, and can be positioned as one that can supply heat energy at the density you want to use. It can be said that it is one key technology that supports the changes in the world.

この分野の技術で最も実用化が進んでいるのが深夜電力を利用して温水をつくりそれを蓄熱して何時でも利用できるようにした高いエネルギー効率のシステムとして、ヒートポンプ給湯器がある。この場合年間平均25℃程度の水道水を80℃程度まで加熱して温水タンクに貯湯しておき、それを必要な時に利用するシステムである。この場合温水の蓄熱量はその温度差が80℃と25℃の差即ち55℃もあるため貯湯する温水タンクの容量は小さくて済むため家庭、店舗等でも広く普及されてきつつある。例えば一般家庭では400リッター程度の温水タンクを1000リッター程の筐体に収納させて設置するため、蓄熱タンクの底面の専有面積は0.5平方メートル程度となり、設置スペースの点でも可能な地域が多くある為である。 One of the most practical technologies in this field is a heat pump water heater, which is a highly energy efficient system that uses hot midnight power to store hot water and store it at any time. In this case, the average annual tap water of about 25 ° C. is heated to about 80 ° C., stored in a hot water tank, and used when necessary. In this case, the amount of heat stored in hot water is becoming widespread in homes, stores and the like because the temperature difference is as high as 80 ° C. and 25 ° C., ie 55 ° C., so that the capacity of the hot water tank for storing hot water is small. For example, in a general household, a hot water tank of about 400 liters is installed in a housing of about 1000 liters, so the exclusive area of the bottom surface of the heat storage tank is about 0.5 square meters, and there are many possible areas in terms of installation space. Because there is.

しかしながら、それでも都会の住宅やマンションやアパートなどの場合、及び商業地域での小型店舗などの周囲ではそのスペースが無く、乃至はスペース確保費用が極めて高価なため、全国規模での普及拡大には課題となっている。
一方、給湯ではなくて冷暖房用の温冷水を蓄熱する場合には、例えば暖房の場合、その暖房効果を発揮させるためにはその温水の暖房後の戻り温度でも45℃程度の高温度が必要であり、従って貯湯の温度差は80℃と45℃の差即ち35℃となり前述した給湯の場合の55℃と比べて半分に近くなる。これは同じ熱量を貯湯するには倍近い温水タンク容量が必要となるわけである。冷房の場合はその冷水の温度差は8℃と18℃の温度差である10℃程度となり同じ必要熱量ベースであれば給湯の5.5倍程度の容量の冷水タンクが必要に成る。
However, in the case of urban houses, condominiums, apartments, etc., and there is no space around small shops in commercial areas, or the cost of securing space is extremely expensive, so there is a problem in expanding the spread on a nationwide scale. It has become.
On the other hand, when storing hot / cold water for air conditioning rather than hot water supply, for example, in the case of heating, a high temperature of about 45 ° C. is required even at the return temperature after heating the hot water in order to exert its heating effect. Therefore, the temperature difference of the hot water storage is 80 ° C. and 45 ° C., that is, 35 ° C., which is almost half compared with 55 ° C. in the case of the hot water supply described above. This means that a hot water tank capacity of nearly double is required to store the same amount of heat. In the case of cooling, the temperature difference between the chilled water is about 10 ° C., which is the temperature difference between 8 ° C. and 18 ° C., and a chilled water tank having a capacity of about 5.5 times the hot water supply is required if the required heat quantity is the same.

しかも給湯と冷暖房を総合的に供給できるシステムではその双方を足した温冷水タンク容量は給湯のみの場合に比べて5〜8倍程度になり、現地での据付けスペース及び価格の制約からみて殆ど実用性が無いと言えよう。
即ち、現在の民生機器用蓄熱装置における最大の課題は如何にコンパクトで蓄熱性能の良い蓄熱システムを実現する事ができるかであると言える。現状の温水給湯用の蓄熱量が容積あたり倍増できれば蓄熱システムを用いた空調給湯システムの実用化に扉を開く事ができると考えられる。さらに、深夜電力利用のヒートポンプと昼間の太陽熱の双方をうまく蓄熱すれば、一般家庭の朝晩の暖房と夕方の給湯などを1次エネルギー消費量が少なくて低い運転ランニングコストの方式の実用化が大きく進展できると考えられる。
Moreover, in a system that can supply hot water and air conditioning in a comprehensive manner, the hot / cold water tank capacity, which is a combination of both, is about 5 to 8 times that of hot water supply alone, and is almost practical in view of local installation space and price constraints. It can be said that there is no sex.
In other words, it can be said that the biggest problem in the current heat storage device for consumer equipment is how to realize a compact heat storage system with good heat storage performance. If the current heat storage amount for hot water hot water can be doubled per volume, it is considered that the door can be opened for practical use of an air conditioning hot water supply system using a heat storage system. Furthermore, if both the heat pump using midnight power and solar heat during the day are stored well, the practical use of a low operating running cost method with low primary energy consumption for ordinary household morning and evening heating and evening hot water supply will be significant. It is thought that progress can be made.

エネルギー装置分野の蓄熱システムに必要となる技術分野としては以上に説明したコンパクト化以外にも、蓄熱槽から大気への放熱ロスを最小化できるシステム、多種類の熱源を制御して最適に利用できる蓄熱システム、ヒートポンプ熱源ユニットとの連携、太陽熱太陽光発電との連携、冷暖房の双方を実現できる空調システムとの連携、現地での据付け工事性などの大きな課題があり、これらが実用化のためのキーである。更にこういった装置が開発され普及拡大が進展するためには以上の課題をクリヤーした上で、コスト低減を実現するための簡略化されたシステムと構成ユニット及び部品の実現が必要である。本発明提案では、蓄熱システムとしてその成立に必要な範囲の項目についてとりあげていく。   In addition to downsizing as described above, the technical field required for heat storage systems in the energy equipment field is a system that can minimize heat loss from the heat storage tank to the atmosphere, and can be used optimally by controlling many types of heat sources. There are major issues such as cooperation with heat storage systems, heat pump heat source units, cooperation with solar photovoltaic power generation, cooperation with air conditioning systems that can realize both air conditioning and heating, and local installation workability. Key. Furthermore, in order to develop and expand the spread of such devices, it is necessary to realize a simplified system, constituent units and parts for realizing cost reduction after clearing the above problems. In the present invention proposal, items in a range necessary for establishment of the heat storage system will be described.

先ず、最優先の課題として、蓄熱システムのコンパクト化が上げられる。これに関しては多くの要因があり、一つづつ列挙すると、PCMと略称される液体と固体の相変化を利用した潜熱蓄熱材を利用し、PCMの容積充填効率を高める、蓄熱温度の設定を出来る限り常温の大気温度から離れずに低温度温熱蓄熱と高温度冷熱蓄熱を実現して断熱に要するスペースを低減する、蓄熱タンク内の圧力を大気圧に近づけて耐圧強度を確保する事による容器と構造物の容積増加を少なくする、外気との断熱構造に費やされるスペースをコンパクト化する、などの技術項目を検討する必要がある。以下これ等の要因を掘り下げる。 First, as a top priority issue, the heat storage system is made more compact. There are many factors in this regard, and when enumerating one by one, it is possible to set the heat storage temperature by using a latent heat storage material that uses a phase change between liquid and solid, abbreviated as PCM, to increase the volume filling efficiency of PCM. Reduces the space required for heat insulation by realizing low-temperature thermal storage and high-temperature cold storage without leaving the normal ambient air temperature, and a container that ensures pressure resistance by bringing the pressure in the thermal storage tank close to atmospheric pressure It is necessary to consider technical items such as reducing the volume increase of the structure and reducing the space used for the heat insulation structure with the outside air. These factors will be explored below.

コンパクト化に続く二番目の目標として、蓄熱システムからの熱リークによるロスの低減があげられる。その為の技術としては上記の様に潜熱蓄熱材を利用して蓄熱温度を温熱蓄熱の場合は低くし冷熱蓄熱の場合は高くして外気温度に近つける、蓄熱容器外表面積を少なくする、蓄熱容器外周の断熱特性を向上させるなどの技術項目が上げられる。 The second goal following downsizing is to reduce losses due to heat leaks from the heat storage system. As a technology for this purpose, as described above, using the latent heat storage material, the heat storage temperature is lowered in the case of thermal storage, and in the case of cold storage, it is increased to approach the outside air temperature, the outer surface area of the heat storage container is reduced, and the heat storage Technical items such as improving the heat insulation characteristics of the outer periphery of the container can be raised.

三番目の検討目標として水や冷媒などの作動流体を作動ポンプなどにより循環乃至は流動させる方法の最適化が挙げられる。理想的には作動ポンプなどは極力廃止して、それを駆動するモータ電力の低減、長期使用品質の向上、初期コストの低減が重要視点となる。 The third study target is optimization of a method for circulating or flowing a working fluid such as water or a refrigerant with a working pump. Ideally, operating pumps and the like will be abolished as much as possible, and reduction of motor power to drive them, improvement of long-term use quality, and reduction of initial cost are important viewpoints.

四番目の検討目標は、多くの種類のエネルギー熱源に対応できる蓄熱システムであり、一方給湯冷房暖房などより広範囲の熱供給ニーズに応えられる汎用性のある効率の高い蓄熱システムの実現があげられる。   The fourth study target is a heat storage system that can handle many types of energy heat sources, while the realization of a versatile and highly efficient heat storage system that can meet a wide range of heat supply needs, such as hot water supply and cooling and heating.

五番目の目標は蓄熱容器を利用したシステムを如何に地球環境面から見て、またランニング費用の点からみてエネルギー効率の高いものにできるかが重要な視点であり、この点に応えられる蓄熱システムの実現は大きな目標である。 The fifth goal is to see how the system using heat storage containers can be made energy efficient from the viewpoint of the global environment and from the viewpoint of running costs, and a heat storage system that can respond to this point. Realization of is a big goal.

六番目の目標は長期的な信頼性と安全性の確保である。特に作動流体や媒体を循環させる為のポンプの長期的な信頼性は全体システムの信頼性向上のキー要素の一つと言える。また蓄熱材の劣化及び潜熱蓄熱材の場合には相変化による形状歪の繰り返しは強固な金属性熱交換器や容器などを変形さらには破損させる危険性を含んでいる。装置に用いられる作動冷媒の人的安全性、環境安全性についても取り上げるべき大きな課題の一つである。特に現在フレオンを含む代替冷媒から、それを含まない自然冷媒への移行がポイントとなる。 The sixth goal is to ensure long-term reliability and safety. In particular, the long-term reliability of the pump for circulating the working fluid and medium is one of the key elements for improving the reliability of the entire system. Further, in the case of a heat storage material deterioration and a latent heat storage material, repeated geometric distortion due to a phase change involves a risk of deforming or damaging a strong metallic heat exchanger or container. This is one of the major issues that should be addressed regarding the human safety and environmental safety of the working refrigerant used in the equipment. In particular, the point is the transition from an alternative refrigerant that currently contains Freon to a natural refrigerant that does not contain it.

七番目の検討課題は、以上概説してきた種々の課題、目標を達成した蓄熱システムが実際の機器として具体化した際のコストが高価になり、実用上の普及が難しくなるという点である。この点からシステム全般の構成、構造、材料が簡潔で低コストであることが重要である。 The seventh consideration is that the various problems outlined above and the cost when the heat storage system that has achieved the target is realized as an actual device become expensive, making it difficult to spread practically. In this respect, it is important that the overall system configuration, structure, and materials are simple and low-cost.

以上、7つの目標について技術的視点で述べたが、これらの項目に対して従来から関連する多くの技術検討と開発検討が進められてきている。例えば、特許文献1はフィンチューブ熱交換器を利用して効率的に蓄熱しコンパクトな蓄熱システム実現に係わる発明である。特許文献2も温度が違う二つの蓄熱槽を用いて高効率とコンパクトなシステムを目指した発明である。特許文献3は冷房と暖房に共用の潜熱蓄熱材を用いてコンパクトで年間利用できる蓄熱システムを提示している。特許文献4は潜熱蓄熱材としてのパラフィンの熱特性を向上させる発明である。 Although the seven goals have been described from a technical point of view, many related technical studies and development studies have been conducted on these items. For example, Patent Document 1 is an invention relating to the realization of a compact heat storage system that efficiently stores heat using a fin tube heat exchanger. Patent Document 2 is also an invention aiming at a highly efficient and compact system using two heat storage tanks having different temperatures. Patent Document 3 proposes a heat storage system that is compact and can be used annually by using a common latent heat storage material for cooling and heating. Patent Document 4 is an invention that improves the thermal characteristics of paraffin as a latent heat storage material.

特許文献5は潜熱蓄熱材カプセルと別置きの熱交換器とを連通させて熱媒体を繰り返し循環させる事による蓄熱効率向上技術が示されている。特許文献6には太陽光電池と太陽熱集熱器において集熱した熱量を蓄熱しヒートポンプを用いて、コンパクトな蓄熱槽で太陽電池の冷却と給湯水の供給を行えるとしている。特許文献7には太陽熱を蓄熱し給湯を効率よく行うシステムで、パネルブロック状の蓄熱体が示されている。特許文献8には冷蓄熱材容器と暖蓄熱材容器を一緒に複数設置して別置きのヒートポンプ出力用熱交換器に出力媒体を連通させて快適な冷暖房を行う発明が提示されている。特許文献9には蓄熱材の中に熱媒体用熱交換器を設置して蓄熱材の充填率を向上しコンパクトにする方式が提示されている。 Patent Document 5 discloses a technique for improving the heat storage efficiency by communicating a latent heat storage material capsule and a separately installed heat exchanger and repeatedly circulating a heat medium. Patent Document 6 states that the amount of heat collected in the solar cell and the solar heat collector is stored, and the solar cell can be cooled and hot water supplied in a compact heat storage tank using a heat pump. Patent Document 7 discloses a panel block-shaped heat storage body, which is a system for storing solar heat and efficiently supplying hot water. Patent Document 8 proposes an invention in which a plurality of cold heat storage material containers and warm heat storage material containers are installed together and an output medium is connected to a separate heat pump output heat exchanger to perform comfortable cooling and heating. Patent Document 9 proposes a method in which a heat exchanger for heat medium is installed in the heat storage material to improve the filling rate of the heat storage material and make it compact.

特許文献10にはヒートポンプ他各種の熱源による加熱手段を設けた給湯タンクシステムによる各種エネルギー利用システムを提起している。特許文献11には蓄熱缶体に複数の出力側熱交換器を備えて高圧給湯用その他、使用ニーズに適合させる技術が提示されている。特許文献12はヒートポンプ出力熱交換器を融点の異なる複数の蓄熱材を備えた蓄熱手段によるポンプの不要な高効率な給湯装置を提示している。特許文献13には上部が開放された蓄熱材容器内に冷媒配管を設置しかつ蓄熱材の相変化歪が上部に開放されるような工夫が提示されている。 Patent Document 10 proposes various energy utilization systems using a hot water tank system provided with heating means such as a heat pump and various other heat sources. Patent Document 11 proposes a technique for providing a heat storage can body with a plurality of output-side heat exchangers for use in high-pressure hot water supply and other needs. Patent Document 12 presents a high-efficiency hot water supply apparatus that does not require a pump by heat storage means that includes a plurality of heat storage materials having different melting points as a heat pump output heat exchanger. Patent Document 13 proposes a device in which a refrigerant pipe is installed in a heat storage material container whose upper part is opened and phase change distortion of the heat storage material is opened to the upper part.

