JP2008076015A - Building air-conditioning system by geothermal use - Google Patents

Building air-conditioning system by geothermal use Download PDF

Info

Publication number
JP2008076015A
JP2008076015A JP2006258739A JP2006258739A JP2008076015A JP 2008076015 A JP2008076015 A JP 2008076015A JP 2006258739 A JP2006258739 A JP 2006258739A JP 2006258739 A JP2006258739 A JP 2006258739A JP 2008076015 A JP2008076015 A JP 2008076015A
Authority
JP
Japan
Prior art keywords
air
heat exchanger
conditioning system
building
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006258739A
Other languages
Japanese (ja)
Inventor
Tomoki Sugiyama
智己 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUGIYAMA SHOJI KK
Original Assignee
SUGIYAMA SHOJI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUGIYAMA SHOJI KK filed Critical SUGIYAMA SHOJI KK
Priority to JP2006258739A priority Critical patent/JP2008076015A/en
Publication of JP2008076015A publication Critical patent/JP2008076015A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0046Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground
    • F24F5/005Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground using energy from the ground by air circulation, e.g. "Canadian well"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/40Geothermal heat-pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/54Free-cooling systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Central Air Conditioning (AREA)
  • Duct Arrangements (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a building air-conditioning system by geothermal use, for air-conditioning a building, while saving energy and reducing an environmental load, by effectively using underground heat. <P>SOLUTION: A multitubular flat heat exchanger is formed by connecting an intake side header 21A and an exhaust side header 21B in an airtight state by a large number of metallic small diameter pipes 22, and is composed of at least one multitubular flat heat exchanger 20 buried in the ground of the required depth, an intake pipe 25 for introducing air-conditioning object air to the intake side header of the shell and tube flat heat exchanger, an exhaust ventilation pipe 26 having an air blowing mechanism 27 by connecting to the inside of a space for air-conditioning from an outlet of the exhaust side header of the flat heat exchanger 20, and an air-conditioning air blowoff part 8 arranged along a corner part of an indoor structural material via a proper space from the outlet side of the exhaust ventilation pipe 26. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、熱容量が膨大で常時ほぼ一定の温度に保たれる土壌の温度を活用して冷熱源および温熱源として利用する地熱利用による建築物空調システムに関する。 TECHNICAL FIELD The present invention relates to a building air conditioning system using geothermal heat that uses a soil temperature that is enormous in heat capacity and always kept at a substantially constant temperature, and that is used as a heat source.

夏季の高温多湿状態、冬季の低温乾燥状態にもかかわらず、室内または特定空間を快適な環境に維持するには、当該空間内における空気の温度、湿度および清浄度を所望範囲に調節する空気調和が必要になる。代表的な空気調和装置は、冷媒の圧縮・膨張に伴って生ずる吸熱作用を利用する冷熱源と薪・灯油・LPG・都市ガス等諸燃料の燃焼熱、太陽熱等に代表される温熱源とが広く利用されている。また、一般住宅、オフィス、作業場、商店等においては、冷媒の圧縮・膨張に伴う吸熱作用および発熱作用を利用し、冷媒の流動方向を切り替えることによって、冷房および暖房に共用可能なヒートポンプ方式による空調装置も多く採用されている。なお、空気の清浄度や湿度を調節するために、一般に各種フィルタや加湿機構が付加されることも多い。 In order to maintain a comfortable environment in a room or a specific space despite the hot and humid conditions in summer and the low-temperature dry conditions in winter, air conditioning that adjusts the temperature, humidity, and cleanliness of air in the space to the desired range Is required. A typical air conditioner includes a cold heat source that uses an endothermic effect that occurs in association with the compression and expansion of a refrigerant, and a heat source represented by combustion heat of various fuels such as soot, kerosene, LPG, and city gas, and solar heat. Widely used. In general residences, offices, workplaces, shops, etc., heat pump air conditioning that can be used for both cooling and heating by using the heat absorption and heat generation associated with refrigerant compression and expansion and switching the direction of refrigerant flow. Many devices are also used. In general, various filters and humidification mechanisms are often added to adjust the cleanliness and humidity of the air.

このように広く普及している空気調和装置は、冷媒用圧縮機を駆動するために電動機を使用しており、多くの電力を消費する。冷房ないし暖房の必要となる気象条件下にあっては、当該地域およびその周辺における空調用電力需要が集中することになる。このような傾向は、特に地球温暖化の影響とも相俟って、夏季の気温上昇に伴い例年記録更新が繰返される傾向にある。このような電力需要の増大する事態には通常、燃焼熱を利用する火力発電所(および原子力発電所)を主体とする電力系統によって対応する。火力発電の運用割合が増大すると、窒素酸化物(NOx)、硫黄酸化物(SOx)等を含む燃焼排ガスの排出量が増加し、これに伴って大気汚染の拡大、二酸化炭素排出量増大によって地球温暖化が加速されるなど、地球環境をますます悪化させてしまう懸念がある。また、利用者にとっては使用電力量が大きくなり経済的な負担も大きくなる。 Such a widely used air conditioner uses an electric motor to drive the refrigerant compressor, and consumes a lot of electric power. Under weather conditions that require cooling or heating, the power demand for air conditioning in the area and its surroundings is concentrated. Such a trend, especially in conjunction with the effects of global warming, tends to be repeated every year with the rise in summer temperature. Such a situation in which electric power demand increases is usually dealt with by an electric power system mainly composed of a thermal power plant (and a nuclear power plant) that uses combustion heat. As the operating ratio of thermal power generation increases, emissions of combustion exhaust gas containing nitrogen oxides (NOx), sulfur oxides (SOx), etc. will increase, resulting in increased air pollution and increased carbon dioxide emissions. There is a concern that the global environment will be further exacerbated, such as global warming being accelerated. In addition, the amount of power used for the user increases and the economic burden also increases.

かかる事情を考慮して、熱容量の大きな土壌や地下水などを利用して可能な限り省エネルギーを図りながら地球環境にも優しい空気調和装置を構成する試みが多く提案されている。特許文献1は、例えば床下のような地中に埋設したタンクに水を貯えた蓄熱タンクとし、この蓄熱タンク内の水中にフレキシブルパイプなどによる通気管を埋没させている。この通気管の一端から、導入された空気を室内に循環させて空調を行なう地熱利用空調システムを開示している。このシステムでは、長期間にわたり安定している地中温度によって蓄熱タンク内の水温が決まり、この中に埋没せしめられている通気管内を通過して水温に近い温度に冷却(または加温)された空気を、空調対象となる室内等に導入している。 In consideration of such circumstances, many attempts have been made to construct an air conditioner that is friendly to the global environment while saving energy as much as possible using soil or groundwater having a large heat capacity. In Patent Document 1, for example, a heat storage tank in which water is stored in a tank buried under the ground such as under the floor, and a flexible pipe or the like is buried in the water in the heat storage tank. A geothermal air-conditioning system that performs air conditioning by circulating introduced air from one end of the vent pipe into the room is disclosed. In this system, the water temperature in the heat storage tank is determined by the underground temperature that is stable for a long period of time, and it is cooled (or heated) to a temperature close to the water temperature through the ventilation pipe buried in this tank. Air is introduced into the room to be air-conditioned.

