JP6805216B2 - Operation control method for solar heat utilization equipment - Google Patents

Operation control method for solar heat utilization equipment Download PDF

Info

Publication number
JP6805216B2
JP6805216B2 JP2018188891A JP2018188891A JP6805216B2 JP 6805216 B2 JP6805216 B2 JP 6805216B2 JP 2018188891 A JP2018188891 A JP 2018188891A JP 2018188891 A JP2018188891 A JP 2018188891A JP 6805216 B2 JP6805216 B2 JP 6805216B2
Authority
JP
Japan
Prior art keywords
air
heat
temperature
heating
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018188891A
Other languages
Japanese (ja)
Other versions
JP2020056555A (en
Inventor
▲ヒョン▼佑 盧
▲ヒョン▼佑 盧
相曽 一浩
一浩 相曽
真弘 鈴木
真弘 鈴木
真之 前
真之 前
Original Assignee
Omソーラー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omソーラー株式会社 filed Critical Omソーラー株式会社
Priority to JP2018188891A priority Critical patent/JP6805216B2/en
Publication of JP2020056555A publication Critical patent/JP2020056555A/en
Application granted granted Critical
Publication of JP6805216B2 publication Critical patent/JP6805216B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Central Air Conditioning (AREA)

Description

本発明は、空気を熱媒として日中の太陽熱の集熱を行い、これを暖房に用いるパッシブソーラー利用のソーラーシステムハウスなどで使用する太陽熱利用機器において、太陽熱、放射冷却とヒートポンプ空調熱交を合体した場合に効率よく運転できる太陽熱利用機器の運転制御方法に関するものである。 The present invention collects solar heat during the daytime using air as a heat medium, and uses it for heating in a solar system house that uses passive solar, etc. In a solar heat utilization device, solar heat, radiative cooling, and heat pump air conditioning heat exchange are performed. It relates to an operation control method of a solar heat utilization device that can be efficiently operated when combined.

住宅の高気密高断熱が整備され、従来の個別エアコンや間欠冷暖房から、住宅業界では全館空調への動きが加速している。 With the high airtightness and high heat insulation of houses, the movement from conventional individual air conditioners and intermittent heating and cooling to whole building air conditioning is accelerating in the housing industry.

例えば、太陽で温められる空気によって暖房等を行うソーラーシステムハウスとしては下記特許文献にもあるが、図33に示すようなものがある。
特許第4485539号公報
For example, as a solar system house that is heated by air heated by the sun, which is also described in the following patent documents, there is one as shown in FIG. 33.
Japanese Patent No. 4485539

これは集熱面であるカラー鉄板の金属製屋根板1の直下に屋根勾配を有する空気流路2を形成し、この空気流路2の一方の端は軒先に空気取入口3として開口し、さらに空気流路2の他方の端は集熱ダクト4に連通させる。屋根板1の一部は太陽電池23で覆い、太陽光発電を行う。 This forms an air flow path 2 having a roof gradient directly under the metal roof plate 1 of the colored iron plate which is a heat collecting surface, and one end of the air flow path 2 opens at the eaves as an air intake port 3. Further, the other end of the air flow path 2 communicates with the heat collecting duct 4. A part of the roof plate 1 is covered with a solar cell 23 to generate solar power.

内部に逆流防止兼流路切換えダンパー6、ファン7及び流路切換えダンパー8を設けたハンドリングボックス5を屋根裏空間である小屋裏33に設置し、ハンドリングボックス5の流路切換えダンパー8の流出側の一方は排気ダクト9により屋外に開口する。 A handling box 5 provided with a backflow prevention / flow path switching damper 6, a fan 7, and a flow path switching damper 8 is installed in the attic 33, which is an attic space, and is located on the outflow side of the flow path switching damper 8 of the handling box 5. One is opened outdoors by the exhaust duct 9.

また、ハンドリングボックス5の逆流防止兼流路切換えダンパー6の流入側は、前記集熱ダクト4に連通させる接続ダクト32と室内20からの循環ダクト18とに選択的に接続し、流路切換えダンパー8の流出側の他の一方を立下りダクト10の上端に連結する。 Further, the inflow side of the backflow prevention / flow path switching damper 6 of the handling box 5 is selectively connected to the connection duct 32 communicating with the heat collecting duct 4 and the circulation duct 18 from the room 20, and the flow path switching damper The other one on the outflow side of 8 is connected to the upper end of the falling duct 10.

立下りダクト10の下端は床下蓄熱体としての土間コンクリート11と床パネル12との間の空気流通空間13に開口した。さらに、該空気流通空間13から室内への床吹出口14を設けた。 The lower end of the falling duct 10 is opened in the air flow space 13 between the soil concrete 11 as the underfloor heat storage body and the floor panel 12. Further, a floor outlet 14 from the air flow space 13 to the room is provided.

ハンドリングボックス5の内部またはハンドリングボックス5集熱ダクト4との間にお湯とりコイル15を設け、このお湯とりコイル15は循環配管16で貯湯槽17に連結する。図示は省略するが貯湯槽17は循環ポンプと有し、また、必要に応じて追焚き用の給湯ボイラーを途中へ設けて、風呂や洗面所、台所へとつながる給湯配管をこの貯湯槽17に接続する。 A hot water collecting coil 15 is provided inside the handling box 5 or between the handling box 5 heat collecting duct 4, and the hot water collecting coil 15 is connected to the hot water storage tank 17 by a circulation pipe 16. Although not shown, the hot water storage tank 17 has a circulation pump, and if necessary, a hot water supply boiler for reheating is provided in the middle, and a hot water supply pipe connecting to a bath, a washroom, and a kitchen is provided in the hot water storage tank 17. Connecting.

このようにして、暖房が必要な冬の昼間は、軒先の空気取入口3から入った冷たい空気は、屋根板1に降り注ぐ太陽の熱によって徐々に暖められる。この温められた空気は屋根勾配に沿って上昇する。そして、この加熱空気は集熱ダクト4に集められてからファン7によりハンドリングボックス5に入り、ハンドリングボックス5から立下りダクト10内へ流下し、床下に送られる。 In this way, during the winter daytime when heating is required, the cold air entering from the air intake 3 at the eaves is gradually warmed by the heat of the sun falling on the roof plate 1. This warmed air rises along the roof slope. Then, the heated air is collected in the heat collecting duct 4, enters the handling box 5 by the fan 7, flows down from the handling box 5 into the falling duct 10, and is sent under the floor.

空気は床下に広がり、蓄熱土間コンクリート11に熱を奪われ(蓄えさせ)ながら、床吹出口14から温風として室内20へと流れ出る。夕方、外気温が下がり始める頃から、昼間蓄熱土間コンクリート11に蓄えられた熱が放熱を始め、床を温める。 The air spreads under the floor, and while the heat is taken away (stored) by the heat storage soil concrete 11, it flows out from the floor outlet 14 into the room 20 as warm air. In the evening, when the outside air temperature begins to drop, the heat stored in the daytime heat storage soil concrete 11 begins to dissipate heat and warms the floor.

夏の昼間は暖房の不要な期間であり、太陽熱で温められた空気は、昼間、貯湯槽17内の水を温めることに利用される。すなわち、流路切換えダンパー8の流出側を排気ダクト9に接続し、お湯とりコイル15で湯を作るだけで、前記排気ダクト9から戸外へ捨てられる。 Summer daytime is a period that does not require heating, and the air warmed by the sun is used to heat the water in the hot water storage tank 17 during the daytime. That is, only by connecting the outflow side of the flow path switching damper 8 to the exhaust duct 9 and making hot water with the hot water taking coil 15, the exhaust duct 9 is thrown out to the outside.

お湯とりコイル15では、ここに循環配管16を介して貯湯槽17から送り込まれる熱媒が加熱され、湯として貯湯槽17へ蓄えられ、さらにここから必要に応じて追焚き用の給湯ボイラーで再加熱されて給湯配管から各所へ給湯される。 In the hot water collecting coil 15, the heat medium sent from the hot water storage tank 17 via the circulation pipe 16 is heated and stored in the hot water storage tank 17 as hot water, and further, if necessary, is reheated by a hot water supply boiler for reheating. It is heated and hot water is supplied to various places from the hot water supply pipe.

快晴の日の雲のない夏の夜は、ファン7を駆動して軒先の空気取入口3から外気を空気流路2に取り込み、放射冷却現象(放射冷却で屋根全体が冷える)を利用して、涼しい外気を室内に取り込む。冷房のようには冷えないが、寝苦しくない夏の夜を演出できる。 On a cloudless summer night on a clear day, the fan 7 is driven to take in the outside air from the air intake 3 at the eaves into the air flow path 2, and the radiative cooling phenomenon (radiative cooling cools the entire roof) is used. , Take in cool outside air indoors. It doesn't get cold like an air conditioner, but it can produce a summer night that doesn't make you sleepy.

前記特許文献1に示す空気集熱式太陽熱床暖房システム(ソーラーシステムハウス)は暖房システムとして省エネ性・快適性ともに極めて優れているが、悪天候のときや冷房に対しては別の暖冷房システムが必要になっていた。 The air collecting type solar heat floor heating system (solar system house) shown in Patent Document 1 is extremely excellent in energy saving and comfort as a heating system, but another heating / cooling system is available in bad weather or for cooling. I needed it.

また、集熱しているときは換気システムとしてきわめてたくさんの換気量があり有効だが、夜間や夏期は別換気システムが必要になり、いずれも二重設備が必要だった。 In addition, when heat is being collected, there is an extremely large amount of ventilation as a ventilation system, which is effective, but at night and in the summer, a separate ventilation system was required, and both required dual equipment.

お湯採りシステムも雨天や曇天などのために給湯補助ボイラーなどの別システムが必要になり、空気集熱式太陽熱床暖房システムでも補助システムが必要で二重設備になるのが大きな課題だった。 The hot water collection system also requires a separate system such as a hot water supply auxiliary boiler due to rainy or cloudy weather, and the air collecting type solar heat floor heating system also requires an auxiliary system, and it was a big problem that it became a dual facility.

また、通常の住宅設備では居室分の空調設備(エアコン)が必要で屋外に5台〜6台の室外ユニットや貯湯槽などが必要で室内外の景観を悪化させるだけでなく、狭い敷地では設置スペースが取れないことや隣地との騒音や熱風等のトラブルがあった。 In addition, ordinary housing equipment requires air conditioning equipment (air conditioner) for the living room, and 5 to 6 outdoor units and hot water storage tanks are required outdoors, which not only deteriorates the indoor and outdoor landscape, but also installs it on a small site. There were problems such as lack of space, noise with the neighboring land, and hot air.