以上、背景技術の一部として特許文献を提示した。そこには先に述べた7つの技術開発目標課題の殆どの内容の検討が進められてきている事を示している。しかしながら本発明で提示しようとしている技術分野の背景技術の現在の状況として次の三つの側面を見る事ができる。
上記7つの目標課題の個々に付き解決策、技術がいまだ検討不十分である。
各特許文献に示された解決の為の技術は、その殆どが先に示した7つの目標課題の一つ乃至は二つに関するものであり、七つの目標課題の全体をシステムとして整合のとれた技術としては不十分である。
従って、システムとして技術的に多くの改善課題を残しており、従ってこれに関連したシステムの実用化、商品化が広範囲に進まないのはこの為と考えられる。
As mentioned above, patent documents have been presented as part of the background art. It shows that most of the contents of the seven technological development target issues mentioned above are being studied. However, the following three aspects can be seen as the current situation of the background art of the technical field to be presented in the present invention.
Solutions and technologies for each of the above seven target issues are still insufficiently studied.
Most of the techniques for solving the problems described in each patent document are related to one or two of the seven target problems shown above, and the entire seven target problems can be coordinated as a system. The technology is insufficient.
Therefore, many improvement problems remain technically as a system, and it is considered that this is why the practical use and commercialization of the system related to this system do not progress widely.

従って、本発明では深夜だけ割安で供給される深夜電力、晴天の昼間だけ供給される太陽光発電電力や太陽熱、地域発電を主体にシステム構成された各種コジェネレイション装置の排熱などを蓄熱する事に有効に且つ実用的に利用する為の上記七つの個々の課題別の改善技術を明確に提示し、また7つの課題全体として整合性の取れた解決技術を提示していく。
特開平05−5582号広報 特開平05−196379号公報 特開平05−196267号公報 特開平05−163485号公報 特開平06−3078号公報 特開平06−234020号公報 特開平10−19074号公報 特開平10−89731号公報 特開平10−47712号公報 特開2002−22270号広報 特開2003−114050号公報 特開2005−326078号公報 特開2005−337664号公報
Therefore, in the present invention, midnight power supplied at a low price only in the middle of the night, solar power generated only during clear daytime, solar heat, exhaust heat from various cogeneration systems mainly composed of regional power generation, etc. are stored. In order to effectively and practically use them, the above-mentioned seven improvement techniques for each problem will be clearly presented, and a consistent solution technique will be presented for the seven problems as a whole.
Japanese Laid-Open Patent Publication No. 05-5582 Japanese Patent Laid-Open No. 05-196379 JP 05-196267 A JP 05-163485 A Japanese Patent Laid-Open No. 06-3078 Japanese Patent Laid-Open No. 06-234020 Japanese Patent Laid-Open No. 10-19074 Japanese Patent Laid-Open No. 10-89731 JP 10-47712 A JP 2002-22270 Japanese Patent Laid-Open No. 2003-111050 JP 2005-326078 A JP 2005-337664 A

深夜だけ割安で供給される深夜電力、晴天の昼間だけ供給される太陽光発電電力や太陽熱、地域発電を主体にシステム構成された各種コジェネレイション装置の排熱など、標準化されていないために使いづらく低密度なエネルギーを、蓄熱し且つ適正に取り出して利用できるようなシステムを広範囲に確立する事が目標であり、そのための技術的な課題は以下の様になる。 It is difficult to use because it is not standardized, such as late-night power supplied at a reasonable price only in the middle of the night, solar power and solar heat supplied only during clear daytime, and exhaust heat from various cogeneration systems mainly composed of regional power generation. The goal is to establish a wide range of systems that can store and use low-density energy appropriately, and the technical issues for that purpose are as follows.

先ず、最優先の課題として挙げた蓄熱システムのコンパクト化に付いては前述の検討アイテムがあるが、課題の目標としては現在市販されている蓄熱装置の容積の半減化を目指すべきである。例えば、現在家庭用の深夜電力利用ヒートポンプ給湯器に使われる蓄熱槽の標準容積は正味400リッターである。しかしながら、円筒型の高圧水道水容器を収めて外周を断熱をして配管などを収納した場合、それを収める長方形の蓄熱槽筐体外寸容積は1000リッター以上となるのが実情である。従って家庭用に限らず、蓄熱容器の正味容積だけでなく実際に現地に取り付けられる蓄熱筐体の全体容積の縮小が対象になる。半減という目標はアパートメントや店舗等の建築物に設置した時のスペース制約と重量制約の双方から検討して当面の目標として設定した数値目標である。本発明では蓄熱材の容器は高圧タイプではなく大気圧と等しい内圧のシステムの実現を目指した。 First, regarding the downsizing of the heat storage system listed as the top priority, there are the above-mentioned items to be studied, but the goal of the problem should be to halve the volume of the heat storage devices currently on the market. For example, the standard volume of a heat storage tank currently used for a midnight power heat pump water heater for home use is a net of 400 liters. However, when a cylindrical high-pressure tap water container is accommodated and the outer periphery thereof is insulated to accommodate piping and the like, the actual size of the rectangular heat storage tank housing that accommodates it is 1000 liters or more. Therefore, not only for home use, but also for reducing the total volume of the heat storage housing that is actually attached to the site as well as the net volume of the heat storage container. The goal of halving is a numerical target set as an immediate goal after considering both space constraints and weight constraints when installed in buildings such as apartments and stores. In the present invention, the heat storage material container is not a high pressure type, and aims to realize a system having an internal pressure equal to the atmospheric pressure.

蓄熱容器の容積半減が実現した時の上記の蓄熱関連の家庭用商品の限界普及率は据付スペース制約が減少する効果により倍増するのではないかと推定している。それでも50%程度が想定される限界普及率である。業務用でも同様な傾向にあるものと推測される。
二番目の目標として挙げたのは蓄熱システムからの熱リークによるロスの低減である。前述した家庭用給湯蓄熱槽における熱ロスは年間平均で総蓄熱量の5〜10%に達する。これを改善するためには蓄熱温度、蓄熱タンク外表面積、断熱特性その他の要因がある事は先に述べたが、この課題目標としてはやはり半減化をあげて検討する。
It is estimated that the marginal penetration rate of the above-mentioned household products related to heat storage when the volume of the heat storage container is halved may be doubled due to the effect of reducing the installation space constraint. Still, it is the limit penetration rate that is expected to be around 50%. The same trend is presumed for business use.
The second goal was to reduce losses due to heat leaks from the heat storage system. The heat loss in the above-mentioned domestic hot water storage tank reaches 5 to 10% of the total heat storage amount on an annual average. In order to improve this, the heat storage temperature, the external surface area of the heat storage tank, the heat insulation characteristics, and other factors have been mentioned earlier.

三番目の検討目標としてあげた水や冷媒などの作動流体を循環させる作動ポンプの問題である。作動ポンプはモータ電力の低減、長期使用品質の向上、初期コストの低減の問題であり、本発明システムの検討では作動ポンプの使用台数の少ないシステムの実現を目標とした。何故なら前述のポンプの持つ三つの要素の改善を図るには作動ポンプそのものを無くす事以上の解決策が無いからである。 It is the problem of the working pump that circulates working fluid such as water and refrigerant, which was raised as the third study target. The working pump is a problem of reduction of motor power, improvement of long-term use quality, and reduction of initial cost, and the study of the system of the present invention aimed to realize a system with a small number of working pumps used. This is because there is no solution beyond the elimination of the working pump itself in order to improve the above three elements of the pump.

四番目の検討目標は種々なエネルギー熱源に対応でき、且つ給湯冷房暖房などより広範囲の熱供給ニーズに応えられる汎用性のある効率の高い蓄熱システムの実現があげたい。効率のみではなく、使用者ニーズに合わせて最適化制御できるシステム構成の実現を目指す。   The fourth study target is to realize a versatile and efficient heat storage system that can respond to various energy heat sources and can meet a wide range of heat supply needs such as hot water supply and air conditioning. It aims to realize not only efficiency but also a system configuration that can be optimized and controlled according to user needs.

五番目の目標は蓄熱システムを用いて如何に地球環境面から見て、またランニング費用の点からみてエネルギー利用効率の高い民生用エネルギーシステムを実現するかである。これは前述したエネルギー源として深夜電力、太陽光発電電力や太陽熱、各種コジェネレイション装置の排熱などを使ってかつヒートポンプシステムと組み合わせて実用化できる高度な自然エネルギー利用蓄熱システムの実現を課題にした。 The fifth goal is how to realize a consumer energy system with high energy utilization efficiency from the viewpoint of the global environment and the running cost by using a heat storage system. The challenge was to realize an advanced heat storage system using natural energy that could be put into practical use in combination with a heat pump system using midnight power, photovoltaic power generation and solar heat, exhaust heat from various cogeneration equipment, etc. as the energy source mentioned above. .

六番目の目標は安全性と長期的な信頼性の確保である。この為にはポンプを出来る限り使用しない事を含めて作動媒体の選択に代表される安全性と潜熱蓄熱材の相変化による形状歪を吸収できる構造機構など、本質信頼性の実現を課題とした。 The sixth goal is to ensure safety and long-term reliability. For this purpose, it was necessary to realize intrinsic reliability, such as a structural mechanism that can absorb the geometric distortion caused by the phase change of the latent heat storage material and the safety represented by the selection of the working medium, including not using the pump as much as possible. .

七番目の検討目標のコスト低減についてはシステム全般の構成、構造、材料を簡潔で低コスト材料の使用が課題となる。 For cost reduction, which is the seventh study target, the use of low-cost materials with a simple system configuration, structure, and materials is an issue.

請求項1〜3には本発明の熱交換器型蓄熱システムの基本構成を提示した。蓄熱材は容器外との出入りや流動は無い状態で且つ、大気圧に等しい圧力状態でシステムの蓄熱容器内に設置乃至は封入されており、従ってこれを流動させるポンプなどの機構は不要である。蓄熱材への熱の授受は容器内の熱媒体熱交換器を通じて行うとともに、熱源媒体と熱出力媒体同士の熱交換も該熱交換器内で行う事が可能である。
勿論本発明で言う蓄熱材とは潜熱蓄熱材を含んだ蓄熱できる材料全体を指す。
Claims 1 to 3 presented the basic configuration of the heat exchanger type heat storage system of the present invention. The heat storage material is installed or enclosed in the heat storage container of the system at a pressure equal to the atmospheric pressure without entering / exiting the outside of the container or flowing, and therefore a mechanism such as a pump for flowing the heat storage material is unnecessary. . Heat can be transferred to the heat storage material through a heat medium heat exchanger in the container, and heat exchange between the heat source medium and the heat output medium can also be performed in the heat exchanger.
Of course, the heat storage material referred to in the present invention refers to the entire material capable of storing heat including the latent heat storage material.

この基本構成は後に詳述する多くの特性の機能を実現する上で必須なものであり、その効果のみを列挙すると、
蓄熱材は熱源媒体及び熱出力媒体と分離されているので、その選択に制約が少なく、固体液体を問わず殆どの種類の蓄熱材が利用可能である。
他方、熱源媒体と熱出力媒体は本蓄熱システムにおいてその選択に制約が少なく、フロン冷媒、水、炭酸ガス、炭化水素、不凍液、エマルジョン流動体、小カプセルを含んだスラリー液体など熱媒体熱交換器の循環管路内を流動するものであれば良く、圧力状態、化学的特性などの制約は少ない。
熱源媒体と熱出力媒体とを同じ蓄熱システムで一緒に扱える媒体数は基本的には制約が無く、実際上も6〜7種類を扱うことができる。
This basic configuration is indispensable for realizing the functions of many characteristics that will be described in detail later.
Since the heat storage material is separated from the heat source medium and the heat output medium, there are few restrictions on the selection thereof, and almost any kind of heat storage material can be used regardless of the solid liquid.
On the other hand, there are few restrictions on the selection of the heat source medium and the heat output medium in this heat storage system, and a heat medium heat exchanger such as a flon refrigerant, water, carbon dioxide, hydrocarbon, antifreeze, emulsion fluid, slurry liquid containing small capsules, etc. As long as it can flow in the circulation line, there are few restrictions such as pressure state and chemical characteristics.
The number of media that can handle the heat source medium and the heat output medium together in the same heat storage system is basically not limited, and can actually handle 6 to 7 types.

最も基本的な事例として、熱源媒体をヒートポンプユニット冷媒、熱出力媒体を給湯用水道水を選択した所謂ヒートポンプ給湯器に利用した場合は両媒体用のポンプの必要が無い極めて簡潔なシステムが構成でき蓄熱槽容積が半減化出来ることは後で述べる。
熱源媒体と熱出力媒体は夫々が熱媒体熱交換器全体を活用して蓄熱材と熱交換できるため蓄熱時にも蓄熱した熱を受け取る時にも高い伝熱特性が得られる。
それだけでは無くて、蓄熱材に蓄熱した熱量を使い果たした時には、熱出力媒体は熱源媒体から直接熱を受け取る事ができる。実機では極めて重要なこの効果も他の熱交換器などを必要とせずに確保できている。
As the most basic example, when a heat source medium is used as a heat pump unit refrigerant and a heat output medium is used in a so-called heat pump water heater in which hot water supply tap water is selected, a very simple system that does not require a pump for both media can be configured. The fact that the heat storage tank volume can be halved will be described later.
Since each of the heat source medium and the heat output medium can exchange heat with the heat storage material by utilizing the entire heat medium heat exchanger, high heat transfer characteristics can be obtained both when the heat is stored and when the stored heat is received.
In addition, when the amount of heat stored in the heat storage material is exhausted, the heat output medium can receive heat directly from the heat source medium. This effect, which is extremely important in actual machines, can be secured without the need for other heat exchangers.

(7)熱源媒体及び熱出力媒体が密閉され分離されているから、蓄熱材の設置環境に自由度が高い。そこで此処では蓄熱材空間を大気圧状態に設定しており、これは蓄熱容器の上部空間を外界の大気との間を柔らかな膜でシールさせる事により簡単に実現出来る。この事が容器の構造の簡略化、形状の自由度、低い強度構造などの効果を実現しやすくし、口述するように全体の容積、熱ロスの低減、製品コスト低減に大きな効果を産む前提となる。
以上述べた様に、請求項1〜3及び5の熱交換器型蓄熱システムがシステム全体の課題解決にもたらす効果は大きく、本発明の大前提となる技術であり構成要件となる。
(7) Since the heat source medium and the heat output medium are sealed and separated, there is a high degree of freedom in the installation environment of the heat storage material. Therefore, in this case, the heat storage material space is set to an atmospheric pressure state, and this can be easily realized by sealing the upper space of the heat storage container with the outside atmosphere with a soft film. This presupposes that it is easy to realize effects such as simplification of the structure of the container, freedom of shape, low strength structure, etc., and as it is dictated, it produces great effects in reducing the overall volume, heat loss and product cost Become.
As described above, the effects of the heat exchanger type heat storage system according to claims 1 to 3 and 5 for solving the problems of the entire system are great, and this is a technology that is a major premise of the present invention and is a constituent requirement.