したがって、冷媒を圧縮・膨張させて冷却作用(または加熱作用)を発揮するための設備が不要となり、省エネルギーを図りながら空調が行なえる。しかしながら、空調を行なう空間に応じた、比較的大規模な地中タンクが必要となり、設置場所における地積や地形等に関する制約が大きくなる可能性がある。 Therefore, a facility for compressing and expanding the refrigerant to exhibit a cooling action (or heating action) becomes unnecessary, and air conditioning can be performed while saving energy. However, a relatively large underground tank is required according to the air-conditioned space, and there is a possibility that restrictions on the land area, topography, and the like at the installation location will increase.

特許文献2は、周囲に外気通路を有して建物の床下に形成された蓄熱室と、地中に埋設されその開口端部が前記蓄熱室内に連通する熱交換パイプと、建物の床下、室内および天井に形成され前記蓄熱室に連通する空気通路と、この空気通路内に供給される空気を除湿する除湿機と、を備えた地熱を利用した建物の空調システムであって、前記熱交換パイプによって地熱で冷却または加温されると共に前記除湿機によって除湿された空気を、空気通路内に流通させて建物内の室温を調整する空調システムを開示している。 Patent Document 2 discloses a heat storage chamber that has an outside air passage around and is formed under the floor of a building, a heat exchange pipe that is buried in the ground and whose open end communicates with the heat storage chamber, a floor under the building, a room And an air passage system formed on the ceiling and communicating with the heat storage chamber, and a dehumidifier for dehumidifying the air supplied into the air passage, using a geothermal heat, wherein the heat exchange pipe The air conditioning system which adjusts the room temperature in a building is distribute | circulated in the air path through the air which was cooled or heated by geothermal heat and was dehumidified by the said dehumidifier.

前記除湿機もしくはその近傍には、空気通路内で流通される空気の抗菌等を行なうためのフィルタが配設される。この空調システムでは、周囲に外気通路を有して建物床下に形成される蓄熱室が建築物と一体化するようなかなり大規模な設備となるため、既設建築物への後付けや改装の場合には適用が困難である。 In the dehumidifier or in the vicinity thereof, a filter for performing antibacterial and the like of air circulated in the air passage is disposed. In this air conditioning system, the heat storage chamber formed under the building floor with an outside air passage around it becomes a fairly large facility that integrates with the building. Is difficult to apply.

特許文献3は、熱媒体としての水と空気流通路を流通する空気との熱交換を行なう熱交換器を、居住区内、床下空間、天井裏空間等に設置し、これら熱交換器の空気流通路から熱交換器の空気を流出させて居住区内で対流させるように構成された、地下水を利用した住宅空調システムを開示している。これらの熱交換器の熱媒体流通路を閉路循環路として形成し、この閉路循環路を付加側通路とするヒートポンプの熱源側通路として、地熱との熱交換を行なう地下水を循環させる地下水循環通路を設けている。この特許文献3の空調システムは、複数の熱交換器を組み合わせて、地下水の温度を利用することにより、居住区内で空気を自然対流させながら室内空調を行なうものである。このシステムでは、装置としても複数の熱交換器を用いるため複雑となり、また、多量の地下水の循環を利用するため、設置ならびに運用上の制約を受ける可能性が高い。
特開2001−41479号公報 特開2005−201463号公報 特開2005−207704号公報
In Patent Document 3, a heat exchanger for exchanging heat between water as a heat medium and air flowing through an air flow passage is installed in a residential area, an underfloor space, a ceiling space, and the like. A residential air-conditioning system using groundwater is disclosed that is configured to allow air in a heat exchanger to flow out of a flow passage and convect it in a residential area. The heat medium flow passage of these heat exchangers is formed as a closed circuit, and a ground water circulation passage that circulates ground water that performs heat exchange with geothermal heat is used as a heat source side passage of the heat pump that uses this closed circuit as an additional passage. Provided. The air conditioning system of Patent Document 3 performs indoor air conditioning while naturally convection of air in a residential area by combining a plurality of heat exchangers and using the temperature of groundwater. This system is complicated because a plurality of heat exchangers are used as the apparatus, and a large amount of groundwater circulation is used, so that there is a high possibility of being restricted in installation and operation.
JP 2001-41479 A JP 2005-201443 A JP 2005-207704 A

本発明は、簡易な構成によって地熱を有効利用することにより省エネルギー並びに環境負荷の軽減を図りながら建築物の空気調和を行なうための地熱利用による建築物空調システムを提供することを課題とする。 An object of the present invention is to provide a building air-conditioning system using geothermal heat for air conditioning of a building while saving energy and reducing environmental load by effectively using geothermal heat with a simple configuration.

請求項1に記載の発明は、吸気側ヘッダー21Aと排出側ヘッダー21Bとの間が多数本の金属製細管22によって気密状態となるように連結された多管式平坦状熱交換器であって所要深さの地中に埋設される少なくとも1台の多管式平坦状熱交換器20と、該多管式平坦状熱交換器の吸気側ヘッダー21Aに対して空調対象空気を導入するための吸気配管25と、前記平坦状熱交換器の排出側ヘッダー21Bの出口から空調を行なう空間内に連通していて、送風機構27を備えた排出通気管26と、該排出通気管の出口側から適宜空間を経て室内構造材の隅部に沿って配設された空調空気放出部8と、から構成される地熱利用による建築物の空調システムであることを特徴とする。 The invention according to claim 1 is a multi-tubular flat heat exchanger in which an intake side header 21A and an exhaust side header 21B are connected so as to be airtight by a plurality of metal thin tubes 22. For introducing air to be conditioned into at least one multi-tube flat heat exchanger 20 embedded in the ground at a required depth and the intake-side header 21A of the multi-tube flat heat exchanger An air intake pipe 25 communicates with an air-conditioning space from an outlet of the discharge side header 21B of the flat heat exchanger, and a discharge vent pipe 26 having a blower mechanism 27, and an outlet side of the exhaust vent pipe. It is an air conditioning system for buildings using geothermal heat, which is composed of an air conditioned air discharge part 8 disposed along the corner of the indoor structural material through an appropriate space.

請求項2に記載の発明は、前記多管式平坦状熱交換器20の主要部が、前記吸気側および排出側の両ヘッダー21A、B間を気密状態で連結する金属製細管20〜30本を二段千鳥配列として接合されたステンレス細管群であることを特徴とする地熱利用による建築物空調システムである。 According to the second aspect of the present invention, the main portion of the multi-tubular flat heat exchanger 20 has 20 to 30 metal thin tubes that connect the intake side and discharge side headers 21A and B in an airtight state. It is a building air conditioning system using geothermal heat, characterized in that it is a group of stainless thin tubes joined in a two-stage staggered arrangement.

請求項3に記載の発明は、前記多管式平坦状熱交換器20が適宜間隔をおいて複数台配設されることを特徴とする地熱利用による建築物空調システムである。 The invention according to claim 3 is a building air-conditioning system using geothermal heat, wherein a plurality of the multi-tubular flat heat exchangers 20 are arranged at appropriate intervals.

請求項4に記載の発明は、適宜間隔で複数台設置される前記多管式平坦状熱交換器20が、熱需要に応じた切替え手段の操作により、交互運用ないし並列同時運用が任意の組み合せで選択可能であることを特徴とする地熱利用による建築物空調システムである。 In the invention according to claim 4, the multi-tubular flat heat exchanger 20 that is installed in a plurality at appropriate intervals can be operated in any combination of alternate operation or parallel simultaneous operation by operation of switching means according to heat demand. It is a building air conditioning system using geothermal heat, which can be selected by

請求項5に記載の発明は、前記多管式平坦状熱交換器20によって温度調節された空気を空調空間に導入する経路が、暖房期か冷房期かに応じて温度調節効果を阻害しない経路に切り替え可能であることを特徴とする地熱利用による建築物空調システムである。 According to a fifth aspect of the present invention, there is provided a path that does not inhibit the temperature control effect depending on whether the path for introducing the air whose temperature is adjusted by the multi-tubular flat heat exchanger 20 into the air-conditioned space is the heating period or the cooling period. It is a building air conditioning system using geothermal heat, characterized in that it can be switched to.