本発明の目的は前記従来例の不都合を解消し、太陽熱利用での省エネ性を生かしながら、二重設備の課題も解決し、ヒートポンプ空調熱交(空調機)と全熱交換器を一体に構成することでダクト設備や施工を軽減することができる太陽熱利用機器の制御方法を提供することにある。 An object of the present invention is to solve the inconvenience of the above-mentioned conventional example, to solve the problem of dual equipment while making the best use of energy saving by utilizing solar heat, and to integrally configure a heat pump air conditioning heat exchange (air conditioner) and a total heat exchanger. The purpose is to provide a control method for duct equipment and solar heat utilization equipment that can reduce construction work.

前記目的を達成するため請求項1記載の本発明は、ダンパーおよびファンを設けた屋内ユニットとしてのハンドリングボックスを屋根集熱部に直接または間接的に連結し、ハンドリングボックスからのダクトを屋内もしくは床下空間に導くソーラーシステムハウスにおいて、ヒートポンプによる屋外ユニット、貯湯ユニットを備え、また、ハンドリングボックスに外気と室内空気を全熱交換器で熱交換した換気空気と室内戻り空気を混合した空気を温調するヒートポンプの空調熱交を設置し、温度センサー、温度設定用のリモコン、コンピュータによる制御装置を備え、制御装置による運転モードとして冷房モードと暖房モードを有し、季節モードとして冬期モード、中間期モード、夏期モードを有し、温度センサーによる制御装置の季節判断として、外気温が冬期モードの判定温度である18℃、もしくはその前後の温度以下では常時暖房モードを選択し、外気温が夏期モードの判定温度、25℃もしくはその前後の温度では常時冷房モードを選択し、外気温がそれ以外の場合では中間期モードとしたときに、室温が冷房設定温度、27℃もしくはその前後の温度から−2℃までは暖房モードを選択しそれを越えたら冷房モードを選択し、室温が暖房設定温度、18℃もしくはその前後の温度から+2℃未満は冷房モードを選択しそれを越えたら暖房モードを選択した場合、前記暖房モードでは、集熱可能な条件として、集熱空気温度が外気と室内空気を全熱交換器で熱交換した換気空気温度より高い場合は、屋根集熱部からの集熱空気を取り入れハンドリングボックスからのダクトを介して屋内もしくは床下空間に導く太陽熱集熱暖房を行い、集熱空気温度が換気空気温度より低くかつ室温が暖房設定温度より低い場合は、太陽熱集熱暖房しながらヒートポンプで暖房し、前記冷房モードでは、室内空気はハンドリングボックスを介して屋根集熱部を通して排気し、冷房設定温度より室温が高いときは、全熱交換器を通した換気空気と室内空気を混合して吸い込んでヒートポンプで冷房することを要旨とするものである。 In order to achieve the above object, the present invention according to claim 1 connects a handling box as an indoor unit provided with a damper and a fan directly or indirectly to a roof heat collecting portion, and connects a duct from the handling box indoors or under the floor. In the solar system house that leads to the space, it is equipped with an outdoor unit and a hot water storage unit using a heat pump, and the handling box is temperature-controlled by mixing ventilation air and indoor return air that exchange heat between outside air and indoor air with a total heat exchanger. It is equipped with an air conditioning heat exchange of a heat pump, a temperature sensor, a remote control for temperature setting, and a control device by a computer. It has a cooling mode and a heating mode as operation modes by the control device, and winter mode and intermediate mode as seasonal modes. It has a summer mode, and as a seasonal judgment of the control device by the temperature sensor , always select the heating mode when the outside temperature is 18 ° C, which is the judgment temperature of the winter mode, or lower than that, and the outside temperature is the judgment of the summer mode. When the cooling mode is always selected at the temperature of 25 ° C or around, and the intermediate mode is set when the outside temperature is other than that, the room temperature is -2 ° C from the cooling set temperature, 27 ° C or around. If you select the heating mode until then, select the cooling mode when it exceeds it, select the cooling mode when the room temperature is less than + 2 ° C from the heating set temperature, 18 ° C or around, and select the heating mode when it exceeds it. In the heating mode, if the heat collecting air temperature is higher than the ventilation air temperature at which the outside air and the room air are heat-exchanged by the total heat exchanger, the heat collecting air from the roof heat collecting part is taken in. Perform solar heat collection and heating that leads to indoor or underfloor space via a duct from the handling box, and if the heat collection air temperature is lower than the ventilation air temperature and the room temperature is lower than the heating set temperature, use a heat pump while solar heat collection and heating. In the cooling mode, the room air is exhausted through the roof heat collecting section via the handling box, and when the room temperature is higher than the cooling set temperature, the ventilation air through the total heat exchanger and the room air are mixed. The gist is to suck in and cool with a heat pump .

室内ユニットにはヒートポンプ空調熱交が搭載されているので室温を一定にするのはヒートポンプが運転すれば可能である。しかし、それでは年中ヒートポンプが運転して、太陽熱や夜間放射冷却などの自然エネルギーが使用されない。 Since the indoor unit is equipped with a heat pump air-conditioning heat exchange, it is possible to keep the room temperature constant if the heat pump operates. However, it does not use natural energy such as solar heat or radiative cooling at night because the heat pump operates all year round.

請求項1記載の本発明によれば、ハンドリングボックスに外気と室内空気を熱交換する全熱交換器を搭載することで、太陽熱集熱暖房を行う時以外に、暖房運転として室温が設定温度より低いとき全熱交換器を通した外気(換気空気)と室内戻り空気を混合して吸込んでヒートポンプ暖房する、冷房運転として、冷房室温設定より室温が高いときに全熱交換器を通した外気(換気空気)と室内空気を混合して吸込んでヒートポンプ冷房することができる。 According to the first aspect of the present invention, by mounting the handling box with a total heat exchanger that exchanges heat between the outside air and the indoor air, the room temperature is higher than the set temperature as the heating operation except when performing solar heat collection and heating. When it is low, the outside air (ventilation air) that has passed through the total heat exchanger and the return air to the room are mixed and sucked in to heat the heat pump. As a cooling operation, when the room temperature is higher than the cooling room temperature setting, the outside air that has passed through the total heat exchanger (ventilation air) ( Ventilation air) and room air can be mixed and sucked in to cool the heat pump.

設定温度に達したら屋根集熱部からの集熱空気だけでヒートポンプを止めて暖房する。また、この条件は冷房のときも同じで、室温に関わらず全熱交換器より屋根集熱部からの空気が低ければ、そちらを吸込みヒートポンプ冷却を追加して室内に吹出す。 When the set temperature is reached, the heat pump is stopped and heated only by the collected air from the roof heat collecting part. In addition, this condition is the same for cooling, and if the air from the roof heat collecting part is lower than that of the total heat exchanger regardless of the room temperature, it is sucked in and blown into the room by adding heat pump cooling.

このようにして、全熱交換器は太陽熱、夜間放射冷却を利用しながら、ヒートポンプによる冷暖房を行なう全館空調機で、ハンドリングボックスに外気と室内空気を熱交換する全熱交換器とヒートポンプの空調熱交を設置することで、通常のエアコンや全館空調システムと違い、快適な温度範囲の中で外気温や室温を機械が判断して集熱取り込み運転や放射冷却外気取り込み運転を利用しながら、ヒートポンプの運転を最少にする運転を行うことができる。 In this way, the total heat exchanger is an air conditioner in the entire building that cools and heats with a heat pump while using solar heat and nighttime radiant cooling. The total heat exchanger that exchanges heat between the outside air and the room air in the handling box and the air conditioning heat of the heat pump. By installing a heat pump, unlike a normal air conditioner or an air conditioner system in the entire building, the machine determines the outside temperature and room temperature within a comfortable temperature range and uses heat collection operation and radiant cooling outside air intake operation. It is possible to perform the operation that minimizes the operation of the air conditioner.

従って、通常のエアコンや全館空調システムと違い、快適な温度範囲の中で外気温や室温を機械が判断して集熱取り込み運転や放射冷却外気取り込み運転を利用しながら、ヒートポンプの運転を最少にする運転を行うことができる。 Therefore, unlike ordinary air conditioners and whole-building air conditioning systems, the machine determines the outside air temperature and room temperature within a comfortable temperature range, and uses heat collection operation and radiative cooling outside air intake operation to minimize heat pump operation. Can perform driving.

さらに、自動的に冷房モードと暖房モードを機械が判断することで、この判断を集熱空気の有効利用や外気取入を活用することができ、また、この判断を冷房排熱をお湯採りに使うために使用でき、このような制御により、20℃〜27℃の間で(専ら22℃〜25℃)自然エネルギー(OM集熱と外気取入)を優先に使う制御ができる。 Furthermore, by automatically determining the cooling mode and heating mode by the machine, it is possible to make effective use of the collected air and take in outside air, and this judgment can be used to collect the cooling exhaust heat from hot water. It can be used for use, and such control allows control to preferentially use natural energy (OM heat collection and outside air intake) between 20 ° C and 27 ° C (exclusively 22 ° C to 25 ° C).

真夏と真冬以外は健康に支障の無い温度範囲で自然なリズムで温度変化を許すことで、有効に自然エネルギーを使える時間帯が増える。年間エネルギー消費で2000〜2500kWhになり、3kWの太陽電池システムだけで、空調給湯エネルギーを賄える。 By allowing temperature changes with a natural rhythm within a temperature range that does not affect health except midsummer and midwinter, the time zone in which natural energy can be used effectively increases. The annual energy consumption is 2000-2500kWh, and the air-conditioning hot water supply energy can be covered only by the 3kW solar cell system.

請求項2記載の本発明は屋根集熱部は太陽電池を備えるものであり、全熱交換器を通した換気空気と室内空気を混合して吸込んで、屋根集熱部の太陽電池の裏面を通して排気することを要旨とするものである。 According to the second aspect of the present invention, the roof heat collecting section includes a solar cell, and the ventilation air and the room air passed through the total heat exchanger are mixed and sucked in, and passed through the back surface of the solar cell of the roof heat collecting section. The gist is to exhaust.

請求項2記載の本発明によれば、冷房モードでは1種換気運転(全熱交換器を通した換気空気と室内空気を混合して吸込んでヒートポンプ冷房)を行い、排気空気は太陽電池の裏面を通して排気することで太陽電池を冷却し、太陽電池の効率をアップさせることができる。 According to the second aspect of the present invention, in the cooling mode, a type 1 ventilation operation (heat pump cooling by mixing and sucking ventilation air and room air through a total heat exchanger) is performed, and the exhaust air is the back surface of the solar cell. By exhausting air through the air, the solar cell can be cooled and the efficiency of the solar cell can be improved.