これ等の効果ある項目を全て折りこんだ場合、試算によれば蓄熱槽の全容積の低減効果は60%程度と算定された。即ち容積は40%程度になると算定されたわけである。この効果はシステムのコスト低減、装置の現地への輸送コスト低減、現地での据付け工事費の低減に結びつくが、このコスト削減額が水に替えて潜熱蓄熱材を使用する事による材料費コストアップを相殺できるか否かが最終の重要判断基準であり、詳細設計が完了しているわけでは無いが、水道水圧のかかった温水式の蓄熱タンク方式に比べ潜熱蓄熱材と熱媒体熱交換器を用いた潜熱蓄熱方式の収納筐体はほぼ同等となる見込みである。 When all of these effective items were folded, according to a trial calculation, the effect of reducing the total volume of the heat storage tank was calculated to be about 60%. That is, the volume was calculated to be about 40%. This effect leads to a reduction in system costs, a reduction in equipment transportation costs to the site, and a reduction in local installation costs. This cost reduction increases material costs by using latent heat storage materials instead of water. The final important criterion is whether or not it can be offset, and the detailed design has not been completed, but the latent heat storage material and heat medium heat exchanger are installed in comparison with the hot water storage tank system with tap water pressure. The storage case of the latent heat storage system used is expected to be almost equivalent.

蓄熱容器は従来の水道水の給湯器の場合は円筒状の耐圧ステンレス容器を用いている。請求項2はコンパクト化、コスト低減、製造製アップ、現地工事性向上を実現するもので、薄い高分子樹脂材料のフィルムを袋状とし、工事完了後に最終的には筐体の内面に張り付く状態で容器を構成しその内側に蓄熱材と熱媒体熱交換器を収める構造である。薄いフィルムを用いて耐圧構造容器を用いた場合、容器事態がスペースをとるような事が無く筐体容積を最小化できるのは蓄熱システムが請求項1を前提としているからである。このフィルムの袋状の容器は十分大きな寸法にできた物で現地組み立ての際に前面から蓄熱材ブロックを入れる方式をとる場合は前面側を底板位置乃至は中間位置までずり下ろしておき、蓄熱材を前面から組み込む事を容易にする事ができる。蓄熱材の組み込み完了後に再度上部位置までたくし上げて袋状にしてから筐体の前面板を取り付ける事によりこのフィルムの袋は容器としての最終の形を完成させる。
In the case of a conventional tap water heater, the heat storage container uses a cylindrical pressure resistant stainless steel container. Claim 2 realizes downsizing, cost reduction, manufacturing improvement, and improvement of on-site workability. A thin polymer resin material film is formed into a bag shape and finally sticks to the inner surface of the housing after the construction is completed. This is a structure in which the container is configured and the heat storage material and the heat medium heat exchanger are accommodated inside. When the pressure-resistant structure container is used by using a thin film, the container volume does not take up space and the housing volume can be minimized because the heat storage system is based on claim 1. The bag-like container of the film when taking a method of placing a heat storage material block from the front when the current earth assembled those made sufficiently large dimensions keep down shear to the bottom plate position to a front-side intermediate position, heat storage It is possible to easily incorporate the material from the front. The film bag completes its final shape as a container by attaching it to the upper position again after completing the installation of the heat storage material to form a bag and then attaching the front plate of the housing.

請求項3は容器の別案で、本体側と前面カバー乃至は上面カバーに分割されている樹脂容器からなり、双方のあわせ部は相互にネジ締めなどにより水密シール状態に締結して容器を完成させる。勿論耐圧容器である必要が無いので水密シール部分を除けば薄い且つ蓄熱筐体の内面にピッタリあわせた形状とする乃至はあわせた形状になるようにする事ができ、請求項7に対しても筐体容積の増加への影響は少ない。
The third aspect of the present invention is an alternative container, which is composed of a resin container divided into a main body side and a front cover or an upper cover. Let Of course it is not necessary is resistant container can be such a shape or is that combined a shape that matches perfectly to the inner surface of a thin and regenerator housing except watertight sealing portion, against claim 7 also impact on the increase of the housing volume is not small.

請求項9は潜熱蓄熱材に関し、温熱蓄熱の場合で前述した方法による融解温度選定基準に一致するものをブロック状にしたものを用いて現地で容器内に収納する方法についての発明である。蓄熱材は潜熱蓄熱材などは勿論、液体の蓄熱材以外の場合容器内への収納方法は簡単では無い。その重量は家庭用の小さなシステムでも200キログラム以上の重量があり、工場で一体に組み込んだものを狭い空間である事が多い現地に運搬するのは難しい。従って小さなブロックに小分けしたものを現地で容器内に組み込むという作業が必要に成る。請求項2、4に示したように熱媒体熱交換器は蛇行状に曲げ成形されて容器内に収納される。そこに生じた隙間に前記の樹脂フィルム等で梱包状態にした多数の潜熱蓄熱材ブロックを挿入する。ブロックは前記の熱交換器の隙間にあわせた形状にしてあり、挿入後のブロックと熱交換器の隙間は確実に確保された形状になっている。   A ninth aspect of the present invention relates to a latent heat storage material, and is an invention of a method for storing in a container on the spot using a block shape of a material that matches the melting temperature selection criteria by the method described above in the case of thermal heat storage. In the case of a heat storage material other than a liquid heat storage material as well as a latent heat storage material, it is not easy to store it in a container. Its weight is more than 200 kilograms even in a small system for home use, and it is difficult to transport what is integrated in the factory to the local area, which is often a small space. Therefore, it is necessary to assemble a small block into a container on site. According to the second and fourth aspects of the present invention, the heat medium heat exchanger is bent in a meandering manner and stored in a container. A large number of latent heat storage material blocks packed with the resin film or the like are inserted into the gaps formed there. The block has a shape that matches the gap between the heat exchangers, and the gap between the block after insertion and the heat exchanger has a shape that is reliably secured.

充填材は熱交換器の外表面とブロック外表面の間を常に隙間無く充填して相互の伝熱を高める。同時に蓄熱ブロック材が融解して膨張した時には、充填材が押しのけられて容器内の液上面が上昇することによりその膨張を吸収し、蓄熱ブロックが冷却固体化して縮小した時には逆の減少によりこれを吸収する。この機能を果すための液体充填材は作動温度領域の範囲で常に液体である事が必要であり、常に液体で存在するためには凝固点が零度以下である事が望ましい。
The filler always fills the space between the outer surface of the heat exchanger and the outer surface of the block without any gap to enhance mutual heat transfer. At the same time, when the heat storage block material melts and expands, the filler is pushed away and the liquid surface in the container rises to absorb the expansion, and when the heat storage block cools and solidifies and shrinks, this is reduced. Absorb. The liquid filler for performing this function must always be liquid in the range of the operating temperature range, and in order to always exist as a liquid, it is desirable that the freezing point is 0 degree or less.

また潜熱蓄熱材との比重が30%以上異なる液体は長期使用によりその浮力の差により位置ズレを起こし、これを防止するため潜熱蓄熱材をブロック化して固定するなどの施策が必要になるので注意が必要である。より小さいカプセルの場合はより注意が必要である。これ等の点を注意して潜熱蓄熱材の比重を考慮して水乃至は塩化カルシューム水溶液乃至はエチレングリコール水溶液乃至は低融解温度パラフィンなどの液体の中から選択する。この液体が長期間の使用期間に蒸発して外部へ飛散してしまう事を防止するために封入容器を密閉にするか、減量した時には補充することが必要となるが、民生用機器のメンテナンスの実態から見て補充を確実に実施することは難しく、容器を密閉にすることが実用的であり、その為には容器の上部をフレキシブルなフィルムで構成して密閉で且つ内部を大気圧にする方法が具体的である。 In addition, liquids that have a specific gravity of 30% or more different from the latent heat storage material will cause misalignment due to the difference in buoyancy due to long-term use, and measures such as blocking and fixing the latent heat storage material are necessary to prevent this. is necessary. Care should be taken with smaller capsules. In consideration of these points, considering the specific gravity of the latent heat storage material, it is selected from water, a calcium chloride aqueous solution, an ethylene glycol aqueous solution, or a liquid such as a low melting temperature paraffin. In order to prevent this liquid from evaporating and splashing outside during a long period of use, it is necessary to seal the sealed container or to refill it when the volume is reduced. It is difficult to carry out replenishment reliably in view of the actual situation, and it is practical to seal the container. For that purpose, the upper part of the container is made of a flexible film to be sealed and the inside is at atmospheric pressure. The method is specific.

オフィスビルなどの様に水道水の使用量が多く、しかし給湯はさほど必要の無いサイトで冷房運転のみが多くの時間で必要であるサイトは少なくない。そのサイトの場合は前述した様に25℃程度の大量の水道水を利用して蓄熱材を冷却して蓄えた30℃程度の冷熱蓄熱をその後の冷房運転の性能向上とエネルギー効率向上に役立てる事が出来る。その様なサイトでは給水洗面ノミでなく、トイレの排水用の水道水乃至は処理水も利用可能であり、オフィスビルディングのみでなく年間を通して冷房負荷の高い人の集まるところ例えばレストランなどがこの種のサイトの事例として上げられる。特に中間期でも冷房を利用するところでは大きな効果がある。 There are many sites that use large amounts of tap water, such as office buildings, but do not require hot water supply, and only require cooling operation for many hours. In the case of the site, as mentioned above, use of a large amount of tap water at about 25 ° C to cool the heat storage material and store it at about 30 ° C will help to improve the performance and energy efficiency of the subsequent cooling operation. I can do it. In such sites, not only water-washing fleas but also tap water or treated water for toilet drainage can be used. Not only office buildings but also places where people with high cooling loads gather throughout the year such as restaurants An example of a site. In particular, there is a great effect in using air conditioning even in the intermediate period.

この水道水を用いて冷熱蓄熱する技術は請求項1及び4に提示した。建物全体に供給される水道水の温度は冬季で15℃夏期で25℃程度と仮定した時に融解温度がそれより5℃高い30℃の潜熱蓄熱材の熱交換器型蓄熱システムを設定する。全ての水道水を利用する前にこの蓄熱システムに連通させて水道水の冷熱で潜熱蓄熱材を凝固させて冷熱を蓄熱しておく。他方、ヒートポンプユニットは建物内を冷房しその排熱を大気に放熱する際の放熱凝縮温度は大気温度を35℃程度と想定すると通常は50℃程度になる。しかしながらこの大気に放熱した後に前記熱交換器型蓄熱システムに連通させて30℃の蓄熱材にて冷却させればその際の放熱凝縮温度を40℃程度に低くする事ができるし、冷媒の過冷却、即ち冷房能力を増加させる事もできる。その結果ヒートポンプユニットの冷房能力は増大し、その動力となる消費電力量は低減し、その比であるエネルギー効率を20〜30%程度向上させる事が出来ると試算される。この発明が適用できるであろうサイトは国内外に多く、この商品システムの市場となるであろう規模は極めて大きく、地球規模の夏場の消費電力低減と電力消費ピークの低減への効果は大きい。
The technology for storing cold heat using the tap water is presented in claims 1 and 4 . When the temperature of the tap water supplied to the entire building is assumed to be about 25 ° C in winter and 15 ° C in summer, a heat exchanger type heat storage system of a latent heat storage material having a melting temperature of 5 ° C higher by 5 ° C is set. Before using all the tap water, the heat storage system is connected to solidify the latent heat storage material with the cold heat of the tap water to store the cold heat. On the other hand, when the heat pump unit cools the inside of the building and radiates the exhaust heat to the atmosphere, the heat radiation condensation temperature is normally about 50 ° C., assuming that the air temperature is about 35 ° C. However, if the heat is radiated to the atmosphere and then communicated with the heat exchanger type heat storage system and cooled with a heat storage material at 30 ° C., the heat radiation condensation temperature at that time can be lowered to about 40 ° C. Cooling, that is, cooling capacity can be increased. As a result, it is estimated that the cooling capacity of the heat pump unit is increased, the amount of power consumption as the power is reduced, and the energy efficiency as the ratio can be improved by about 20 to 30%. There are many sites to which the present invention can be applied both in Japan and overseas, and the scale that will become the market for this product system is extremely large, and the effect of reducing power consumption peak and power consumption peak in the global summer is great.

そのサイトが冷房運転のチャンスが少なくて、暖房と給湯といった加熱運転が主体である場合は請求項1及び4の冷房主体のケースとは逆の設定であるが、同じ様な効果が可能になる。この場合冷房の事例では30℃に設定した潜熱蓄熱材の融解温度をこのケースでは10℃程度に設定したシステムを用いる。建物内で利用される15℃程度の水道水の熱を利用してこの潜熱蓄熱材を融解させて10℃で蓄熱しておいて、ヒートポンプユニットが暖房乃至は給湯運転を行うときにこの10℃の熱を熱源として利用するものである。こうすれば大気が零度以下になった場合にも10℃の熱源を利用して効率の高いヒートポンプ運転が可能になる。しかも潜熱蓄熱材を10℃前後に設定しておけばこの運転によって水道水が凍結するなどの問題は回避できる。何れのケースも潜熱蓄熱材と複数の媒体循環管路を独立一体に構成した熱交換器型蓄熱槽によりこれらの効果は実現させる事ができるわけである。
If the site has few chances of cooling operation and heating operation such as heating and hot water is the main, the setting is opposite to the cooling main case of claims 1 and 4 , but the same effect is possible. . In this case, in the case of cooling, a system in which the melting temperature of the latent heat storage material set to 30 ° C. is set to about 10 ° C. in this case is used. The latent heat storage material is melted and stored at 10 ° C. using the heat of tap water of about 15 ° C. used in the building, and this 10 ° C. is used when the heat pump unit performs heating or hot water supply operation. This heat is used as a heat source. In this way, even when the atmosphere falls below zero degrees, a high-efficiency heat pump operation is possible using a 10 ° C. heat source. Moreover, if the latent heat storage material is set at around 10 ° C., problems such as freezing of tap water due to this operation can be avoided. In any case, these effects can be realized by a heat exchanger type heat storage tank in which a latent heat storage material and a plurality of medium circulation pipes are independently integrated.