請求項6に記載の発明は、前記空調空気放出部が、床と壁の接合部に水平に配設され、多数の通気口を形成した通気幅木8A、Bであることを特徴とする地熱利用による建築物空調システムである。 The invention according to claim 6 is the geothermal heat characterized in that the air-conditioning air discharge part is a ventilation skirting board 8A, B which is disposed horizontally at the joint between the floor and the wall and forms a large number of ventilation holes. It is a building air conditioning system by use.

請求項7に記載の発明は、前記空調空気放出部が柱と壁接合部に沿ってほぼ垂直に配設される素材に多数の通気口を形成した加工品であることを特徴とする地熱利用による建築物空調システムであり、請求項8に記載の発明は、前記空調空気放出部が長押と壁接合部に沿って水平に配設される素材に多数の通気口を形成した加工品であることを特徴とする地熱利用による建築物空調システムである。 The invention according to claim 7 is a geothermal use characterized in that the air-conditioning air discharge part is a processed product in which a large number of ventilation holes are formed in a material arranged substantially vertically along the column and wall joint part. The invention according to claim 8 is a processed product in which a large number of ventilation holes are formed in a material in which the air-conditioning air discharge portion is disposed horizontally along the long press and the wall joint portion. This is a building air-conditioning system using geothermal heat.

請求項9に記載の発明は、前記空調空気放出部が回り縁(天井回り縁)と壁の接合部に沿って水平に配設される素材に多数の通気口を形成した加工品であることを特徴とする地熱利用による建築物空調システムである。 The invention according to claim 9 is a processed product in which a large number of ventilation holes are formed in a material in which the air-conditioning air discharge portion is disposed horizontally along a joint portion between a peripheral edge (ceiling peripheral edge) and a wall. It is a building air conditioning system using geothermal heat.

本発明に係る地熱利用による建築物空調システムは、大きな熱容量を保持し大気温度に拘わらずほぼ安定した土壌温度を利用するために、地中に埋設された熱交換器において吸入空気と熱交換を行い、降温(または昇温)および除湿された空気を室内に導入することにより所望空間内の空気調和を実施するものである。例えば、地表面から4〜6メートル程度の、凍結や浸水を生じない地中の土壌温度は、年間を通じて14〜18℃前後でほぼ安定しているため、この土壌温度を夏季の冷熱源、冬季の温熱源として利用することにより省エネルギーの実をあげながら、環境にも優しい空調設備が期待できる点に着目したものである。 The building air-conditioning system using geothermal heat according to the present invention performs heat exchange with intake air in a heat exchanger embedded in the ground in order to use a stable soil temperature regardless of atmospheric temperature while maintaining a large heat capacity. The air conditioning in the desired space is performed by introducing into the room the air that has been lowered and heated (or raised in temperature) and dehumidified. For example, the soil temperature in the ground, which is about 4-6 meters from the ground surface and does not cause freezing or inundation, is almost stable at around 14-18 ° C throughout the year. It pays attention to the fact that it can be expected to be environmentally friendly air-conditioning equipment while saving energy by using it as a heat source.

この場合、地中に埋設される熱交換器は、降温または昇温すべき空気が通過する間に効率よく熱交換する必要があるため、周辺土壌との接触面積を大きくするように、吸気側ヘッダー(「管寄せ」とも称される)と排出側ヘッダーとの間を、多数本の金属製通気細管で気密状態となるように連結した多管式平坦状熱交換器として構成される。このように金属製細管群を平坦状に配設した結果、周辺土壌と熱交換部細管との接触面が広くなり、したがって熱交換効率が向上する。 In this case, the heat exchanger buried in the ground needs to exchange heat efficiently while the air to be cooled or heated passes, so that the contact area with the surrounding soil should be increased. It is configured as a multi-tubular flat heat exchanger in which a header (also referred to as “pipe header”) and a discharge-side header are connected so as to be airtight with a large number of metal ventilation thin tubes. As a result of arranging the metal thin tube groups in a flat manner in this way, the contact surface between the surrounding soil and the heat exchange portion thin tubes is widened, and thus the heat exchange efficiency is improved.

外径が20〜30mm程度である通気細管は地中に埋設した状態で長期間使用するためステンレス管が好ましく、通気の導入側ヘッダーと排出側ヘッダーとの対向面同士を気密状態となるように溶接等の手段によって接合したもので、全体として両ヘッダーと多数本、例えば20〜30本程度の通気細管とによって平坦状に形成される。したがって、筒状や太い管状の熱交換器に比して、周辺土壌との接触面積が大きくなり、高効率の熱交換が期待できる。通気細管の長さは空調の対象となる空間の容積によって決定することができるが、例えば長さ1.5m〜2m程度の通気細管を所要本数、例えば20〜30本程度によって構成する形態を標準とし、細管長さならびに使用本数を増減することによって熱交換能力を調節することができる。さらに大きな熱交換能力を必要とする場合は、基準サイズで構成された熱交換器を複数台設置し、これらを適宜切替えて、並列運用または交互運用することにより外気温度の変化や在室人員の夥多等による熱需要の変化に適合する熱交換能力を達成することができる。 Stainless steel pipes are preferred for ventilating thin tubes with an outer diameter of about 20-30 mm because they are used for a long time in a state where they are buried in the ground, so that the opposing surfaces of the ventilation inlet side header and the discharge side header are in an airtight state. It is joined by means such as welding, and as a whole, it is formed in a flat shape by both headers and a large number of, for example, about 20 to 30 ventilation thin tubes. Therefore, compared with a cylindrical or thick tubular heat exchanger, the contact area with the surrounding soil is increased, and high-efficiency heat exchange can be expected. Although the length of the ventilation thin tube can be determined by the volume of the space to be air-conditioned, for example, a standard configuration in which the number of ventilation thin tubes having a length of about 1.5 m to 2 m, for example, about 20 to 30 is configured. The heat exchange capacity can be adjusted by increasing or decreasing the length of the thin tubes and the number of tubes used. If even greater heat exchange capacity is required, install multiple heat exchangers of the standard size and switch between them as appropriate to change the outside air temperature or reduce the number of people in the room. It is possible to achieve a heat exchanging capacity that adapts to changes in heat demand due to a large number of factors.

