JP2012225517A - Radiation air conditioning apparatus and dehumidification and humidification air conditioning system - Google Patents

Radiation air conditioning apparatus and dehumidification and humidification air conditioning system Download PDF

Info

Publication number
JP2012225517A
JP2012225517A JP2011090496A JP2011090496A JP2012225517A JP 2012225517 A JP2012225517 A JP 2012225517A JP 2011090496 A JP2011090496 A JP 2011090496A JP 2011090496 A JP2011090496 A JP 2011090496A JP 2012225517 A JP2012225517 A JP 2012225517A
Authority
JP
Japan
Prior art keywords
radiation
heat
air
duct
radiant cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011090496A
Other languages
Japanese (ja)
Inventor
Toshio Oya
敏雄 大家
Yoshihiro Bando
芳弘 坂東
Yoichi Sugibayashi
陽一 杉林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYOWA SETSUBI CONSULTANT KK
YONDEN ENERGY SERVICE KK
Shikoku Research Institute Inc
Original Assignee
KYOWA SETSUBI CONSULTANT KK
YONDEN ENERGY SERVICE KK
Shikoku Research Institute Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYOWA SETSUBI CONSULTANT KK, YONDEN ENERGY SERVICE KK, Shikoku Research Institute Inc filed Critical KYOWA SETSUBI CONSULTANT KK
Priority to JP2011090496A priority Critical patent/JP2012225517A/en
Publication of JP2012225517A publication Critical patent/JP2012225517A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)
  • Central Heating Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a radiation air conditioning apparatus and a dehumidification and humidification air conditioning system for a building both in which COP is increased and maintenance frequency is reduced.SOLUTION: The radiation air conditioning apparatus 100 utilizing radiation heat includes a circulating air conditioning circuit for supplying temperature control air from a blow-off port of an air conditioning means 200 to a radiation duct 10 in an airtight state and feeding back heat dissipation air from the radiation duct 10 to a blow-in port of the air conditioning means 200 in the airtight state and a heat transfer member 15 serving as a heat absorption member inside the radiation duct 10. The heat transfer member 15 includes an L-shaped part processed to work as a heat absorption surface 16A and a heat connection surface 16B, the heat absorption surface 16A absorbs heat from an incoming temperature control air, the heat connection surface 16B and a radiation panel 12 are thermally coupled, and the radiation heat is efficiently propagated from the radiation panel 12 to the indoor 1.

Description

本発明は、建物用の輻射冷暖房装置であって、特に輻射熱を利用した輻射冷暖房装置および除加湿冷暖房システムに関する。   The present invention relates to a radiant cooling / heating device for buildings, and more particularly to a radiant cooling / heating device and a dehumidifying / humidifying cooling / heating system using radiant heat.

従来の建物用の冷暖房装置として普及しているのは、コンプレッサを内蔵したエアコンが主流である。冷暖房の吹き出し口の取付様式は、壁掛、床置、天井吊り、天井埋込等があり、建物外部にコンプレッサ、凝縮器、ファンが内蔵された室外機を設置している。この構造の冷暖房装置は、ヒートポンプ方式と呼ばれ、媒体を圧縮して高温とし、減圧して低温となる特性を利用したものである。   Air conditioners with built-in compressors are mainly used as conventional air conditioners for buildings. There are wall-mounted, floor-mounted, ceiling-suspended, ceiling-embedded, etc. air-conditioning outlets, and an outdoor unit with a built-in compressor, condenser, and fan is installed outside the building. The air-conditioning apparatus having this structure is called a heat pump system, and utilizes a characteristic that a medium is compressed to a high temperature and decompressed to a low temperature.

ヒートポンプの冷暖房装置は、一般家庭用のエアコンや小中規模の程度までの建物に利用され、さらには室内機を集中コントロールするマルチエアコン等が中大規模な建物で利用されている。その他に、大規模建物の冷暖設備としては、電動冷凍機、電気ボイラーや化石燃料を利用したボイラー、直焚き冷温水発生機等があり、必要に応じてファンコイルユニットを利用し室内へ冷温風を送風している。さらにまた、環境問題を重視した太陽熱、地熱、地下水等の自然エネルギーを利用も開発されてきている。   Heat pump air conditioners are used in general home air conditioners and small to medium-sized buildings, and multi-air conditioners that centrally control indoor units are used in medium and large buildings. Other cooling and heating facilities for large-scale buildings include electric refrigerators, electric boilers, boilers using fossil fuels, direct-fired hot / cold water generators, etc. Is blowing. Furthermore, the use of natural energy such as solar heat, geothermal heat, and groundwater, which places importance on environmental problems, has been developed.

この中で主に利用されているのがヒートポンプ式冷暖房機およびファンコイルユニットである。これは室内温度を直接冷温風にて対応する方法であり、そのエネルギー源は室外等に設置される熱源装置である。その媒体又は冷温水の熱源温度を冷房時には5〜7℃、暖房時には50〜60℃とし、室温を冷房時26〜28℃、暖房時20〜22℃程度にコントロールしている。しかし、温度(顕熱)・湿度(潜熱)同時処理のために、COP(Coefficient Of Performance:冷暖房平均エネルギー消費効率)を如何にして上げるかが現在の各研究機関のテーマとなっている。   Of these, heat pump type air conditioners and fan coil units are mainly used. This is a method in which the room temperature is directly handled by cool / warm air, and the energy source is a heat source device installed outside the room. The heat source temperature of the medium or cold / hot water is 5 to 7 ° C. during cooling, 50 to 60 ° C. during heating, and the room temperature is controlled to about 26 to 28 ° C. during cooling and 20 to 22 ° C. during heating. However, the current research theme is how to increase COP (Coefficient Of Performance) for simultaneous processing of temperature (sensible heat) and humidity (latent heat).

さらに、直接冷温風を送る場合風力、風向き等により偏った室内温度分布となり、さらに高温多湿で四季のある日本において、温度(顕熱)と湿度(潜熱)との相関関係により、人が感じる心地よさはかなりバラツキが生じてしまう。また風力により冷温風が直接人体に当たる場合には、手足の冷え等健康に悪影響も与えている。   Furthermore, when sending cold / hot air directly, the indoor temperature distribution is biased depending on the wind force, wind direction, etc. Furthermore, in Japan, where there are four seasons with high temperature and high humidity, the correlation between temperature (sensible heat) and humidity (latent heat) provides a comfortable feeling for people. There will be considerable variation. In addition, when cold and warm air directly hits the human body due to wind power, it has adverse effects on health such as limb cooling.

このような影響を考慮し以前より、輻射冷暖房を目的とした冷暖房機器が開発されている。典型的な例として韓国で古来より用いられていたオンドルが挙げられる。これは、調理等に用いた火気の排煙を床にダクトを設け床全体を温めていたが、現在ではマンション等の普及により床下にパイプを設置した冷温水循環オンドルシステムが主流となっている。日本でも従来より天井や壁等に水配管を埋設して、その中に冷温水を循環させて輻射冷暖房を行うシステムは開発されている。   In consideration of such effects, air conditioning equipment for the purpose of radiant cooling and heating has been developed. A typical example is the ondol that has been used in Korea since ancient times. This is because the flue gas used for cooking and the like was provided with a duct on the floor to warm the whole floor, but at present, a cold / hot water circulating ondol system with a pipe installed under the floor has become mainstream due to the spread of condominiums and the like. In Japan, a system for radiant cooling and heating has been developed in which water pipes are buried in ceilings and walls, and cold and hot water is circulated therein.

しかし輻射冷暖房にて室温をコントロールしても、湿度が高い場合には冷却能力を上げなければ適温と感じないし、湿度が低い場合には温度が上げると更に湿度が下がってしまい人体の呼吸器官等への悪影響の問題点があった。また、湿度が高い状態で冷却能力を上げた場合に熱源部分(水配管等)で結露が発生し、天井、壁及び床の材料を痛めてしまったり、水配管の腐食も懸念され、さらには水配管の腐食による漏水も懸念されていた。一般家庭等では、湿度のコントロールに対しては加湿器や除湿器を併用し対応していた。   However, even if the room temperature is controlled by radiant cooling and heating, when the humidity is high, it does not feel appropriate unless the cooling capacity is increased, and when the humidity is low, the humidity decreases further when the temperature is increased. There was a problem of adverse effects on. In addition, when the cooling capacity is increased with high humidity, condensation may occur in the heat source part (water pipes, etc.), which may damage the ceiling, wall and floor materials, and may corrode water pipes. There was also concern about water leakage due to corrosion of water piping. In general households, humidifiers and dehumidifiers are used together to control humidity.

このような中、温度と湿度とを別々にコントロールする考えが登場してきている。湿度をコントロールできるデシカント方式(除湿材を利用した方法)の開発により吸排気時における水分の吸着・放出コントロールを一台でできる製品が開発されている。これにより湿度をコントロールすることができ、さらには除加湿COPを4.0以上に高めることを可能としている。そこで残りは温度のみに特化して、検討することが可能となっている。   Under such circumstances, the idea of controlling temperature and humidity separately has appeared. Development of a desiccant method (method using a dehumidifying material) that can control humidity has developed a product that can control the adsorption and release of moisture during intake and exhaust. Thus, the humidity can be controlled, and the dehumidified / humidified COP can be increased to 4.0 or more. Therefore, it is possible to examine the rest by focusing only on the temperature.