以上の様に、使いづらく低密度なエネルギーを、蓄熱し且つ適正に取り出して効果的に利用できるような民生用システムを広範囲に確立するという目標で熱交換器型蓄熱システムを特定しそれを広範囲に利用する事について必要な多くの技術項目の解決策を提示できたと考える。それらの技術は具体的には以下のような最初に示した課題の解決につき多くの直接的効果と派生的効果が期待できる。 最初の課題として、蓄熱槽のコンパクト化については請求項1、2、3、4、5に提示した技術により例えば水圧のかかった給湯用の水道水を蓄熱する場合に比べ50%以下の容積が可能に成ると算定される。その主な因子を挙げれば、潜熱蓄熱材を用いその充填率を90%にした効果が30%、蓄熱容器を薄型の立方体化した効果が18%、真空断熱材採用で8%その他効果10%と試算される。現地での据付けスペースの制約を排除するという主要な目的はほぼ達成できた。2番目の課題である蓄熱槽からの熱ロス低減については蓄熱槽の容積自体の半減で表面面積低減による効果30%、請求項5に提示したように蓄熱温度を30℃低下させた効果が40%及び真空断熱材による効果が5〜8%総計約60%以上の熱ロス低減効果が期待される。
As described above, heat exchanger type heat storage systems are identified and widely used with the goal of establishing a wide range of consumer systems that can store and efficiently use low-density energy that is difficult to use. We think that we have been able to present solutions for many technical items that are necessary for use in Japan. Specifically, these technologies can be expected to have many direct effects and derivative effects for solving the following first problems. As the first problem, the compactness of the heat storage tank according to claim 1, 50% less volume compared to the case of storing heat tap water for took hot water supply of for example pressure by technique provides suggestions to 3,4,5 Is calculated to be possible. The main factors are 30% of the effect of using a latent heat storage material and the filling rate of 90%, 18% of the effect of making the heat storage container into a thin cube, 8% of the effect of adopting the vacuum insulation material, and 10% of other effects. It is estimated. The main goal of eliminating local installation space constraints was almost achieved. Regarding the heat loss reduction from the heat storage tank which is the second problem, the effect of reducing the surface area by half the volume of the heat storage tank itself is 30%, and the effect of lowering the heat storage temperature by 30 ° C. as presented in claim 5 is 40. % And the effect of the vacuum heat insulating material is expected to be a heat loss reduction effect of about 5% to 8% and a total of about 60% or more.

3番目の熱媒体、特に水の搬送ポンプの使用を抑えるという目標についてはヒートポンプ冷凍サイクルをフルに活用したシステムを種々構成できた事から十分な成果を達成した。
4番目の課題としての多数の熱源供給の処理、多数の熱出力の実現については請求項1、4に示した技術が極めて広範囲で自由度の高いシステムを実現できたと考えられる。
With regard to the goal of suppressing the use of the third heat transfer medium, especially the water delivery pump, we have achieved sufficient results because we were able to configure various systems that fully utilize the heat pump refrigeration cycle.
As for the fourth problem, it is considered that the technology shown in claims 1 and 4 was able to realize a system with a very wide range and a high degree of freedom for the processing of a large number of heat sources and the realization of a large number of heat outputs.

5番目の目標であったシステムエネルギー効率の向上については請求項1、4に提示した技術が大幅な効果を達成したと考えており、例えば太陽光コジェネレイション装置の実現は自然エネルギーである太陽光を発電と熱をハイブリッドに取り出しているので太陽光エネルギー回収率は30%を超える画期的な成果を実現する。6番目と7番目の目標としてのシステム信頼性の確保と十分なコスト低減の達成については全請求項に示した技術アイテムが全体として簡素で部品点数の少ないシステムの確立に大きく貢献する内容が十二分に提示できたと考える。 Implementation of the fifth for the improvement of a system energy efficiency target believes techniques presented in claim 1 and 4 has achieved significant effects, for example, solar cogeneration Ray Deployment apparatus is a natural energy sunlight As the power generation and heat are taken out to the hybrid, the solar energy recovery rate will achieve a breakthrough result exceeding 30%. Regarding the 6th and 7th goals, ensuring the system reliability and achieving sufficient cost reduction, the contents of the technical items shown in all claims greatly contribute to the establishment of a simple system with few parts as a whole. I think I was able to present it in half.

全体目標としては「深夜だけ割安で供給される深夜電力、晴天の昼間だけ供給される太陽光発電電力や太陽熱、地域発電を主体にシステム構成された各種コジェネレイション装置の排熱など、標準化されていないために使いづらく低密度なエネルギーを、蓄熱し且つ適正に取り出して効果的に利用できるような民生用システムを広範囲に確立する」という目標を達成する為に必要な種々基幹技術を提示する事ができ、特にシステムの実用化のための熱交換器型蓄熱システムという基幹システムを特定しその応用方法につき多くの技術分野を明確にする事ができた。 The overall goal is `` standardized, such as late-night power supplied at a reasonable price only in the middle of the night, solar power and solar heat supplied only in the daytime in fine weather, and exhaust heat from various cogeneration systems mainly composed of regional power generation. Presenting various core technologies necessary to achieve the goal of “establishing a wide range of consumer systems that can store and appropriately use low-density energy that is difficult to use because it is difficult to use” In particular, we have identified a core system called a heat exchanger type heat storage system for practical use of the system, and have clarified many technical fields regarding its application methods.

以下、本発明の実施形態を、図1〜図5に基づいて説明する。図1は水道水を加熱して給湯するための熱交換器型蓄熱システムに使われる給湯用の熱媒体熱交換器21である。循環管路用に用いられる二十個の穴4を持ったアルミ製の扁平多穴管1には、その内四つの穴からなる循環管路を6の矢印で示されたように熱出力媒体としての水道水が流れ、他の三つの穴からなる別の循環管路を5の矢印で示された様に熱源媒体としてヒートポンプユニットの冷凍サイクル冷媒であるプロパンガスが流れる。残りの十三個の穴は多穴管の両端に6穴づつと中心に一穴が配置され、循環管路には使われていないが、蓄熱材との伝熱のための拡張面積を確保している。アルミ製の循環管路接続管フレア2により断面形状の異なる扁平多穴管1と循環管路接続管3をロー付け接合により連結している。この熱交換器と潜熱蓄熱材であるパラフィンが収納され熱交換器型蓄熱システム16が構成される。ここでは図示していないが、循環管路の穴の構成をプロパンガスと水道水の間の伝熱特性を上げるために一つ置きの穴配置にする交錯した配管レイアウト方法も考えられるが、その場合循環管路接続管フレア2等の形状が複雑で多分岐管になり、コストアップとロー付けリーク不良などの可能性が増えるのが難点である。   Hereinafter, embodiments of the present invention will be described with reference to FIGS. FIG. 1 shows a heat medium heat exchanger 21 for hot water supply used in a heat exchanger type heat storage system for heating tap water to supply hot water. An aluminum flat multi-hole pipe 1 having twenty holes 4 used for a circulation pipe has a four-hole circulation pipe as a heat output medium as indicated by arrows 6. As shown by the arrow 5, propane gas, which is a refrigeration cycle refrigerant of the heat pump unit, flows through another circulation line composed of the other three holes as indicated by the arrow 5. The remaining 13 holes are 6 holes at both ends of the multi-hole pipe, and one hole is placed in the center, which is not used for the circulation pipe, but secures an expanded area for heat transfer with the heat storage material. doing. A flat multi-hole pipe 1 and a circulation pipe connection pipe 3 having different cross-sectional shapes are connected by brazing and joining with an aluminum circulation pipe connection pipe flare 2. The heat exchanger and the paraffin which is a latent heat storage material are accommodated to constitute a heat exchanger type heat storage system 16. Although not shown here, there is a conceivable piping layout method in which the arrangement of the holes in the circulation pipe is arranged every other hole in order to improve the heat transfer characteristics between propane gas and tap water. In this case, the shape of the circulation pipe connecting pipe flare 2 and the like is complicated and becomes a multi-branch pipe, which increases the possibility of cost increase and brazing leakage failure.

矢印5、6で示される様に両媒体を対交流に流しており、冷凍サイクル冷媒が出口でスーパーヒートが多く取れてサイクル制御をし易いようにしている。
両媒体は一つの扁平多穴管1内を一緒に流れるようになっているため相互間の伝熱に優れ、且つ該扁平多穴管の外表面が大きな面積に構成してあるのでその外表面の外側に隣接して設置される潜熱蓄熱材7と両媒体との間の伝熱特性も優れたものになる。扁平多穴管の厚さは出来る限り薄い平板状にして蛇行状に成型しやすくするとともに、潜熱蓄熱材7の収納容積を増やして蓄熱容器内の蓄熱材の容積比率を90%以上に設定している。このため扁平管の平板厚さを7mmとし容積比率90%にするためのその蛇行ピッチ18は73mmとし、そこに挿入される蓄熱材ブロックの厚さを64mmとしている。この64mmの寸法は蓄熱材の内部伝熱特性からみて最大寸法に近い。これ以上厚い場合、蓄熱材ブロックの中心部分が蓄熱や放熱に参加するまでの時定数が大きくなり伝熱抵抗による無駄が生じるため避けねばならない。
As indicated by arrows 5 and 6, both media are allowed to flow in an alternating current, and the refrigeration cycle refrigerant can take a lot of superheat at the outlet to facilitate cycle control.
Since both media flow together in one flat multi-hole tube 1, heat transfer between them is excellent, and the outer surface of the flat multi-hole tube has a large area. The heat transfer characteristics between the latent heat storage material 7 installed adjacent to the outside of the medium and both media are also excellent. The thickness of the flat multi-hole tube is made as thin as possible to make it easy to be meandered, and the volume of the heat storage material in the heat storage container is set to 90% or more by increasing the storage capacity of the latent heat storage material 7 ing. Therefore, the flat plate thickness of the flat tube is 7 mm, the meandering pitch 18 for setting the volume ratio to 90% is 73 mm, and the thickness of the heat storage material block inserted therein is 64 mm. The 64 mm dimension is close to the maximum dimension in view of the internal heat transfer characteristics of the heat storage material. If it is thicker than this, the time constant until the central portion of the heat storage material block participates in heat storage and heat dissipation becomes large and waste due to heat transfer resistance must be avoided.

扁平多穴管の穴ピッチ寸法19は10mmであり扁平多穴管の外形幅寸法は20穴のため200mmとなる。請求項6に示した様に蓄熱容器20の奥行き方向内部寸法はこれを2列並べた場合200mmの2倍である400mmプラス隙間5mmで405mmとなる。もちろんこの場合2列分を一体でアルミ押し出し扁平多穴管で構成しても良いがその場合には40穴の扁平管となり中心部の7穴のみ又は往復で14穴を用いて水道水と冷媒用の循環管路が構成される、乃至は隣り合わせた7穴を一対の循環管路として40穴の内で28穴に4対の循環管路を交互の位置に構成してもよい。扁平多穴管1と接続管3は内部に腐食性のある水道水等が連通される事を想定して腐食防止のためにアルミニウム合金成分調整、酸化皮膜処理、めっき処理などが必要に応じて施してある。材料信頼性を更に高めるために銅パイプをインサートする方法もある。しかしながら通常の水道水であれば、その流速を抑えておけば、耐食性の強いアルミ合金等を用いるだけで表面処理を省略する事も可能である。 The hole pitch dimension 19 of the flat multi-hole tube is 10 mm, and the outer width of the flat multi-hole pipe is 200 mm because of 20 holes. As shown in claim 6, the internal dimensions in the depth direction of the heat storage containers 20 are 400 mm, which is twice 200 mm when the two rows are arranged, and become 405 mm with a gap of 5 mm. Of course, in this case, the two rows may be integrated with an aluminum extruded flat multi-hole tube, but in that case, it becomes a 40-hole flat tube, and only 7 holes in the center or 14 holes are used for reciprocation. Or a pair of circulation pipes may be arranged in 28 positions out of 40 holes, and four pairs of circulation pipes may be arranged in alternate positions. Assuming that corrosive tap water and the like are connected to the inside of the flat multi-hole pipe 1 and the connecting pipe 3, aluminum alloy component adjustment, oxide film treatment, plating treatment, etc. are performed as necessary to prevent corrosion. It has been given. There is also a method of inserting a copper pipe to further improve the material reliability. However, in the case of ordinary tap water, if the flow rate is suppressed, it is possible to omit the surface treatment only by using a highly corrosion-resistant aluminum alloy or the like.

図2は図1に対しより多数の穴を持った扁平多穴管を用い多数の媒体循環管路を持った熱媒体熱交換器を示している。図1の場合と同様にアルミの押し出し成型品を用いているが、前述した様にそれはロールボンドでも良いし、アルミの平板上にはめ込んでロー付けしたものでも良いがここでは最も製造性が高く、製造品質が安定するアルミの押し出し多穴管を用いている。図2の熱交換器に連通される媒体は例えば熱源媒体としてはヒートポンプユニットの冷凍サイクル冷媒やコジェネレイション装置の排熱を搬送する不凍液などであり、熱出力媒体としては給湯用の水道水や空調用の温冷熱媒体である不凍液又は二酸化炭素や再加熱追い炊き用の風呂の温水や蓄熱を熱源に利用したヒートポンプの冷媒などがある。 FIG. 2 shows a heat medium heat exchanger using a flat multi-hole tube having a larger number of holes than that of FIG. 1 and having a large number of medium circulation lines. As in the case of FIG. 1, an extruded product of aluminum is used, but as described above, it may be a roll bond or may be an aluminum flat plate that is brazed and brazed. It uses an aluminum extruded multi-hole tube with stable manufacturing quality. The medium communicated with the heat exchanger in FIG. 2 is, for example, a refrigeration cycle refrigerant of a heat pump unit or an antifreeze liquid that transports exhaust heat of a cogeneration device as a heat source medium, and tap water or air conditioning for hot water supply as a heat output medium. There are anti-freezing liquid or carbon dioxide, which is a hot / cold heat medium for heating, and heat pump refrigerant that uses hot water or heat storage of a reheating additional cooking bath as a heat source.

それ以外にも幾つもの種類の熱媒体を連通する事ができるが、ここでは図を示さない。この五つの循環管路は熱源媒体と熱出力媒体間の伝熱が相互に効率良く行われる様にそれらが隣り合わせて交互に配置される。この熱交換器は全体が蛇行状に成型され、扁平多穴管の幅寸法は200mmの場合400mmの奥行き寸法の蓄熱容器には奥行き方向に2列に配置される。勿論400mmの幅の扁平多穴管の場合なら1列配置で良く、この場合5つの循環管路は適宜な穴位置と穴数を選択して配置される。当然アルミ製の多穴管は媒体の作動圧力や流速や作動温度、流体成分などによってその材料、寸法、肉厚、細部形状等が調整し最適に設定されている事は言うまでも無い。 Many other types of heat medium can be communicated, but the figure is not shown here. The five circulation pipes are alternately arranged adjacent to each other so that heat transfer between the heat source medium and the heat output medium can be performed efficiently. This heat exchanger is entirely formed in a meandering shape, and when the flat multi-hole tube has a width dimension of 200 mm, the heat storage containers having a depth dimension of 400 mm are arranged in two rows in the depth direction. Of course, in the case of a flat multi-hole tube having a width of 400 mm, one row may be arranged. In this case, the five circulation pipes are arranged by selecting an appropriate hole position and the number of holes. Needless to say, the multi-hole tube made of aluminum is optimally set by adjusting the material, dimensions, thickness, detailed shape, etc. according to the working pressure, flow velocity, working temperature, fluid component, etc. of the medium.