地中の熱交換器によって温度調節された空気は、屋内に導入される際に、空調効果を阻害することなく、むしろ増大させるように切り替えられる。夏季冷房期にあっては、外気温よりも降温された空気が建築物の床下に形成された下部空気室に導かれ、二重壁による複層壁の中空部を経て下層階(1階)から2階以上の上層階へと上昇させ、その間各室内の壁際に取り付けられた空気吹き出し開口付きの通気加工品、例えば通気幅木(はばぎ)を介して室内側に向けて吹き出される。これに対して冬季(暖房期)にあっては、外気温よりも昇温された空気が建築物の屋根裏に形成された上部空気室に導かれ、屋根材を介して透過する太陽熱により温められた空気と混合されて昇温空気となる。そして、一旦下部空気室に送り込まれた昇温空気は、複層壁の中空部を経て下層階から上層階の方に流動し、その間各室内の壁際に取り付けられた空気吹き出し開口付き加工品、例えば通気幅木を介して室内側に向けて吹き出される。かかる構成を採用することにより、冷房期には床下の下部空気室から降温空気の温度上昇を招くことなしに各部屋へ送気され、暖房期には熱交換空気を一旦屋根裏の上部空気室まで導き、太陽熱による温度上昇分も加味した昇温空気が下部空気室から各部屋へ送気されるため、空調効率を高めることができる。 Air that has been temperature controlled by an underground heat exchanger is switched to increase rather than hinder the air conditioning effect when introduced indoors. During the summer cooling season, the air that has fallen below the outside temperature is led to the lower air chamber formed under the floor of the building, and passes through the hollow part of the double-layered wall of the lower wall (the first floor) From the first floor to the upper floor, and during that time, it is blown out toward the indoor side through a ventilated product with an air blowing opening attached to the wall of each room, for example, a vent skirting board . On the other hand, in the winter season (heating season), air heated to a temperature higher than the outside air temperature is guided to the upper air chamber formed in the attic of the building, and is warmed by solar heat transmitted through the roofing material. The air is mixed with the heated air and becomes heated air. And the heated air once sent into the lower air chamber flows from the lower floor to the upper floor through the hollow portion of the multilayer wall, while the processed product with the air blowing opening attached to the wall in each room during that time, For example, it blows out indoors through a ventilation skirting board. By adopting such a configuration, in the cooling period, air is sent from the lower air chamber under the floor to each room without causing a temperature rise of the cooling air, and in the heating period, the heat exchange air is once sent to the upper air chamber in the attic. Since the temperature-raised air that takes into account the temperature rise due to solar heat is sent from the lower air chamber to each room, the air conditioning efficiency can be improved.

このように構成される本発明に係る地熱利用による建築物空調システムは、土壌の保有する熱量を熱交換器において循環空気に取り込み、対象空間の空気調和の冷熱源および温熱源とするものである。したがって、熱源として電力(送風用省電力を除く)をはじめ、液体燃料や気体燃料等による燃焼熱を使用していない。そのため、熱源用の電気料金や燃料費が不要となり、省エネルギーに大きく貢献できるほか、電力需要も抑制されることから、地球温暖化の元凶とされる二酸化炭素の排出量も削減される。また、各熱源が土壌から空調用空気の伝熱に基づく交換熱であることから、過度の冷し過ぎ(または暖め過ぎ)に至る懸念はなく、乳幼児、高齢者、疾病患者等のいわゆる社会的弱者にとっても使い易いマイルドな空調設備が得られる。 The building air-conditioning system using geothermal heat according to the present invention configured as described above takes the amount of heat held by the soil into the circulating air in the heat exchanger, and uses it as a cooling and heating source for air conditioning in the target space. . Therefore, power (excluding power saving for blowing) as well as heat of combustion from liquid fuel or gaseous fuel is not used as a heat source. This eliminates the need for electricity charges and fuel costs for the heat source, greatly contributes to energy conservation, and reduces the demand for power, thereby reducing the amount of carbon dioxide that is the cause of global warming. Moreover, since each heat source is exchange heat based on heat transfer of air-conditioning air from the soil, there is no concern of overcooling (or overheating), so-called social conditions such as infants, the elderly, and sick patients. A mild air conditioning system that is easy to use for the weak can be obtained.

以下、添付図を参照しつつ本発明の実施例について開示する。図1は、本発明に係る地熱利用による建築物空調システムの構成例を示す全体構成図である。空調すべき建築物1は、外壁2と内壁3の二重壁面による複層空気流動路を有する2階建て家屋として表されている。屋根裏には上部空気室4が、そして床下には下部空気室5が、それぞれ形成される。これら両空気室4および5の間には空調用空気を連通させるための送気ダクト(下降)6が配設され、上部空気室4に設置された循環用ファン7を駆動することにより上部空気室4の空気を下部空気室5に向けて流動させることができる。 Hereinafter, embodiments of the present invention will be disclosed with reference to the accompanying drawings. FIG. 1 is an overall configuration diagram showing a configuration example of a building air conditioning system using geothermal heat according to the present invention. The building 1 to be air-conditioned is represented as a two-story house having a multi-layer air flow path with a double wall surface of an outer wall 2 and an inner wall 3. An upper air chamber 4 is formed in the attic, and a lower air chamber 5 is formed under the floor. Between these air chambers 4 and 5, an air supply duct (lowering) 6 is provided for communicating air for air conditioning, and the upper air is driven by driving a circulation fan 7 installed in the upper air chamber 4. The air in the chamber 4 can flow toward the lower air chamber 5.

建築物1の部屋の床面と内壁との接合部に沿って多数の開口が設けられた空調空気放出部としての通気幅木8Aおよび8Bが配設される。建築物1の部屋の床面と内壁との接合部であって前記通気幅木8A、8Bの裏側には前記内外壁間の空気流動路との連通口が随所に設けられており、内外壁中空部の空気流動路を通過する空調空気を室内空間に吹き出すように構成される。この場合、下部空気室5に近い下層階の通気幅木8Aの開口と上層階の通気幅木8Bの開口とは、口径および/または開口数を適宜変更することにより、上下層各室内への通気量を調節し、空気調和の効果を適宜調節することができる。さらに、開口部カバーを用意しておき、吹き出し空気量を低減することにより空調効果の加減を行なうことも可能である。 Ventilation skirting boards 8A and 8B are provided as air-conditioned air discharge parts provided with a large number of openings along the joints between the floor surface and the inner wall of the room of the building 1. A connecting portion between the floor of the room of the building 1 and the inner wall, and on the back side of the vent skirting boards 8A and 8B, there are communication ports with the air flow path between the inner and outer walls. It is comprised so that the conditioned air which passes the air flow path of a hollow part may be blown off to indoor space. In this case, the opening of the lower floor ventilation skirting board 8A and the opening of the upper floor ventilation skirting board 8B close to the lower air chamber 5 can be changed into the upper and lower layer rooms by appropriately changing the diameter and / or the number of openings. By adjusting the air flow rate, the effect of air conditioning can be adjusted appropriately. Furthermore, it is also possible to adjust the air conditioning effect by preparing an opening cover and reducing the amount of blown air.

図1における循環用ファン7の駆動電動機を多段階または無段階で速度制御することにより、空調の効果を調節することが可能である。なお、建築物1の左手側に床下の下部空気室5から上部空気室4まで垂直に延びている送気ダクト9(上昇)は、後述する熱交換器20において熱交換された結果、降温、昇温および除湿された、すなわち空気調和処理を受けた空気を上部空気室4まで送気するものである。なお、上部空気室4から下部空気室5へつながる送気ダクト6および下部から上方への送気ダクト9は開示の便宜上室内を貫通するように図示されているが、実際は壁や柱に沿わせる等の配慮が為され、実用上障害とならないように配設される。 The effect of the air conditioning can be adjusted by speed-controlling the drive motor of the circulation fan 7 in FIG. Note that an air supply duct 9 (up) extending vertically from the lower air chamber 5 under the floor to the upper air chamber 4 on the left hand side of the building 1 is subjected to heat exchange in a heat exchanger 20 described later, resulting in a temperature drop, The air that has been heated and dehumidified, that is, that has been subjected to the air conditioning process, is sent to the upper air chamber 4. In addition, although the air supply duct 6 connected from the upper air chamber 4 to the lower air chamber 5 and the air supply duct 9 from the lower part to the upper part are illustrated as penetrating the room for the convenience of disclosure, they are actually arranged along walls and pillars. It is arranged so as not to be a hindrance in practice.