そこで温度対応の輻射冷暖房システムが考案されている。例えば、特許文献1に開示される輻射冷暖房システムは、図17及び図18に示すように、建築物の構造体(コンクリートスラブ)804に中空部805を設け空気通路807を構成し、空調機803の空調空気を循環供給する構成すると共に、空気通路807を構成する構造体を少なくとも一部の面を居室801への輻射伝熱面として利用する。また特許文献2に開示される輻射冷暖房システムは、図19に示すように、建築物の上下階を仕切る水平構造体(コンクリートスラブ)の内部に輻射パネル911を設け、熱源により加熱又は冷却された熱媒(例えば水、油、冷媒等)が流通する熱媒配管912を断熱材913で仕切り上面に第1の熱伝導体914と下面に第2の熱伝導体915を備えた輻射パネル911で輻射熱により冷暖房を行う輻射冷暖房システム等が開発されている。   In view of this, a radiant cooling and heating system corresponding to temperature has been devised. For example, as shown in FIGS. 17 and 18, the radiant cooling and heating system disclosed in Patent Document 1 includes a hollow portion 805 in a building structure (concrete slab) 804 to form an air passage 807, and an air conditioner 803. The conditioned air is circulated and supplied, and at least a part of the structure constituting the air passage 807 is used as a radiation heat transfer surface to the living room 801. In addition, as shown in FIG. 19, the radiation cooling and heating system disclosed in Patent Document 2 is provided with a radiation panel 911 inside a horizontal structure (concrete slab) that partitions the upper and lower floors of a building, and is heated or cooled by a heat source. A heat medium pipe 912 through which a heat medium (for example, water, oil, refrigerant, etc.) flows is partitioned by a heat insulating material 913, and a radiation panel 911 having a first heat conductor 914 on the upper surface and a second heat conductor 915 on the lower surface. A radiant cooling / heating system that performs cooling / heating by radiant heat has been developed.

特開平10−311565号公報Japanese Patent Laid-Open No. 10-311565 特開2009−222294号公報JP 2009-222294 A

上記いずれの技術も建築物のコンクリートスラブ内部に熱媒(空気、水、油、冷媒等)を利用した輻射冷暖房システムであり、コンクリートスラブ内部の中空又は中空配管に熱媒を循環させコンクリートスラブを蓄熱させて輻射冷暖房を行う構成となっている。この構成では、コンクリートスラブ内に熱媒を配管(例えば埋設)する必要があり、施工時に相当のコストと手間が掛かる。加えて、運用時においても、コンクリートスラブに蓄熱させるためには、相当の時間とエネルギーを要する。このため、夜間電力等を利用して長時間にわたりコンクリートスラブへの蓄熱を行う必要があり、即応性やエネルギー効率の面からは好ましくない。さらに、地震大国である日本では、地震にあった場合に建築物の駆体に歪みを生じ、コンクリートスラブへのクラック等による熱媒(空気)の漏れや、中空配管の破損による熱媒(水、油、冷媒等)の流出の可能性も考えられる。例えば天井に設けた配管から水などの熱媒が漏れると、雨漏り状態となってしまう虞がある。また空調機を補修するためには建築物のコンクリートスラブ自体の改修が必要となり、さらには通常のメンテナンス作業に際してもアクセスが困難となって、極めて作業性が悪いという問題があった。   Each of the above technologies is a radiant cooling / heating system that uses a heat medium (air, water, oil, refrigerant, etc.) inside a concrete slab of a building. It is configured to store heat and perform radiant cooling and heating. In this configuration, it is necessary to pipe (for example, embed) a heat medium in the concrete slab, which requires considerable cost and labor at the time of construction. In addition, considerable time and energy are required to store heat in the concrete slab even during operation. For this reason, it is necessary to store heat to the concrete slab for a long time using nighttime electric power or the like, which is not preferable in terms of quick response and energy efficiency. Furthermore, in Japan, an earthquake-prone country, the structure of the building is distorted in the event of an earthquake, and heat medium (air) leaks due to cracks in the concrete slab, or damage to the hollow pipe (water) , Oil, refrigerant, etc.) may also flow out. For example, if a heat medium such as water leaks from a pipe provided on the ceiling, there is a possibility that a rain leakage state may occur. In addition, in order to repair the air conditioner, it is necessary to repair the concrete slab of the building itself, and further, it is difficult to access even during normal maintenance work, and there is a problem that workability is extremely poor.

本発明は、このような背景に鑑みてなされたものである。本発明の主な目的は、エネルギー効率に優れ、施工、メンテナンスも容易な建物用の冷暖房システムであって、とくに輻射熱を利用した輻射冷暖房装置及び除加湿冷暖房システムを提供することにある。   The present invention has been made in view of such a background. A main object of the present invention is to provide a building air conditioning system that is excellent in energy efficiency and easy to construct and maintain, and particularly to provide a radiant cooling / heating device and a dehumidifying / humidifying cooling / heating system using radiant heat.

課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention

以上の目的を達成するため、本発明の第1の側面によれば、輻射熱を利用した冷暖房対象領域への冷暖房が可能な輻射冷暖房装置100であって、冷暖房対象領域に配置された輻射ダクト10と、熱源により温度調整された温調空気を輻射ダクト10に送風させるための空調手段200と、輻射ダクト10および空調手段200との間を気密状態に接続して、温調空気を循環させるための断熱空調配管20と、を備える装置において、輻射ダクト10内に、温調空気の循環を阻害する姿勢に配置されることで、温調空気から吸熱して輻射ダクト10に伝熱する伝熱部材15を設けてなる。これにより、輻射ダクト内には、温調空気が複数の伝熱部材により熱吸着され熱源を効率よく熱伝導される。さらに、閉鎖され気密状態とした循環空調回路を形成しているため空調手段への埃の蓄積がなくフィルターの清掃を必要としない。さらに、室内に冷温風が生じないため、ハウスダストの原因である埃の拡散防止ができ、さらに温度分布の偏りを減少させることができる。さらにまた循環空調回路を形成しているため、外気との温度交換がなされないために空調手段の吹出口から吹き出してくる温調空気と帰還してきた熱放出空気との温度差が小さいため、空調手段の負荷を小さくすることができCOPを大きくすることができる。   In order to achieve the above object, according to the first aspect of the present invention, there is provided a radiant cooling / heating device 100 capable of cooling and heating a cooling / heating target area using radiant heat, the radiating duct 10 being arranged in the cooling / heating target area. And the air conditioning means 200 for blowing the temperature-controlled air whose temperature is adjusted by the heat source to the radiation duct 10 and the radiation duct 10 and the air-conditioning means 200 are connected in an airtight state to circulate the temperature-controlled air. In the apparatus provided with the heat insulating air-conditioning pipe 20, heat transfer that absorbs heat from the temperature-controlled air and transfers heat to the radiation duct 10 is arranged in the radiation duct 10 in a posture that inhibits circulation of the temperature-controlled air. A member 15 is provided. Thus, the temperature-controlled air is thermally adsorbed by the plurality of heat transfer members in the radiation duct, and the heat source is efficiently conducted. Furthermore, since the circulation air-conditioning circuit that is closed and airtight is formed, dust does not accumulate in the air-conditioning means, and the filter does not need to be cleaned. Further, since no cool / warm air is generated in the room, it is possible to prevent the dust that is the cause of the house dust from diffusing, and to reduce the uneven temperature distribution. Furthermore, since a circulation air-conditioning circuit is formed, the temperature difference between the temperature-controlled air blown out from the air-conditioning means outlet and the heat release air returned is small because the temperature is not exchanged with the outside air. The load on the means can be reduced and the COP can be increased.

また、本発明の第2の側面に係る輻射冷暖房装置100によれば、輻射ダクト10は、入力口18および出力口19を持つ箱形ダクト11と、放熱面側に設置した熱伝導性の優れた輻射パネル12と、輻射パネル12を除く側壁面に装着した断熱材13と、を備えている。これにより、定型の箱形ダクトが利用でき、さらに熱伝導率の低いフェノールフォーム等を利用することができる。輻射パネルの材質としては、アルミニウム、銅、鉄等の金属、あるいは合金等であって熱伝導率に優れたものが適している。   Moreover, according to the radiation cooling and heating apparatus 100 which concerns on the 2nd side surface of this invention, the radiation duct 10 is excellent in the thermal conductivity installed in the box-shaped duct 11 which has the input port 18 and the output port 19, and the heat radiating surface side. And a heat insulating material 13 attached to the side wall surface excluding the radiation panel 12. Thereby, a regular box-shaped duct can be used, and phenol foam having a low thermal conductivity can be used. As the material of the radiant panel, a metal such as aluminum, copper, iron or the like, or an alloy having excellent thermal conductivity is suitable.

さらに、本発明の第3の側面に係る輻射冷暖房装置100によれば、輻射ダクト10は、熱伝導性の優れた輻射パネル12と、入力口18および出力口19を持つ側壁面を成型された断熱部材14と、を嵌合形成している。これにより、輻射ダクトを構成する構成部材を少なくでき、且つ輻射パネルに伝熱部材を装着後側壁面と嵌合形成できるため作業効率を上げることもできる。さらにこれにより、輻射パネルが設置される冷暖房対象領域に合わせることができ、設置条件に適合させることができる。ここで利用できる輻射パネルの材質は、アルミニウム、銅、鉄等の金属、あるいは合金等であって熱伝導率に優れたものが適している。   Furthermore, according to the radiant cooling and heating apparatus 100 according to the third aspect of the present invention, the radiant duct 10 has a radiant panel 12 having excellent thermal conductivity, and a side wall surface having an input port 18 and an output port 19. The heat insulating member 14 is fitted and formed. As a result, the number of constituent members constituting the radiation duct can be reduced, and the work efficiency can be increased because the heat transfer member can be fitted and formed on the radiation panel after being attached to the radiation panel. Furthermore, this makes it possible to adapt to the air conditioning target area where the radiation panel is installed, and to adapt to the installation conditions. A material of the radiation panel that can be used here is a metal such as aluminum, copper, iron, or an alloy, and has excellent thermal conductivity.