この様な熱媒体熱交換器21を用いた蓄熱システムが本発明の熱交換器型蓄熱システム16でありその事例を図3に示す。図3は蓄熱槽筐体及び断熱パネルその他小さな補器部品は省略してあり蓄熱容器20及びその主要部分のみを示している。これはヒートポンプユニットを利用した単一熱源媒体による家庭用の給湯システムの事例である。前面から蓄熱材ブロックを入れる方式の場合で、蓄熱容器の内部寸法は幅600mm、奥行きは405mm、高さは1700mmのポリプロピレン樹脂製で、容器前面12は取り外しが出来、螺子で水密状にシールとなる様に容器本体10に取り付けられる。図示しないがこの容器20を包むように真空断熱パネルそしてその外側を鉄板筐体が組みつけられ、該筐体が蓄熱槽全体を保持する構造になっている。 A heat storage system using such a heat medium heat exchanger 21 is the heat exchanger type heat storage system 16 of the present invention, and an example thereof is shown in FIG. FIG. 3 shows only the heat storage container 20 and its main part, omitting the heat storage tank housing, the heat insulating panel and other small auxiliary parts. This is an example of a domestic hot water supply system using a single heat source medium using a heat pump unit. In the case of inserting the heat storage material block from the front, the internal dimensions of the heat storage container are 600 mm wide, 405 mm deep, 1700 mm high, made of polypropylene resin, and the container front surface 12 can be removed and sealed in a watertight manner with screws. It attaches to the container main body 10 as follows. Although not shown in the drawings, a vacuum heat insulation panel and an iron plate casing are assembled on the outside so as to wrap the container 20, and the casing is configured to hold the entire heat storage tank.

熱媒体熱交換器21は図1に示したもので奥行きを400mmにしたものを用いており、蓄熱容器の中に図の様に設置され固定される。4本の循環管路接続管は容器21の上部から容器とシール状態で外部に連通されている。熱媒体熱交換器が設置された後に薄いポリプロピレン樹脂容器に入れた潜熱蓄熱材ブロック7が空間に挿入し設置され、これが完了すると容器前面12が螺子により容器本体に固定される。その後均圧膜11部分から充填液8として水を図に示した様に蓄熱材を覆う位置まで注入し、均圧膜がかぶせられてシールされる。寒冷地域では水ではなくて不凍液が用いられるのは言うまでもない。潜熱蓄熱材は24−パラフィン乃至は酢酸ナトリウムが使われ、相変化を繰り返しながら蓄熱材の平均温度を約50℃前後に保っている。 パラフィンは水より軽く、酢酸ナトリウムは水より重いため充填液に対し浮き上り又は沈む傾向があるため図示はしないが、蓄熱材ブロックの移動防止用の止め具を各所に使用している。上部から蓄熱材ブロックを入れる方式では熱媒体熱交換器の蛇行成型方向が変わるので注意が要る。 The heat medium heat exchanger 21 shown in FIG. 1 and having a depth of 400 mm is used and is installed and fixed in a heat storage container as shown in the figure. The four circulation pipe connection pipes communicate with the container from the upper part of the container 21 in a sealed state. After the heat medium heat exchanger is installed, the latent heat storage material block 7 placed in a thin polypropylene resin container is inserted into the space and installed, and when this is completed, the container front surface 12 is fixed to the container body by screws. Thereafter, water is injected from the portion of the pressure equalizing film 11 as a filling liquid 8 to a position covering the heat storage material as shown in the figure, and the pressure equalizing film is covered and sealed. Needless to say, antifreeze is used instead of water in cold regions. As the latent heat storage material, 24-paraffin or sodium acetate is used, and the average temperature of the heat storage material is maintained at about 50 ° C. while repeating the phase change. Since paraffin is lighter than water and sodium acetate is heavier than water, there is a tendency to float or sink with respect to the filling liquid. Therefore, stoppers for preventing movement of the heat storage material block are used in various places. Care must be taken in the method in which the heat storage material block is inserted from above because the direction of the heat medium heat exchanger changes.

熱源媒体はヒートポンプユニットからの55℃の凝縮温度を持つ高圧のプロパン冷媒で図中5に示される様に連通され、熱源媒体熱交換器21の循環管路17内で冷やされて凝縮され液体となって蓄熱容器20から外部に流出される。その凝縮熱は熱源媒体熱交換器21の外表面から充填液8の水を通して潜熱蓄熱材ブロック7内の融解温度が50℃の蓄熱材パラフィンに伝わりこれを融解させて蓄熱する。一方給湯する時には熱出力媒体である水道水が熱出力媒体循環管路17に連通され、蓄熱材であるパラフィンから熱を受け取りこれを凝固させ、45℃程度の温水となって給湯される。また、給湯を使いすぎて前夜の電力を使った蓄熱量が少なくなってきた時などはヒートポンプ運転による高温のプロパン冷媒により直接熱媒体熱交換器を通して水道水を加熱して給湯する事ができる。このシステムではプロパン冷媒は圧縮機により送り込まれるし、水道水は水道水圧で押し出されるので、媒体を連通させるためのポンプなどは必要が無い。 The heat source medium is a high-pressure propane refrigerant having a condensing temperature of 55 ° C. from the heat pump unit and is communicated as shown in FIG. 5, cooled and condensed in the circulation line 17 of the heat source medium heat exchanger 21, And flows out of the heat storage container 20 to the outside. The condensation heat is transmitted from the outer surface of the heat source medium heat exchanger 21 through the water of the filling liquid 8 to the heat storage material paraffin having a melting temperature in the latent heat storage material block 7 of 50 ° C., and is melted to store heat. On the other hand, when hot water is supplied, tap water, which is a heat output medium, is communicated with the heat output medium circulation pipe 17, receives heat from paraffin, which is a heat storage material, solidifies, and is supplied as hot water at about 45 ° C. In addition, when the amount of heat stored using the electric power of the previous night is reduced due to excessive use of hot water supply, hot water can be supplied by heating tap water directly through a heat medium heat exchanger with a high-temperature propane refrigerant by heat pump operation. In this system, propane refrigerant is fed by a compressor, and tap water is pushed out by tap water pressure, so there is no need for a pump or the like for communicating the medium.

平均的な家庭における一日辺りの給湯負荷は約22000キロカロリーと算定される。これを80℃のお湯で蓄熱したときも、パラフィンや酢酸ナトリウムの潜熱蓄熱材で50℃で蓄熱した時も、正味の蓄熱材の容積は双方ともに約400リッター(L)と算定される。温水蓄熱では80℃の温水からの熱ロスが多いため断熱材は厚くなり、蓄熱容器として水圧のかかった円柱の耐圧タンクを用いざるを得ない事等から、立方体の蓄熱槽筐体の容積は増加して約1000L以上となるのが普通である。他方本発明の熱交換器型蓄熱槽では真空段熱パネルの効果も含めると500L以下ですみ、即ちその容積比は約二分の一となることが実証されている。 The average daily hot water load in a home is estimated at about 22,000 kilocalories. Whether the heat is stored with hot water at 80 ° C. or the heat is stored at 50 ° C. with a latent heat storage material of paraffin or sodium acetate, the net volume of the heat storage material is calculated to be about 400 liters (L). In hot water heat storage, heat loss from hot water at 80 ° C is large, so the insulation becomes thick, and a cylindrical pressure tank with water pressure must be used as the heat storage container. It is normal to increase to about 1000L or more. On the other hand, it is proved that the heat exchanger type heat storage tank of the present invention requires 500 L or less including the effect of the vacuum stage heat panel, that is, its volume ratio is about 1/2.

蓄熱装置全体は500キログラム近い重さとなるので一体にして現地に搬入するのは困難であり、前述した様に蓄熱材はブロック状に小分けして搬入し現地で組み付ける。均圧膜11は窓枠に膜が張られた形で容器本体10に固定し取り付けられており、たわんだ形状の伸縮性の高い樹脂又はゴム製の膜を持っている。蓄熱材の相変化、全体の温度変化などにより容器の内部が膨張、収縮したときにも容器内のシール性を保ちながら且つ内部の圧力を略大気圧に保ち、内部部材、特に充填液が蒸発して大気に散逸する事も防止している。 Since the entire heat storage device weighs nearly 500 kilograms, it is difficult to carry it together on site, and as described above, the heat storage material is divided into blocks and carried in on site. The pressure equalizing film 11 is fixed and attached to the container body 10 in a form in which a film is stretched on a window frame, and has a flexible resin or rubber film having a flexible shape. Even when the inside of the container expands or contracts due to the phase change of the heat storage material, the whole temperature change, etc., the internal pressure is maintained at substantially atmospheric pressure while maintaining the sealing performance inside the container, and the internal member, especially the filling liquid evaporates. It is also prevented from dissipating into the atmosphere.

蓄熱材が相変化するとその体積は伸縮するので、周囲の構造物を破壊折損させる恐れがある。このため蓄熱材を溶解させて蓄熱容器内に流し込んで固めるという方法が採用できない。従って蓄熱材はブロック状に分散させて小容器に入れて熱媒体熱交換器21の隙間に挿入し、生じる隙間を充填液8で埋めて伝熱の促進と相変化歪の吸収を図っている。蓄熱容器20は前述したような硬い樹脂容器では無くて、薄い樹脂フィルムでできた袋状のものでも良い。即ちこの袋状の容器が筐体の底板の上にセットされ、その前面部分はずり下ろされて前面が開いた状態で作業を行う。熱媒体熱交換器21と蓄熱材ブロック7を設置したら、その前面部をたくし上げて上部が開放された袋の様にし、充填液を入れた後に該袋の上部のフィルム全体の開放部が2枚の板状の鉄板製の天板に挟みつけられて締め付けられて開放部はシール密封される。上部が開口部の場合も同様の手順の作業内容と成る。前記の均圧膜はこの天板に設けられている。 When the phase of the heat storage material changes, the volume of the heat storage material expands and contracts, which may break the surrounding structure. For this reason, the method of melt | dissolving a thermal storage material, pouring in a thermal storage container, and solidifying cannot be employ | adopted. Accordingly, the heat storage material is dispersed in a block shape, placed in a small container, inserted into the gap of the heat medium heat exchanger 21, and the resulting gap is filled with the filling liquid 8 to promote heat transfer and absorb phase change strain. . The heat storage container 20 is not a hard resin container as described above, but may be a bag made of a thin resin film. In other words, the bag-like container is set on the bottom plate of the housing, and the operation is performed in a state where the front portion is removed and the front surface is opened. When the heat medium heat exchanger 21 and the heat storage material block 7 are installed, the front part of the heat medium is lifted up to form a bag with the top opened, and after the filling liquid is added, the open part of the entire film at the top of the bag is 2 The open portion is hermetically sealed by being sandwiched and tightened by a plate-shaped iron plate top plate. When the upper part is an opening, the work contents are similar. The pressure equalizing film is provided on the top plate.

この袋状の容器の方式は工場で袋状に完成されて搬入されるので前述した硬い樹脂の容器を現場で螺子留めによりシール密閉を完成させるより充填液のリーク不良などに対しては信頼度が高く、且つコストの削減にもなる。充填液は前述した様に伝熱の促進のみでなく、潜熱蓄熱材の相変化歪を吸収し熱媒体熱交換器や蓄熱容器が損傷されたり膨らんで変形させられる事を防いでいる。 This bag-shaped container method is completed in a bag shape at the factory and is carried in. Therefore, it is more reliable than the above-mentioned hard resin container by screwing the hard resin container on-site to complete sealing and sealing. And the cost is reduced. As described above, the filling liquid not only promotes heat transfer, but also absorbs the phase change distortion of the latent heat storage material to prevent the heat medium heat exchanger and the heat storage container from being damaged or swelled and deformed.

この熱交換器型蓄熱システムでは、全体が簡単な構造で殆ど大気圧に等しい均一の圧力、熱歪の低減、作動温度変動を少なくしているなどシステム全体の信頼性と品質を高める基本的な施策を取り込んでおり、蓄熱槽自体をコンパクトにすることができる事、従ってその表面からの熱ロスを低減できる、各種の熱媒体を自由に導入させて蓄熱と同時に熱交換ができる事などを含めて基本構造的な優位点が多くあるが、図4でさらなるシステム上の利点を説明したい。 This heat exchanger type heat storage system has a basic structure that improves the overall system reliability and quality, such as uniform pressure almost equal to atmospheric pressure, reduced thermal distortion, and reduced fluctuations in operating temperature. Incorporating measures, the heat storage tank itself can be made compact, so heat loss from its surface can be reduced, various heat transfer media can be freely introduced, and heat exchange can be performed simultaneously with heat storage. Although there are many basic structural advantages, FIG. 4 illustrates further system advantages.

図3に示された熱交換器型蓄熱システムは空調機器の省エネルギー運転に寄与する補完装置としても有効に利用できる。それは請求項1、4に提示した発明の具体化である。この効果は既に詳細を説明した。熱源媒体として冷房作動中の高圧冷媒を連通させ、熱出力媒体として建物全体に供給され消費される水道水を連通させ、融解温度が真夏の水道水温度より少なくとも5℃程度高い30℃の潜熱蓄熱材の熱交換器型蓄熱システムを設定する。水道水は建物内でトイレ、洗面、給水などに利用される前にこの蓄熱システムに連通させて潜熱蓄熱材を冷却して凝固させ30℃の冷熱を蓄熱しておく。他方、冷房用ヒートポンプユニットは建物内を冷房してその排熱をこの冷熱に放熱する。この場合前述した様に大気へ放熱する通常の冷房運転に比べ30%程度の性能が向上する。
The heat exchanger type heat storage system shown in FIG. 3 can also be used effectively as a supplement device that contributes to energy-saving operation of the air conditioner. It is a embodiment of the invention presented inMotomeko 1,4. This effect has already been explained in detail. A high-pressure refrigerant during cooling operation is communicated as a heat source medium, and tap water supplied to and consumed by the entire building is communicated as a heat output medium, and a latent heat storage temperature of 30 ° C., which is at least about 5 ° C. higher than the mid-summer tap water temperature. Set up a heat exchanger type heat storage system for wood. Before the tap water is used in the building for toilets, washbasins, water supply, etc., it is communicated with this heat storage system to cool and solidify the latent heat storage material and store 30 ° C. cold. On the other hand, the cooling heat pump unit cools the building and radiates the exhaust heat to the cold heat. In this case, as described above, the performance is improved by about 30% as compared with the normal cooling operation that radiates heat to the atmosphere.