図1の左下は、建築物1近傍の地下に埋設され、通過する空気を地熱との熱交換により冷却降温または加熱昇温するための多管式平坦形熱交換器20を示すものである。この熱交換器20は、吸気側ヘッダー21Aと排出側ヘッダー21Bの間を多数本、例えば20〜30本程度のステンレス細管群22によって気密状態となるように溶接されたものである。このステンレス細管群22を構成するステンレス細管は、例えば直径が20〜30mm程度、長さ1.5m〜2m程度の直管で、それぞれの両端部が両ヘッダー21A、21Bの対向面同士間に気密状態となるように溶接されている。 The lower left of FIG. 1 shows a multi-tubular flat heat exchanger 20 that is buried underground in the vicinity of the building 1 and cools or heats the passing air by heat exchange with geothermal heat. The heat exchanger 20 is welded so as to be in an airtight state between a plurality of, for example, about 20 to 30 stainless thin tube groups 22 between the intake side header 21A and the discharge side header 21B. The stainless thin tubes constituting the stainless thin tube group 22 are, for example, straight tubes having a diameter of about 20 to 30 mm and a length of about 1.5 to 2 m, and both end portions are airtight between the opposing surfaces of both headers 21A and 21B. It is welded to be in a state.

なお、熱交換器20を1台のみ使用する場合、熱交換能力の調節にはステンレス細管のサイズ、本数の変更で対応することができる。ここで、熱交換能力の調節とは、空調を行なおうとする空間の総容積、部屋数、所望空調温度等を考慮することを言う。また、適宜サイズの標準的熱交換器を作成しておき、当該建築物の規模、用途等に応じて複数の熱交換器を設置し、これらを交互運用、並列同時運用等切替え可能とすることにより、外気温の変化や建築物内の熱需要に応じて最適の運用を図ることも可能である。熱交換器20の具体的構成に関しては後述する。 When only one heat exchanger 20 is used, the heat exchange capacity can be adjusted by changing the size and number of stainless thin tubes. Here, the adjustment of the heat exchange capacity means taking into consideration the total volume of the space in which air conditioning is to be performed, the number of rooms, the desired air conditioning temperature, and the like. In addition, create a standard heat exchanger of an appropriate size, install multiple heat exchangers according to the size and application of the building, and make it possible to switch between alternate operation and parallel simultaneous operation. Therefore, it is possible to optimize the operation according to the change of the outside air temperature and the heat demand in the building. A specific configuration of the heat exchanger 20 will be described later.

熱交換器20の図面左側は、塵埃等を除去した外気を取り込むための構成を示すものであり、外気取入れ口23、浮遊塵埃等の捕集により空気を清浄化するためのフィルタ24および吸気配管25を介して熱交換器20に外気を取り込む外気導入手段を構成している。このような外気導入手段の構成は、設置場所の地形、建築物と熱交換器設置場所の方位、日照等の立地条件を加味して選定することが望ましい。 The left side of the heat exchanger 20 in the drawing shows a configuration for taking in outside air from which dust or the like has been removed. The outside air inlet 23, a filter 24 for purifying air by collecting floating dust and the like, and an intake pipe An outside air introduction means for taking in outside air into the heat exchanger 20 via 25 is configured. The configuration of such outside air introduction means is preferably selected in consideration of the geographical features of the installation location, the orientation of the building and the heat exchanger installation location, location conditions such as sunlight.

熱交換器20の右側は、熱交換器20において地熱−通過空気間の熱交換が行なわれた空気を、空調対象である建築物1内に送り込む構成を示すものであり、排出通気管26が建築物1の床下まで延在し、床下の下部空気室5の近傍に吸気ファン27が配設される。この吸気ファン27は、本発明に係る空調システムにおける通過風量、したがって空気調和される空気の総容量を決定するものであり、装置全体の空調能力を決定するものである。したがって、この吸気ファン27の駆動電動機は定格容量に対して、少なくとも、強・弱2段階、強・中・弱3段階のような多段階制御、さらに望ましくはインバータ装置による低速から高速までの無段階制御が可能であるように構成されることが望ましい。 The right side of the heat exchanger 20 shows a configuration in which air that has undergone heat exchange between geothermal heat and passing air in the heat exchanger 20 is sent into the building 1 that is the air conditioning target. An air intake fan 27 is disposed near the lower air chamber 5 below the floor of the building 1. The intake fan 27 determines the amount of passing air in the air conditioning system according to the present invention, and thus the total volume of air to be conditioned, and determines the air conditioning capacity of the entire apparatus. Therefore, the drive motor of the intake fan 27 has at least a multi-stage control such as a strong / weak 2 stage and a strong / medium / weak 3 stage with respect to the rated capacity. It is desirable to be configured so that stage control is possible.

なお、このような吸気ファン27に代えて、あるいは吸気ファンに加えて、外気導入手段側の、例えばフィルタ24の前後いずれかに押し込みファンを配設してもよい。この場合、熱交換された空気は送気ダクト9を介して屋根裏の上部空気室4まで直接送気することができるが、吸気ファン27の上位側に送気方向切替えのためのダンパー10を設け、矢印Aのように上部空気室4に向けて送気し、あるいは矢印Bのように下部空気室5に向けて選択的に送気可能であるように構成することができる。かかる構成を採用することにより、熱交換器20によって熱交換された空気を上部空気室4または下部空気室5に対して選択的に送気することができ、気象条件、季節、建築物室内各部屋の人数、作業量の多少等に応じた諸条件に応じた熱需要に対し、室温調整の面で柔軟な運用が可能となる。なお、右側の排出側ヘッダー21Bの下方には、結露水除去装置30が付加されている。 Instead of such an intake fan 27 or in addition to the intake fan, a push-in fan may be disposed on either the front or back side of the filter 24 on the outside air introduction means side, for example. In this case, the heat-exchanged air can be directly supplied to the upper air chamber 4 in the attic via the air supply duct 9, but a damper 10 for switching the air supply direction is provided on the upper side of the intake fan 27. The air can be supplied toward the upper air chamber 4 as indicated by an arrow A, or can be selectively supplied toward the lower air chamber 5 as indicated by an arrow B. By adopting such a configuration, the air heat-exchanged by the heat exchanger 20 can be selectively sent to the upper air chamber 4 or the lower air chamber 5. With respect to heat demand according to various conditions according to the number of people in the room, the amount of work, etc., flexible operation in terms of room temperature adjustment becomes possible. A dew condensation water removing device 30 is added below the right discharge side header 21B.