さらにまた、本発明の第4の側面に係る輻射冷暖房装置100によれば、伝熱部材15は、輻射パネル12と熱結合する熱接続面16Bと、輻射ダクト10の内部の放熱面側に略垂直に設置された矩形板として熱吸収面16Aとを有し、熱吸収面16Aが、輻射ダクト10に対し、高さは内部高と略同等で、幅は入力口18面の約1/2から3/4で、向きを入力口18壁面に対し略平行とし、伝熱部材15が、輻射ダクト10の入力口18から出力口19までの間を千鳥状に略等間隔で複数設置し、輻射ダクト10内の送風空間における風流を蛇行させることができる。これにより、温調空気の風流を各伝熱部材の熱吸収面にて吸熱し、熱接続面と熱結合されている輻射パネルに効率よく熱伝導させることができる。されに複数の伝熱部材を千鳥状に配置させ各熱吸収面に温調空気を滞留させ十分に輻射パネルに熱交換でき、さらなる輻射熱を室内に伝播させることができる。ここでは、伝熱部材の熱吸収面の向きを入力口壁面に対し略平行としているが、これに限らず入力口壁面に対して略傾斜とすることもできる。   Furthermore, according to the radiant cooling and heating apparatus 100 according to the fourth aspect of the present invention, the heat transfer member 15 is substantially disposed on the heat connection surface 16B thermally coupled to the radiant panel 12 and the heat radiating surface inside the radiant duct 10. As a rectangular plate installed vertically, it has a heat absorption surface 16A. The heat absorption surface 16A is approximately the same as the internal height with respect to the radiation duct 10, and the width is about ½ of the input port 18 surface. 3/4, the direction is substantially parallel to the wall surface of the input port 18, and a plurality of heat transfer members 15 are installed in a staggered manner from the input port 18 to the output port 19 of the radiation duct 10 at substantially equal intervals. The wind flow in the ventilation space in the radiation duct 10 can be meandered. As a result, the air flow of the temperature-controlled air can be absorbed by the heat absorption surfaces of the heat transfer members and efficiently conducted to the radiation panel that is thermally coupled to the heat connection surfaces. In addition, a plurality of heat transfer members can be arranged in a staggered manner, temperature-controlled air can be retained on each heat absorption surface to sufficiently exchange heat with the radiant panel, and further radiant heat can be propagated indoors. Here, although the direction of the heat absorption surface of the heat transfer member is substantially parallel to the input port wall surface, the direction is not limited to this and may be substantially inclined with respect to the input port wall surface.

さらにまた、本発明の第5の側面に係る輻射冷暖房装置100によれば、断熱空調配管20は、空調手段200の吹出口に接続し、輻射ダクト10の入力口18と接続し、輻射ダクト10の出力口19にさらに断熱空気配管20及び輻射ダクト10を複数直列に接続し、冷暖房対象領域の範囲を拡張できる。これにより、室内の広さに合わせて輻射ダクトを直列に接続することにより冷暖房輻射範囲を広範囲にすることができる。   Furthermore, according to the radiation cooling and heating apparatus 100 according to the fifth aspect of the present invention, the heat insulating air conditioning pipe 20 is connected to the air outlet of the air conditioning means 200 and is connected to the input port 18 of the radiation duct 10. A plurality of insulated air pipes 20 and radiation ducts 10 can be further connected in series to the output port 19 to expand the range of the air conditioning target area. Thereby, the heating and cooling radiation range can be widened by connecting the radiation ducts in series according to the size of the room.

さらにまた、本発明の第6の側面に係る輻射冷暖房装置100によれば、断熱空調配管20は、空調手段200の吹出口に接続され複数並列に分岐し、分岐された断熱空気配管20にそれぞれボリュームダンパー30を設置し、ボリュームダンパー30の出力をそれぞれ輻射ダクト10の入力口18と接続し、複数の輻射ダクト10の出力口19にさらに断熱空気配管20及び輻射ダクト10を複数直列に接続し、冷暖房対象領域の範囲を拡張できる。これにより、室内の広さに合わせて輻射ダクトを並列及び直列に接続することで輻射範囲を選択でき、且つ並列に接続した場合に各輻射ダクトへの温調空気の流量調整をボリュームダンパーにより行うことで、室内の温度の偏りを調整することができる。   Furthermore, according to the radiant cooling and heating apparatus 100 according to the sixth aspect of the present invention, the heat insulating air conditioning pipe 20 is connected to the air outlet of the air conditioning means 200 and branches in parallel. The volume damper 30 is installed, the output of the volume damper 30 is connected to the input port 18 of the radiation duct 10, and the adiabatic air pipe 20 and the radiation duct 10 are further connected in series to the output port 19 of the plurality of radiation ducts 10. The range of the air conditioning target area can be expanded. Thus, the radiation range can be selected by connecting the radiation ducts in parallel and in series according to the size of the room, and when connected in parallel, the flow rate adjustment of the temperature-controlled air to each radiation duct is performed by the volume damper Thus, the temperature deviation in the room can be adjusted.

さらにまた、本発明の第7の側面に係る輻射冷暖房装置100によれば、輻射ダクト10を天井CE面に配置することができる。   Furthermore, according to the radiation cooling and heating apparatus 100 according to the seventh aspect of the present invention, the radiation duct 10 can be disposed on the ceiling CE surface.

さらにまた、本発明の第8の側面に係る輻射冷暖房装置100によれば、輻射ダクト10を壁WA面に配置することもできる。   Furthermore, according to the radiation cooling / heating apparatus 100 according to the eighth aspect of the present invention, the radiation duct 10 can be disposed on the wall WA surface.

さらにまた、本発明の第9の側面に係る輻射冷暖房装置100によれば、輻射ダクト10を床FL面に配置することもできる。これらの設置場所に限定されることなく、床面、天井面及び壁面の複数面に設けることも可能である。   Furthermore, according to the radiation cooling and heating apparatus 100 according to the ninth aspect of the present invention, the radiation duct 10 can be disposed on the floor FL surface. Without being limited to these installation places, it is also possible to provide on a plurality of surfaces such as a floor surface, a ceiling surface, and a wall surface.

さらにまた、本発明の第10の側面に係る輻射冷暖房装置100によれば、排水用のドレイン配管を必要としない構成とすることができる。これは、取付設置時に閉鎖された循環空調回路を形成する時点で内部の空気を乾燥させることができる。これにより、使用時に輻射冷暖房装置内を循環する温調空気が、外部の空気より隔離されているため温調空気に湿気の混入が防げ、温度変化による結露などを防ぐことができ、排水用のドレイン配管の設置が必要なくなるため、ドレイン配管の工事、設置スペース等を削減することができる。   Furthermore, according to the radiant cooling / heating device 100 according to the tenth aspect of the present invention, a drain pipe for drainage is not required. This allows the air inside to be dried at the time of forming a closed circulation air-conditioning circuit during installation. As a result, the temperature-controlled air that circulates in the radiant cooling and heating system during use is isolated from the outside air, so moisture can be prevented from entering the temperature-controlled air and condensation due to temperature changes can be prevented. Since it is not necessary to install a drain pipe, the construction and installation space of the drain pipe can be reduced.

さらにまた、本発明の第11の側面に係る除加湿冷暖房システムによれば、潜熱を制御可能な除加湿機300と、除加湿機300と、輻射冷暖房装置100とを連動させて、冷暖房対象領域の温度と湿度とを制御可能なコントローラ250と、を備えている。これにより、湿度が高い場合には冷却能力を上げなければ適温と感じないし、湿度が低い場合には温度が上げるとさらに湿度が下がってしまい人体の呼吸器官等への悪影響を及ぼす問題点を回避することができる。さらには、潜熱と顕熱を同時に監視し、コントローラにより温湿度を調整することができ、さらなる省エネを実現することができる。   Furthermore, according to the dehumidifying / humidifying heating / cooling system according to the eleventh aspect of the present invention, the dehumidifying / humidifying device 300 capable of controlling latent heat, the dehumidifying / humidifying device 300, and the radiant cooling / heating device 100 are linked to each other. And a controller 250 capable of controlling the temperature and humidity. As a result, if the cooling capacity is not increased when the humidity is high, it will not feel the right temperature, and if the humidity is low, the temperature will further decrease and the problem of adversely affecting the respiratory organs of the human body will be avoided. can do. Furthermore, latent heat and sensible heat can be monitored simultaneously, the temperature and humidity can be adjusted by the controller, and further energy saving can be realized.

本発明の実施の形態に係る輻射冷暖房装置を示す概略構成図である。It is a schematic block diagram which shows the radiation cooling / heating apparatus which concerns on embodiment of this invention. 輻射ダクトの第一変形例を示す垂直断面図である。It is a vertical sectional view showing a first modification of a radiation duct. 輻射ダクトの第二変形例を示す垂直断面図である。It is a vertical sectional view showing a second modification of a radiation duct. 輻射ダクトの第三変形例を示す垂直断面図である。It is a vertical sectional view showing a third modification of the radiation duct. 図4おける輻射ダクトの斜視図である。It is a perspective view of the radiation duct in FIG. 図5の輻射ダクトのA−A線における垂直断面図である。It is a vertical sectional view in the AA line of the radiation duct of FIG. 図6の輻射ダクト内に設置される伝熱部材の斜視図である。It is a perspective view of the heat-transfer member installed in the radiation duct of FIG. 図5における輻射ダクトの例1でB−B線における水平断面図である。It is a horizontal sectional view in the BB line in example 1 of the radiation duct in FIG. 図5における輻射ダクトの例2でB−B線における水平断面図である。It is a horizontal sectional view in the BB line in example 2 of the radiation duct in FIG. 図5における輻射ダクトの例3でB−B線における水平断面図である。It is a horizontal sectional view in the BB line in example 3 of the radiation duct in FIG. 輻射ダクトの接続形態の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the connection form of a radiation duct. 輻射ダクトの接続形態の他の例を示す概略構成図である。It is a schematic block diagram which shows the other example of the connection form of a radiation duct. 実施例1に係る輻射冷暖房装置の設置断面図である。It is installation sectional drawing of the radiation cooling / heating apparatus which concerns on Example 1. FIG. 実施例2に係る輻射冷暖房装置の設置断面図である。It is installation sectional drawing of the radiation cooling / heating apparatus which concerns on Example 2. FIG. 実施例3に係る輻射冷暖房装置の設置断面図である。It is installation sectional drawing of the radiation cooling / heating apparatus which concerns on Example 3. FIG. 本発明の実施の形態に係る除加湿冷暖房システムを示す設置断面図である。It is installation sectional drawing which shows the dehumidification humidification cooling / heating system which concerns on embodiment of this invention. 従来の輻射冷暖房システムを示す縦断面図である。It is a longitudinal cross-sectional view which shows the conventional radiant cooling and heating system. 図17に示す輻射冷暖房システムの横断面図である。It is a cross-sectional view of the radiation cooling and heating system shown in FIG. 従来の他の輻射冷暖房システムを示す縦断面図である。It is a longitudinal cross-sectional view which shows the other conventional radiant cooling / heating system.

以下、本発明の実施の形態を図面に基づいて説明する。ただし、以下に示す実施の形態は、本発明の技術思想を具体化するための輻射熱を利用した輻射冷暖房装置及び除加湿冷暖房システムを例示するものであって、本発明は輻射熱を利用した輻射冷暖房装置及び除加湿冷暖房システムを以下のものに特定しない。また、本明細書は特許請求の範囲に示される部材を、実施の形態の部材に特定するものでは決してない。特に実施の形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、本発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。さらに以下の説明において、同一の名称、符号については同一もしくは同質の部材を示しており、詳細説明を適宜省略する。さらに、本発明を構成する各要素は、複数の要素を同一の部材で構成して一の部材で複数の要素を兼用する態様としてもよいし、逆に一の部材の機能を複数の部材で分担して実現することもできる。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the embodiment shown below exemplifies a radiant cooling / heating apparatus and a dehumidifying / humidifying cooling / heating system using radiant heat for embodying the technical idea of the present invention, and the present invention is radiant cooling / heating using radiant heat. The equipment and dehumidifying / humidifying / heating systems are not specified as follows. Further, the present specification by no means specifies the members shown in the claims to the members of the embodiments. In particular, the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in the embodiments are not intended to limit the scope of the present invention unless otherwise specified, and are merely explanations. It is just an example. Note that the size, positional relationship, and the like of the members shown in each drawing may be exaggerated for clarity of explanation. Furthermore, in the following description, the same name and symbol indicate the same or the same members, and detailed description thereof will be omitted as appropriate. Furthermore, each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and the plurality of elements are shared by one member, and conversely, the function of one member is constituted by a plurality of members. It can also be realized by sharing.

図1から図10に基づいて、本発明の実施の形態に係る輻射冷暖房装置100を説明する。図1は、輻射冷暖房装置100の概略構成図を示している。空調手段200の吹出口からの温調空気が気密状態で断熱空調配管20を経由し輻射ダクト10へ供給される。さらに輻射ダクト10より熱放出空気を気密状態で断熱空調配管20を経由し熱放出空気が空調手段200の吹込口へ帰還する循環空調回路を構成している。ここで用いられる空調手段200は、高顕熱型冷暖房空調機の採用が望まれる。また外気の空気が混入されない閉塞構造とすることで、外部からの埃や湿気の侵入が排除されるため、空調手段200内部のフィルターの目詰まりや熱伝導フィンの汚れの発生を抑制し、メンテナンスフリーやこれに近付けた環境を実現できる。また高顕熱型冷暖房空調機にデシカント方式の除加湿機を組み合わせることで、COP4.5以上を実現できる。
(輻射ダクト)
A radiant cooling and heating apparatus 100 according to an embodiment of the present invention will be described with reference to FIGS. FIG. 1 shows a schematic configuration diagram of a radiant cooling and heating apparatus 100. Temperature-controlled air from the air outlet of the air conditioning means 200 is supplied to the radiation duct 10 through the heat insulating air conditioning pipe 20 in an airtight state. Furthermore, a circulation air-conditioning circuit is constructed in which the heat release air returns from the radiation duct 10 to the air inlet of the air-conditioning means 200 through the heat-insulating air-conditioning pipe 20 in an airtight state. The air-conditioning means 200 used here is desirably a high sensible heat type air conditioning air conditioner. In addition, since a closed structure that does not allow outside air to enter is eliminated, entry of dust and moisture from the outside is eliminated, so that clogging of the filter inside the air-conditioning means 200 and contamination of the heat conduction fins are suppressed, and maintenance is performed. Free and close to the environment can be realized. Moreover, COP4.5 or more is realizable by combining a desiccant-type dehumidifier with a high sensible heat type air conditioning unit.
(Radiation duct)

さらに、図1で用いられる輻射ダクト10の構造の一例として、図2で輻射ダクト10の垂直断面図が示すようにダクト11が、室内1に接面する輻射パネル12を接着剤等を利用し固定し、さらにその他の外周面を断熱材13で覆い包み込み一体形成とした構造とすることができる。ここで利用するダクト11は、一般的な亜鉛メッキ鋼板等のダクトを利用することにより安価に制作することができる。また断熱材13は、熱伝導率の低いフェノールフォームを利用しているが、これに限らず化学繊維系や鉱物繊維系とすることもできる。さらにまた輻射パネル12は熱伝導性が優れているアルミニウムとしているが、これに限らず熱伝導性に優れる銅等の金属製とすることもできる。これにより、輻射パネル12以外での熱の放出を遮断することができ、室内1に接面した輻射パネル12側からのみ効率よく室内1への輻射熱の伝搬が可能である。   Furthermore, as an example of the structure of the radiation duct 10 used in FIG. 1, as shown in the vertical sectional view of the radiation duct 10 in FIG. It is possible to have a structure in which the outer peripheral surface is covered and covered with the heat insulating material 13 and integrally formed. The duct 11 used here can be produced inexpensively by using a duct such as a general galvanized steel sheet. Moreover, although the heat insulating material 13 utilizes the phenol foam with low heat conductivity, it can also be made not only into this but a chemical fiber type or a mineral fiber type. Furthermore, although the radiation panel 12 is made of aluminum having excellent thermal conductivity, it is not limited to this and may be made of a metal such as copper having excellent thermal conductivity. Thereby, the release of heat outside the radiant panel 12 can be blocked, and the radiant heat can be efficiently propagated into the room 1 only from the side of the radiant panel 12 in contact with the room 1.

またさらなる一例の輻射ダクト10の構造として、図3で輻射ダクト10の垂直断面図に示されるように輻射パネル12と箱形に形成された断熱部材14とを接着剤等により嵌合形成した構造とすることもできる。ここで、利用する断熱部材14としては押出発泡ポリスチレンフォーム等の発泡プラスチック系等とし、輻射パネル12は、熱伝導性が優れているアルミニウムを使用しているが、その他の金属で、銅、鉄、あるいは合金等とすることもできる。これにより輻射ダクト10が、製造時の工程数及び部品点数を少なくでき、さらには軽量化ができるため建築駆体への重量的影響も軽減ができる。   As a further example of the structure of the radiation duct 10, as shown in the vertical sectional view of the radiation duct 10 in FIG. 3, the radiation panel 12 and a heat insulating member 14 formed in a box shape are fitted and formed with an adhesive or the like. It can also be. Here, the heat insulating member 14 to be used is a foamed plastic type such as extruded polystyrene foam, and the radiant panel 12 uses aluminum having excellent thermal conductivity, but other metals such as copper and iron are used. Or an alloy or the like. Thereby, the radiation duct 10 can reduce the number of processes and the number of parts at the time of manufacture, and can further reduce the weight, so that the weight influence on the building body can be reduced.

またさらに図4に示す輻射ダクト10の垂直断面図は、図2に示した例の変形例で、輻射パネル12と箱形に形成されたダクト11とを接着剤等により接合され、輻射パネル12を除くダクト11の外周面を断熱材13で覆い包み込み一体形成とした構成とすることができる。この方法が、部材も安価で且つ後述する伝熱部材15を輻射パネル12とダクトを接合する前に取付加工ができ、輻射ダクトの製造を容易にすることができ。各実験に関しては、この方法にて実施しており、この後の図に関してもこの加工方法による説明を行う。   Further, the vertical sectional view of the radiation duct 10 shown in FIG. 4 is a modification of the example shown in FIG. 2, and the radiation panel 12 and the duct 11 formed in a box shape are joined by an adhesive or the like, and the radiation panel 12 is joined. The outer peripheral surface of the duct 11 except for can be covered with a heat insulating material 13 so as to be integrally formed. This method is also inexpensive, and the heat transfer member 15 described later can be attached before joining the radiation panel 12 and the duct, facilitating the production of the radiation duct. Each experiment is carried out by this method, and the subsequent drawings are also explained by this processing method.

さらにまた、図5は図4をモデルにした輻射ダクト10の斜視図で、断熱空調配管20を接続するための接続筒17を入力口18及び出力口19の二カ所に設けている。これにより、設置現場での断熱空調配管20との接続を効率よく実施することができる。さらに、断熱空調配管20を接続するための接続筒17を設けず、断熱空調配管20を直接輻射ダクト10の壁面に開口孔を設けそこに挿入し、挿入した周囲をシーリングすることで輻射ダクト10の断熱部材14の加工も簡易化ができ更なる軽量化することも可能である。   FIG. 5 is a perspective view of the radiation duct 10 modeled on FIG. 4, and connection tubes 17 for connecting the heat-insulating air-conditioning pipes 20 are provided at two locations of the input port 18 and the output port 19. Thereby, the connection with the heat insulation air-conditioning piping 20 in an installation site can be implemented efficiently. Further, the connection cylinder 17 for connecting the heat-insulating air conditioning pipe 20 is not provided, but the heat insulating air-conditioning pipe 20 is directly provided with an opening hole in the wall surface of the radiation duct 10 and inserted there, and the inserted periphery is sealed, thereby the radiation duct 10. The processing of the heat insulating member 14 can be simplified, and the weight can be further reduced.

ここで、輻射ダクト10の寸法は設置される冷暖房対象領域の接面の大きさにより決定することができる。実施例では、輻射ダクト10の幅Wを450mm、高さHを200mm、長さLを1800mmとして実験を実施したがこれに限るものではない。
(伝熱部材)
Here, the dimension of the radiation duct 10 can be determined by the size of the contact surface of the air conditioning target area to be installed. In the embodiment, the experiment was performed by setting the width W of the radiation duct 10 to 450 mm, the height H to 200 mm, and the length L to 1800 mm, but the present invention is not limited to this.
(Heat transfer member)

この輻射ダクト10内には、図6及び図7に示されるような伝熱部材15は、熱吸収面16Aと熱接続面16BとしたL字加工を有し、熱吸収面16Aが輻射パネル12に略垂直に複数設置されている。さらに、この伝熱部材15は、熱接続面16Bと輻射パネル12とが熱接合されるように接着剤又はスポット溶接等にて固定されている。   In this radiation duct 10, the heat transfer member 15 as shown in FIGS. 6 and 7 has an L-shaped process having a heat absorption surface 16A and a heat connection surface 16B, and the heat absorption surface 16A is the radiation panel 12. A plurality of devices are installed substantially vertically. Further, the heat transfer member 15 is fixed by an adhesive or spot welding so that the heat connection surface 16B and the radiation panel 12 are thermally bonded.

さらにここで用いる伝熱部材15の熱吸収面16Aの寸法は、幅が輻射ダクト10の幅Wの約1/2から3/4とし、高さを輻射ダクト10の内高と略同等の高さとする。さらにまた、各伝熱部材15の間隔は150から250mmとして実験を実施したがこの間隔に限るものではない。これにより、伝熱部材15より空調空気の熱を輻射パネル12へ熱交換することができ、輻射パネル12より室内1空間へ効率よく輻射熱を伝播させることができる。   Further, the heat absorption surface 16A of the heat transfer member 15 used here has a width of about 1/2 to 3/4 of the width W of the radiation duct 10 and a height substantially equal to the inner height of the radiation duct 10. Say it. Furthermore, although the experiment was carried out with the interval between the heat transfer members 15 being 150 to 250 mm, it is not limited to this interval. Thereby, the heat of the air-conditioned air can be exchanged from the heat transfer member 15 to the radiant panel 12, and the radiant heat can be efficiently propagated from the radiant panel 12 to one space in the room.

さらに伝熱部材15の素材は、熱伝導性が優れているアルミニウムを使用しているが、その他の金属で、銅、鉄、あるいは合金等とすることもできる。   Further, although aluminum having excellent thermal conductivity is used as the material of the heat transfer member 15, other metal such as copper, iron, or alloy can be used.

さらにまた図8は図5の輻射ダクト10の例1のB−B線における水平断面図を示している。伝熱部材15は温調空気が輻射ダクト10の入力口18から出力口19へ直線的に流出しないように千鳥状に設置し、熱吸収面16Aの向きは入力口18の面に略平行に設置している。これにより、入力口18より送風された温調空気は、伝熱部材15の熱吸収面16Aに熱接触しながら各伝熱部材15の間を蛇行しながら出力口19へと送出され、各伝熱部材15と接触した時点で吸熱し輻射パネル12へ効率よく伝熱することができる。   FIG. 8 is a horizontal sectional view taken along line BB of Example 1 of the radiation duct 10 of FIG. The heat transfer members 15 are installed in a zigzag shape so that the temperature-controlled air does not flow linearly from the input port 18 to the output port 19 of the radiation duct 10, and the direction of the heat absorption surface 16 </ b> A is substantially parallel to the surface of the input port 18. It is installed. Thus, the temperature-controlled air blown from the input port 18 is sent to the output port 19 while meandering between the heat transfer members 15 while being in thermal contact with the heat absorption surface 16A of the heat transfer member 15. When it comes into contact with the heat member 15, it absorbs heat and can be efficiently transferred to the radiation panel 12.

さらにまた別の設置方法として図9は、図5の輻射ダクト10の例2のB−B線における水平断面図を示している。この伝熱部材15は温調空気が輻射ダクト10の入力口18から出力口19へ直線的に流出しないように千鳥状に設置している。さらに伝熱部材15は、熱吸収面16Aを入力口18から順番に輻射ダクト10の内側から出力口19に向け壁面方向に傾斜を設け、次の伝熱部材15が内側から逆の側面へ向くようにと交互に設置されている。   FIG. 9 shows a horizontal sectional view taken along line BB of Example 2 of the radiation duct 10 of FIG. 5 as still another installation method. The heat transfer members 15 are arranged in a staggered manner so that the temperature-controlled air does not flow linearly from the input port 18 to the output port 19 of the radiation duct 10. Further, the heat transfer member 15 is provided with an inclination in the wall surface direction from the inside of the radiation duct 10 toward the output port 19 in order from the input port 18 to the heat absorption surface 16A, and the next heat transfer member 15 is directed from the inner side to the opposite side surface. It is installed alternately.

同様に別の設置方法として図10は、図5の輻射ダクト10の例3のB−B線における水平断面図を示している。この伝熱部材15は温調空気が輻射ダクト10の入力口18から出力口19へ直線的に流出しないように千鳥状に設置している。さらに伝熱部材15は、熱吸収面16Aを出力口19から順番に輻射ダクト10の内側から入力口18に向け壁面方向に傾斜を設け、次の伝熱部材15が内側から逆の側面へ向くようにと交互に設置されている。   Similarly, as another installation method, FIG. 10 shows a horizontal sectional view taken along line BB of Example 3 of the radiation duct 10 of FIG. The heat transfer members 15 are arranged in a staggered manner so that the temperature-controlled air does not flow linearly from the input port 18 to the output port 19 of the radiation duct 10. Further, the heat transfer member 15 is provided with an inclination in the wall surface direction from the inner side of the radiation duct 10 toward the input port 18 in order from the output port 19 to the heat absorption surface 15A, and the next heat transfer member 15 is directed from the inner side to the opposite side surface. It is installed alternately.

このように輻射ダクト10内部の伝熱部材15の設置方法は、温調空気を伝熱部材15の熱吸収面16Aで熱吸収し、熱接触面16Bから輻射パネル12へ熱交換できればよく、図6から図10の事例に限定されるものではない。さらに、伝熱部材15の熱吸収面16Aは矩形として実験したが、温調空気を滞留させることができる形状、且つ温調空気の熱伝導できる形状であれば、例えば湾曲面、屈曲面及び棒状等の形状とすることもでき限定されるものではない。これにより、温調空気の風流を各伝熱部材15に滞留させることができ、複数の伝熱部材15が十分に熱交換でき、さらなる輻射熱を室内1に伝播させることができる。
(概略構成図)
As described above, the heat transfer member 15 inside the radiation duct 10 may be installed by heat-absorbing the temperature-controlled air at the heat absorption surface 16A of the heat transfer member 15 and exchanging heat from the heat contact surface 16B to the radiation panel 12. It is not limited to the example of 6 to FIG. Furthermore, although the heat absorbing surface 16A of the heat transfer member 15 was tested as a rectangle, any shape that can retain the temperature-controlled air and a shape that can conduct heat of the temperature-controlled air, for example, a curved surface, a bent surface, and a rod shape. It can also be set as a shape etc., and is not limited. Thereby, the airflow of temperature-controlled air can be retained in each heat transfer member 15, the plurality of heat transfer members 15 can sufficiently exchange heat, and further radiant heat can be propagated into the room 1.
(Schematic configuration diagram)

ここで輻射冷暖房装置100の第一の構成例を図11に沿って説明する。まず空調手段200の吹出口より断熱ダクト21を経由し吹出ボックス22と断熱空調配管20との順序に接続されている。次に断熱空調配管20を輻射ダクト10の入力口18に接続し、次に各断熱空調配管20と各輻射ダクト10との順序に複数直列接続されている。さらに終端の輻射ダクト10より断熱空調配管20、吹込ボックス23及び断熱ダクト21の順序で接続され、空調手段200の吹込口に帰還する循環空調回路を構成している。   Here, a first configuration example of the radiant cooling and heating apparatus 100 will be described with reference to FIG. First, the blow-out box 22 and the heat-insulated air-conditioning pipe 20 are connected in order through the heat-insulating duct 21 from the air outlet of the air-conditioning means 200. Next, the adiabatic air conditioning pipes 20 are connected to the input port 18 of the radiation duct 10, and then a plurality of the adiabatic air conditioning pipes 20 and the respective radiation ducts 10 are connected in series. Further, the heat insulating air conditioning pipe 20, the blowing box 23, and the heat insulating duct 21 are connected in order from the terminal radiation duct 10 to constitute a circulation air conditioning circuit that returns to the blowing port of the air conditioning means 200.

ここで、この第一の構成例では、輻射ダクト10を6台直列に接続しているが、この台数に限るものではなく、冷暖房対象領域への輻射範囲により輻射ダクト10を直列に接続する台数を選択することができる。   Here, in this first configuration example, six radiation ducts 10 are connected in series. However, the number is not limited to this number, and the number of radiation ducts 10 connected in series depending on the radiation range to the air conditioning target area. Can be selected.

さらに輻射冷暖房装置100の第二の構成例を図12に沿って説明する。まず空調手段200の吹出口より断熱ダクト21を経由し吹出ボックス22と断熱空調配管20との順序に接続されている。次に断熱空調配管20を3方向に分岐させ並列とし、分岐された断熱空調配管20それぞれにボリュームダンパー30が接続されている。さらに、各ボリュームダンパー30に各輻射ダクト10を接続し、次に各断熱空調配管20と各輻射ダクト10との順序に直列接続されている。さらにまた並列をなしている各輻射ダクト10に各断熱空調配管20を接続し、それらを一本の断熱空調配管20に連結させ、吹込ボックス23を経由し断熱ダクト21に接続され、空調手段200の吹込口に帰還接続されている。   Furthermore, the 2nd structural example of the radiation cooling / heating apparatus 100 is demonstrated along FIG. First, the blow-out box 22 and the heat-insulated air-conditioning pipe 20 are connected in order through the heat-insulating duct 21 from the air outlet of the air-conditioning means 200. Next, the adiabatic air conditioning pipe 20 is branched in three directions to be in parallel, and a volume damper 30 is connected to each of the branched adiabatic air conditioning pipes 20. Furthermore, each radiation duct 10 is connected to each volume damper 30, and then each heat insulation air-conditioning pipe 20 and each radiation duct 10 are connected in series in the order. Furthermore, each heat insulation air-conditioning pipe 20 is connected to each radiation duct 10 arranged in parallel, and they are connected to one heat insulation air-conditioning pipe 20 and connected to the heat insulation duct 21 via the blowing box 23, and the air-conditioning means 200. Return connection to the inlet.

これらの各接続部分は気密に接続されており、温調空気の風流は空調手段200、吹出ボックス22、断熱空調配管20、ボリュームダンパー30、輻射ダクト10、断熱空調配管20、吹込ボックス23の順序で流れ、最終的に空調手段200へ帰還する循環空調回路を構成している。   These connection portions are airtightly connected, and the air flow of the temperature-controlled air is in the order of the air conditioning means 200, the blowing box 22, the heat insulating air conditioning pipe 20, the volume damper 30, the radiation duct 10, the heat insulating air conditioning pipe 20, and the blowing box 23. The circulation air-conditioning circuit which finally flows back to the air-conditioning means 200 is configured.

さらにこの第二の構成例では、3台の輻射ダクト10を並列に接続し、さらに輻射ダクト10を直列に接続した計6台が接続されているが、冷暖房対象領域への輻射範囲により輻射ダクト10の台数は限定されるものではない。これにより、室内1の広さに合わせて輻射ダクト10を並列及び直列に台数を増やし接続することで冷暖房対象領域への輻射範囲を選択できる。   Furthermore, in this second configuration example, three radiation ducts 10 are connected in parallel, and a total of six radiation ducts 10 are connected in series. However, depending on the radiation range to the air conditioning target area, the radiation ducts are connected. The number of 10 is not limited. Thereby, the radiation range to the air conditioning target area can be selected by increasing the number of radiation ducts 10 connected in parallel and in series in accordance with the size of the room 1.

さらにまた並列に接続された輻射ダクト10の前段にはボリュームダンパー30が接続されており、並列に接続した各輻射ダクト10への温調空気の流量調整をボリュームダンパー30により行うことで、室内1の温度の偏りを調整することができる。   Furthermore, a volume damper 30 is connected to the front stage of the radiation ducts 10 connected in parallel, and the volume damper 30 adjusts the flow rate of the temperature-controlled air to the radiation ducts 10 connected in parallel. The temperature deviation can be adjusted.

さらにまた第一及び第二の構成例共にこの循環空調回路は、内部の空気を乾燥状態にさせて設置される。これにより、気密状態で循環する温調空気は外気との接触がなく、循環空調回路内部への埃や湿気等の混入を防ぎ、空調手段200内部のフィルターや熱伝導フィンの汚れを防止する効果が得られ、清掃メンテナンスを低減できる。さらに、温調空気が乾燥され湿気の混入がないため、空調手段200には排水用のドレイン配管の設置が必要なくなるため、ドレイン配管の工事、設置スペース等を削減することができる。   Furthermore, in both the first and second configuration examples, the circulation air conditioning circuit is installed with the internal air in a dry state. As a result, the temperature-controlled air that circulates in an airtight state has no contact with outside air, prevents dust and moisture from entering the circulating air-conditioning circuit, and prevents contamination of the filters and heat conduction fins inside the air-conditioning means 200. Can be obtained and cleaning maintenance can be reduced. Furthermore, since the temperature-controlled air is dried and moisture is not mixed, it is not necessary to install a drain pipe for drainage in the air-conditioning means 200. Therefore, the construction and installation space of the drain pipe can be reduced.

さらにまたこの循環空調回路を形成しているため、外気との熱交換がなされない構造になっている。そのために空調手段200の吹出口から吹き出してくる温調空気と、帰還して吹込口に戻ってきた熱放出空気との温度差が小さいため、空調手段200の稼動効率を下げることができ、COPを4.5以上にすることが可能である。例えば冷房時には熱放出空気が外気温より低い温度で、また暖房時には熱放出空気が外気温より高い温度で空調手段200に帰還してくるため、空調手段200の稼動効率を下げ、且つ熱交換効率を向上させることができ、省エネ効果を高めることができる。
(実施例)
Furthermore, since this circulation air-conditioning circuit is formed, the heat exchange with the outside air is not performed. Therefore, since the temperature difference between the temperature-controlled air blown out from the air outlet of the air-conditioning means 200 and the heat release air returned to the air inlet is small, the operating efficiency of the air-conditioning means 200 can be lowered, and the COP Can be made 4.5 or more. For example, during cooling, the heat release air returns to the air conditioning means 200 at a temperature lower than the outside air temperature, and during heating, the heat release air returns to the air conditioning means 200 at a temperature higher than the outside air temperature. The energy saving effect can be enhanced.
(Example)

これより図13の実施例1に係る設置断面図に沿って説明する。この断面図は天井CE空間に輻射冷暖房装置100を設置した実施例である。天井CE面に併せた輻射ダクト10の輻射パネル12が、室内1に接面した状態で設置され、天井CEの裏面に空調手段200が設置されている。これにより、天井CE面とした輻射パネル12より輻射熱として室内1に伝搬し、室内1全体を均一な設定温度とすることができる。ここで、天井CE面に併せた輻射パネル12は、その他の天井素材色に合わせ、表面加工されているため、違和感を生じさせることはない。   This will be described with reference to a sectional view of installation according to the first embodiment shown in FIG. This sectional view is an embodiment in which the radiant cooling and heating device 100 is installed in the ceiling CE space. The radiation panel 12 of the radiation duct 10 combined with the ceiling CE surface is installed in contact with the room 1, and the air conditioning means 200 is installed on the back surface of the ceiling CE. Thereby, it propagates to the room 1 as radiant heat from the radiation panel 12 having the ceiling CE surface, and the entire room 1 can be set to a uniform set temperature. Here, since the radiation panel 12 combined with the ceiling CE surface is surface-treated in accordance with other ceiling material colors, there is no sense of incongruity.

さらに図14の実施例2に係る設置断面図に沿って説明する。この断面図は空調手段200を天井CE裏面に設置し、輻射ダクト10の輻射パネル12が壁パネル面に併せて設置されている。これにより、壁WAパネルに併せて設置されている輻射パネル12から輻射熱として室内1に伝搬し、室内1全体を均一な設定温度とすることができる。ここで、壁WAパネルに併せた輻射パネル12は、その他の壁面素材色に合わせ、表面加工されているため、違和感を生じさせることはない。この実施例では、天井CEの裏面に空調手段200に設置しているが、壁WAや床FL等の裏面に設置できる空間があれば設置することができる。   Furthermore, it demonstrates along the installation sectional drawing which concerns on Example 2 of FIG. In this sectional view, the air-conditioning means 200 is installed on the back surface of the ceiling CE, and the radiation panel 12 of the radiation duct 10 is installed together with the wall panel surface. Thereby, it propagates to the room 1 as radiant heat from the radiation panel 12 installed together with the wall WA panel, and the entire room 1 can be set to a uniform set temperature. Here, since the radiation panel 12 combined with the wall WA panel is surface-processed according to the other wall material color, there is no sense of incongruity. In this embodiment, the air conditioner 200 is installed on the back surface of the ceiling CE. However, if there is a space that can be installed on the back surface such as the wall WA or the floor FL, it can be installed.

さらにまた図15の実施例3に係る設置断面図に沿って説明する。この断面図は空調手段200を天井CE裏面に設置し、輻射ダクト10の輻射パネル12が床FLパネル面に併せて設置されている。これにより、床FLパネルに併せて設置されている輻射パネル12から輻射熱として室内1に伝搬し、室内1全体を均一な設定温度とすることができる。ここで、床FLパネルに併せた輻射パネル12は、その他の床素材色に合わせ、表面加工されているため、違和感を生じさせることはない。この実施例では、天井CEの裏面に空調手段200に設置しているが、壁WAや床FL等の裏面に設置できる空間があれば設置することができる。   Furthermore, it demonstrates along the installation sectional drawing which concerns on Example 3 of FIG. In this sectional view, the air-conditioning means 200 is installed on the back surface of the ceiling CE, and the radiation panel 12 of the radiation duct 10 is installed together with the floor FL panel surface. Thereby, it propagates to the room 1 as radiant heat from the radiation panel 12 installed together with the floor FL panel, and the whole room 1 can be set to a uniform set temperature. Here, since the radiation panel 12 combined with the floor FL panel is surface-treated in accordance with other floor material colors, it does not cause a sense of incongruity. In this embodiment, the air conditioner 200 is installed on the back surface of the ceiling CE. However, if there is a space that can be installed on the back surface such as the wall WA or the floor FL, it can be installed.

さらにまた、図13から図15に示した実施例の他にも、図示はしないが輻射ダクト10を天井CE面、壁WA面及び床FL面の二面または三面に設置することもできる。例えば夏場は天井CE面に設置された輻射ダクト10による輻射熱で冷房を行い、冬場は床FL面に設置された輻射ダクト10による輻射熱で暖房を行うように、断熱空気配管20を切り替える構造とすることもできる。これにより、空気の熱伝導特性を利用することで効率的に室内1の冷暖房を行うこともできる。   In addition to the embodiments shown in FIGS. 13 to 15, although not shown, the radiation duct 10 can be installed on two or three surfaces of the ceiling CE surface, the wall WA surface, and the floor FL surface. For example, a structure in which the adiabatic air pipe 20 is switched so that cooling is performed by radiant heat from the radiation duct 10 installed on the ceiling CE surface in summer and heating is performed by radiant heat from the radiation duct 10 installed on the floor FL surface in winter. You can also. Thereby, the room 1 can be efficiently cooled and heated by utilizing the heat conduction characteristics of air.

ここでさらに、図16は、実施の形態に係る除加湿冷暖房システムを示す設置断面図を示している。この除加湿冷暖房システムは、輻射熱を利用した輻射冷暖房装置100に使用される空調手段200と、潜在である湿度をコントロールできる除加湿機300とを接続ケーブル260にて連動させることで、顕在である温度と潜在である湿度を同時に監視しコントローラ250で調整することができる。これにより、湿度が高い場合には冷却能力を上げなければ適温と感じないし、湿度が低い場合には温度が上げるとさらに湿度が下がってしまい人体の呼吸器官等への悪影響を及ぼす問題点を回避することができ、高COPの実現が可能で省エネを実現することができる。   Furthermore, FIG. 16 has shown the installation sectional view which shows the dehumidification / humidification cooling / heating system which concerns on embodiment. This dehumidifying / humidifying cooling / heating system is manifested by linking the air-conditioning means 200 used in the radiant cooling / heating apparatus 100 using radiant heat and the dehumidifying / humidifying device 300 capable of controlling the potential humidity with a connection cable 260. The temperature and potential humidity can be monitored simultaneously and adjusted by the controller 250. As a result, if the cooling capacity is not increased when the humidity is high, it will not feel the right temperature, and if the humidity is low, the temperature will further decrease and the problem of adversely affecting the respiratory organs of the human body will be avoided. It is possible to achieve high COP and energy saving.

ここで使用される空調手段200は高顕熱型冷暖房装置で、除加湿機300はデシカント方式の除加湿機を利用することで、COPを4.5以上とし省エネ化を実現することができ、且つ室内の潜在と顕在を同時にコントロールできるため人に優しいシステムを構築することができる。   The air-conditioning means 200 used here is a high sensible heat type air conditioner, and the dehumidifier / humidifier 300 uses a desiccant dehumidifier / humidifier, so that the COP can be 4.5 or more and energy saving can be realized. Because it is possible to control the latent and manifestation in the room at the same time, it is possible to build a human-friendly system.

1…室内
10…輻射ダクト
11…箱形ダクト
12…輻射パネル
13…断熱材
14…断熱部材
15…伝熱部材
16A…熱吸収面
16B…熱接続面
17…接続筒
18…入力口
19…出力口
20…断熱空調配管
21…断熱ダクト
22…吹出ボックス
23…吹込ボックス
30…ボリュームダンパー
100…輻射冷暖房装置
200…空調手段
250…コントローラ
260…接続ケーブル
300…除加湿機
801…居室
803…空調手段
805…中空部
804…構造体(コンクリートスラブ)
807…空気経路
911…輻射パネル
912…熱媒配管
913…断熱材
914…熱伝導体
915…熱伝導体
H…輻射ダクトの高さ
W…輻射ダクトの幅
L…輻射ダクトの長さ
CE…天井
WA…壁
FL…床
DESCRIPTION OF SYMBOLS 1 ... Indoor 10 ... Radiation duct 11 ... Box-shaped duct 12 ... Radiation panel 13 ... Heat insulation material 14 ... Heat insulation member 15 ... Heat transfer member 16A ... Heat absorption surface 16B ... Heat connection surface 17 ... Connection pipe | tube 18 ... Input port 19 ... Output Port 20 ... Insulating air conditioning piping 21 ... Insulating duct 22 ... Blowing box 23 ... Blowing box 30 ... Volume damper 100 ... Radiant cooling / heating device 200 ... Air conditioning means 250 ... Controller 260 ... Connection cable 300 ... Dehumidifier / humidifier 801 ... Living room 803 ... Air conditioning means 805 ... Hollow part 804 ... Structure (concrete slab)
807 ... Air path 911 ... Radiation panel 912 ... Heat medium piping 913 ... Heat insulation 914 ... Heat conductor 915 ... Heat conductor H ... Radiation duct height W ... Radiation duct width L ... Radiation duct length CE ... Ceiling WA ... wall FL ... floor

Claims (11)

輻射熱を利用した冷暖房対象領域への冷暖房が可能な輻射冷暖房装置(100)であって、
冷暖房対象領域に配置された輻射ダクト(10)と、
熱源により温度調整された温調空気を前記輻射ダクト(10)に送風させるための空調手段(200)と、
前記輻射ダクト(10)および前記空調手段(200)との間を気密状態に接続して、温調空気を循環させるための断熱空調配管(20)と、
を備える装置において、
前記輻射ダクト(10)内に、温調空気の循環を阻害する姿勢に配置されることで、温調空気から吸熱して前記輻射ダクト(10)に伝熱する伝熱部材(15)を設けてなることを特徴とする輻射冷暖房装置。
A radiant cooling and heating device (100) capable of cooling and heating to an air conditioning target area using radiant heat,
A radiation duct (10) arranged in the air conditioning target area;
Air-conditioning means (200) for blowing air to the radiation duct (10), which is temperature-controlled by a heat source;
Insulating air-conditioning piping (20) for circulating temperature-controlled air by connecting the radiation duct (10) and the air-conditioning means (200) in an airtight state,
In an apparatus comprising:
A heat transfer member (15) that absorbs heat from the temperature-controlled air and transfers heat to the radiation duct (10) is provided in the radiation duct (10) in a posture that inhibits circulation of the temperature-controlled air. A radiant cooling and heating device characterized by comprising:
請求項1に記載の輻射冷暖房装置(100)であって、
前記輻射ダクト(10)は、
入力口(18)および出力口(19)を持つ箱形ダクト(11)と、
放熱面側に設置した熱伝導性の優れた輻射パネル(12)と、
前記輻射パネル(12)を除く側壁面に装着した断熱材(13)と、
を備えることを特徴とする輻射冷暖房装置。
A radiant cooling and heating device (100) according to claim 1,
The radiation duct (10) is
A box-shaped duct (11) having an input port (18) and an output port (19);
A radiation panel (12) with excellent thermal conductivity installed on the heat dissipation surface side,
A heat insulating material (13) attached to the side wall surface excluding the radiation panel (12), and
A radiant cooling and heating device comprising:
請求項1に記載の輻射冷暖房装置(100)であって、
前記輻射ダクト(10)は、
熱伝導性の優れた前記輻射パネル(12)と、
入力口(18)および出力口(19)を持つ側壁面を成型された断熱部材(14)と、
を嵌合形成し、
を特徴とする輻射冷暖房装置。
A radiant cooling and heating device (100) according to claim 1,
The radiation duct (10) is
The radiation panel (12) having excellent thermal conductivity,
A heat insulating member (14) molded with a side wall surface having an input port (18) and an output port (19);
Mating and forming
A radiant cooling and heating device.
請求項1から3のいずれか一に記載の輻射冷暖房装置(100)であって、
前記伝熱部材(15)は、
前記輻射パネル(12)と熱結合する熱接続面(16B)と、
前記輻射ダクト(10)の内部の放熱面側に略垂直に設置された矩形板として熱吸収面(16A)とを有し、
前記熱吸収面(16A)が、前記輻射ダクト(10)に対し、高さは内部高と略同等で、幅は入力口(18)面の約1/2から3/4で、向きを入力口(18)壁面に対し略平行とし、
前記伝熱部材(15)が、前記輻射ダクト(10)の入力口(18)から出力口(19)までの間を千鳥状に略等間隔で複数設置し、
前記輻射ダクト(10)内の送風空間における風流を蛇行させることを特徴とする輻射冷暖房装置。
A radiant cooling and heating device (100) according to any one of claims 1 to 3,
The heat transfer member (15)
A thermal connection surface (16B) thermally coupled to the radiation panel (12);
A heat absorption surface (16A) as a rectangular plate installed substantially vertically on the heat dissipation surface side inside the radiation duct (10),
The heat absorption surface (16A) is approximately the same height as the internal height with respect to the radiation duct (10), the width is about 1/2 to 3/4 of the input port (18) surface, and the direction is input. The mouth (18) is approximately parallel to the wall surface,
A plurality of the heat transfer members (15) are installed at substantially equal intervals in a staggered manner from the input port (18) to the output port (19) of the radiation duct (10),
A radiant cooling and heating device characterized in that the airflow in the blast space in the radiant duct (10) is meandered.
請求項1から4のいずれか一に記載の輻射冷暖房装置(100)であって、
前記断熱空調配管(20)は、前記空調手段(200)の吹出口に接続し、
前記輻射ダクト(10)の入力口(18)と接続し、
前記輻射ダクト(10)の出力口(19)にさらに前記断熱空気配管(20)及び前記輻射ダクト(10)を複数直列に接続し、
冷暖房対象領域の範囲を拡張できることを特徴とする輻射冷暖房装置。
A radiant cooling and heating device (100) according to any one of claims 1 to 4,
The heat insulating air conditioning pipe (20) is connected to the air outlet of the air conditioning means (200),
Connect to the input port (18) of the radiation duct (10),
Further connecting the plurality of the insulated air pipes (20) and the radiation duct (10) in series to the output port (19) of the radiation duct (10),
A radiant cooling and heating apparatus, characterized in that the range of an air conditioning target area can be expanded.
請求項1から4のいずれか一に記載の輻射冷暖房装置(100)であって、
前記断熱空調配管(20)は、前記空調手段(200)の吹出口に接続され複数並列に分岐し、
分岐された前記断熱空気配管(20)にそれぞれボリュームダンパー(30)を設置し、
前記ボリュームダンパー(30)の出力をそれぞれ前記輻射ダクト(10)の入力口(18)と接続し、
複数の前記輻射ダクト(10)の出力口(19)にさらに前記断熱空気配管(20)及び前記輻射ダクト(10)を複数直列に接続し、
冷暖房対象領域の範囲を拡張できることを特徴とする輻射冷暖房装置。
A radiant cooling and heating device (100) according to any one of claims 1 to 4,
The adiabatic air conditioning pipe (20) is connected to the air outlet of the air conditioning means (200) and branched in parallel,
A volume damper (30) is installed on each of the branched insulated air pipes (20),
The output of the volume damper (30) is connected to the input port (18) of the radiation duct (10), respectively.
A plurality of the insulated air pipes (20) and a plurality of the radiation ducts (10) are connected in series to the output ports (19) of the plurality of the radiation ducts (10),
A radiant cooling and heating apparatus, characterized in that the range of an air conditioning target area can be expanded.
請求項1から6のいずれか一に記載の輻射冷暖房装置(100)であって、
前記輻射ダクト(10)を天井(CE)面に配置することを特徴とする輻射冷暖房装置。
A radiant cooling and heating device (100) according to any one of claims 1 to 6,
A radiant cooling / heating device, wherein the radiating duct (10) is arranged on a ceiling (CE) surface.
請求項1から6のいずれか一に記載の輻射冷暖房装置(100)であって、
前記輻射ダクト(10)を壁(WA)面に配置することを特徴とする輻射冷暖房装置。
A radiant cooling and heating device (100) according to any one of claims 1 to 6,
A radiant cooling and heating apparatus, wherein the radiant duct (10) is disposed on a wall (WA) surface.
請求項1から6のいずれか一に記載の輻射冷暖房装置(100)であって、
前記輻射ダクト(10)を床(FL)面に配置することを特徴とする輻射冷暖房装置。
A radiant cooling and heating device (100) according to any one of claims 1 to 6,
A radiant cooling and heating apparatus, wherein the radiant duct (10) is disposed on a floor (FL) surface.
請求項1から9のいずれか一に記載の輻射冷暖房装置(100)であって、
排水用のドレイン配管を有さないことを特徴とする輻射冷暖房装置。
A radiant cooling and heating device (100) according to any one of claims 1 to 9,
A radiant cooling and heating apparatus characterized by having no drain pipe for drainage.
請求項1から10のいずれか一に記載の輻射冷暖房装置(100)と、
潜熱を制御可能な除加湿機(300)と、
前記除加湿機(300)と、輻射冷暖房装置(100)とを連動させて、冷暖房対象領域の温度と湿度とを制御可能なコントローラ(250)と、
を備えることを特徴とする除加湿冷暖房システム。
Radiant cooling and heating device (100) according to any one of claims 1 to 10,
A dehumidifier / humidifier (300) capable of controlling latent heat;
A controller (250) capable of controlling the temperature and humidity of the air conditioning target area in conjunction with the dehumidifying / humidifying device (300) and the radiant cooling / heating device (100),
A dehumidifying / humidifying air-conditioning system comprising:
JP2011090496A 2011-04-14 2011-04-14 Radiation air conditioning apparatus and dehumidification and humidification air conditioning system Pending JP2012225517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011090496A JP2012225517A (en) 2011-04-14 2011-04-14 Radiation air conditioning apparatus and dehumidification and humidification air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011090496A JP2012225517A (en) 2011-04-14 2011-04-14 Radiation air conditioning apparatus and dehumidification and humidification air conditioning system

Publications (1)

Publication Number Publication Date
JP2012225517A true JP2012225517A (en) 2012-11-15

Family

ID=47275889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011090496A Pending JP2012225517A (en) 2011-04-14 2011-04-14 Radiation air conditioning apparatus and dehumidification and humidification air conditioning system

Country Status (1)

Country Link
JP (1) JP2012225517A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017026225A (en) * 2015-07-23 2017-02-02 株式会社セントラルユニ Radiation air conditioning panel
JP2017194267A (en) * 2017-06-19 2017-10-26 株式会社セントラルユニ Radiation air conditioning panel
CN107906648A (en) * 2017-12-06 2018-04-13 广东美的制冷设备有限公司 Radiation recuperator, indoor apparatus of air conditioner and air conditioner
JP2018063095A (en) * 2016-10-14 2018-04-19 菊川工業株式会社 Radiation type air conditioning unit and radiation type air conditioner using the same
CN108592153A (en) * 2018-05-29 2018-09-28 山东源源新能源有限公司 A kind of electric heater
JP2019007727A (en) * 2018-08-22 2019-01-17 三菱重工サーマルシステムズ株式会社 Radiation panel module, radiation air-conditioning system, air-conditioning method and control method
CN115076812A (en) * 2022-06-15 2022-09-20 嵊州市浙江工业大学创新研究院 Solar environment-friendly air conditioner for production workshop
CN115191776A (en) * 2022-06-27 2022-10-18 河南城建学院 Household split dual-purpose convection radiation air conditioning bed system
JP7470940B2 (en) 2020-04-02 2024-04-19 株式会社ユカリラ Floor underlayment set and radiant heating and cooling system

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51146748A (en) * 1975-06-11 1976-12-16 Osaka Gas Co Ltd Radiator for heating and cooling radiation system
JPH04273930A (en) * 1991-02-28 1992-09-30 Matsushita Electric Works Ltd Ceiling radiation cooling/heating system
JPH07158907A (en) * 1993-12-03 1995-06-20 Toshiba Corp Air-conditioning machine
JPH08247488A (en) * 1995-03-07 1996-09-27 Sanyo Electric Co Ltd Radiant cooler
JPH10205823A (en) * 1997-01-24 1998-08-04 S X L Corp Panel structural body for heating/cooling
JPH10220826A (en) * 1997-01-31 1998-08-21 Toshiba Corp Radiation type air conditioning system
JP2006269140A (en) * 2005-03-23 2006-10-05 Nippon Seiki Co Ltd Lighting device
JP2009250544A (en) * 2008-04-08 2009-10-29 Yamada Takken Corp Underfloor heating system house
JP2010175187A (en) * 2009-01-30 2010-08-12 Daikin Ind Ltd Drainless air conditioning device
JP2011040558A (en) * 2009-08-11 2011-02-24 Furukawa Electric Co Ltd:The Heat sink

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51146748A (en) * 1975-06-11 1976-12-16 Osaka Gas Co Ltd Radiator for heating and cooling radiation system
JPH04273930A (en) * 1991-02-28 1992-09-30 Matsushita Electric Works Ltd Ceiling radiation cooling/heating system
JPH07158907A (en) * 1993-12-03 1995-06-20 Toshiba Corp Air-conditioning machine
JPH08247488A (en) * 1995-03-07 1996-09-27 Sanyo Electric Co Ltd Radiant cooler
JPH10205823A (en) * 1997-01-24 1998-08-04 S X L Corp Panel structural body for heating/cooling
JPH10220826A (en) * 1997-01-31 1998-08-21 Toshiba Corp Radiation type air conditioning system
JP2006269140A (en) * 2005-03-23 2006-10-05 Nippon Seiki Co Ltd Lighting device
JP2009250544A (en) * 2008-04-08 2009-10-29 Yamada Takken Corp Underfloor heating system house
JP2010175187A (en) * 2009-01-30 2010-08-12 Daikin Ind Ltd Drainless air conditioning device
JP2011040558A (en) * 2009-08-11 2011-02-24 Furukawa Electric Co Ltd:The Heat sink

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017026225A (en) * 2015-07-23 2017-02-02 株式会社セントラルユニ Radiation air conditioning panel
JP2018063095A (en) * 2016-10-14 2018-04-19 菊川工業株式会社 Radiation type air conditioning unit and radiation type air conditioner using the same
JP2017194267A (en) * 2017-06-19 2017-10-26 株式会社セントラルユニ Radiation air conditioning panel
CN107906648A (en) * 2017-12-06 2018-04-13 广东美的制冷设备有限公司 Radiation recuperator, indoor apparatus of air conditioner and air conditioner
CN108592153A (en) * 2018-05-29 2018-09-28 山东源源新能源有限公司 A kind of electric heater
JP2019007727A (en) * 2018-08-22 2019-01-17 三菱重工サーマルシステムズ株式会社 Radiation panel module, radiation air-conditioning system, air-conditioning method and control method
JP7470940B2 (en) 2020-04-02 2024-04-19 株式会社ユカリラ Floor underlayment set and radiant heating and cooling system
CN115076812A (en) * 2022-06-15 2022-09-20 嵊州市浙江工业大学创新研究院 Solar environment-friendly air conditioner for production workshop
CN115191776A (en) * 2022-06-27 2022-10-18 河南城建学院 Household split dual-purpose convection radiation air conditioning bed system

Similar Documents

Publication Publication Date Title
Zeng et al. A review on the air-to-air heat and mass exchanger technologies for building applications
Seyam Types of HVAC systems
JP2012225517A (en) Radiation air conditioning apparatus and dehumidification and humidification air conditioning system
JP5613155B2 (en) Direct cooling type air conditioning system and heat exchange ceiling board used therefor
JP2009513925A (en) Energy recovery / humidity control system
CN102297485B (en) Air heat source heat pump-type air conditioner
JP2008076015A (en) Building air-conditioning system by geothermal use
KR100943356B1 (en) Ventilation type&#39;s all-season heating and cooling equipment
JP2013509559A (en) Apparatus for air conditioning a room and heat pump assembly for use in the apparatus
JP4599626B1 (en) Smart eco air conditioning system
WO2020037836A1 (en) New-type air conditioning terminal system for high and large spaces
WO2020051945A1 (en) Air conditioning terminal device with heat exchange in narrow annular space
CN106679027B (en) Evaporative cooling displacement ventilation device and parameter determination method thereof
JP5369260B2 (en) Air heat exchange system and air heat exchanger used
JP6361904B2 (en) Air conditioning system
JP2004169946A (en) Air conditioner for residence
KR20100008106A (en) Air conditioning air circulation apparatus
JP6823316B2 (en) Heat pump type cold / hot water generator
JP2010243075A (en) Ventilation air-conditioning system and building
CN205090677U (en) Air -conditioning device
JP5185427B1 (en) Heat exchanger for air conditioning
JP2012063032A (en) Terrestrial heat utilizing system for air-conditioning
CN219414968U (en) Split type fresh air dehumidifying radiation convection integrated air conditioning system
CN217785312U (en) Assembled electromechanical pipeline integrated module
JP5453823B2 (en) Drainless air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150526