しかしながら実際には建物内で利用する水道水の量は真夏の冷房運転の全排熱量を冷却する程多い事例は少ない。このため実際には通常の大気放熱と併用されて使われ、大気熱交換器の下流にこの熱媒体循環管路に連通される方法が採られる。高温高圧の冷媒はまづ大気に冷却されさらに上記の様に水道水により冷却された蓄熱材により冷却されてその凝縮温度は低下しアンダークールが増加する。この場合でも20%以上の性能向上が得られる。この商品システムはいまだ実用化されていない。その理由は本発明の熱交換器型蓄熱システムが実用化されていない為と言う事ができる。その期待される市場規模は大きく、社会全体の夏場の消費電力低減と電力消費ピークの緩和への期待は大きい。図3に示された熱交換器形蓄熱システムの更なる応用例として使用済みの風呂温水を熱源媒体循環管路に、水道水を熱出力媒体循環管路に連通させ使用済みの風呂温水の保有する熱量を再利用する方法の装置として有効である。これにより真冬でも次の日の給水は20℃を超える新しい水道水を利用できる。 However, in practice, there are few cases where the amount of tap water used in the building is so large that it cools down the total exhaust heat amount of the cooling operation in midsummer. For this reason, in practice, a method is used in which the heat medium is used in combination with normal heat radiation and communicated with the heat medium circulation pipe downstream of the atmospheric heat exchanger. The high-temperature and high-pressure refrigerant is first cooled to the atmosphere and further cooled by the heat storage material cooled by the tap water as described above, and the condensation temperature is lowered and the undercool is increased. Even in this case, a performance improvement of 20% or more can be obtained. This product system has not yet been put into practical use. The reason can be said that the heat exchanger type heat storage system of the present invention has not been put into practical use. The expected market size is large, and the society as a whole has high expectations for reducing power consumption in the summertime and alleviating peak power consumption. As a further application example of the heat exchanger type heat storage system shown in FIG. 3, the used bath hot water is connected to the heat source medium circulation pipe and the tap water is communicated to the heat output medium circulation pipe, and used bath hot water is retained. It is effective as an apparatus for a method of reusing heat quantity. As a result, even in midwinter, the next day's water supply can use new tap water exceeding 20 ° C.

図4は太陽光コジェネレイション装置を主なエネルギー源として、本発明の熱交換器型蓄熱システムを有効に利用して給湯と空調を実現し、建物や施設に広く活用できる、優れた次世代ライフラインシステムを提示する。システム全体を熱交換器型蓄熱システムを用いた太陽光給湯空調システムと名付けた。100はシステムの中心装置である蓄熱槽で、温熱蓄熱槽101と冷熱蓄熱槽102から構成される。主な熱源の供給を行うのはヒートポンプユニット103であり、圧縮機、大気との熱交換を行う室外熱交換器、室外ファン、冷暖の冷媒の流れを切り替える四方切り替え弁などから成る冷凍サイクルと、圧縮機の駆動用の周波数と電圧を制御して供給するインバータ電源装置などで構成されており、その作動媒体は当然自然冷媒でありプロパンが使われる。その冷凍サイクルはユニット外の太陽光受熱用基板熱シンク107と太陽光冷凍サイクル管路108を通して、また前記の蓄熱槽内の熱媒体熱交換器と冷熱蓄熱冷凍サイクル管路110及び温熱蓄熱冷凍サイクル管路109を通して連結されて全体の冷凍サイクルシステムを構成する。   Fig. 4 shows an excellent next-generation life that can be widely used in buildings and facilities by using solar cogeneration equipment as the main energy source, realizing hot water supply and air conditioning by effectively using the heat exchanger type heat storage system of the present invention. Present the line system. The entire system was named a solar hot water supply air conditioning system using a heat exchanger type heat storage system. Reference numeral 100 denotes a heat storage tank, which is a central device of the system, and includes a heat storage tank 101 and a cold storage tank 102. The heat pump unit 103 supplies the main heat source, and includes a compressor, an outdoor heat exchanger that exchanges heat with the atmosphere, an outdoor fan, a four-way switching valve that switches the flow of cooling and heating refrigerant, and the like, It is composed of an inverter power supply device that controls and supplies the frequency and voltage for driving the compressor, and the working medium is naturally a natural refrigerant and propane is used. The refrigeration cycle is through the solar heat receiving substrate heat sink 107 and the solar refrigeration cycle line 108 outside the unit, and the heat medium heat exchanger, the cold storage heat storage refrigeration cycle line 110 and the thermal storage heat storage refrigeration cycle in the heat storage tank. The whole refrigeration cycle system is configured by being connected through a pipe 109.

太陽光コジェネレイション装置123は太陽光105を受ける太陽光発電セルからなる受光面104とそれを支持するための電気絶縁層とアルミ基板からなる受熱用基板106で構成される。受熱用基板106の端部にはその基板から熱を受け取り基板を冷却するための受熱用基板熱シンク107が構成されている。受熱用基板熱シンク107は1.2mm厚さのアルミ製の受熱用基板106の端面を折り返し内部に太陽光冷凍サイクル管路108を挟み込んで締め付けることにより受熱用基板106と太陽光冷凍サイクル管路108の間を良好に伝熱できるように構成されている。太陽光冷凍サイクル管路108は連続の銅製パイプで太陽光コジェネレイション装置が屋根上などに設置された後に該装置のモジュール毎に設けられた前記受熱用基板106の当該位置にあわせて引き回され、該基板106の端部の基板熱シンク107へと締め付けられ、全発電モジュールの太陽光受熱用基板106を通して受光面104を冷却しつつ熱を受け取ったり、逆に熱を与えて受光面を加熱することができる。 The solar cogeneration apparatus 123 includes a light receiving surface 104 made of a photovoltaic power generation cell that receives sunlight 105, an electric insulating layer for supporting the light receiving surface 104, and a heat receiving substrate 106 made of an aluminum substrate. A heat receiving substrate heat sink 107 for receiving heat from the substrate and cooling the substrate is formed at the end of the heat receiving substrate 106. The heat receiving substrate heat sink 107 is formed by folding the end face of the aluminum heat receiving substrate 106 having a thickness of 1.2 mm and sandwiching the solar refrigeration cycle pipe 108 inside and tightening the heat receiving substrate 106 and the solar refrigeration cycle pipe. It is comprised so that it can heat-transfer between 108 favorably. The solar refrigeration cycle pipe 108 is a continuous copper pipe, and after the solar cogeneration apparatus is installed on the roof or the like, the solar refrigeration cycle pipe 108 is routed in accordance with the position of the heat receiving substrate 106 provided for each module of the apparatus. The substrate 106 is clamped to the substrate heat sink 107 at the end of the substrate 106 to receive heat while cooling the light receiving surface 104 through the solar heat receiving substrate 106 of all the power generation modules, or conversely, heat is applied to heat the light receiving surface. can do.

太陽光受光面104の発電セルで発電した電力は太陽発電パワーコントローラ112で電圧と周波数を調整され商用電源ライン113に逆潮流させたりヒートポンプ103の電源に利用される。ヒートポンプ103への電力が不足したときには系統連携電源ライン114を通じて商用電源ライン113から電力の供給を受ける。それ以外の実際の電力の授受はここでは省略しており、取り上げて検討はしない。
熱源動力装置であるヒートポンプユニット103を作動させて熱出力するモードは次のようなものがある。まずその1は、冷熱蓄熱槽102に冷熱を蓄熱しながら熱を得て、温熱蓄熱槽101に温熱を蓄熱するモードで、冷熱で冷房を温熱で給湯を行う時である。その2は受熱用基板熱シンク107から熱を得て温熱蓄熱槽101に、場合によっては冷熱蓄熱槽102にも温熱蓄熱するモードで冬に給湯用と暖房用の蓄熱をするモードである。
The electric power generated by the power generation cell on the solar light receiving surface 104 is adjusted in voltage and frequency by the solar power generation power controller 112 and is reversely flowed to the commercial power supply line 113 or used as a power source for the heat pump 103. When power to the heat pump 103 is insufficient, power is supplied from the commercial power supply line 113 through the system linkage power supply line 114. The other actual power exchanges are omitted here and will not be discussed.
There are the following modes for operating the heat pump unit 103, which is a heat source power unit, to output heat. First, in the first mode, heat is obtained while accumulating cold energy in the cold energy storage tank 102 and heat is accumulated in the heat energy storage tank 101. The second mode is a mode in which heat is stored for hot water supply and heating in winter in a mode in which heat is obtained from the heat receiving substrate heat sink 107 and stored in the thermal heat storage tank 101, and in some cases also in the cold heat storage tank 102.

その3はその1とその2を足し合わせたモードで、受熱用基板熱シンク107と冷熱蓄熱槽の双方から熱を得てそれらを冷却し、温熱蓄熱槽に蓄熱し、夏に冷房しながら大量の給湯需要のあった時に対応するモードである。その4は室外熱交換器で室外空気から熱を得てその熱を温熱蓄熱槽101と冷熱蓄熱槽102に蓄熱し双方で雨や曇りの時に給湯と暖房を行うモードである。その5は冷熱蓄熱槽を冷却し室外空気に放熱し、夏に給湯負荷が小さな時に運転するモードである。その6は熱を室外気から得てその熱で受熱用基板熱シンク107を加熱し太陽光受光面104を加熱して積もった雪を融雪するモードである。 Part 3 is a mode in which part 1 and part 2 are added, and heat is obtained from both the heat sink 107 for receiving heat and the cold storage tank, cools them, stores the heat in the thermal storage tank, and cools in the summer. This mode corresponds to when there is demand for hot water. The fourth mode is a mode in which heat is obtained from the outdoor air by an outdoor heat exchanger, and the heat is stored in the heat storage tank 101 and the cold storage tank 102, and hot water is supplied and heated when it is raining or cloudy. The fifth mode is a mode in which the cold heat storage tank is cooled and radiated to the outdoor air, and is operated when the hot water supply load is small in summer. The sixth mode is a mode in which heat is obtained from outdoor air, the substrate heat sink 107 for receiving heat is heated by the heat, and the sunlight receiving surface 104 is heated to melt the accumulated snow.

その7は受熱用基板熱シンク107を加熱して融雪する目的はその6に同じであるが、積雪量が多い、外気温度が低いなどで融雪が進まないときに温熱蓄熱槽102の熱を利用するモードである。その8は室外空気から吸熱して冷熱蓄熱槽を加熱するもので、冷熱蓄熱槽を30℃程度に予熱しておくモードである。その9としてその熱をさらに汲み上げて温熱蓄熱槽に蓄熱するモードがその後に引き続き運転されるもので、給湯と暖房の熱の使用量に従ってその9のモードで追加加熱する場合である。その10はその8の様に蓄熱した状態で給湯用の水道水を冷熱蓄熱槽で30℃近くまで予熱しておいてさらに温熱蓄熱槽102に連通させて45℃程度に加熱して給湯するもので、その8のヒートポンプ運転は凝縮温度が低くできるためその運転エネルギー効率が高く、どうしても昼間の高価格な電力を利用するときに選択されるモードである。 The purpose of No. 7 is to melt the snow by heating the heat sink substrate heat sink 107, but the heat of the thermal heat storage tank 102 is used when the snow melting does not proceed due to a large amount of snow or a low outside air temperature. It is a mode to do. Part 8 is a mode in which the cold heat storage tank is heated by absorbing heat from outdoor air, and the cold heat storage tank is preheated to about 30 ° C. As the ninth mode, a mode in which the heat is further pumped and stored in the thermal heat storage tank is subsequently operated, and additional heating is performed in the ninth mode according to the amount of heat used for hot water supply and heating. No. 10 is preheated to about 30 ° C in a cold heat storage tank with hot water stored in the state of heat storage as in No. 8, and further heated to about 45 ° C by communicating with the hot heat storage tank 102 to supply hot water. The heat pump operation No. 8 has a high operation energy efficiency because the condensation temperature can be lowered, and is a mode that is selected when using expensive electric power in the daytime.

以上の様なヒートポンプユニットの運転モードで温熱蓄熱槽101と冷熱蓄熱槽102に蓄熱された温冷熱は熱媒体熱交換器の熱出力媒体循環管路を通る熱出力媒体に次のようにその熱を伝える。温熱蓄熱槽101へは給湯用の水道水と暖房空調用の炭酸ガスが連通されており、冷熱蓄熱槽102には給湯用の水道水と冷房空調用の炭酸ガスが連通されている。炭酸ガスは図示しないが二つの電動ポンプにより作動されて暖房用と冷房用の空調媒体ライン118を通って各室内ユニット端末である空調用室内機119、空調壁面パネル120、床暖房パネル120等に連通されそこで暖房乃至は冷房を行って元に戻る。
その時にどの室内機端末を選択するかはシステム制御により自動的に乃至は使用者の選択により決定される。
In the operation mode of the heat pump unit as described above, the hot / cold heat stored in the hot heat storage tank 101 and the cold heat storage tank 102 is transferred to the heat output medium passing through the heat output medium circulation line of the heat medium heat exchanger as follows. Tell. Hot water supply tap water and heating / air-conditioning carbon dioxide gas are communicated with the thermal heat storage tank 101, and hot water supply tap water and cooling / air-conditioning carbon dioxide gas are communicated with the cold / heat storage tank 102. Although not shown, the carbon dioxide gas is operated by two electric pumps and passes through the air conditioning medium line 118 for heating and cooling to the indoor unit 119, the air conditioning wall panel 120, the floor heating panel 120, etc. which are each indoor unit terminal. It is communicated, and then heating or cooling is performed to return to the original state.
Which indoor unit terminal is selected at that time is automatically determined by the system control or selected by the user.

炭酸ガスは作動容積流量が少なくて性能が確保できるという利点があるが、暖房時には作動温度は50℃前後なので臨界点温度31℃を超えた超臨界流体の状態で相変化無しに熱の授受を行うため熱交換によりガス自体に温度差が生じること、及び圧力が100気圧程度と高いこと、及び超臨界流体用の特殊ポンプが必要となること等のコストアップ要因その他の課題がある。そこで不凍液に潜熱蓄熱材料を封入した微小カプセルを混ぜてエマルジョン状態にしたものも検討されてきている。どの媒体が適正かは作動ポンプの信頼性、コスト、消費電力なども含めて総合検討の上で判断される。 Carbon dioxide gas has the advantage that the operating volume flow rate is small and the performance can be secured, but since the operating temperature is around 50 ° C during heating, heat is transferred without phase change in a supercritical fluid state where the critical point temperature exceeds 31 ° C. Therefore, there is a cost increase factor and other problems such as a temperature difference in the gas itself due to heat exchange, a high pressure of about 100 atm, and a need for a special pump for supercritical fluid. Therefore, an emulsion in which a microcapsule in which a latent heat storage material is encapsulated in an antifreeze solution is mixed has been studied. Which medium is appropriate is judged after comprehensive consideration including the reliability, cost, power consumption, etc. of the working pump.