図2は、図1に示した熱交換器20の実施例を示すものであり、いわゆる多管式平坦状熱交換器として構成されている。図2(A)は、共に2等辺三角形状に形成された吸気側ヘッダー21Aおよび排出側ヘッダー21Bの対向する底辺同士の間に多数本のステンレス細管群22が気密状態となるように溶接されている状態を示す平面図である。この実施例ではステンレス細管群22として、外径25mm、肉厚1mm、長さ1.8mのステンレス細管を、25本使用している。これら各数値は単なる実施例に過ぎず、建築物の規模および方位、居住人員、日照状態等の使用環境の諸条件を考慮して、適宜選定することができる。このように多管式平坦状熱交換器20を採用したのは、流動空気を個々のステンレス細管にそれぞれ分流させ、さらに個々のステンレス細管表面と土壌との接触面積をできるだけ多くすることによって金属細管群22全体における熱交換効率を可能な限り向上させることを目指したものである。なお、上記寸法および本数のステンレス細管群22を備えた熱交換器を、地下5メートル程度の地中に埋設し、夏季33〜35℃程度の外気を通流させた場合、排出側からは通常の空調温度としても十分な約27℃以下の空気が得られることが確認できた。 FIG. 2 shows an embodiment of the heat exchanger 20 shown in FIG. 1, which is configured as a so-called multi-tubular flat heat exchanger. In FIG. 2A, a large number of stainless thin tube groups 22 are welded between the opposite bottoms of the intake side header 21A and the discharge side header 21B, both of which are formed in an isosceles triangle shape. It is a top view which shows the state which exists. In this embodiment, 25 stainless steel tubes having an outer diameter of 25 mm, a wall thickness of 1 mm, and a length of 1.8 m are used as the stainless steel tube group 22. These numerical values are merely examples, and can be appropriately selected in consideration of various conditions of the use environment such as the size and direction of the building, the number of residents, the sunshine condition, and the like. The multi-tubular flat heat exchanger 20 is adopted in this way by dividing the flowing air into the individual stainless steel tubes and further increasing the contact area between the surface of each stainless steel tube and the soil as much as possible. The aim is to improve the heat exchange efficiency of the entire group 22 as much as possible. In addition, when the heat exchanger provided with the above-mentioned size and the number of the stainless thin tube groups 22 is buried in the ground of about 5 meters underground and the outside air of about 33 to 35 ° C. is passed through in the summer, it is usually from the discharge side. It was confirmed that air having a sufficient air conditioning temperature of about 27 ° C. or less was obtained.

図2(B)は図(A)に対応する側面図であり、左側はエルボ28を介して吸気配管25に、そして右側はエルボ29を介して排出通気管26に接続されている。排出通気管26側のヘッダー21Bの下方に配設された結露水除去装置30は、熱交換器20内の結露水を除去するものである。外部から導入された高温の空気がステンレス細管群22内を通過して冷却される間に除湿され、必然的に管内に結露が生じ凝集水が滞留するため、適宜除去する必要がある。そのため、熱交換器20の敷設にあたっては、図1におけるヘッダー21Aの空気導入側をヘッダー21Bの空気排出側よりも、例えば4〜5cm程度高くして、結露水の流動が阻害されないように施工する必要がある。結露水の除去は、設置箇所の地質、地下水位、近隣の環境等に応じて適宜手段が採用可能である。例えば、砂礫層のように水捌けのよい乾燥した地質であれば、熱交換器20の埋設に先立って結露水除去装置30部分の周縁に相当する適宜範囲に砂層を形成すれば足りる。反対に、地下水位が高い地域、水捌けの悪い地質、集中豪雨や台風等に伴う強雨の際に地下水位が急上昇する可能性のあるような地域、河川・湖沼等に近い湿地等にあっては、必要に応じて結露水をに除去するための汲み上げポンプその他による強制的排水手段の設置を考慮する必要がある。 2B is a side view corresponding to FIG. 2A. The left side is connected to the intake pipe 25 via the elbow 28 and the right side is connected to the exhaust vent pipe 26 via the elbow 29. FIG. The dew condensation water removing device 30 disposed below the header 21B on the discharge vent pipe 26 side removes the dew condensation water in the heat exchanger 20. The high-temperature air introduced from the outside is dehumidified while passing through the stainless thin tube group 22 and is cooled, and inevitably dew condensation occurs in the tubes and the condensed water stays therein. Therefore, when laying the heat exchanger 20, the air introduction side of the header 21 </ b> A in FIG. 1 is set to be, for example, about 4 to 5 cm higher than the air discharge side of the header 21 </ b> B so that the flow of condensed water is not hindered. There is a need. Condensation water can be removed as appropriate depending on the geology of the installation site, groundwater level, surrounding environment, and the like. For example, in the case of dry geology with good drainage, such as a gravel layer, it is sufficient to form a sand layer in an appropriate range corresponding to the periphery of the dew condensation water removing device 30 prior to embedding the heat exchanger 20. On the other hand, in areas with high groundwater levels, poor geology of drainage, areas where groundwater levels may rise suddenly during heavy rains such as torrential rains and typhoons, and wetlands close to rivers and lakes Therefore, it is necessary to consider the installation of forced drainage means such as a pump to remove condensed water if necessary.

図2(C)は熱交換器20におけるステンレス細管群22の配列状態を示す図(A)のX−X’矢視断面図である。本実施例では23本のステンレス細管が千鳥状上下二段に配列されたステンレス細管群22を構成している。熱交換の機能上は一段であっても差し支えないが、埋設後長期間には不等土圧を受ける可能性もあるため、図のような千鳥状上下2段構造が高強度に形成し易く好ましい。さらに、熱交換器20のステンレス細管群22を除いてその周囲を取り囲むような保護枠を付加することによりステンレス細管の変形や溶接部分などに加わるストレスを緩和すように配慮することが望ましい。 2C is a cross-sectional view taken along the line X-X ′ in FIG. 2A showing the arrangement of the stainless thin tube groups 22 in the heat exchanger 20. In the present embodiment, a stainless thin tube group 22 is formed in which 23 stainless thin tubes are arranged in two staggered upper and lower stages. Although the heat exchange function may be one-stage, there is a possibility of being subjected to unequal earth pressure for a long time after embedding, so the staggered two-stage structure shown in the figure is easy to form with high strength. preferable. Furthermore, it is desirable to take care to alleviate stress applied to the deformation of the stainless thin tubes and the welded portion by adding a protective frame surrounding the periphery of the heat exchanger 20 except for the stainless thin tube group 22.

図3は、本発明に係る地熱利用による建築物空調システムに使用される空調空気の吹き出し部である通気幅木の構造例を示すものであり、図1における8A、8Bに相当する。この実施例では、幅6cm、厚さ4mm程度の細長い合板材11の中央部分に、図3(A)のように直径d〔mm〕の貫通孔12が開口間隔l(小文字のエル)〔mm〕となるように設けられている。この場合の貫通孔12の直径d、間隔lは、空気調和を受けた空気の吹き出し量、室内に対する温度、湿度の調節に大きな影響を及ぼすものである。したがって空調を行なう空間の構成、例えば1階か2階か、日照の強い南面かそれ以外の方位か、入口開閉頻度の高いリビングルームか開閉頻度の少ない書斎・勉強部屋か等に応じて適宜変更することができる。 FIG. 3 shows an example of the structure of a ventilation skirting board which is a blowing part of conditioned air used in a building air conditioning system using geothermal heat according to the present invention, and corresponds to 8A and 8B in FIG. In this embodiment, a through hole 12 having a diameter d [mm] as shown in FIG. 3 (A) is formed at an opening interval l (lower case el) [mm] at the center portion of a long and narrow plywood material 11 having a width of 6 cm and a thickness of about 4 mm. ] Is provided. In this case, the diameter d and the interval l of the through-holes 12 have a great influence on the adjustment of the blowout amount of air subjected to air conditioning, the temperature to the room, and the humidity. Therefore, it is changed as appropriate depending on the composition of the air-conditioning space, for example, the first or second floor, the south face with strong sunshine or other directions, the living room with high opening / closing frequency, or the study / study room with low opening / closing frequency. can do.