以上述べたように本発明のソーラーシステムハウス用太陽熱利用機器の制御方法は、太陽熱利用での省エネ性を生かしながら、二重設備の課題も解決し、ヒートポンプ空調機と全熱交換器を一体に構成することでダクト設備や施工を軽減することができるものである。 As described above, the control method of the solar heat utilization device for the solar system house of the present invention solves the problem of dual equipment while making the best use of energy saving by solar heat utilization, and integrates the heat pump air conditioner and the total heat exchanger. By configuring it, duct equipment and construction can be reduced.

また、通常のエアコンや全館空調システムと違い、快適な温度範囲の中で外気温や室温を機械が判断して集熱取り込み運転や放射冷却外気取り込み運転を利用しながら、ヒートポンプの運転を最少にすることができる。 In addition, unlike ordinary air conditioners and whole-building air conditioning systems, the machine determines the outside air temperature and room temperature within a comfortable temperature range and uses heat collection operation and radiative cooling outside air intake operation to minimize heat pump operation. can do.

本発明の太陽熱利用機器の運転制御方法を適用するソーラーシステムハウスの概要を示す説明図である。It is explanatory drawing which shows the outline of the solar system house which applies the operation control method of the solar heat utilization apparatus of this invention. 本発明の太陽熱利用機器の運転制御方法を適用するソーラーシステムハウスの概要を示す斜視図である。It is a perspective view which shows the outline of the solar system house to which the operation control method of the solar heat utilization apparatus of this invention is applied. 本発明の太陽熱利用機器の運転制御方法を適用するソーラーシステムハウスの概要を示す透視図である。It is a perspective view which shows the outline of the solar system house to which the operation control method of the solar heat utilization apparatus of this invention is applied. ハンドリングボックスの正面図である。It is a front view of a handling box. ハンドリングボックスの平面図である。It is a top view of the handling box. ハンドリングボックスの左側面図である。It is a left side view of a handling box. ハンドリングボックスの右側面図である。It is a right side view of a handling box. 温度センサー設置の説明図である。It is explanatory drawing of the temperature sensor installation. 冷暖判定モードの制御フロー図である。It is a control flow diagram of a cooling / heating determination mode. 暖房モードの制御フロー図である。It is a control flow diagram of a heating mode. 冷房モードの制御フロー図である。It is a control flow diagram of a cooling mode. ダンパー・ファン制御の制御フロー図である。It is a control flow diagram of a damper fan control. 温度リズムイメージを示すグラフである。It is a graph which shows the temperature rhythm image. おまかせ設定温度を示すグラフである。It is a graph which shows the automatic set temperature. スマホでの温度設定の変更を示すグラフである。It is a graph which shows the change of the temperature setting in a smartphone. リモコンの正面図である。It is a front view of a remote controller. 動作モード(暖房)で、屋根集熱部暖房の説明図である。It is explanatory drawing of the roof heat collecting part heating in the operation mode (heating). 動作モード(暖房)で、屋根集熱部暖房+ヒートポンプ暖房の説明図である。It is explanatory drawing of a roof heat collecting part heating + a heat pump heating in an operation mode (heating). 動作モード(暖房)で、屋根集熱部暖房+ヒートポンプ貯湯の説明図である。It is explanatory drawing of roof heat collecting part heating + heat pump hot water storage in operation mode (heating). 動作モード(暖房)で、換気+送風の説明図である。It is explanatory drawing of ventilation + ventilation in an operation mode (heating). 動作モード(暖房〜冷房)で、換気+ヒートポンプ暖房の説明図である。It is explanatory drawing of ventilation + heat pump heating in an operation mode (heating-cooling). 動作モード(暖房〜冷房)で、換気+ヒートポンプ貯湯の説明図である。It is explanatory drawing of ventilation + heat pump hot water storage in an operation mode (heating-cooling). 動作モード(暖房〜冷房)で、LITE(屋根集熱部暖房とは逆運転)+ヒートポンプ冷房+ヒートポンプ貯湯の説明図である。It is explanatory drawing of LITE (reverse operation of roof heat collecting part heating) + heat pump cooling + heat pump hot water storage in an operation mode (heating-cooling). 動作モード(暖房〜冷房)で、LITE(屋根集熱部暖房とは逆運転)+ヒートポンプ冷房の説明図である。It is explanatory drawing of LITE (reverse operation of roof heat collecting part heating) + heat pump cooling in an operation mode (heating-cooling). 動作モード(冷房)で、LITE(屋根集熱部暖房とは逆運転)+送風+ヒートポンプ貯湯の説明図である。It is explanatory drawing of LITE (reverse operation of roof heat collecting part heating) + blower + heat pump hot water storage in operation mode (cooling). 動作モード(冷房)で、屋根集熱部からの夜間取入の説明図である。It is explanatory drawing of night-time intake from a roof heat collecting part in an operation mode (cooling). 動作モード(冷房)で、屋根集熱部からの夜間取入+ヒートポンプ冷房の説明図である。It is explanatory drawing of night intake from a roof heat collecting part + heat pump cooling in an operation mode (cooling). 動作モード(冷房)で、屋根集熱部からの夜間取入+ヒートポンプ貯湯の説明図である。It is explanatory drawing of night intake from a roof heat collecting part + heat pump hot water storage in an operation mode (cooling). 本発明の運転概要で、冬(集熱あり)の説明図である。It is explanatory drawing of winter (with heat collection) in the operation outline of this invention. 本発明の運転概要で、冬(集熱なし)の説明図である。It is explanatory drawing of the winter (without heat collection) in the operation outline of this invention. 本発明の運転概要で、夏(集熱あり)の説明図である。It is explanatory drawing of summer (with heat collection) in the operation outline of this invention. 本発明の運転概要で、夏(夜間)の説明図である。It is explanatory drawing of summer (night) in the operation outline of this invention. 従来例としてのソーラーシステムハウスの概要を示す説明図である。It is explanatory drawing which shows the outline of the solar system house as a conventional example.

以下、図面について本発明の実施の形態を詳細に説明する。図1は本発明の太陽熱利用機器の運転制御方法を適用するソーラーシステムハウスの概要を示す説明図、図2は同上斜視図、図3は同上透視図で、前記図34に示す太陽エネルギーを利用するものとして、太陽で温められる空気によって暖房等を行うソーラーシステムハウスの従来例と同一構成要素には同一参照符号を付したものである。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is an explanatory view showing an outline of a solar system house to which the operation control method of the solar heat utilization device of the present invention is applied, FIG. 2 is a perspective view of the same as above, and FIG. 3 is a perspective view of the same as above, using the solar energy shown in FIG. 34. The same components as those of the conventional example of the solar system house, which is heated by the air heated by the sun, are designated by the same reference numerals.

集熱面であるカラー鉄板の金属製屋根板1の直下に屋根勾配を有する空気流路2を形成して屋根集熱部40とし、空気流路2の一方の端は軒先に空気取入口3として開口し、さらに空気流路2の他方の端は集熱ダクト4に連通させる。屋根板1の一部は太陽電池23で覆い、太陽光発電を行う。 An air flow path 2 having a roof gradient is formed directly under the metal roof plate 1 of the colored iron plate which is a heat collecting surface to form a roof heat collecting portion 40, and one end of the air flow path 2 is an air intake 3 at the eaves. The other end of the air flow path 2 is communicated with the heat collecting duct 4. A part of the roof plate 1 is covered with a solar cell 23 to generate solar power.

図中5は流入ダクトと流出ダクトを接続し、ダンパーおよびファンを設けた(空気流通)制御ボックスであるハンドリングボックスで、図5〜図7に示すように、集熱空気接続口5−1、室内還り空気接続口5−2−1、室内還り空気接続口5−2−2、屋外吸込口5−3、冷房口5−4−1、冷房口5−4−2、暖房(床下)口5−5、屋外への排気口5−6、LITE運転口5−7、ドレン口5−8、冷媒配管口5−9を有する。ここでLITE運転とは、冷房モードのときに後述の全熱交換器56を通過した排気空気をLITE運転口5−7から太陽電池23の裏面に逆流させて排気する運転((屋根集熱部暖房とは逆運転)をいう。 In the figure, 5 is a handling box which is a control box (air flow) in which an inflow duct and an outflow duct are connected and a damper and a fan are provided. As shown in FIGS. 5 to 7, the heat collecting air connection port 5-1 Indoor return air connection port 5-2-1, indoor return air connection port 5-2-2, outdoor suction port 5-3, cooling port 5-4-1, cooling port 5-4-2, heating (underfloor) port It has 5-5, an outdoor exhaust port 5-6, a LITE operation port 5-7, a drain port 5-8, and a refrigerant pipe port 5-9. Here, the LITE operation is an operation in which the exhaust air that has passed through the total heat exchanger 56 described later in the cooling mode is flowed back from the LITE operation port 5-7 to the back surface of the solar cell 23 and exhausted ((roof heat collecting unit). (Reverse operation to heating).

ダンパーにはヒンジで吊り下がり、ファンの動圧で開閉する重力式ダンパー52と、モータで開閉を制御する比例ダンパー53とがあり、ファン54は重力式ダンパー52を作動させるものとして、前記冷房口5−4−1、冷房口5−4−2、暖房(床下)口5−5、屋外への排気口5−6、LITE運転口5−7の5箇所の各吹出口に設置され、これに対応して重力式ダンパー52が設けられる。 The damper includes a gravity type damper 52 that is suspended by a hinge and opens and closes by the dynamic pressure of the fan, and a proportional damper 53 that controls the opening and closing by a motor. The fan 54 operates the gravity type damper 52, and the cooling port It is installed at each of the five outlets: 5-4-1, cooling port 5-4-2, heating (underfloor) port 5-5, outdoor exhaust port 5-6, and LITE operation port 5-7. A gravity type damper 52 is provided corresponding to the above.

比例ダンパー53は吸込み口である集熱空気接続口5−1、室内還り空気接続口5−2−1、屋外吸込口5−3に設けられ、吸込み風量を混合するために開度を調整する。 The proportional damper 53 is provided at the heat collecting air connection port 5-1 which is a suction port, the indoor return air connection port 5-2-1, and the outdoor suction port 5-3, and adjusts the opening degree to mix the suction air volume. ..