室内温度分布を少なくし、ドラフトを軽減させ、運転騒音を低下させるなどを目的に同一の室内空間に対し2つの室内機端末を用いることも多い。その場合片方を暖房、片方を冷房に設定し、結果として室内全体の温度を変えずに除湿のみに効果のある運転を行う事ができる。一方給湯用の温水は温湯供給ライン117を通して各給湯端末に運ばれる。この時、水道水の経路は上記に説明した通り温熱蓄熱槽101のみの場合もあるが、予熱として温水貯蓄された冷熱蓄熱槽102に一旦経由してから温熱蓄熱槽101に連通させる場合もある。
両蓄熱槽内の熱媒体熱交換器の熱出力媒体循環管路はこの場合給湯用水道水と空調用媒体が連通される。さらに風呂用の追い炊き用などに3本目の熱出力媒体循環管路が使われる場合もある。一方熱源媒体循環管路には上記のヒートポンプ冷媒のみでなく、ガスコージェネレイション排熱用媒体など他の熱源媒体が連通され、選択的に運転されるケースもある。
In many cases, two indoor unit terminals are used for the same indoor space for the purpose of reducing the indoor temperature distribution, reducing drafts, and reducing operating noise. In this case, one side is set to heating and the other side is set to cooling. As a result, it is possible to perform an operation effective only for dehumidification without changing the temperature of the entire room. On the other hand, hot water for hot water supply is conveyed to each hot water supply terminal through the hot water supply line 117. At this time, the tap water path may be only the thermal heat storage tank 101 as described above, but may be communicated with the thermal heat storage tank 101 once through the cold heat storage tank 102 stored as hot water as preheating. .
In this case, the heat output medium circulation pipes of the heat medium heat exchangers in both the heat storage tanks communicate the hot water supply tap water and the air conditioning medium. Furthermore, a third heat output medium circulation pipe may be used for additional cooking for a bath. On the other hand, in addition to the heat pump refrigerant described above, other heat source media such as a gas cogeneration exhaust heat medium communicate with the heat source medium circulation pipe and may be selectively operated.

以上のシステムは太陽光コジェネレイション装置123から出力される電力と熱を有効に利用し、ある時は電力は商用電源ライン113に逆潮流され、ある時は商用電力ラインから電力を受けてヒートポンプユニットを作動させる。太陽光コジェネレイション装置123から出力される熱はヒートポンプユニット103を通して蓄熱槽100に蓄熱され暖房と給湯用に使われる。その熱源が不足した時にはヒートポンプユニットは大気熱源で作動して蓄熱熱量不足を補完する。それを受けて蓄熱槽120は熱を臨機に受け入れ臨機に多くの対象に出力する極めて自在な適応性を持った蓄熱システムを実現でき、その中心的な技術はそこに組み込まれた熱媒体熱交換器である事が知れる。 The above system effectively uses the electric power and heat output from the solar cogeneration device 123. In some cases, the electric power is reversely flowed to the commercial power line 113, and in other cases, the heat pump unit receives electric power from the commercial electric power line. Is activated. Heat output from the solar cogeneration device 123 is stored in the heat storage tank 100 through the heat pump unit 103 and used for heating and hot water supply. When the heat source is insufficient, the heat pump unit operates with an atmospheric heat source to compensate for the shortage of stored heat. In response to this, the heat storage tank 120 can realize an extremely flexible heat storage system that accepts heat on an occasional basis and outputs it to many targets on an occasional basis, and its core technology is the heat medium heat exchange incorporated therein. It is known that it is a vessel.

図5は給湯を行うシステムの性能を飛躍的に向上させる乃至は蓄熱槽の容量を低減させる事ができる技術に使われる予熱用熱交換器付きの熱交換器型蓄熱システムを示している。各部の構成は殆ど図3と同じシステムである。相違点は予熱用熱交換器13を蓄熱容器20の上部空間9の中に設けている点である。これは水道水とヒートポンプユニットの冷凍サイクルの冷媒とを熱交換させる為のもので、二重管であったり、2つの管路をロー付けした構造であったりする。前夜の深夜電力でヒートポンプユニットを作動させ、次の日に温水を多量に消費して不足しそうな事が推定されたとき、昼間の電力を利用してヒートポンプユニットを作動させ予熱用熱交換器で水道水を予熱するものである。 FIG. 5 shows a heat exchanger type heat storage system with a preheating heat exchanger used in a technique that can dramatically improve the performance of a hot water supply system or reduce the capacity of a heat storage tank. The configuration of each part is almost the same system as in FIG. The difference is that a preheating heat exchanger 13 is provided in the upper space 9 of the heat storage container 20. This is for exchanging heat between the tap water and the refrigerant of the refrigeration cycle of the heat pump unit, and may be a double pipe or a structure in which two pipes are brazed. When the heat pump unit is operated at midnight power the previous night, and it is estimated that the next day will consume a lot of hot water, the heat pump unit is operated using daytime power and the heat exchanger for preheating is used. It preheats tap water.

これにより予熱された分だけ、蓄熱槽内の蓄熱された熱の使用量は減少し、長持ちする。他方25℃以下の低温度の水道水に放熱するのでヒートポンプユニットの冷凍サイクルの凝縮温度は低くなり圧縮機の消費電力は低減し、省エネ運転で電気代が少なくなり、地球温暖化の炭酸ガスの発生も抑えられる。この効果を最初から考慮して蓄熱槽の蓄熱材の容量を少なく設定する事もできる。即ち先に提示した事例で言えば、400Lの蓄熱槽が必要な家庭用のシステムでは、この効果を踏まえて300Lに少なくしても、この予熱用熱交換器13を設ける事により同等の蓄熱効果を得る事が可能である。 As a result, the amount of heat stored in the heat storage tank is reduced by the amount preheated, which lasts longer. On the other hand, heat is dissipated to low-temperature tap water of 25 ° C or lower, so the condensation temperature of the refrigeration cycle of the heat pump unit is lowered, the power consumption of the compressor is reduced, and the electricity bill is reduced by energy-saving operation. Occurrence is also suppressed. Considering this effect from the beginning, the capacity of the heat storage material of the heat storage tank can be set to be small. In other words, in the case of the system presented above, in a home system that requires a 400 liter heat storage tank, even if it is reduced to 300 liters based on this effect, the heat storage effect equivalent to that provided by providing this preheating heat exchanger 13 is achieved. Can be obtained.

例えば水道水給水温度が20℃で蓄熱温度が50℃蓄熱容量が400Lであり、給湯温度が48℃の場合では予熱方式により全ての給湯運転で30℃まで予熱する運手を行った場合、蓄熱材で加熱しなければならない温度差が28℃から18℃に低減するので実際蓄熱槽が給湯に使える容量はその比だけ増えて622Lとなり、1.55倍の効果が得られる。 For example, when the tap water supply temperature is 20 ° C., the heat storage temperature is 50 ° C., the heat storage capacity is 400 L, and the hot water supply temperature is 48 ° C. Since the temperature difference that must be heated with the material is reduced from 28 ° C. to 18 ° C., the capacity that the actual heat storage tank can use for hot water supply increases by that ratio to 622 L, which is 1.55 times more effective.

実際には予熱用熱交換器13のスペースが必要でその効果は目減りするが、それを考慮しても1.3倍程度の効果は得られる。この予熱の効果は潜熱蓄熱材を用いる熱交換器型蓄熱システムではない現状方式では得る事ができない。従って先に算出した温水蓄熱に対する本発明による蓄熱容量増加の効果は約2.0倍であるので、この1.3倍と併せて2.6倍となる。即ち温水蓄熱に対し本発明による水道水予熱を伴なった潜熱蓄熱システムではその蓄熱槽容積を2.6分の1に小さくできるわけである。
図5に示した蓄熱容器20に於いては容器前面12は上半分になっている。容器の水密シール性、強度の点では図3より優れるが、潜熱蓄熱材ブロック7の挿入性では劣っている。潜熱蓄熱材ブロックの高さからみて挿入作業は可能であり、この方式が最も実用的と思われる。小さなカプセル式の潜熱蓄熱材の場合はむしろ上面のみが開口する方式で良いと考えられる。図5では容器前面10は中間部から上部の半分にしており、潜熱蓄熱材ブロックはこの部分まで持ち上げてから挿入することになる。
Actually, the space for the preheating heat exchanger 13 is necessary and its effect is diminished, but the effect of about 1.3 times can be obtained even in consideration thereof. The effect of this preheating cannot be obtained by a current system that is not a heat exchanger type heat storage system using a latent heat storage material. Therefore, since the effect of the increase in the heat storage capacity according to the present invention with respect to the previously calculated hot water heat storage is about 2.0 times, it is 2.6 times in combination with this 1.3 times. That is, in the latent heat storage system with hot water heat storage accompanied by tap water preheating according to the present invention, the heat storage tank volume can be reduced to 1/2.
In the heat storage container 20 shown in FIG. 5, the container front surface 12 is an upper half. Although it is superior to FIG. 3 in terms of the watertight sealability and strength of the container, the insertability of the latent heat storage block 7 is inferior. Insertion work is possible in view of the height of the latent heat storage material block, and this method seems to be the most practical. In the case of a small capsule-type latent heat storage material, it is considered that a method in which only the upper surface opens is sufficient. In FIG. 5, the container front surface 10 is half from the middle part to the upper part, and the latent heat storage block is inserted after being lifted up to this part.

給湯用熱媒体熱交換器Heat exchanger for hot water supply 多循環管路の熱媒体用熱交換器の管路出入り口部Pipe entry / exit part of heat exchanger for heat transfer medium of multi-circulation pipe 給湯用熱交換器型蓄熱システムHeat exchanger type heat storage system for hot water supply 蓄熱システム利用太陽光空調給湯システムSolar air conditioning hot water supply system using heat storage system 水道水予熱式熱交換器型蓄熱システムTap water preheating heat exchanger type heat storage system

符号の説明Explanation of symbols

1 偏平多穴管
2 循環管路接続管フレア
3 循環管路接続管
4 循環管路用穴
5 熱源媒体流路方向
6 熱出力媒体流路方向
7 潜熱蓄熱材ブロック
8 充填液
9 上部空間
10 容器本体
11 均圧膜
12 容器前面
13 予熱用熱交換器
15 室外空気
16 熱交換器型蓄熱システム
17 熱媒体循環管路
18 蛇行ピッチ
19 穴ピッチ
20 蓄熱容器
21 熱媒体熱交換器
100蓄熱槽
101温熱蓄熱槽
102冷熱蓄熱槽
103ヒートポンプユニット
104太陽光受光面
105太陽光
106太陽光受熱用基板
107受熱用基板熱シンク
108太陽光冷凍サイクル管路
109温熱蓄熱冷凍サイクル管路
110冷熱蓄熱冷凍サイクル管路
111太陽光発電リード
112太陽発電パワーコントローラー
113商用電源ライン
114系統連携電源ライン
115ヒートポンプ用電源ライン
116水道水供給ライン
117温湯供給ライン
118空調媒体ライン
119空調用室内機
120空調壁面パネル
121床暖房パネル
122予熱熱交換器付き熱交換器型蓄熱システム
123太陽光コジェネレイション装置
1 Flat multi-hole tube
2 Circulating line connecting pipe flare 3 Circulating line connecting pipe 4 Circulating line hole 5 Heat source medium flow path direction 6 Heat output medium flow path direction 7 Latent heat storage material block 8 Filling liquid 9 Upper space 10 Container body 11 Pressure equalizing film DESCRIPTION OF SYMBOLS 12 Container front surface 13 Preheating heat exchanger 15 Outdoor air 16 Heat exchanger type heat storage system 17 Heat medium circulation line 18 Meander pitch 19 Hole pitch 20 Heat storage container 21 Heat medium heat exchanger 100 Heat storage tank 101 Thermal storage tank 102 Cold storage Tank 103 Heat pump unit 104 Solar light receiving surface 105 Solar light 106 Solar heat receiving substrate 107 Heat receiving substrate heat sink 108 Solar refrigeration cycle conduit 109 Thermal storage refrigeration cycle conduit 110 Cold thermal storage refrigeration cycle conduit 111 Solar power generation lead 112 Solar power controller 113 Commercial power line 114 Power supply line 115 Power supply line for heat pump 115 Down 116 tap water supply line 117 hot water supply line 118 conditioned medium line 119 the air conditioning indoor unit 120 the air conditioner wall panel 121 Floor heating panel 122 preheater heat exchanger with a heat exchanger heat-utilization system 123 solar cogeneration Ray Deployment device

Claims (5)