また、図3(B)のように千鳥状二段に配列してもよい。本実施例では空調空気吹き出し加工材として床面と壁の接合部に配設される開口の設けられた通気幅木を想定しているが、加工材は幅木に限定されることなく、例えば、柱と壁の接合部に沿って垂直に配設すること、長押と壁との接合部に沿って部屋の高い部分に配設すること、回り縁と壁との接合部に沿って部屋の高い部分に水平に配設すること、等もそれぞれ可能である。 Alternatively, they may be arranged in a staggered two-stage as shown in FIG. In the present embodiment, a ventilation skirting board provided with an opening arranged at the joint between the floor and the wall is assumed as the conditioned air blowing processing material, but the processing material is not limited to the skirting board, for example, , Vertically arranged along the junction between the pillar and the wall, arranged along the junction between the long press and the wall at a high part of the room, and high in the room along the junction between the peripheral edge and the wall It is also possible to arrange them horizontally on the parts.

本発明に係る地熱利用による建築物空調システムは、実施例に示したように、適宜深さの地中に熱交換器を埋設し、導入される外気を地中の土壌温度に近い温度まで降温又は昇温すると共に、除湿された空気を建築物内に導くことにより室内の空気調和を行なおうとするものである。通常の空調設備における冷熱源および温熱源が不要となるため、省エネルギーが図られることはもとより、使用電力の節減、気体燃料・液体燃料等の使用量節減が可能であることから二酸化炭素排出量も大幅に低減するため地球温暖化抑制にも効果のある建築物空調システムが提供できる。 As shown in the embodiment, the building air conditioning system using geothermal heat according to the present invention embeds a heat exchanger appropriately in the ground, and lowers the introduced outside air to a temperature close to the soil temperature in the ground. Alternatively, the temperature is raised and the dehumidified air is guided into the building so as to perform indoor air conditioning. Since the cooling and heating sources in ordinary air-conditioning equipment are no longer necessary, not only energy is saved, but also the use of electricity and the use of gaseous fuel and liquid fuel can be saved, so carbon dioxide emissions are also reduced. Because it is greatly reduced, it can provide a building air conditioning system that is also effective in suppressing global warming.

本発明に係る地熱利用による建築物空調システムの基本構成説明図である。It is basic composition explanatory drawing of the building air-conditioning system by the geothermal utilization which concerns on this invention. 本発明に係る熱交換器の構成を示す平面図(A)、側面図(B)および図AのX−X’矢視断面図(C)である。It is the top view (A) which shows the structure of the heat exchanger which concerns on this invention, a side view (B), and X-X 'arrow sectional drawing (C) of FIG. 本発明に係る空調空気放出部としての通気幅木の構成例である。It is an example of composition of a ventilation skirting board as an air-conditioning air discharge part concerning the present invention.

符号の説明Explanation of symbols

1 建築物
2 外壁
3 内壁
4 上部(屋根裏)空気室
5 下部(床下)空気室
6 送気(下降)ダクト
7 循環ファン
8 空調空気放出部
8A、8B 通気幅木
9 送気(上昇)ダクト
10 ダンパー
11 合板材(幅木)
12 貫通孔
20 熱交換器
21A、21B ヘッダー
22 ステンレス細管群
23 外気取り入れ口
24 フィルタ
25 吸気配管
26 排出通気管
27 吸気ファン
28、29 エルボ
30 結露水除去装置
DESCRIPTION OF SYMBOLS 1 Building 2 Outer wall 3 Inner wall 4 Upper (attic) air chamber 5 Lower (under the floor) air chamber 6 Air supply (down) duct 7 Circulation fan 8 Air-conditioning air discharge | release part 8A, 8B Ventilation baseboard 9 Air supply (up) duct 10 Damper 11 Plywood (baseboard)
12 Through-hole 20 Heat exchanger 21A, 21B Header 22 Stainless steel thin tube group 23 Outside air intake 24 Filter 25 Intake pipe 26 Exhaust vent pipe 27 Intake fan 28, 29 Elbow 30 Condensation water removing device

Claims (9)

吸気側ヘッダーと排出側ヘッダーとの間が多数本の金属製細管によって気密状態となるように連結された多管式平坦状熱交換器であって所要深さの地中に埋設される少なくとも1台の多管式平坦状熱交換器と、該多管式平坦状熱交換器の吸気側ヘッダーに対して空調対象空気を導入するための吸気配管と、前記平坦状熱交換器の排出側ヘッダーの出口から空調を行なう空間内に連通していて、送風機構を備えた排出通気管と、該排出通気管の出口側から適宜空間を経て室内構造材の隅部に沿って配設された空調空気放出部と、から構成されることを特徴とする地熱利用による建築物空調システム。   A multi-tubular flat heat exchanger connected between the intake side header and the exhaust side header so as to be in an airtight state by a plurality of metal thin tubes, and is embedded in the ground at a required depth Multi-pipe flat heat exchanger, intake pipe for introducing air to be conditioned into the intake-side header of the multi-pipe flat heat exchanger, and discharge-side header of the flat heat exchanger An air vent that communicates with the air-conditioning space from the outlet of the air outlet, and that is disposed along the corners of the indoor structural material through an appropriate space from the outlet side of the exhaust air vent tube, and an air outlet. A building air conditioning system using geothermal heat, characterized by comprising an air discharge part. 前記多管式平坦状熱交換器の主要部が、前記吸気側および排出側の両ヘッダー間を気密状態で連結する金属製細管20〜30本を二段千鳥配列として接合されたステンレス細管群である、ことを特徴とする請求項1に記載の地熱利用による建築物空調システム。   The main part of the multi-tubular flat heat exchanger is a group of stainless thin tubes in which 20 to 30 metal thin tubes that connect the intake side and the discharge side header in an airtight state are joined in a two-stage staggered arrangement. 2. The building air-conditioning system using geothermal heat according to claim 1, wherein the building air-conditioning system is used. 前記多管式平坦状熱交換器が適宜間隔をおいて複数台配設される、ことを特徴とする請求項1又は2のいずれかに記載の地熱利用による建築物空調システム。   The building air-conditioning system using geothermal heat according to claim 1, wherein a plurality of the multi-tubular flat heat exchangers are disposed at appropriate intervals. 適宜間隔で複数台設置される前記多管式平坦状熱交換器が、熱需要に応じた切替え手段の操作により、交互運用ないし並列同時運用が任意の組合せで選択可能である、ことを特徴とする請求項3に記載の地熱利用による建築物空調システム。   The multi-tubular flat heat exchanger installed at a plurality of appropriate intervals can be selected in any combination of alternate operation or parallel simultaneous operation by operating switching means according to heat demand. The building air conditioning system using geothermal heat according to claim 3. 前記多管式平坦状熱交換器によって温度調節された空気を空調空間に導入する経路が、暖房期か冷房期かに応じて温度調節効果を阻害しない経路に切り替え可能である、ことを特徴とする請求項1ないし4のいずれかに記載の地熱利用による建築物空調システム。   The path for introducing the air temperature-adjusted by the multi-tubular flat heat exchanger into the air-conditioned space can be switched to a path that does not inhibit the temperature adjustment effect according to the heating period or the cooling period. A building air conditioning system using geothermal heat according to any one of claims 1 to 4. 前記空調空気放出部が、床と壁の接合部に水平に配設され、多数の通気口を形成した通気幅木である、ことを特徴とする請求項1ないし5のいずれかに記載の地熱利用による建築物空調システム。   The geothermal heat according to any one of claims 1 to 5, wherein the conditioned air discharge part is a ventilation skirting board that is horizontally disposed at a joint between a floor and a wall and has a large number of ventilation holes. Building air conditioning system by use. 前記空調空気放出部が、柱と壁の接合部に沿ってほぼ垂直に配設される素材に多数の通気口を形成した加工品である、ことを特徴とする請求項1ないし5のいずれかに記載の地熱利用による建築物空調システム。   6. The conditioned air discharge part is a processed product in which a large number of ventilation holes are formed in a material that is disposed substantially vertically along a junction between a column and a wall. Building air conditioning system using geothermal heat as described in 1. 前記空調空気放出部が、長押と壁の接合部に沿って水平に配設される素材に多数の通気口を形成した加工品である、ことを特徴とする請求項1ないし5のいずれかに記載の地熱利用による建築物空調システム。   6. The conditioned air discharge part is a processed product in which a large number of ventilation holes are formed in a material that is horizontally disposed along a joint between a long press and a wall. Building air conditioning system using geothermal heat as described. 前記空調空気放出部が、回り縁と壁の接合部に沿って水平に配設される素材に多数の通気口を形成した加工品である、ことを特徴とする請求項1ないし5のいずれかに記載の地熱利用による建築物空調システム。   6. The conditioned air discharge portion is a processed product in which a large number of ventilation holes are formed in a material that is horizontally disposed along a joint portion between a peripheral edge and a wall. Building air conditioning system using geothermal heat as described.
JP2006258739A 2006-09-25 2006-09-25 Building air-conditioning system by geothermal use Pending JP2008076015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006258739A JP2008076015A (en) 2006-09-25 2006-09-25 Building air-conditioning system by geothermal use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006258739A JP2008076015A (en) 2006-09-25 2006-09-25 Building air-conditioning system by geothermal use

Publications (1)

Publication Number Publication Date
JP2008076015A true JP2008076015A (en) 2008-04-03

Family

ID=39348275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006258739A Pending JP2008076015A (en) 2006-09-25 2006-09-25 Building air-conditioning system by geothermal use

Country Status (1)

Country Link
JP (1) JP2008076015A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010270986A (en) * 2009-05-22 2010-12-02 Panahome Corp Air conditioning device using geo-heat
WO2010145079A1 (en) * 2009-06-19 2010-12-23 Lee Chia-Ching Geothermal indoor temperature adjusting structure
JP2011017497A (en) * 2009-07-09 2011-01-27 Panahome Corp Air conditioner using underground heat
JP2011133179A (en) * 2009-12-25 2011-07-07 Tomonori Akiyama Wall interior installation type central air-conditioning apparatus
JP2012220177A (en) * 2011-04-03 2012-11-12 Shinichi Fujita Automatic adjustment method for natural energy-based ventilation and air conditioning
WO2013061406A1 (en) * 2011-10-25 2013-05-02 パナセアディシンフェクタントカンパニーリミテッド Functional air conditioning device and functional air conditioning method
EP2559957A3 (en) * 2011-08-15 2014-02-26 Tai-Her Yang Open-loop natural thermal energy releasing system with partial reflux
KR20160054293A (en) * 2014-11-06 2016-05-16 두산중공업 주식회사 Indoor Ventilation system using the soil heat
CN104154626B (en) * 2014-08-26 2017-06-20 大连兆和科技发展有限公司 Buried pipe type energy-saving air exchange system
RU2714869C1 (en) * 2018-11-22 2020-02-19 Федеральное государственное автономное образовательное учреждение высшего образования "Северо-Восточный федеральный университет имени М.К. Аммосова" Combined inlet air preheater device
CN113739234A (en) * 2021-09-16 2021-12-03 南京国豪生态环境工程有限公司 Building system with environmental protection function

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010270986A (en) * 2009-05-22 2010-12-02 Panahome Corp Air conditioning device using geo-heat
WO2010145079A1 (en) * 2009-06-19 2010-12-23 Lee Chia-Ching Geothermal indoor temperature adjusting structure
JP2011017497A (en) * 2009-07-09 2011-01-27 Panahome Corp Air conditioner using underground heat
JP2011133179A (en) * 2009-12-25 2011-07-07 Tomonori Akiyama Wall interior installation type central air-conditioning apparatus
JP2012220177A (en) * 2011-04-03 2012-11-12 Shinichi Fujita Automatic adjustment method for natural energy-based ventilation and air conditioning
EP2559957A3 (en) * 2011-08-15 2014-02-26 Tai-Her Yang Open-loop natural thermal energy releasing system with partial reflux
WO2013061406A1 (en) * 2011-10-25 2013-05-02 パナセアディシンフェクタントカンパニーリミテッド Functional air conditioning device and functional air conditioning method
JPWO2013061406A1 (en) * 2011-10-25 2015-04-02 パナセア ディシンフェクタント カンパニー リミテッド Functional air conditioning apparatus and functional air conditioning method
CN104154626B (en) * 2014-08-26 2017-06-20 大连兆和科技发展有限公司 Buried pipe type energy-saving air exchange system
KR20160054293A (en) * 2014-11-06 2016-05-16 두산중공업 주식회사 Indoor Ventilation system using the soil heat
KR101670082B1 (en) * 2014-11-06 2016-10-27 두산중공업 주식회사 Indoor Ventilation system using the soil heat
RU2714869C1 (en) * 2018-11-22 2020-02-19 Федеральное государственное автономное образовательное учреждение высшего образования "Северо-Восточный федеральный университет имени М.К. Аммосова" Combined inlet air preheater device
CN113739234A (en) * 2021-09-16 2021-12-03 南京国豪生态环境工程有限公司 Building system with environmental protection function
CN113739234B (en) * 2021-09-16 2024-06-04 南京国豪生态环境工程有限公司 Building system with environmental protection function

Similar Documents

Publication Publication Date Title
JP2008076015A (en) Building air-conditioning system by geothermal use
Zeng et al. A review on the air-to-air heat and mass exchanger technologies for building applications
CN103256673B (en) Enhanced natural ventilating air conditioner energy-saving system
WO2020103522A1 (en) Assembly-type air conditioning wall and operating method thereof
CN201191049Y (en) Radiation air conditioning system based on recycling wet cooling tower and cold/heat sources of ground source heat pump
JP6249387B1 (en) Floor air conditioning system
WO2015139430A1 (en) Floor air-conditioning system
JP2009036414A (en) Heat pump-type dry air conditioning system
JP2012184912A (en) Air conditioning device using underground heat
JP2012225517A (en) Radiation air conditioning apparatus and dehumidification and humidification air conditioning system
WO2011086738A1 (en) Smart and ecological air conditioning system
JP3878636B2 (en) Solar system house ventilation method
JP5945127B2 (en) building
KR101562744B1 (en) Air handling system interworking with ventilation unit
JP2011052918A (en) Energy saving ventilation system
WO2020037836A1 (en) New-type air conditioning terminal system for high and large spaces
CN203298416U (en) Reinforced natural-ventilation air conditioning energy-saving system
ES2971620T3 (en) Ventilation climate system and method for controlling a ventilation climate system
JP2006097425A (en) Method of ventilating solar system house
CN106196378A (en) The constant temperature and humidity air-conditioning system of clean operating room independent temperature-humidity control
US7698903B1 (en) Energy efficient ventilation system
KR200388991Y1 (en) A ventilating and heat-exchanging device for building
JP2005163482A (en) Ventilation system for building
JP6303105B2 (en) Smart eco air conditioning system
JP2005163369A (en) Ventilation device for dwelling house

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080703

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20080703

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20080814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090106