図中55は筒型フィルターで、室内還り空気接続口5−2−1と室内還り空気接続口5−2−2に配設される。 In the figure, 55 is a tubular filter, which is arranged at the indoor return air connection port 5-2-1 and the indoor return air connection port 5--2-2.

流入ダクトとして、前記屋根集熱部40に連結する集熱接続ダクト41および集熱ダクト42が集熱空気接続口5−1に接続され、外気吸込口43を端部とする外気吸込ダクト44が屋外吸込口5−3に接続される。 As the inflow duct, the heat collecting connection duct 41 and the heat collecting duct 42 connected to the roof heat collecting portion 40 are connected to the heat collecting air connecting port 5-1 and the outside air suction duct 44 having the outside air suction port 43 as an end is provided. It is connected to the outdoor suction port 5-3.

ハンドリングボックス5に接続する流出ダクトとして、下端が土間コンクリート11の上の断熱材と床パネル12の間の空気流通空間13に床下への送風口25として開口する立下りダクト10が暖房(床下)口5−5に接続され、室内20に吹き出し口46として開口する送気ダクト47が冷房口5−4−1、冷房口5−4−2に接続される。 As an outflow duct connected to the handling box 5, a falling duct 10 whose lower end opens as an underfloor air outlet 25 in the air flow space 13 between the heat insulating material on the soil concrete 11 and the floor panel 12 is heated (underfloor). An air supply duct 47, which is connected to the port 5-5 and opens into the room 20 as an outlet 46, is connected to the cooling port 5-4-1 and the cooling port 5-4-2.

また、端部を排気口45として屋外に開口する排気ダクト9が排気口5−6に接続される。 Further, an exhaust duct 9 having an end portion as an exhaust port 45 and opening to the outside is connected to the exhaust port 5-6.

なお、送気ダクト47は分岐管48や分岐ボックス49で分岐し複数の吹き出し口46に導かれる。 The air supply duct 47 branches at a branch pipe 48 or a branch box 49 and is guided to a plurality of outlets 46.

また、端部が集熱接続ダクト41に接続する屋根排気ダクト50がLITE運転口5−7に接続される。 Further, the roof exhaust duct 50 whose end is connected to the heat collecting connection duct 41 is connected to the LITE operation port 5-7.

ハンドリングボックス5の内部中央に、外気と室内空気を熱交換する全熱交換器56とヒートポンプの空調熱交(空調熱交換器)57を設置した。 At the center of the inside of the handling box 5, a total heat exchanger 56 that exchanges heat between the outside air and the room air and an air conditioning heat exchanger (air conditioning heat exchanger) 57 of the heat pump are installed.

図2中、58はヒートポンプによる屋外ユニット、59は貯湯ユニットで、ヒートポンプによる屋外ユニット58は冷媒配管60で冷媒配管口5−9を介してヒートポンプの空調熱交(空調熱交換器)57と連結し、ドレン口5−8に接続するドレン管61は屋外に導かれる。 In FIG. 2, 58 is an outdoor unit by a heat pump, 59 is a hot water storage unit, and the outdoor unit 58 by a heat pump is connected to an air conditioning heat exchange (air conditioning heat exchanger) 57 of a heat pump via a refrigerant pipe port 5-9 by a refrigerant pipe 60. Then, the drain pipe 61 connected to the drain port 5-8 is guided to the outside.

貯湯ユニット59は配管65でヒートポンプによる屋外ユニット58と繋がり、また、貯湯ユニット59からは風呂67との風呂循環配管64や給水口63がある給湯配管62が接続されて伸びている。図示は省略するが給湯配管62は風呂の他に洗面所、台所へと繋がる。66は貯湯ユニット59への給水配管である。 The hot water storage unit 59 is connected to the outdoor unit 58 by a heat pump by a pipe 65, and the hot water storage unit 59 is connected to a bath circulation pipe 64 with a bath 67 and a hot water supply pipe 62 having a water supply port 63 and extends. Although not shown, the hot water supply pipe 62 connects to the washroom and kitchen in addition to the bath. Reference numeral 66 denotes a water supply pipe to the hot water storage unit 59.

本発明は温度センサーを設置するものであり、図8に示すように集熱温度センサー70−1は集熱ダクト42の接続部に、外気温センサー70−2は外気吸込ダクト44の接続部に、室内リターンセンサー70−3は室内還り空気接続口5−2−1にそれぞれ設けた。 In the present invention, a temperature sensor is installed. As shown in FIG. 8, the heat collecting temperature sensor 70-1 is connected to the heat collecting duct 42, and the outside air temperature sensor 70-2 is connected to the outside air suction duct 44. , The indoor return sensor 70-3 was provided at the indoor return air connection port 5-2-1, respectively.

また、熱交換前温湿度センサー70−4はハンドリングボックス5の外側に設け、室内に設置する図9に示すリモコン71に内蔵させるリモコン内蔵(室温)センター70−5を室内に、室外ユニット外気温センサー70−7をヒートポンプによる屋外ユニット58の外側に設置する。 Further, the temperature / humidity sensor 70-4 before heat exchange is provided outside the handling box 5, and the remote controller built-in (room temperature) center 70-5 incorporated in the remote controller 71 shown in FIG. 9 installed indoors is installed indoors and the outdoor unit outdoor air temperature. The sensor 70-7 is installed outside the outdoor unit 58 by the heat pump.

なお、貯湯ユニット59には、貯温槽缶体表面温度センサー70−6−1(7点)と給水、給湯温度、風呂循環温度を把握する温度センサー70−6−2が設けられている。 The hot water storage unit 59 is provided with a heat storage tank can body surface temperature sensor 70-6-1 (7 points) and a temperature sensor 70-6-2 for grasping water supply, hot water supply temperature, and bath circulation temperature.

図8に示すように、コンピュータ等による制御装置72は例えばハンドリングボックス5に搭載され、これにLANで家庭用ルーター73を介して計測ユニット74、パワーコンディショナ75、分電盤76が接続される。 As shown in FIG. 8, a control device 72 by a computer or the like is mounted on, for example, a handling box 5, and a measurement unit 74, a power conditioner 75, and a distribution board 76 are connected to the handling box 5 via a home router 73 via a LAN. ..

図中79は家庭用ルーター73に接続するエコナビゲートウェイである。エコナビゲートウェイとは、エコーネットライトを使って、太陽熱利用機器の運転の動作状況などを通信してクラウドに保存するシステムで、スマートホンなどを使って自宅の運転状況や発停もできるなどのサービスの通信をするための通信装置である。 79 in the figure is an eco-navigation gateway connected to the home router 73. Eco-Navi Gateway is a system that uses Echonet Lite to communicate the operating status of solar heat-using devices and save them in the cloud. Services such as the ability to start and stop the driving status at home using a smartphone, etc. It is a communication device for communication.

また、77は台所リモコン、78は浴槽リモコンで、貯湯ユニット59のコントローラである。 Further, 77 is a kitchen remote controller, 78 is a bathtub remote controller, and is a controller of the hot water storage unit 59.

本発明は前記のようなダンパーおよびファンを設けた屋内ユニットとしてのハンドリングボックス5を屋根集熱部40に直接または間接的に連結し、ハンドリングボックス5からのダクトを屋内もしくは床下空間に導くソーラーシステムハウスにおいて実施するものである。 The present invention is a solar system in which a handling box 5 as an indoor unit provided with a damper and a fan as described above is directly or indirectly connected to a roof heat collecting portion 40, and a duct from the handling box 5 is guided to an indoor or underfloor space. It is carried out in the house.

本発明における運転モードの種類としては、1.おまかせ運転、2.温度リズム運転、3.暖房モード運転、4.冷房モード運転がある。
1.おまかせ運転
:システムが自動で図9〜12にあるように冷暖房モード判定を行い最適の運転を行う。例えば、冷房設定温度:27℃±1℃、暖房設定温度:20℃〜18℃±1℃。
2.温度リズム運転
:初期設定はおまかせモードと同様であるが、ゲートウェイからスマホなどで設定温度を1時間ごとに設定できる。
3.暖房モード運転
:暖房運転を行う。設定温度は18℃〜30℃まで1℃刻みで可能である。
4.冷房モード運転
:冷房運転を行う。設定温度は18℃〜30℃まで1℃刻みで可能である。
The types of operation modes in the present invention include 1. Random driving, 2. Temperature rhythm operation, 3. Heating mode operation, 4. There is cooling mode operation.
1. 1. Random operation: The system automatically determines the heating / cooling mode as shown in FIGS. 9 to 12 and performs the optimum operation. For example, cooling set temperature : 27 ° C ± 1 ° C, heating set temperature : 20 ° C to 18 ° C ± 1 ° C.
2. 2. Temperature rhythm operation: The initial setting is the same as the Omakase mode, but the set temperature can be set every hour from the gateway with a smartphone or the like.
3. 3. Heating mode operation: Performs heating operation. The set temperature can be set from 18 ° C to 30 ° C in 1 ° C increments.
4. Cooling mode operation: Performs cooling operation. The set temperature can be set from 18 ° C to 30 ° C in 1 ° C increments.

この判断は温度センサーにより、計測ユニット74を介して制御装置72がプログラムに基づき実施するもので、そのフローを図9に示すと、季節判断(冷暖判断)は外気温18℃(冬期モード判定温度)以下で冬期モードになり常時暖房モードを選択し、外気温25℃(夏期モード判定温度)以上で夏期モードになり常時冷房モードを選択するThis judgment is carried out by the control device 72 based on the program via the measurement unit 74 by the temperature sensor. When the flow is shown in FIG. 9, the seasonal judgment (cooling / heating judgment) is the outside air temperature of 18 ° C. (winter mode judgment temperature). ) Below, the winter mode is set and the constant heating mode is selected, and when the outside temperature is 25 ° C. (summer mode judgment temperature) or higher, the summer mode is set and the constant cooling mode is selected .

外気温18℃〜25℃の間は中間期モードとし、室内温度によって冷房モードと暖房モードを遷移する。当初暖房モードの場合、冷房設定温度―2℃までは暖房モードを継続し、それを越えたら冷房モードに遷移する。いったん冷房モードになったら、暖房設定温度+2℃まで冷房モードを継続し、その温度を下回ったら暖房モードに遷移する。The intermediate mode is set between the outside air temperature of 18 ° C. and 25 ° C., and the cooling mode and the heating mode are switched depending on the room temperature. In the case of the initial heating mode, the heating mode is continued up to the set cooling temperature of −2 ° C., and when the temperature exceeds that, the mode is changed to the cooling mode. Once the cooling mode is entered, the cooling mode is continued up to the heating set temperature + 2 ° C., and when the temperature falls below that temperature, the heating mode is entered.

特におまかせ運転モードでは自動的に冷房モード運転と暖房モード運転を機械が判断できる。本発明の運転システムでは集熱空気の有効利用や外気取入を活用するために自動判断が必須である。また、冷房排熱をお湯採りに使うため、このためにも自動判断が必須である。 Especially in the automatic operation mode, the machine can automatically determine the cooling mode operation and the heating mode operation. In the operation system of the present invention, automatic determination is indispensable in order to effectively utilize the collected air and take in outside air. In addition, since the exhaust heat from the air conditioner is used for collecting hot water, automatic judgment is essential for this purpose as well.

前記制御により、20℃〜27℃の間で(専ら22℃〜25℃)自然エネルギー(OM集熱と外気取入)を優先に使う制御ができる。 With the above control, it is possible to preferentially use natural energy (OM heat collection and outside air intake) between 20 ° C. and 27 ° C. (exclusively 22 ° C. to 25 ° C.).

真夏と真冬以外は健康に支障の無い温度範囲で自然なリズムで温度変化を許すことで、有効に自然エネルギーを使える時間帯が増える。年間エネルギー消費で2000〜2500kWhになり、3kWの太陽電池システムだけで、空調給湯エネルギーを賄える。 By allowing temperature changes with a natural rhythm within a temperature range that does not affect health except midsummer and midwinter, the time zone in which natural energy can be used effectively increases. The annual energy consumption is 2000-2500kWh, and the air-conditioning hot water supply energy can be covered only by the 3kW solar cell system.

暖房温度リズム設定により、暖房・給湯が同時に出来ない場合でも貯湯運転タイミングを作ることができる。 By setting the heating temperature rhythm, it is possible to set the hot water storage operation timing even when heating and hot water supply cannot be performed at the same time.

次に図29〜図32について本発明の運転概要を説明すると、冬(集熱あり)の場合は、図30に示すように、太陽熱を使って暖房する。集熱温度によっては、ヒートポンプ暖房でバックアップする。暖房が十分な時はお湯採りする。ここで言う暖房が十分なという意味は、冬期や暖房が必要な時期におおむね12時以降になると集熱により室温が上がることや外気温が上昇することで、暖房負荷が「減る」または「なくなる」時間が12時から16時ごろまでに発生するので、その時間帯にヒートポンプ給湯器回路でヒートポンプ貯湯を行なうものである。 Next, the operation outline of the present invention will be described with reference to FIGS. 29 to 32. In winter (with heat collection), as shown in FIG. 30, heating is performed using solar heat. Depending on the heat collection temperature, it is backed up by heat pump heating. Take hot water when heating is sufficient. Sufficient heating here means that the heating load "reduces" or "eliminates" as the room temperature rises due to heat collection and the outside temperature rises after about 12:00 in winter or when heating is required. Since the time is generated from 12:00 to 16:00, the heat pump hot water is stored in the heat pump water heater circuit during that time.

冬(集熱なし)の場合は、図30に示すように、冬、陽射しが少ない日でも、ヒートポンプを使って床暖房でバックアップする。陽射しが少ない時は外気取込み(外気吸込口43を端部とする外気吸込ダクト44での取込)を全熱交換器56で全熱交換して暖房負荷を低減し、ヒートポンプで床暖房する。 In the case of winter (without heat collection), as shown in FIG. 30, even in winter and on days when there is little sunlight, a heat pump is used to back up by floor heating. When there is little sunlight, the outside air intake (intake by the outside air suction duct 44 having the outside air suction port 43 at the end) is totally heat exchanged by the total heat exchanger 56 to reduce the heating load, and the floor is heated by the heat pump.

集熱可能な条件として、集熱空気温が全熱交換器を通して外気と室内空気を熱交換して得られた空気より高いときは、屋根集熱部での集熱空気を取り入れ、ハンドリングボックスからのダクトを介して屋内もしくは床下空間に導く太陽熱集熱暖房を行い、室温が設定温度より低いときは、全熱交換器を通した換気空気と室内戻り空気を混合して吸込んでヒートポンプの空調熱交で暖房する暖房運転を行い、もしくは、室温が設定温度より低いときで、前記屋根集熱部からの集熱空気温が、全熱交換器を通ってきた空気温よりも高い場合は、ヒートポンプの空調熱交で暖房すし、前記ハンドリングボックスからのダクトを介して屋内もしくは床下空間に導く太陽熱集熱暖房を行うものである。 As a condition for heat collection, when the heat collection air temperature is higher than the air obtained by exchanging heat between the outside air and the room air through the total heat exchanger, the heat collection air at the roof heat collection part is taken in and from the handling box. Solar heat collection and heating is performed to lead indoors or underfloor space through the duct of the heat pump, and when the room temperature is lower than the set temperature, the ventilation air passed through the total heat exchanger and the indoor return air are mixed and sucked in to make the air conditioning heat of the heat pump. If the heating operation is performed by alternating heating, or if the room temperature is lower than the set temperature and the heat collecting air temperature from the roof heat collecting section is higher than the air temperature passing through the total heat exchanger, the heat pump It heats with the air-conditioning heat exchange of the above, and performs solar heat collection and heating that leads to the indoor or underfloor space through the duct from the handling box.

夏(集熱あり)の場合は、図31に示すように、夏の日中はヒートポンプを使って冷房し、冷房の排熱からお湯採りもする。外気取込みは室内空気を全熱交換して冷房負荷を低減しつつ熱交換後の空気を太陽電池(集熱面)裏面を通して太陽電池の冷房も行う。 In the summer (with heat collection), as shown in FIG. 31, the heat pump is used to cool the air during the summer day, and hot water is also taken from the exhaust heat of the air conditioner. For outside air intake, the indoor air is exchanged for all heat to reduce the cooling load, and the air after heat exchange is passed through the back surface of the solar cell (heat collecting surface) to cool the solar cell.

前記お湯採りは、まず、夏の日中というのは、日中が冷房負荷が多く給湯時時間帯にも近いので、冬の時間帯と同じく12時から16時に貯湯運転をあてがっている。(条件によって違う時間にも貯湯する。) First of all, in the summer daytime, the cooling load is heavy and it is close to the hot water supply time zone, so the hot water storage operation is assigned from 12:00 to 16:00 as in the winter time zone. (Hot water is stored at different times depending on the conditions.)

ヒートポンプによる屋外ユニット58には放熱コイル(凝縮熱の放熱熱交)と水−冷媒熱交が内蔵されているので、普通に冷房するときは放熱コイルで排熱を放熱する。冷房貯湯するときは放熱コイルへいく冷媒を水−冷媒熱交側に切り替えて貯湯ユニットからの水を循環して、高温の冷媒ガスを凝縮させてお湯を作り、貯湯ユニットに送る。 Since the outdoor unit 58 by the heat pump has a built-in heat dissipation coil (heat dissipation heat exchange of condensed heat) and water-refrigerant heat exchange, the exhaust heat is dissipated by the heat dissipation coil during normal cooling. When cooling and storing hot water, the refrigerant that goes to the heat dissipation coil is switched to the water-refrigerant heat exchange side, the water from the hot water storage unit is circulated, and the high-temperature refrigerant gas is condensed to make hot water, which is then sent to the hot water storage unit.

夏(夜間)の場合は、図32に示すように、屋根の放射冷却を利用して外気を冷しながら室内に取込み、必要に応じてヒートポンプ冷房でバックアップする。バックアップの時には残湯に応じてお湯採りもする。 In the case of summer (night), as shown in FIG. 32, the outside air is taken into the room while being cooled by using radiative cooling of the roof, and backed up by heat pump cooling as necessary. At the time of backup, hot water is also taken according to the remaining hot water.

前記のように本発明は季節判断を前提とし、季節判断を24時間適切に行なえないと太陽熱や夜間放射冷却を十分に利用できない。(人の力では常時判断できない) As described above, the present invention presupposes seasonal determination, and unless seasonal determination is properly performed for 24 hours, solar heat and nighttime radiative cooling cannot be sufficiently utilized. (It cannot always be judged by human power)

この判断は温度センサーにより、計測ユニット74を介して制御装置72がプログラムに基づき実施するもので、そのフローを図9に示すと、季節判断(冷暖判断)は外気温18℃以下で常時暖房設定、外気温25℃以上で常時冷房設定とする。 This judgment is carried out by the control device 72 based on the program via the measurement unit 74 by the temperature sensor. When the flow is shown in FIG. 9, the seasonal judgment (cooling / heating judgment) is always set to heat at an outside air temperature of 18 ° C. or less. , Always set to cooling when the outside temperature is 25 ° C or higher.

外気温18℃〜25℃の間は室内温度によって判断する。冷房設定温度−2℃までは暖房運転、それを超えたら冷房運転になる。冷房運転は暖房設定温度+2℃まで冷房運転を行い、その温度を下回ったら暖房運転になる。 The outside air temperature between 18 ° C and 25 ° C is determined by the room temperature. Heating operation is performed up to the cooling set temperature of -2 ° C, and cooling operation is performed after that. In the cooling operation, the cooling operation is performed up to the heating set temperature + 2 ° C., and when the temperature falls below that temperature, the heating operation is started.

この暖房運転、冷房運転の判断を前記フローに基づいてさらに説明すると、外気温が一定温度、例えば、25℃以上は冷房判断、外気温一定温度の範囲内、例えば、25℃〜18℃の範囲では室温で判断、外気温度が一定温度、例えば18℃以下では暖房判断であり、冷房判断の時期は夜から朝までの屋根からの空気も観察して屋根からの放射冷却で冷えた空気が全熱交換器より低い結果になれば屋根から放射冷却空気を導入し、外気温が一定温度25℃以上になると室温はそれ以上の温度になるとするものである。 The determination of the heating operation and the cooling operation will be further described based on the above flow. When the outside air temperature is a constant temperature, for example, 25 ° C. or higher, the cooling determination and the outside air temperature are within the constant temperature range, for example, the range of 25 ° C. to 18 ° C. Then, it is judged at room temperature, and when the outside air temperature is a constant temperature, for example, 18 ° C or less, it is judged as heating, and at the time of cooling judgment, the air from the roof is also observed from night to morning, and all the air cooled by radiant cooling from the roof is used. If the result is lower than that of the heat exchanger, radiant cooling air is introduced from the roof, and if the outside air temperature reaches a constant temperature of 25 ° C. or higher, the room temperature becomes higher than that.

おまかせモードでは自動的に冷房モードと暖房モードを機械が判断できる。本発明システムでは集熱空気の有効利用や外気取入を活用するために自動判断が必須である。また、冷房排熱をお湯採りに使うため、このためにも自動判断が必須である。 In the automatic mode, the machine can automatically determine the cooling mode and the heating mode. In the system of the present invention, automatic judgment is indispensable in order to effectively utilize the collected air and to utilize the outside air intake. In addition, since the exhaust heat from the air conditioner is used for collecting hot water, automatic judgment is essential for this purpose as well.

前記の制御により、20℃〜27℃の間で(専ら22℃〜25℃)自然エネルギー(屋根集熱部40での集熱と、外気吸込口43を端部とする外気吸込ダクト44での取外気取入を優先に使う制御ができる。 By the above control, between 20 ° C. and 27 ° C. (exclusively 22 ° C. to 25 ° C.), natural energy (heat collection at the roof heat collecting portion 40 and the outside air suction duct 44 having the outside air suction port 43 as an end). It is possible to control the intake of external air with priority.

真夏と真冬以外は健康に支障の無い温度範囲で自然なリズムで温度変化を許すことで、有効に自然エネルギーを使える時間帯が増える。年間エネルギー消費で2000〜2500kWhになり、3kWの太陽電池システムだけで、空調給湯エネルギーを賄える。 By allowing temperature changes with a natural rhythm within a temperature range that does not affect health except midsummer and midwinter, the time zone in which natural energy can be used effectively increases. The annual energy consumption is 2000-2500kWh, and the air-conditioning hot water supply energy can be covered only by the 3kW solar cell system.

暖房温度リズム設定により、暖房・給湯が同時に出来ない本発明システムの貯湯運転タイミングを作ることができる。図13、図14におまかせ運転温度リズムイメージを示す。 By setting the heating temperature rhythm, it is possible to create the hot water storage operation timing of the system of the present invention in which heating and hot water supply cannot be performed at the same time. 13 and 14 show an image of the operating temperature rhythm.

設定温度は図15に示すように、モバイルやスマートホン80でも変更可能であるが、初期設定温度は暖房20℃、冷房27℃なので、前記切替温度で冷房になったり暖房になっても直ちにヒートポンプは動かない。 As shown in FIG. 15, the set temperature can be changed with a mobile device or a smartphone 80, but since the initial set temperature is 20 ° C for heating and 27 ° C for cooling, the heat pump is immediately used even if the switching temperature is used for cooling or heating. Does not work.

この間は集熱暖房や夜間放射冷却運転で中間期は22℃〜25℃を中心に変化し、夏期は22℃〜27℃、冬期は20℃〜25℃を変化する。 During this period, heat collecting heating and nighttime radiative cooling operation change the temperature mainly from 22 ° C to 25 ° C in the intermediate period, 22 ° C to 27 ° C in the summer, and 20 ° C to 25 ° C in the winter.

下記表1、表2に太陽熱利用・外気取り込み判断の制御フローを示すと、表1は太陽熱直接暖房の制御を示す表で、表2は放射冷却利用冷房の制御を示す表である。
Tables 1 and 2 below show the control flow for determining whether to use solar heat or take in outside air. Table 1 shows the control of direct solar heat heating, and Table 2 shows the control of cooling using radiative cooling.

図17〜図20に動作モード(暖房)の場合、図21〜図24に動作モード(暖房〜冷房)の場合、図25〜図28に動作モード(冷房)を示す。各図とも黒く塗られた箇所が空気の流れを示す。 17 to 20 show the operation mode (heating), FIGS. 21 to 24 show the operation mode (heating to cooling), and FIGS. 25 to 28 show the operation mode (cooling). In each figure, the black areas indicate the air flow.

図17は動作モード(暖房)で、屋根集熱部暖房の場合、図18は、屋根集熱部暖房+ヒートポンプ暖房の場合、図19は屋根集熱部暖房+ヒートポンプ貯湯の場合、図20は換気+送風の場合である。(屋根集熱部暖房の場合は、集熱接続ダクト41→集熱ダクト42→ハンドリングボックス5→立下りダクト10) 17 is an operation mode (heating), in the case of roof heat collecting part heating, FIG. 18 is in the case of roof heat collecting part heating + heat pump heating, FIG. 19 is in the case of roof heat collecting part heating + heat pump hot water storage, and FIG. 20 is. This is the case of ventilation + ventilation. (In the case of roof heat collecting part heating, heat collecting connection duct 41 → heat collecting duct 42 → handling box 5 → falling duct 10)

図21は、換気+ヒートポンプ暖房の場合、図22は換気+ヒートポンプ貯湯の場合、図23はLITE(屋根集熱部暖房とは逆運転)+ヒートポンプ冷房+ヒートポンプ貯湯の場合、図24はLITE(屋根集熱部暖房とは逆運転)+ヒートポンプ冷房の場合である。 21 is for ventilation + heat pump heating, FIG. 22 is for ventilation + heat pump hot water storage, FIG. 23 is for LITE (reverse operation to roof heat collecting part heating) + heat pump cooling + heat pump hot water storage, and FIG. 24 is LITE ( This is the case of (reverse operation to heating of the roof heat collecting part) + heat pump cooling.

図25は、LITE(屋根集熱部暖房とは逆運転)+送風+ヒートポンプ貯湯の場合、図26は屋根集熱部からの夜間取入の場合、図27は屋根集熱部からの夜間取入+ヒートポンプ冷房の場合、図28は屋根集熱部からの夜間取入+ヒートポンプ貯湯の場合である。 FIG. 25 shows the case of LITE (operation opposite to the heating of the roof heat collecting part) + ventilation + heat pump hot water storage, FIG. 26 shows the case of night intake from the roof heat collecting part, and FIG. 27 shows the night intake from the roof heat collecting part. In the case of on + heat pump cooling, FIG. 28 shows the case of night intake from the roof heat collecting section + heat pump hot water storage.

冷暖房運転としては、暖房運転は室温が設定温度より低いとき全熱交換器56を通した換気空気と室内戻り空気を混合して吸込んで、ヒートポンプの空調熱交(空調熱交換器)57によるヒートポンプ暖房する。 In the heating and cooling operation, when the room temperature is lower than the set temperature, the ventilation air passed through the total heat exchanger 56 and the return air to the room are mixed and sucked, and the heat pump is operated by the air conditioning heat exchange (air conditioning heat exchanger) 57 of the heat pump. Heat.

集熱可能な条件(集熱空気温が全熱交換器56を通して外気と室内空気を熱交換して得られた空気より高いとき)のときは太陽熱集熱暖房を行う。 When the condition is such that heat can be collected (when the heat collecting air temperature is higher than the air obtained by exchanging heat between the outside air and the room air through the total heat exchanger 56), solar heat collecting and heating is performed.

この太陽熱集熱暖房は、屋根集熱部40での集熱空気を取り入れ、ハンドリングボックス5からのダクトを介して屋内もしくは床下空間に導くものであり、詳しくは、暖房が必要な冬の昼間は、軒先の空気取入口3から入った冷たい空気は、屋根板1に降り注ぐ太陽の熱によって徐々に暖められる。 This solar heat collecting and heating takes in the heat collected air in the roof heat collecting part 40 and guides it to the indoor or underfloor space through the duct from the handling box 5. For details, in the winter daytime when heating is required. The cold air entering from the air intake 3 at the eaves is gradually warmed by the heat of the sun falling on the roof plate 1.

この温められた空気は屋根勾配に沿って上昇する。そして、この加熱空気は集熱ダクト4に集められてからファンによりハンドリングボックス5に入り、ハンドリングボックス5から立下りダクト10内へ流下し、床下に送られる。 This warmed air rises along the roof slope. Then, the heated air is collected in the heat collecting duct 4, enters the handling box 5 by a fan, flows down from the handling box 5 into the falling duct 10, and is sent under the floor.

また、送気ダクト47により吹き出し口46から室内20に吹き出される。 Further, it is blown out from the outlet 46 into the room 20 by the air supply duct 47.

前記床下に送られる空気は床下に広がり、床吹出口14から温風として室内20へと流れ出る。 The air sent under the floor spreads under the floor and flows out from the floor outlet 14 into the room 20 as warm air.

この太陽熱集熱暖房で集熱空気温度が不十分ならヒートポンプの空調熱交(空調熱交換器)57でバックアップ加熱する。 If the heat collecting air temperature is insufficient in this solar heat collecting and heating, backup heating is performed by the air conditioning heat exchanger (air conditioning heat exchanger) 57 of the heat pump.

室温設定以上になったらヒートポンプは運転を止める。ただし、冷房設定温度−2℃(初期設定は25℃)までは続けて前記太陽熱集熱暖房(OM集熱)を続ける。 The heat pump stops operating when the room temperature exceeds the setting. However, the solar heat collection and heating (OM heat collection) is continued until the cooling set temperature is -2 ° C (initial setting is 25 ° C).

冷房設定温度−2℃を超えた場合は冷房運転に変わる。ただし、冷房設定以下なので冷房モードになるだけである。(前記太陽熱集熱暖房・OM集熱は止まる) If the cooling set temperature exceeds -2 ° C, it changes to cooling operation. However, since it is below the cooling setting, it only enters the cooling mode. (The solar heat collection heating / OM heat collection stops)

冷房モードでは1種換気運転を行い排気は屋根集熱部40の集熱面(太陽電池23)の裏面を通して排気する(屋根排気)。ここでは1種換気運転とは、交換型換気システムや給気と排気のための換気機械を組み合わせ、同時給排を行う換気設備を言う。両者とも送風機と排風機を併用する方法で、吸気量と排気量の調整により室内の気圧を均一にすることができるほか、外気圧に対して正圧(プラス圧)に、あるいは負圧(マイナス圧)に保つことが出来るなどの利点がある。 In the cooling mode, type 1 ventilation operation is performed, and exhaust is exhausted through the back surface of the heat collecting surface (solar cell 23) of the roof heat collecting unit 40 (roof exhaust). Here, the type 1 ventilation operation refers to a ventilation facility that performs simultaneous supply and exhaust by combining an exchangeable ventilation system and a ventilation machine for air supply and exhaust. In both cases, the air pressure in the room can be made uniform by adjusting the intake air pressure and the exhaust air pressure by using a blower and an exhaust air blower together. There are advantages such as being able to keep the pressure).

図10に暖房モードの制御フロー、図11に冷房モードの制御フローを示すが、前記図9のフローと合わせて、外気温が低く次第に室温が下がる場合は暖房設定+2℃(初期設定は20℃)までは冷房モードで運転を行い(外気導入しているだけ)、前記温度を下回った場合は再び暖房モードになる。この場合でも設定温度はさらに−2℃のため、暖房モードになるだけで、集熱があれば集熱をする。 FIG. 10 shows the control flow of the heating mode, and FIG. 11 shows the control flow of the cooling mode. In addition to the flow of FIG. 9, when the outside air temperature is low and the room temperature gradually decreases, the heating setting is + 2 ° C (initial setting is 20 ° C). ) Is operated in the cooling mode (only the outside air is introduced), and when the temperature falls below the temperature, the heating mode is set again. Even in this case, since the set temperature is further -2 ° C, only the heating mode is set, and if there is heat collection, heat is collected.

冷房運転は冷房室温設定より室温が高いときに全熱交換器56を通した換気空気と室内戻り空気を混合して吸込んで、ヒートポンプの空調熱交(空調熱交換器)57によるヒートポンプ冷房をする。 In the cooling operation, when the room temperature is higher than the cooling room temperature setting, the ventilation air passed through the total heat exchanger 56 and the return air to the room are mixed and sucked in, and the heat pump is cooled by the air conditioning heat exchange (air conditioning heat exchanger) 57 of the heat pump. ..

排気空気は外気と全熱交換器56で熱交換した上で太陽電池23の裏面を通して排気する。(屋根排気→太陽電池冷却→効率アップ) Exhaust air is exhausted through the back surface of the solar cell 23 after heat exchange with the outside air by the total heat exchanger 56. (Roof exhaust → Solar cell cooling → Efficiency improvement)

冷房モードで夜間になると太陽電池23の下面を通して取り入れる空気温度と全熱交換器56を通して取り入れる空気を比較して(全熱交換器56側は外気温度と室温から全熱交換器56の熱交換効率から計算)外気取入にメリットがあれば太陽電池23の下面を通して空気を入れる。 At night in the cooling mode, the air temperature taken in through the lower surface of the solar cell 23 and the air taken in through the total heat exchanger 56 are compared (the total heat exchanger 56 side is from the outside air temperature and room temperature to the heat exchange efficiency of the total heat exchanger 56). (Calculated from) If there is a merit in taking in outside air, air is introduced through the lower surface of the solar cell 23.

直前まで冷房している場合、室温が設定温度より1℃以上低ければヒートポンプは止まり外気取入のみの運転になる。 In the case of cooling until just before, if the room temperature is 1 ° C or more lower than the set temperature, the heat pump will stop and only the outside air will be taken in.

低くなるのは専ら夜12:00以降になる。なお、ヒートポンプが運転しているときは1階、2階の冷房吹出し口46から冷房し、外気取り込みのみになった場合も1階、2階の冷房吹出し口46から空気を取り入れる。(ファンを駆動して軒先の空気取入口3から外気を空気流路2に取り込み、放射冷却現象(放射冷却で屋根全体が冷える)を利用して、涼しい外気を取り込む。 It will be low only after 12:00 pm. When the heat pump is operating, it cools from the cooling outlet 46 on the first and second floors, and when only outside air is taken in, air is taken in from the cooling outlet 46 on the first and second floors. (The fan is driven to take in the outside air from the air intake 3 at the eaves to the air flow path 2, and the cool outside air is taken in by utilizing the radiative cooling phenomenon (the entire roof is cooled by radiative cooling).

こうして、集熱と外気取り込みで室温を最大20℃〜27℃にコントロールする。実際上は冷暖房切替が行なわれるため、冷房設定+2℃〜冷房設定−2℃(初期設定では22℃〜25℃)で制御される。 In this way, the room temperature is controlled to a maximum of 20 ° C. to 27 ° C. by collecting heat and taking in outside air. In practice, since the air conditioning is switched, the air conditioner is controlled at a cooling setting of + 2 ° C to a cooling setting of -2 ° C (22 ° C to 25 ° C in the initial setting).

冷房負荷と貯湯負荷があるときは冷房貯湯モードになる。(冷房した排熱を貯湯に使う) When there is a cooling load and a hot water storage load, the cooling hot water storage mode is set. (Use the cooled exhaust heat for hot water storage)

暖房時温度設定として、おまかせ運転の暖房設定温度は下記表3のように18℃〜20℃に設定されている。すなわち0:00〜4:59まで18℃、5:00〜5:59まで19℃、6:00〜22:59まで20℃、23:00〜23:59まで19℃である。
As the heating temperature setting, the heating set temperature for the automatic operation is set to 18 ° C. to 20 ° C. as shown in Table 3 below. That is, it is 18 ° C. from 0:00 to 4:59, 19 ° C. from 5:00 to 5:59, 20 ° C. from 6:00 to 22:59, and 19 ° C. from 23:00 to 23:59.

これは日中20℃の快適温度として、就寝に近い時間になって徐々に下げるリズムである。就寝時には布団もかけるので18℃が適温になる。 This is a rhythm in which the comfortable temperature of 20 ° C during the day is gradually lowered at a time close to bedtime. At bedtime, a futon is put on, so 18 ° C is the optimum temperature.

ヒートポンプが1台しかないために暖房とお湯採りが同時に出来ない。 Since there is only one heat pump, heating and hot water cannot be taken at the same time.

そこで、早朝には徐々に室温を上げて起床の環境を整備し、昼間は20℃設定する。9:00頃には前記太陽熱集熱暖房(OM集熱)でヒートポンプ負荷がなくなり、12:00頃には25℃近くまで温度上昇するので(暖房負荷が無いので)、このタイミングでヒートポンプを湯沸かしモードで運転する。おおむね4時間で貯湯槽が満タンになる。エコキュート(登録商標)と違って昼間に沸かすので外気温が高い(深夜は0℃に対し昼間は10℃程度あるのでCOPが高い。また、お湯の使用時間までの時間が短いので有利) Therefore, in the early morning, the room temperature is gradually raised to improve the environment for getting up, and the temperature is set to 20 ° C in the daytime. At around 9:00, the heat pump load disappears due to the solar heat collection and heating (OM heat collection), and at around 12:00, the temperature rises to nearly 25 ° C (because there is no heating load), so the heat pump is boiled at this timing. Drive in mode. The hot water tank is full in about 4 hours. Unlike EcoCute (registered trademark), the outside temperature is high because it is boiled in the daytime (COP is high because it is about 10 ° C in the daytime compared to 0 ° C in the middle of the night. Also, it is advantageous because the time to use hot water is short)

また、お湯が不足する予想のときは23:00から設定温度が下がるために4時間程度暖房負荷がなくなるので、このタイミングに不足分を沸かすことができる。(昼間4時間、夜4時間、合計8時間湯沸しのタイミングがある) In addition, when it is expected that the hot water will be insufficient, the heating load will be removed for about 4 hours because the set temperature will drop from 23:00, so that the insufficient amount can be boiled at this timing. (There is a timing of boiling water for a total of 8 hours, 4 hours during the day and 4 hours at night)

1…屋根板 2…空気流路
3…空気取入口 4…集熱ダクト
5…ハンドリングボックス
5−1…集熱空気接続口
5−2−1…室内還り空気接続口
5−2−2…室内還り空気接続口
5−3…屋外吸込口
5−4−1…冷房口
5−4−2…冷房口
5−5…暖房(床下)口
5−6…屋外への排気口
5−7…LITE運転口
5−8…ドレン口
5−9…冷媒配管口
6…逆流防止兼流路切換えダンパー
7…ファン
8…流路切換えダンパー 9…排気ダクト
10…立下りダクト 11…土間コンクリート
12…床パネル 13…空気流通空間
14…床吹出口 15…お湯とりコイル
16…循環配管 17…貯湯槽
18…循環ダクト 19…温水ボイラー
20…室内 21…給湯配管
23…太陽電池 24…第2のハンドリングボックス
25…床下への送風口 26…室内への送風口
27…ダンパー 32…接続ダクト
33…小屋裏 40…屋根集熱部
41…集熱接続ダクト 42…集熱ダクト
43…外気吸込口 44…外気吸込ダクト
45…排気口 46…吹き出し口
47…送気ダクト 48…分岐管
49…分岐ボックス 50…屋根排気ダクト
52…重力式ダンパー 53…比例ダンパー
54…ファン 55…筒型フィルター
56…全熱交換器
57…ヒートポンプの空調熱交(空調熱交換器)
58…屋外ユニット 59…貯湯ユニット
60…冷媒配管 61…ドレン管
62…給湯配管 63…給水口
64…風呂循環配管 65…配管
66…給水配管 67…風呂
70−1…集熱温度センサー 70−2…外気温センサー
70−3…室内リターンセンサー
70−4…熱交換前温湿度センサー
70−5…リモコン内蔵(室温)センター
70−6−1…貯温槽缶体表面温度センサー
70−6−2…温度センサー
70−7…室外ユニット外気温センサー
71…リモコン 72…制御装置
73…家庭用ルーター 74…計測ユニット
75…パワーコンディショナ 76…分電盤
77…台所リモコン 78…浴槽リモコン
79…エコナビゲートウェイ
1 ... Roof plate 2 ... Air flow path 3 ... Air intake 4 ... Heat collecting duct 5 ... Handling box 5-1 ... Heat collecting air connection port 5-2-1 ... Indoor return air connection port 5-2-2 ... Indoor Return air connection port 5-3 ... Outdoor suction port 5-4-1 ... Cooling port 5-4-2 ... Cooling port 5-5 ... Heating (underfloor) port 5-6 ... Outdoor exhaust port 5-7 ... LITE Operation port 5-8 ... Drain port 5-9 ... Refrigerator piping port 6 ... Backflow prevention and flow path switching damper 7 ... Fan 8 ... Flow path switching damper 9 ... Exhaust duct 10 ... Falling duct 11 ... Soil concrete 12 ... Floor panel 13 ... Air flow space 14 ... Floor outlet 15 ... Hot water intake coil 16 ... Circulation pipe 17 ... Hot water storage tank 18 ... Circulation duct 19 ... Hot water boiler 20 ... Indoor 21 ... Hot water supply pipe 23 ... Solar cell 24 ... Second handling box 25 ... Underfloor air outlet 26 ... Indoor air outlet 27 ... Damper 32 ... Connection duct 33 ... Hut back 40 ... Roof heat collecting part 41 ... Heat collecting connection duct 42 ... Heat collecting duct 43 ... Outside air suction port 44 ... Outside air suction Duct 45 ... Exhaust port 46 ... Outlet 47 ... Air supply duct 48 ... Branch pipe 49 ... Branch box 50 ... Roof exhaust duct 52 ... Gravity damper 53 ... Proportional damper 54 ... Fan 55 ... Cylindrical filter 56 ... Total heat exchanger 57 ... Air-conditioning heat exchange of heat pump (air-conditioning heat exchanger)
58 ... Outdoor unit 59 ... Hot water storage unit 60 ... refrigerant pipe 61 ... Drain pipe 62 ... Hot water supply pipe 63 ... Water supply port 64 ... Bath circulation pipe 65 ... Pipe 66 ... Water supply pipe 67 ... Bath 70-1 ... Heat collection temperature sensor 70-2 ... Outside temperature sensor 70-3 ... Indoor return sensor 70-4 ... Temperature / humidity sensor before heat exchange 70-5 ... Built-in remote control (room temperature) Center 70-6-1 ... Heat storage tank Can body surface temperature sensor 70-6-2 … Temperature sensor 70-7… Outdoor unit Outdoor temperature sensor 71… Remote control 72… Control device 73… Household router 74… Measurement unit 75… Power conditioner 76… Distribution board 77… Kitchen remote control 78… Bath remote control 79… Eco-navi gateway

Claims (2)

ダンパーおよびファンを設けた屋内ユニットとしてのハンドリングボックスを屋根集熱部に直接または間接的に連結し、ハンドリングボックスからのダクトを屋内もしくは床下空間に導くソーラーシステムハウスにおいて、
ヒートポンプによる屋外ユニット、貯湯ユニットを備え、また、ハンドリングボックスに外気と室内空気を全熱交換器で熱交換した換気空気と室内戻り空気を混合した空気を温調するヒートポンプの空調熱交を設置し、
温度センサー、温度設定用のリモコン、コンピュータによる制御装置を備え、
制御装置による運転モードとして冷房モードと暖房モードを有し、季節モードとして冬期モード、中間期モード、夏期モードを有し、
温度センサーによる制御装置の季節判断として、外気温が冬期モードの判定温度である18℃、もしくはその前後の温度以下では常時暖房モードを選択し、外気温が夏期モードの判定温度、25℃もしくはその前後の温度では常時冷房モードを選択し、外気温がそれ以外の場合では中間期モードとしたときに、
室温が冷房設定温度、27℃もしくはその前後の温度から−2℃までは暖房モードを選択しそれを越えたら冷房モードを選択し、
室温が暖房設定温度、18℃もしくはその前後の温度から+2℃未満は冷房モードを選択しそれを越えたら暖房モードを選択した場合、
前記暖房モードでは、集熱可能な条件として、集熱空気温度が外気と室内空気を全熱交換器で熱交換した換気空気温度より高い場合は、屋根集熱部からの集熱空気を取り入れハンドリングボックスからのダクトを介して屋内もしくは床下空間に導く太陽熱集熱暖房を行い、
集熱空気温度が換気空気温度より低くかつ室温が暖房設定温度より低い場合は、太陽熱集熱暖房しながらヒートポンプで暖房し、
前記冷房モードでは、室内空気はハンドリングボックスを介して屋根集熱部を通して排気し、
冷房設定温度より室温が高いときは、全熱交換器を通した換気空気と室内空気を混合して吸い込んでヒートポンプで冷房することを特徴とした太陽熱利用機器の運転制御方法。
In a solar system house where a handling box as an indoor unit with a damper and a fan is directly or indirectly connected to the roof heat collector and the duct from the handling box is led to an indoor or underfloor space.
It is equipped with an outdoor unit and hot water storage unit using a heat pump, and an air-conditioning heat exchange of a heat pump that regulates the temperature of the ventilation air that exchanges heat between the outside air and the room air with a total heat exchanger and the air that is a mixture of the indoor return air is installed in the handling box. ,
Equipped with a temperature sensor, remote control for temperature setting, computer control device,
It has a cooling mode and a heating mode as operation modes by the control device, and has a winter mode, an intermediate mode, and a summer mode as seasonal modes.
As the seasonal judgment of the control device by the temperature sensor , the constant heating mode is selected when the outside temperature is 18 ° C, which is the judgment temperature of the winter mode, or a temperature around it, and the outside temperature is the judgment temperature of the summer mode, 25 ° C or its own. When the cooling mode is always selected for the temperature before and after, and the intermediate mode is selected when the outside temperature is other than that,
When the room temperature is the set cooling temperature, 27 ° C or around, select the heating mode up to -2 ° C, and when it exceeds that, select the cooling mode.
If the room temperature is less than + 2 ° C from the heating set temperature, 18 ° C or around, select the cooling mode, and if it exceeds that, select the heating mode.
In the heating mode, if the heat collecting air temperature is higher than the ventilation air temperature at which the outside air and the room air are heat-exchanged by the total heat exchanger, the heat collecting air from the roof heat collecting part is taken in and handled. Solar heat collection and heating that leads to indoor or underfloor space through a duct from the box
If the heat collecting air temperature is lower than the ventilation air temperature and the room temperature is lower than the heating set temperature, heat with a heat pump while solar heat collecting and heating.
In the cooling mode, the indoor air is exhausted through the roof heat collector via the handling box.
When the room temperature is higher than the cooling set temperature, the operation control method of the solar heat utilization equipment is characterized by mixing and sucking the ventilation air and the room air through the total heat exchanger and cooling with a heat pump .
屋根集熱部は太陽電池を備えるものであり、全熱交換器を通した換気空気と室内空気を混合して吸込んで、屋根集熱部の太陽電池の裏面を通して排気する請求項1記載の太陽熱利用機器の運転制御方法。 The solar heat according to claim 1, wherein the roof heat collecting section includes a solar cell, and the ventilation air and the room air that have passed through the total heat exchanger are mixed and sucked in, and exhausted through the back surface of the solar cell of the roof heat collecting section. Operation control method for the equipment used.
JP2018188891A 2018-10-04 2018-10-04 Operation control method for solar heat utilization equipment Active JP6805216B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018188891A JP6805216B2 (en) 2018-10-04 2018-10-04 Operation control method for solar heat utilization equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018188891A JP6805216B2 (en) 2018-10-04 2018-10-04 Operation control method for solar heat utilization equipment

Publications (2)

Publication Number Publication Date
JP2020056555A JP2020056555A (en) 2020-04-09
JP6805216B2 true JP6805216B2 (en) 2020-12-23

Family

ID=70106974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018188891A Active JP6805216B2 (en) 2018-10-04 2018-10-04 Operation control method for solar heat utilization equipment

Country Status (1)

Country Link
JP (1) JP6805216B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113279492A (en) * 2021-05-19 2021-08-20 李勇超 Intelligent building system of low energy consumption
CN113883621B (en) * 2021-09-27 2022-05-24 中国建筑第二工程局有限公司 Zero-energy-consumption modularized customized box-type board room tail end point type air conditioning system
CN114294727A (en) * 2022-01-07 2022-04-08 中铁建设集团机电安装有限公司 Two-pipe air conditioning unit capable of supplying cold and hot simultaneously in winter
CN115033041B (en) * 2022-06-21 2023-03-21 清华大学 Passive room environment regulation and control system and environment regulation and control method
CN115486296A (en) * 2022-08-31 2022-12-20 云南旭滇农业技术有限公司 Double-source coupling solar greenhouse heat collection temperature and humidity adjustment system and environment control method

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0670528B2 (en) * 1987-09-17 1994-09-07 株式会社オーエム研究所 Solar system house
JPH06313631A (en) * 1993-04-30 1994-11-08 O M Kenkyusho:Kk Solar system house
JPH09229398A (en) * 1996-02-20 1997-09-05 Mitsubishi Electric Corp Air conditioning apparatus
JP4567848B2 (en) * 2000-07-10 2010-10-20 ミサワホーム株式会社 Central ventilation
JP2002235955A (en) * 2001-02-07 2002-08-23 Om Kenkyusho:Kk Solar system house
JP3878636B2 (en) * 2004-09-30 2007-02-07 株式会社オーエム研究所 Solar system house ventilation method
JP2006097425A (en) * 2004-09-30 2006-04-13 Om Institute Inc Method of ventilating solar system house
KR100991809B1 (en) * 2008-07-24 2010-11-04 한국하니웰 주식회사 Ventilating system having heat pump
JP5742009B2 (en) * 2011-02-24 2015-07-01 株式会社 ▲高▼▲橋▼監理 Earth / Solar / Zero Energy Housing
JP2012184912A (en) * 2011-03-07 2012-09-27 Kudo Kensetsu Kk Air conditioning device using underground heat
KR101713546B1 (en) * 2014-03-26 2017-03-08 신보라 One body type airconditioing Circulation System
KR101566005B1 (en) * 2015-08-28 2015-11-05 나인선 Total heat exchange ventilator using geothermal
JP6781560B2 (en) * 2016-03-24 2020-11-04 株式会社長府製作所 Ventilator

Also Published As

Publication number Publication date
JP2020056555A (en) 2020-04-09

Similar Documents

Publication Publication Date Title
JP6805216B2 (en) Operation control method for solar heat utilization equipment
JP4485539B2 (en) Solar system house
US8539788B2 (en) Ventilating and air conditioning apparatus
JP2002235955A (en) Solar system house
JP6820199B2 (en) Solar heat control system
JP6249387B1 (en) Floor air conditioning system
JP3878636B2 (en) Solar system house ventilation method
JPH0670528B2 (en) Solar system house
JP3878637B2 (en) Solar system house
JP2006097425A (en) Method of ventilating solar system house
JP3878610B2 (en) Passive solar system house
JP4637005B2 (en) Solar system house
KR101532956B1 (en) High efficiency solar thermal collector having frame and energy transfer path parallel structure
AU744141B2 (en) Ventilating system
CN111678193A (en) Comprehensive energy-saving temperature-control water supply system for living buildings
CN212104312U (en) Building energy comprehensive utilization system
JP2008304167A (en) Hot-water supply facility for multiple dwelling house
JP2004076985A (en) Air conditioning system for building
CN206145865U (en) Official working position cuts off formula radiation heat transfer terminal air conditioning device
JP6303105B2 (en) Smart eco air conditioning system
JP3182544B2 (en) Solar system house
EP1407198B1 (en) Ventilating system
JP3097667U (en) Exterior insulation building
JPH06313631A (en) Solar system house
JP3850768B2 (en) Building air circulation system

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20181024

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201203

R150 Certificate of patent or registration of utility model

Ref document number: 6805216

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250