蓄熱槽の外部からの熱源媒体を連通させる熱源媒体循環管路と該蓄熱槽の外部へ向けての熱出力媒体を連通させる熱出力媒体循環管路とを内部に持って一体構造に組み立てられた金属製の熱媒体熱交換器と該熱媒体熱交換器の外表面に隣接して蓄熱材を設置することにより該熱源媒体と該熱出力媒体が熱交換できると共に両媒体夫々が該熱媒体熱交換器全体の外表面を通じて該蓄熱材と伝熱できるように構成し、それらを内部が大気圧に近いか等しい圧力に保った蓄熱容器内に収納して前記蓄熱槽と成し、
冷房空調シーズンに給水や洗面やトイレその他に使われるべく供給される水道水の温度より高い温度に融解温度を設定した潜熱蓄熱材を前記蓄熱材として用い、前記熱出力媒体として前記水道水を前記熱出力媒体循環管路に連通させてその冷熱を前記蓄熱材に蓄熱して凝固させ、一方冷房運転を行う時に空調装置であるヒートポンプユニットの冷凍サイクルの高温高圧冷媒を一旦屋外空気熱交換器で冷却した後に前記熱源媒体として前記熱源媒体循環管路に連通させて前記蓄熱材を融解させながら放熱させた事を特徴とした熱交換器型蓄熱システム。
The heat source medium circulation pipe that communicates the heat source medium from the outside of the heat storage tank and the heat output medium circulation pipe that communicates the heat output medium toward the outside of the heat storage tank are assembled in an integrated structure. By installing a heat storage material made of metal and a heat storage material adjacent to the outer surface of the heat medium heat exchanger, heat can be exchanged between the heat source medium and the heat output medium, and both mediums can heat the heat medium heat. It is configured to be able to transfer heat with the heat storage material through the outer surface of the entire exchanger, and the heat storage tank is formed by storing them in a heat storage container whose interior is maintained at a pressure close to or equal to atmospheric pressure,
With latent heat storage material set melting temperature to a temperature higher than the temperature of the tap water supplied to be used in water or wash or toilet Other cooling air conditioning season as the heat storage material, the said tap water as the heat output medium The cold heat is stored in the heat storage material to be solidified by communicating with the heat output medium circulation pipe , while the high-temperature and high-pressure refrigerant of the refrigeration cycle of the heat pump unit, which is an air conditioner, is temporarily stored in an outdoor air heat exchanger. A heat exchanger type heat storage system characterized in that after cooling, the heat source medium is communicated with the heat source medium circulation pipe to dissipate heat while melting the heat storage material.
蓄熱槽の外部からの熱源媒体を連通させる熱源媒体循環管路と該蓄熱槽の外部へ向けての熱出力媒体を連通させる熱出力媒体循環管路とを内部に持って一体構造に組み立てられた金属製の熱媒体熱交換器と該熱媒体熱交換器の外表面に隣接して蓄熱材を設置することにより該熱源媒体と該熱出力媒体が熱交換できると共に両媒体夫々が該熱媒体熱交換器全体の外表面を通じて該蓄熱材と伝熱できるように構成し、それらを内部が大気圧に近いか等しい圧力に保った蓄熱容器内に収納して前記蓄熱槽と成し、
前記蓄熱容器を高分子樹脂材料のフィルムシートを用いて上部が広く開放された袋状となし、前記蓄熱容器を蓄熱槽を構成する金属板等で構成される筐体の内面乃至は前記筐体に取り付けた断熱パネルの内面に接する状態で設置させ、該袋状容器の内部に前記熱媒体熱交換器と前記蓄熱材を収納した状態で上部解放部を封止させて該蓄熱槽を構成した事を特徴とした熱交換器型蓄熱システム。
The heat source medium circulation pipe that communicates the heat source medium from the outside of the heat storage tank and the heat output medium circulation pipe that communicates the heat output medium toward the outside of the heat storage tank are assembled in an integrated structure. By installing a heat storage material made of metal and a heat storage material adjacent to the outer surface of the heat medium heat exchanger, heat can be exchanged between the heat source medium and the heat output medium, and both mediums can heat the heat medium heat. It is configured to be able to transfer heat with the heat storage material through the outer surface of the entire exchanger, and the heat storage tank is formed by storing them in a heat storage container whose interior is maintained at a pressure close to or equal to atmospheric pressure,
The heat storage container is formed into a bag shape having a wide open top using a film sheet made of a polymer resin material, and the inner surface of the casing or the casing is formed of a metal plate or the like constituting the heat storage tank. The heat storage tank was configured by sealing the upper open portion in a state where the heat medium heat exchanger and the heat storage material were housed in the bag-like container. Heat exchanger type heat storage system characterized by things.
蓄熱槽の外部からの熱源媒体を連通させる熱源媒体循環管路と該蓄熱槽の外部へ向けての熱出力媒体を連通させる熱出力媒体循環管路とを内部に持って一体構造に組み立てられた金属製の熱媒体熱交換器と該熱媒体熱交換器の外表面に隣接して蓄熱材を設置することにより該熱源媒体と該熱出力媒体が熱交換できると共に両媒体夫々が該熱媒体熱交換器全体の外表面を通じて該蓄熱材と伝熱できるように構成し、それらを内部が大気圧に近いか等しい圧力に保った蓄熱容器内に収納して前記蓄熱槽と成し、
前記蓄熱容器を、薄肉材料製のタンク状となし、金属板等で構成される筐体の内面乃至は筐体に取り付けた発泡材断熱パネル乃至は真空断熱パネルの内面に接する状態で設置させ、該タンク状容器の内部に前記熱媒体熱交換器と前記蓄熱材を収納して前記蓄熱槽を構成した事を特徴とした熱交換器型蓄熱システム。
The heat source medium circulation pipe that communicates the heat source medium from the outside of the heat storage tank and the heat output medium circulation pipe that communicates the heat output medium toward the outside of the heat storage tank are assembled in an integrated structure. By installing a heat storage material made of metal and a heat storage material adjacent to the outer surface of the heat medium heat exchanger, heat can be exchanged between the heat source medium and the heat output medium, and both mediums can heat the heat medium heat. It is configured to be able to transfer heat with the heat storage material through the outer surface of the entire exchanger, and the heat storage tank is formed by storing them in a heat storage container whose interior is maintained at a pressure close to or equal to atmospheric pressure,
The heat storage container is in the form of a tank made of a thin material, and is installed in a state where it is in contact with the inner surface of the casing constituted by a metal plate or the like or the foam insulation panel attached to the casing or the inner surface of the vacuum insulation panel , A heat exchanger type heat storage system characterized in that the heat storage tank is configured by housing the heat medium heat exchanger and the heat storage material inside the tank-shaped container.
蓄熱容器内に金属製の熱媒体熱交換器と該熱媒体熱交換器の外表面に隣接して蓄熱材を設置することにより熱源媒体熱出力媒体が熱交換できると共に両媒体夫々が該熱媒体熱交換器全体の外表面を通じて該蓄熱材と伝熱できるように構成し、
冷房空調シーズンに建物の給水や洗面やトイレその他に使われるべく供給される水道水の温度より高い温度に融解温度を設定した潜熱蓄熱材を前記蓄熱材として用い、
前記水道水の冷熱を前記熱媒体熱交換器を通して前記蓄熱材に蓄熱して凝固させ、一方冷房運転を行う時に空調装置であるヒートポンプユニットの冷凍サイクルの高温高圧冷媒を前記熱媒体熱交換器に連通させて前記蓄熱材を融解させながら放熱させた事を特徴とした熱交換器型蓄熱システム。
Both media each have the with heat medium and the heat output medium body by adjacent to the outer surface of the metal heat-medium heat exchanger and the heat medium heat exchanger installing a heat storage material in the heat storage container can be heat-exchange It is configured to transfer heat with the heat storage material through the outer surface of the entire heat medium heat exchanger,
Using a latent heat storage material with a melting temperature set to a temperature higher than the temperature of tap water supplied to be used for building water supply, toilets, toilets, etc. in the air conditioning season, as the heat storage material,
The cold heat of the tap water is stored and solidified in the heat storage material through the heat medium heat exchanger, while the high-temperature and high-pressure refrigerant of the refrigeration cycle of the heat pump unit that is an air conditioner is used for the heat medium heat exchanger when performing cooling operation. A heat exchanger type heat storage system characterized in that the heat storage material is dissipated to release heat while melting .
前記蓄熱材として潜熱蓄熱材を用いて小さな袋乃至は小容器などに詰めてブロック状にした多数のブロック状潜熱蓄熱材又は小さな樹脂製カプセルに潜熱蓄熱材を封入したカプセル状潜熱蓄熱材と前記熱媒体熱交換器とを前記蓄熱容器内の袋状容器乃至はタンク状容器に収納した後に前記潜熱蓄熱材の融解温度より低温の融解温度を持ち、且つ前記潜熱蓄熱材の融解時の比重に対し融解温度付近で70%以上130%以下の比重の充填用液体を前記潜熱蓄熱材と前記熱媒体熱交換器の間に充填し、且つ前記充填用液体を満たした前記容器内の空間を外気に近い乃至は等しい圧力に保った状態で外気と密閉構造とした事を特徴とした請求項1、2、3、4に記載の熱交換器型蓄熱システム。A large number of block-like latent heat storage materials packed into a small bag or small container using a latent heat storage material as the heat storage material, or a capsule-like latent heat storage material in which a latent heat storage material is sealed in a small resin capsule, and The heat medium heat exchanger has a melting temperature lower than the melting temperature of the latent heat storage material after being stored in the bag-like container or tank-like container in the heat storage container, and has a specific gravity at the time of melting of the latent heat storage material. In contrast, a filling liquid having a specific gravity of 70% or more and 130% or less near the melting temperature is filled between the latent heat storage material and the heat medium heat exchanger, and the space inside the container filled with the filling liquid is outside air. The heat exchanger type heat storage system according to any one of claims 1, 2, 3, and 4, wherein the outside air and the sealed structure are maintained in a state where the pressure is close to or equal to.
JP2006242210A 2006-09-07 2006-09-07 Heat exchanger type heat storage system Expired - Fee Related JP5391499B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006242210A JP5391499B2 (en) 2006-09-07 2006-09-07 Heat exchanger type heat storage system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006242210A JP5391499B2 (en) 2006-09-07 2006-09-07 Heat exchanger type heat storage system

Publications (2)

Publication Number Publication Date
JP2008064372A JP2008064372A (en) 2008-03-21
JP5391499B2 true JP5391499B2 (en) 2014-01-15

Family

ID=39287245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006242210A Expired - Fee Related JP5391499B2 (en) 2006-09-07 2006-09-07 Heat exchanger type heat storage system

Country Status (1)

Country Link
JP (1) JP5391499B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101020214B1 (en) 2008-07-25 2011-03-07 노희숙 Heat storage brock
JP5282516B2 (en) * 2008-10-02 2013-09-04 東京電力株式会社 Power supply device, compression refrigerant cycle device, and hot water storage hot water supply system
CH703162A1 (en) * 2010-05-17 2011-11-30 Cosseco Sa energy recovery system renewable.
JP5944620B2 (en) * 2011-02-21 2016-07-05 株式会社豊田中央研究所 Chemical heat storage heat transport device and heat exchange reactor
JP5707546B2 (en) * 2011-04-11 2015-04-30 三菱日立パワーシステムズ株式会社 Solar thermal boiler system
JP5933731B2 (en) 2012-09-28 2016-06-15 ダイキン工業株式会社 Thermal storage heat exchanger
CN104567096A (en) * 2013-10-21 2015-04-29 朱绍伟 Heat exchange unit of water chilling and warming machine and operating method thereof
JP6394178B2 (en) * 2014-08-22 2018-09-26 ダイキン工業株式会社 Heat storage device
CN106549194A (en) * 2017-01-18 2017-03-29 华霆(合肥)动力技术有限公司 Intrinsic pressure self-balancing heat abstractor and supply unit
CN108317714A (en) * 2018-04-23 2018-07-24 李社红 A kind of buffering energy storage tank of naturally interior cycle dual temperature output
CN108692352A (en) * 2018-08-17 2018-10-23 国电龙源电力技术工程有限责任公司 Heating system and method suitable for steam power plant's peak tune
CN110274292A (en) * 2019-06-12 2019-09-24 国电南瑞科技股份有限公司 A kind of heating system and method
JP6668551B1 (en) * 2019-10-30 2020-03-18 株式会社土谷特殊農機具製作所 Heat source storage system using photovoltaic power generation
CN113720017B (en) * 2021-06-24 2022-12-13 江苏东南环保科技有限公司 Fused salt electricity heat accumulation dynamic adjustment boiler
CN113548705A (en) * 2021-09-01 2021-10-26 中国科学院武汉病毒研究所 Heat exchange system and method for continuous wastewater treatment in biosafety laboratory
CN113915699A (en) * 2021-10-14 2022-01-11 中国科学院电工研究所 Compact cold accumulation device
CN114815927B (en) * 2022-05-24 2024-01-09 国网江苏省电力有限公司泰州供电分公司 Large-scale power supply temperature control system of power distribution station
CN117006734A (en) * 2023-07-24 2023-11-07 中建三局集团有限公司 Three-phase absorption type heat storage system

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6321489A (en) * 1986-07-15 1988-01-29 Showa Alum Corp Latent heat storage device
JP2709073B2 (en) * 1987-04-28 1998-02-04 財団法人電力中央研究所 Cooling / heating hot water supply cycle and heating / hot water supply cycle
JPH0289994A (en) * 1988-09-27 1990-03-29 Kubota Ltd Latent heat accumulating body
JPH02219962A (en) * 1989-02-20 1990-09-03 Toshiba Corp Reversible freezing cycle
JPH055582A (en) * 1991-06-26 1993-01-14 Mitsubishi Heavy Ind Ltd Heat storage heat exchanger and heat pump air conditioner using the same
JP2967306B2 (en) * 1991-08-01 1999-10-25 大成建設株式会社 Underground storage tank structure and construction method of underground storage tank
JPH0894189A (en) * 1994-09-21 1996-04-12 Ig Tech Res Inc Solar energy collecting device combinedly used for melting snow on roof
JPH1038401A (en) * 1996-07-24 1998-02-13 Daikin Ind Ltd Heat storage type freezer
JPH1047712A (en) * 1996-08-06 1998-02-20 Kansai Electric Power Co Inc:The Cooling and heating system
JP2001041478A (en) * 1999-08-02 2001-02-13 Toshiba Electric Appliance Co Ltd Hot water storage type hot water supply device
JP2002022270A (en) * 2000-07-07 2002-01-23 Sanyo Electric Co Ltd Heat pump type hot water feeding device
JP2002168580A (en) * 2000-11-30 2002-06-14 National House Industrial Co Ltd Heat storage structure
JP2002333217A (en) * 2001-05-14 2002-11-22 Matsushita Electric Ind Co Ltd Apparatus for utilizing solar photovoltaic heat
JP3858108B2 (en) * 2002-01-25 2006-12-13 株式会社ヤノ技研 Thermal storage tank and its assembly method
JP3915637B2 (en) * 2002-09-06 2007-05-16 ダイキン工業株式会社 Water heater
JP2005195187A (en) * 2003-12-26 2005-07-21 Matsushita Electric Ind Co Ltd Solar heat pump system
JP2005326078A (en) * 2004-05-14 2005-11-24 Matsushita Electric Ind Co Ltd Heat pump hot water supply device
JP4254648B2 (en) * 2004-07-30 2009-04-15 ダイキン工業株式会社 Heating system

Also Published As

Publication number Publication date
JP2008064372A (en) 2008-03-21

Similar Documents

Publication Publication Date Title
JP5391499B2 (en) Heat exchanger type heat storage system
US7827814B2 (en) Geothermal water heater
KR101761176B1 (en) Energy Storage System
KR101084569B1 (en) Hybrid hot water supplying system using solar collector and heat pump type air conditioner
JP5898493B2 (en) Energy storage system
EP2486331B1 (en) Heat storage system
KR101170981B1 (en) New Renewable Hybrid Heat supply and Control a method for The Same
WO2010081421A1 (en) Hybrid-driven cold/heat storage type heat pump unit utilizing solar photovoltaic power and commercial power
US20110314856A1 (en) Low-pressure high-efficiency aqua ammonia absorption heat pump system for BCHP residential use
JP2007255779A (en) Warm/cold heat supply system
KR102362508B1 (en) Control system for a solar assisted heat pump system with hybrid solar collectors
JP2008157483A (en) Photovoltaic heat pump system
JP2008180473A (en) Hybrid energy-using heat pump device
CN101818970A (en) Solar photovoltaic-mains supply hybrid-driven cool and heat storage heat pump unit
JP5067958B2 (en) Geothermal heat pump system and water heat pump system
CN105515527B (en) A kind of solar energy couples Multisource heat pump integrated system
JP5751599B2 (en) Hot water heating / cooling system
JP2007127291A (en) Heat utilizing system
CN212961846U (en) Heat pipe type photovoltaic photo-thermal module-heat pump-phase change material coupling system
CN114543217A (en) Embedded pipe type phase change enclosure structure system cooled by solar energy and sky radiation
CN113710076A (en) Flexible direct current transmission converter valve cooling system
CN112197333A (en) Ground source heat pump heating system based on photovoltaic power generation waste heat
Kaygusuz et al. Theoretical performance of solar heat pump residential heating applications
JP2005321123A (en) Solar system and its operating method
CN218301354U (en) Building integrated photovoltaic assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090907

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130927

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees