JP2017194267A - Radiation air conditioning panel - Google Patents

Radiation air conditioning panel Download PDF

Info

Publication number
JP2017194267A
JP2017194267A JP2017119298A JP2017119298A JP2017194267A JP 2017194267 A JP2017194267 A JP 2017194267A JP 2017119298 A JP2017119298 A JP 2017119298A JP 2017119298 A JP2017119298 A JP 2017119298A JP 2017194267 A JP2017194267 A JP 2017194267A
Authority
JP
Japan
Prior art keywords
air
conditioning panel
radiation
plate
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017119298A
Other languages
Japanese (ja)
Other versions
JP6197139B1 (en
Inventor
将之 河村
Masayuki Kawamura
将之 河村
伸康 綾垣
Nobuyasu Ayagaki
伸康 綾垣
橋本 一成
Kazunari Hashimoto
一成 橋本
健一 河越
Kenichi Kawagoe
健一 河越
辰典 松原
Tatsunori Matsubara
辰典 松原
五九生 藤原
Ikuo Fujiwara
五九生 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Uni Co Ltd
Original Assignee
Central Uni Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Uni Co Ltd filed Critical Central Uni Co Ltd
Priority to JP2017119298A priority Critical patent/JP6197139B1/en
Application granted granted Critical
Publication of JP6197139B1 publication Critical patent/JP6197139B1/en
Publication of JP2017194267A publication Critical patent/JP2017194267A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a radiation air conditioning panel capable of improving a heat utilization efficiency as compared with that of the conventional panel and capable of more uniformly cooling or heating an entire radiation plate surface.SOLUTION: This invention relates to a radiation air conditioning panel 1 including a hollow box-like main body 2 having a superior thermal conductivity front surface material 2a and an adiathermancy rear surface material 5 in which a blowing-in port 3 is formed at one end of the rear surface material 5 and a blowing-out port 4 is formed at the other end, temperature adjusted air is flowed from the blowing-in port 3 to the blowing-out port 4 into a hollow space of the main body 2 so as to perform a heat exchanging with the air in front of the main body 2 through the front surface material 2a. There are provided a plurality of turbulent flow promoters 7 formed to be protruded from the front surface material 2a and when the blowing-in port 3 is set at an upper place and as seen from the front surface material 2a toward the rear surface material 5, each of the turbulent flow promoters 7 is arranged in horizontal orientation over an entire arrangement between the left end and the right end of the hollow space of the main body 2.SELECTED DRAWING: Figure 2

Description

本発明は、輻射空調用に部屋の壁や天井材として使用される輻射空調パネルに関する。   The present invention relates to a radiation air-conditioning panel used as a room wall or ceiling material for radiation air-conditioning.

従来から、室内空調の一手段として、壁面や床や天井に輻射空調パネルを設置し、これに調温空気を流通させて室内空気との熱交換を行うことで室内空調を行う輻射冷暖房設備が広く使用されている。この輻射冷暖房設備で使用される輻射空調パネルとしては、特許文献1〜11に記載のものが公知である。   Conventionally, as a means of indoor air conditioning, radiant air conditioning panels have been widely used to install indoor radiant air conditioning panels on wall surfaces, floors, and ceilings, and distribute conditioned air through them to exchange heat with indoor air. It is used. As a radiation air-conditioning panel used in this radiation cooling and heating equipment, those described in Patent Documents 1 to 11 are known.

特許文献1に記載の輻射冷暖房装置の輻射ダクト(10)は、室内側に向かって開口した矩形箱状のダクト(11)と、ダクト(11)の室内側開口を閉蓋する輻射パネル(12)と、ダクト(11)の室内側以外の外周面を覆包する断熱材(13)と、ダクト(11)の一端の側面に形成された入力口(18)と、該入力口(18)に対向するダクト(11)の側面に形成された出力口(19)とを備えている(特許文献1の図2〜図5参照)。入力口(18)から温調空気がダクト(11)を流入し、輻射パネル(12)を介して室内空気と熱交換させた後、出力口(19)から流出させる(特許文献1の段落〔0026〕,〔0030〕)。この輻射ダクト(10)では、輻射パネル(12)の熱交換効率を向上させるため、輻射パネル(12)のダクト(11)内側の表面に、L字板状の伝熱部材(15)を着設している(特許文献1の図6〜図10,段落〔0032〕〜〔0038〕参照)。伝熱部材(15)は、輻射パネル(12)と熱接合するように接着剤又はスポット溶接等により固定されている。伝熱部材(15)の直立した部分である熱吸収面(16A)は、幅が輻射ダクト(10)の1/2〜3/4,高さが輻射ダクト(10)の内高と略同じ高さとされている。また、伝熱部材(15)の配置として、温調空気の流れ方向に垂直な配置(特許文献1の図8)及び温調空気の流れ方向に対し傾斜した配置(特許文献1の図9,図10)が例示されている。そして、この伝熱部材(15)を設けることによって、調温空気の熱を、伝熱部材(15)より輻射パネル(12)へ熱交換でき、室内空間へ効率よく熱伝達させることができる旨が記載されている(特許文献1の段落〔0033〕〔0035〕〔0038〕等)。   The radiation duct (10) of the radiation cooling and heating apparatus described in Patent Literature 1 includes a rectangular box-shaped duct (11) that opens toward the indoor side, and a radiation panel (12 that closes the indoor opening of the duct (11)). ), A heat insulating material (13) covering the outer peripheral surface of the duct (11) other than the interior side, an input port (18) formed on one side surface of the duct (11), and the input port (18) And an output port (19) formed on the side surface of the duct (11) that faces (see FIGS. 2 to 5 of Patent Document 1). Temperature-controlled air flows into the duct (11) from the input port (18), exchanges heat with room air via the radiation panel (12), and then flows out from the output port (19) (see paragraph [1] of Patent Document 1). 0026], [0030]). In this radiation duct (10), in order to improve the heat exchange efficiency of the radiation panel (12), an L-shaped heat transfer member (15) is attached to the surface inside the duct (11) of the radiation panel (12). (See FIGS. 6 to 10 and paragraphs [0032] to [0038] of Patent Document 1). The heat transfer member (15) is fixed by an adhesive or spot welding so as to be thermally bonded to the radiation panel (12). The heat absorption surface (16A), which is an upright portion of the heat transfer member (15), has a width that is 1/2 to 3/4 of the radiation duct (10) and a height that is substantially the same as the inner height of the radiation duct (10). It is said to be high. Moreover, as arrangement | positioning of a heat-transfer member (15), arrangement | positioning perpendicular | vertical to the flow direction of temperature control air (FIG. 8 of patent document 1) and arrangement | positioning with respect to the flow direction of temperature control air (FIG. 9, FIG. 9 of patent document 1). FIG. 10) is illustrated. By providing this heat transfer member (15), the heat of the temperature-controlled air can be exchanged from the heat transfer member (15) to the radiation panel (12), and heat can be efficiently transferred to the indoor space. (Patent Document 1, paragraphs [0033] [0035] [0038] and the like).

特許文献2には、適当間隔を隔てて並列配設した背高の床根太(8,…)群のうち、隣接する二つの床根太(8,8)の上端部に放熱材料からなる天板(3)を貼り付け固定し、隣接床根太(8,8)間の下側部に位置する下面板(4)上に断熱材(9)を貼り付けて断熱化し、天板(3)と隣接床根太(8,8)及び断熱材(9)とで囲繞された温風通路(又は冷風通路)(10)を有する輻射式暖冷房用放熱筐(5)が記載されている(特許文献2の図1〜図4,明細書2頁左上段から同頁右上段参照)。この放熱筐(5)は、一端に吸込口(1)、他端に吹出口(2)が形成されており、吸込口(1)近傍に調温空気を流通させるための送風機(6)及び熱交換器(7)が設置されている。また、温風通路(10)には、送風機(6)から圧送される温風の流通路を、温風通路(10)の長手方向にジグザグ状に形成するように複数枚の補強兼用の整流板(12,…)が設けられている。送風機(6)から吸込口(1)に圧送される調温空気の温風は、温風通路(10)をジグザグ状に流通し乍ら天板3を加熱し吹出口(2)から送出される。そして該天板(3)の輻射熱によって室内の暖房が行われる。   Patent Document 2 discloses a top plate made of a heat radiation material at the upper end of two adjacent floor joists (8, 8) in a group of tall floor joists (8,...) Arranged in parallel at an appropriate interval. (3) is affixed and fixed, and a heat insulating material (9) is affixed on the lower surface plate (4) located on the lower side between adjacent floor joists (8, 8) to insulate, and the top plate (3) A radiant heating / cooling radiating case (5) having a warm air passage (or cold air passage) (10) surrounded by adjacent floor joists (8, 8) and a heat insulating material (9) is described (Patent Literature). 1 to FIG. 4, and the specification 2 page 2 upper left column, see the same page upper right column). The heat radiating casing (5) has a suction port (1) at one end and a blower outlet (2) at the other end, and a blower (6) for circulating temperature-controlled air near the suction port (1), and A heat exchanger (7) is installed. Further, in the warm air passage (10), a plurality of sheets of reinforcing and rectifying flow are formed so as to form a flow passage of hot air pumped from the blower (6) in a zigzag shape in the longitudinal direction of the warm air passage (10). Plates (12,...) Are provided. The warm air of the conditioned air pumped from the blower (6) to the suction port (1) circulates in the hot air passage (10) in a zigzag manner, heats the top plate 3, and is sent out from the blowout port (2). The And room heating is performed by the radiant heat of this top plate (3).

特許文献3には、複数の縦材(11)と横材(12)とから組枠材(13)を形成すると共に、該組枠材(13)の厚さ方向一方側及び他方側の両面に面材(15,16)を固着して内部を気密室(17)に形成し、且つその気密室(17)の何れかの面側に断熱材(18)を配設してなる構造体本体(20)を具え、この構造体本体(20)における組枠材(13)の縦材(11)に沿う方向の一方側に空気導入口(23)を、他方側に空気吹出口(24)を、それぞれ気密室(17)と連通させて設けた冷暖房用パネル構造体(1)が記載されている(特許文献3の請求項1,図1〜図4参照)。この冷暖房用パネル構造体(1)は、空気導入口(23)から調温空気が送入され、気密室(17)を流通する間に面材(15)を介して室内空気と熱交換し、空気吹出口(24)から送出される。   In Patent Document 3, a frame member (13) is formed from a plurality of vertical members (11) and cross members (12), and both sides on one side and the other side in the thickness direction of the frame member (13) are disclosed. The face material (15, 16) is fixed to the inside to form an airtight chamber (17), and the heat insulating material (18) is disposed on any surface side of the airtight chamber (17). An air inlet (23) is provided on one side of the structure body (20) along the longitudinal member (11) of the frame member (13) and an air outlet (24 on the other side). ) Are respectively provided in communication with the hermetic chamber (17) (see claim 1 of Patent Document 3 and FIGS. 1 to 4). The panel structure (1) for cooling and heating is supplied with temperature-controlled air from the air inlet (23), and exchanges heat with room air via the face material (15) while flowing through the airtight chamber (17). , Is sent out from the air outlet (24).

特許文献4には、内部が中空の中空構造を有し、上部に開閉可能な上部開口部(6)が、下部に開閉可能な下部開口部(7)が、それぞれ室内に向けて設けられ、下端面に調温空気は流入する空気孔(8)が形成された壁構造体(3)が記載されている(特許文献4の図2,明細書2頁左上段参照)。この壁構造体(3)は室内の壁面として設置される。空調処理された空気は、空気孔(8)から壁構造体(3)に流入し、壁構造体(3)を熱交換により冷やし、上部開口部(6)から室内に供給され、室内で下向流となってさらに室内を空調する。   Patent Document 4 has a hollow structure with a hollow inside, and an upper opening (6) that can be opened and closed at the upper part and a lower opening (7) that can be opened and closed at the lower part are respectively provided toward the room, A wall structure (3) in which an air hole (8) through which temperature-controlled air flows is formed at the lower end surface is described (see FIG. 2 of Patent Document 4, page 2, upper left of specification 2). This wall structure (3) is installed as an indoor wall surface. The air-conditioned air flows into the wall structure (3) from the air holes (8), cools the wall structure (3) by heat exchange, and is supplied to the room through the upper opening (6). It becomes counter current and further air-conditions the room.

特許文献5には、建築構造物の壁体の機能を持つ空気循環パネルであって、前面板(1)と背面板(2)とによって形成された通気路を有し、前面板(1)及び背面板(2)の上部及び下部には通気路に連通する開閉自在な開口(7,8)が形成され、さらに通気路には送風機(9)を配置し、また前面板(1)及び背面板(2)は熱交換機能或いは蓄熱機能を有する板で構成した空気循環パネルが記載されている(特許文献5の請求項1,図1〜図3参照)。   Patent Document 5 is an air circulation panel having a function of a wall of a building structure, and has a ventilation path formed by a front plate (1) and a back plate (2), and the front plate (1). Openable and closable openings (7, 8) communicating with the air passage are formed in the upper and lower portions of the back plate (2), and a blower (9) is disposed in the air passage, and the front plate (1) and As the back plate (2), an air circulation panel composed of a plate having a heat exchange function or a heat storage function is described (see claims 1 and 1 to 3 of Patent Document 5).

特許文献6には、冷房又は暖房が行われる冷暖房室(R)を区画する区画面(9)に熱を伝達する板状の表層(12)と、表層(12)に冷暖房室(R)の裏側から面同士で接触する板状の裏側層(15)であって、表層(12)に接する面に線状の空気流通溝(15g)が間隔を空けて複数形成された裏側層(15)とを備えた輻射パネルが記載されている(特許文献6の請求項1,図1〜図3参照)。この輻射パネルは、裏側層(15)の表層(12)に接する面に形成された線状の空気流通溝(15g)に沿って調温空気が流通し、表層(12)全体で熱交換がされる。   Patent Document 6 discloses a plate-shaped surface layer (12) that transfers heat to a section screen (9) that partitions a cooling / heating room (R) in which cooling or heating is performed, and a heating / cooling room (R) on the surface layer (12). A plate-like back side layer (15) that comes into contact with each other from the back side, and a back side layer (15) in which a plurality of linear air flow grooves (15g) are formed at intervals on the surface in contact with the surface layer (12) (Refer to claim 1 of Patent Document 6 and FIGS. 1 to 3). In this radiant panel, conditioned air circulates along the linear air flow grooves (15g) formed on the surface of the back layer (15) in contact with the surface layer (12), and heat exchange is performed on the entire surface layer (12). Is done.

その他、特許文献7〜11にも、種々の構造の輻射空調パネルが記載されている。   In addition, Patent Documents 7 to 11 also describe radiation air conditioning panels having various structures.

特開2012−225517号公報JP 2012-225517 A 特開昭51−146748号公報Japanese Patent Laid-Open No. 51-146748 特開平10−205823号公報JP-A-10-205823 特開平3−13746号公報JP-A-3-13746 特開2004−69129号公報JP 2004-69129 A 特開2014−153037号公報JP, 2014-153037, A 特開2008−96052号公報JP 2008-96052 A 特開平9−178207号公報JP-A-9-178207 特開平5−141708号公報JP-A-5-141708 特開2008−157519号公報JP 2008-157519 A 特開2007−24479号公報JP 2007-24479 A

輻射空調パネルは、調温空気を空調対象空間に吹き込ませないよう構成することで、室内空気の強制対流を生じさせないようにすることが可能であるという利点がある。そのため、室内の塵埃が外部から流入する調温空気の気流によって舞い上がることがないため、病院の手術室やクリーンルームにも使用される。然し乍ら、調温空気を空調対象空間に吹き込ませないよう構成した場合、パネルを介した熱交換のみによって空調を行うため、空調対象空間に直接調温空気を吹き込む場合に比べて、熱利用効率が低下する。そこで、調温空気を空調対象空間に吹き込ませないよう構成した輻射空調パネル(以下「非室内吹込式輻射空調パネル」と呼ぶ)においては、熱利用効率を如何に向上させるかが重要な技術課題となる。   The radiant air-conditioning panel has an advantage that forced convection of room air can be prevented from being generated by preventing temperature-controlled air from being blown into the air-conditioning target space. For this reason, since dust in the room does not soar due to the flow of temperature-controlled air flowing in from the outside, it is also used in an operating room or a clean room of a hospital. However, if the temperature-controlled air is not blown into the air-conditioning target space, the air-conditioning is performed only by heat exchange via the panel, so the heat utilization efficiency is higher than when the temperature-controlled air is blown directly into the air-conditioning target space. descend. Therefore, in a radiant air-conditioning panel configured to prevent temperature-controlled air from being blown into the air-conditioning target space (hereinafter referred to as a “non-indoor blow-in type radiant air-conditioning panel”), it is an important technical issue It becomes.

上述した先行技術において、特許文献3−10に記載のものは、輻射空調パネル内に形成された空気流路内を、吹込口から吹出口に向かって真っ直ぐに調温空気を流通させる形式であるが、この形式では、大部分の調温空気は伝熱パネルに接触することなく吹込口から吹出口へ素通りするため、これらの形式を非室内吹込式輻射空調パネルに適用すると熱利用効率が非常に悪くなることが予想される。   In the prior art described above, the one described in Patent Literature 3-10 is a form in which temperature-controlled air is circulated straight from the air inlet to the air outlet through the air flow path formed in the radiant air conditioning panel. However, in this type, most of the temperature-controlled air passes from the inlet to the outlet without touching the heat transfer panel. Therefore, when these types are applied to non-indoor injecting radiant air-conditioning panels, the heat utilization efficiency is very high. It is expected to get worse.

一方、特許文献1,2に記載のものは、輻射空調パネル内の空気流路に、L字板状の伝熱部材や整流板を配設して流路をジグザグにすることで、調温空気から伝熱パネルへの伝熱効率を高めると共に、調温空気が伝熱パネルに接触し易くすることで、熱利用効率が向上することが予想される。然し乍ら、特許文献1,2においては、輻射空調パネル内における気流がどのように形成されるのかが検討されておらず、これら輻射空調パネルについては更に熱利用効率を高めるよう工夫する必要があると考えられる。   On the other hand, those described in Patent Documents 1 and 2 are provided with an L-shaped heat transfer member and a current plate in the air flow path in the radiation air-conditioning panel, and the flow path is zigzag to adjust the temperature. While improving the heat transfer efficiency from the air to the heat transfer panel and making the temperature-controlled air easily contact the heat transfer panel, the heat utilization efficiency is expected to improve. However, Patent Documents 1 and 2 do not discuss how the airflow in the radiant air-conditioning panel is formed, and these radiant air-conditioning panels need to be devised to further increase the heat utilization efficiency. Conceivable.

また、上記特許文献1,2に記載の輻射空調パネルでは、通風路内にL字板状の伝熱部材(15)(又は整流板(12))を、風路軸方向に垂直にジグザグに配置した構成(特許文献1の図8〜図10,特許文献2の図2参照)としているが、後述する計算及び実験の結果、このような構成とすると、各伝熱部材(15)(又は整流板(12))の隙間のジグザグな最短経路に沿って、調温空気の本流(最も流量の大きな流れ)が形成され、輻射空調パネルの輻射板面が部分的に強く冷却(又は加温)され、輻射板面全体で温度斑(むら)が大きくなることが分かった。このように大きな温度斑が生じると、冷房の場合、局所的に温度が大きく低下した部分で結露が生じやくすなり、壁面にドレン水が発生し易いという問題がある。特許文献6に記載の輻射空調パネルでも、同様に、空気流通溝(15g)付近の温度低下が顕著なため、輻射板面全体で温度斑(むら)が大きくなり、壁面にドレン水が発生し易いという問題がある。   Moreover, in the radiation air-conditioning panel of the said patent document 1, 2, an L-shaped plate-shaped heat-transfer member (15) (or rectifying plate (12)) is zigzag perpendicularly to an air path axial direction in a ventilation path. Although it is set as the arrangement | positioning (refer FIGS. 8-10 of patent document 1, FIG. 2 of patent document 2), when it is set as such a result as a result of the calculation and experiment mentioned later, each heat-transfer member (15) (or The main flow of conditioned air (the flow with the largest flow rate) is formed along the zigzag shortest path of the gap of the rectifying plate (12), and the radiant plate surface of the radiant air-conditioning panel is partially cooled (or heated) It was found that the temperature unevenness (unevenness) increased over the entire radiation plate surface. When such large temperature spots are generated, in the case of cooling, there is a problem that condensation easily occurs at a portion where the temperature is greatly reduced locally, and drain water is easily generated on the wall surface. Similarly, in the radiation air-conditioning panel described in Patent Document 6, since the temperature drop near the air circulation groove (15 g) is remarkable, temperature spots (unevenness) increase on the entire radiation plate surface, and drain water is generated on the wall surface. There is a problem that it is easy.

そこで、本発明の目的は、上記従来の輻射空調パネルに比べて熱利用効率を向上させることが可能で、且つ輻射板面全体をより均一に冷却又は加温を行うことが可能な輻射空調パネルを提供することにある。   Accordingly, an object of the present invention is to provide a radiation air-conditioning panel that can improve the heat utilization efficiency as compared with the conventional radiation air-conditioning panel and can cool or warm the entire radiation plate surface more uniformly. Is to provide.

本発明に係る輻射空調パネルの第1の構成は、良熱伝導性の前面材と断熱性の背面材を有し、前記背面材の一端に吹込口が形成され前記背面材の他端に吹出口が形成された空洞箱状の本体を備え、前記吹込口から前記吹出口へ前記本体の空洞内に調温空気を通風させることにより、前記前面材を通して前記本体の前方の空気との熱交換を行う輻射空調パネルであって、
前記本体の空洞内に、前記前面材から突出して形成された複数の乱流促進体を備え、
前記吹込口を上として前記前面材から前記背面材の方向に向かって視たとき前記本体の右側の端縁を右端、左側の端縁を左端とすると、前記各乱流促進体は、前記本体の空洞の左端と右端との間全体に亘って水平に設けられていることを特徴とする。
The first configuration of the radiant air-conditioning panel according to the present invention includes a front material having good heat conductivity and a heat insulating back material, and a blow-in opening is formed at one end of the back material, and a blow is formed at the other end of the back material. A hollow box-shaped main body formed with an outlet is provided, and heat exchange with the air in front of the main body is performed through the front material by allowing temperature-controlled air to flow from the inlet to the outlet in the cavity of the main body. A radiant air conditioning panel that performs
In the cavity of the main body, a plurality of turbulence promoting bodies formed to protrude from the front material,
When viewed from the front material toward the back material with the blowing port facing up, if the right edge of the main body is the right end and the left edge is the left end, each turbulence promoting body is the main body It is characterized by being provided horizontally between the left end and the right end of the cavity.

この構成によれば、前面材から空洞内に突出して形成し、乱流促進体を空洞の左端と右端との間全体に亘って水平に設けることで、空洞内を流れる調温空気は、乱流促進体の下流側において渦流となり、空洞内全体の調温空気が掻き混ぜられる。そのため、前面材を介した本体の前方の空気との熱交換効率が向上する。また、乱流促進体を空洞の左端と右端との間全体に亘って水平に設けたことで、吹込口から流入する調温空気の流れは、輻射空調パネルの空洞全体に広がるように形成される。これにより、輻射空調パネルの前面材全体に亘ってよりほぼ均一に熱交換が行われる。   According to this configuration, the temperature-controlled air flowing in the cavity is formed by projecting from the front material into the cavity, and providing the turbulence promoting body horizontally between the left end and the right end of the cavity. It becomes a vortex on the downstream side of the flow promoting body, and the temperature-controlled air in the entire cavity is stirred. Therefore, the efficiency of heat exchange with the air in front of the main body through the front material is improved. Further, by providing the turbulent flow promoting body horizontally across the entire space between the left end and the right end of the cavity, the flow of the temperature-controlled air flowing from the air inlet is formed so as to spread over the entire cavity of the radiation air conditioning panel. The Thereby, heat exchange is performed more uniformly over the entire front surface of the radiant air conditioning panel.

本発明に係る輻射空調パネルの第2の構成は、前記第1の構成に於いて、前記乱流促進体は、長尺板の両側が曲折されたコの字状の溝形材により構成され、前記溝形材の曲折された両端部のフランジは、一方が前記前面材に固定され、他方が前記背面材に固定又は当接されており、
前記両フランジ間のウェブには、前記背面材側に偏倚して、該溝形材の長手方向に向けて横長な開口が複数形成されていることを特徴とする。
According to a second configuration of the radiant air-conditioning panel according to the present invention, in the first configuration, the turbulent flow promoting body is configured by a U-shaped groove member in which both sides of a long plate are bent. , One of the bent flanges of the groove member is fixed to the front member, and the other is fixed or abutted to the rear member,
The web between the two flanges is characterized in that a plurality of laterally elongated openings are formed in the longitudinal direction of the channel member, being biased toward the back material side.

このように、乱流促進体を、開口が複数形成されたコの字状の溝形材として構成することによって、従来のものよりも熱交換効率がより向上することが、実験及び数値計算により確認された。また、乱流促進体は、調温空気を攪拌すると同時に、本体の空洞を挟む両板面間の補強をする根太材としての機能も併せ持つ。   Thus, by configuring the turbulent flow promoting body as a U-shaped groove having a plurality of openings, heat exchange efficiency can be improved more than conventional ones by experiments and numerical calculations. confirmed. The turbulence promoting body also has a function as a joist to reinforce between both plate surfaces sandwiching the cavity of the main body while stirring the temperature-controlled air.

本発明に係る輻射空調パネルの第3の構成は、前記第1の構成に於いて、前記乱流促進体は、断面が曲折した長尺な金属板により構成されたことを特徴とする。   A third configuration of the radiant air-conditioning panel according to the present invention is characterized in that, in the first configuration, the turbulence promoting body is configured by a long metal plate having a bent cross section.

本発明に係る輻射空調パネルの第4の構成は、前記第1の構成に於いて、前記乱流促進体は、前記前面材から突出した部分が、気流の上流側又は下流側に向かって湾曲されていることを特徴とする。   According to a fourth configuration of the radiant air-conditioning panel according to the present invention, in the first configuration, the turbulent flow promoting body has a portion protruding from the front material curved toward the upstream side or the downstream side of the airflow. It is characterized by being.

本発明に係る輻射空調パネルの第5の構成は、前記第1乃至4の何れか一の構成に於いて、前記本体の空洞内の吹出口の上流側に、多孔板又はスリット板からなる分散板を備えたことを特徴とする。   According to a fifth configuration of the radiant air-conditioning panel according to the present invention, in any one of the first to fourth configurations, a dispersion made of a porous plate or a slit plate is provided upstream of the air outlet in the cavity of the main body. A board is provided.

本発明に係る輻射空調パネルの第6の構成は、前記第1の構成に於いて、前記吹込口は前記背面材の中央に開口形成され、前記吹出口は、前記背面材の周縁全体に亘って形成され、
前記各乱流促進体は、前記吹込口を中心とし前記吹込口を取り囲む矩形状に、前記吹込口から前記吹出口に亘って複数設けられたことを特徴とする。
In a sixth configuration of the radiation air-conditioning panel according to the present invention, in the first configuration, the blow-in opening is formed in the center of the back material, and the blow-out port extends over the entire periphery of the back material. Formed,
Each of the turbulent flow promoting bodies is provided in a rectangular shape surrounding the blowing port from the blowing port to the blowing port.

以上のように、本発明によれば、従来の輻射空調パネルに比べて熱利用効率を向上させることが可能で、且つ輻射板面全体をより均一に冷却又は加温を行うことが可能な輻射空調パネルを提供することができる。   As described above, according to the present invention, it is possible to improve the heat utilization efficiency as compared with the conventional radiation air-conditioning panel, and radiation that can cool or heat the entire radiation plate more uniformly. An air conditioning panel can be provided.

本発明の実施例1に係る輻射空調パネルの外観斜視図である。(a)は正面側から視た斜視図、(b)は背面側から視た斜視図を表す。It is an external appearance perspective view of the radiation air-conditioning panel which concerns on Example 1 of this invention. (A) is the perspective view seen from the front side, (b) represents the perspective view seen from the back side. 図1の輻射空調パネルの分解斜視図である。It is a disassembled perspective view of the radiation air-conditioning panel of FIG. 図1の前面材2aの拡大斜視図である。It is an expansion perspective view of the front material 2a of FIG. 輻射空調パネル1を図1(b)のA−A線に垂直な面で切断した拡大断面図である。(a)は吹込口3側、(b)は吹出口4側を表す。It is the expanded sectional view which cut | disconnected the radiation air-conditioning panel 1 by the surface perpendicular | vertical to the AA line of FIG.1 (b). (A) represents the inlet 3 side, (b) represents the outlet 4 side. 輻射空調パネル1を図1(b)のA−A線に垂直な面で切断した破断斜視図である。It is the fracture | rupture perspective view which cut | disconnected the radiation air-conditioning panel 1 by the surface perpendicular | vertical to the AA line of FIG.1 (b). 実施例2に係る輻射空調パネル1の前面材2aを背面側から視た図である。It is the figure which looked at the front material 2a of the radiation air-conditioning panel 1 which concerns on Example 2 from the back side. 実施例2に係る輻射空調パネル1を、図6の(a)A−A線及び(b)B−B線で切断した断面図である。It is sectional drawing which cut | disconnected the radiation air-conditioning panel 1 which concerns on Example 2 by the (a) AA line and (b) BB line of FIG. 実施例3に係る輻射空調パネル1の部分断面図である。It is a fragmentary sectional view of radiation air-conditioning panel 1 concerning Example 3. 実施例4,5に係る輻射空調パネル1の部分断面図である。It is a fragmentary sectional view of radiation air-conditioning panel 1 concerning Examples 4 and 5. 実施例1の輻射空調パネル1内の通風路8に通風した場合の流れを計算した結果である。It is the result of having calculated the flow at the time of ventilating the ventilation path 8 in the radiation air-conditioning panel 1 of Example 1. FIG. 熱流体計算により、乱流促進体7のない輻射空調パネル(比較例1)の熱伝導状態を計算した結果(中央線で切断した断面)である。It is the result (cross section cut | disconnected by the center line) which calculated the heat conduction state of the radiation air-conditioning panel (comparative example 1) without the turbulence promoter 7 by thermofluid calculation. 熱流体計算により、乱流促進体7のない輻射空調パネル(比較例1)の熱伝導状態を計算した結果(正面側から視た前面材2aの表面)である。It is the result (surface of the front material 2a seen from the front side) which computed the heat conduction state of the radiation air-conditioning panel (comparative example 1) without the turbulence promotion body 7 by thermofluid calculation. 熱流体計算により、実施例1の輻射空調パネル1の熱伝導状態を計算した結果(中央線で切断した断面)である。It is the result (cross section cut | disconnected by the center line) which computed the heat conduction state of the radiation air-conditioning panel 1 of Example 1 by thermofluid calculation. 熱流体計算により、実施例1の輻射空調パネル1の熱伝導状態を計算した結果(正面側から視た前面材2aの表面)である。It is the result (surface of the front material 2a seen from the front side) which computed the heat conduction state of the radiation air-conditioning panel 1 of Example 1 by thermofluid calculation. 乱流促進体の幅を通風路幅の1/2とし左右に交互に配置して流路をジグザグとした輻射空調パネル(比較例2)の熱伝導状態を計算した結果(正面側から視た前面材2aの表面)である。The result of calculating the heat conduction state of the radiant air-conditioning panel (Comparative Example 2) in which the width of the turbulent flow promoting body is ½ of the air passage width and is alternately arranged on the left and right sides and the flow path is zigzag (viewed from the front side) The surface of the front member 2a). 実施例1の輻射空調パネル1の熱伝導状態を計算した結果(正面側から視た前面材2aの表面)である。It is the result (surface of the front material 2a seen from the front side) which computed the heat conduction state of the radiation air-conditioning panel 1 of Example 1. FIG. 図17は実施例2の輻射空調パネル1の熱伝導状態を計算した結果(正面側から視た前面材2aの表面)FIG. 17 shows the result of calculating the heat conduction state of the radiation air-conditioning panel 1 of Example 2 (surface of the front material 2a as viewed from the front side). 図18は実施例3の輻射空調パネル1の熱伝導状態を計算した結果(正面側から視た前面材2aの表面)FIG. 18 shows the result of calculating the heat conduction state of the radiant air-conditioning panel 1 of Example 3 (surface of the front member 2a as viewed from the front side). 実験方法を説明する図である。It is a figure explaining an experimental method. 比較対象として使用した比較例3の輻射空調パネルのパネル筐体内の構造を表す図である。It is a figure showing the structure in the panel housing | casing of the radiation air-conditioning panel of the comparative example 3 used as a comparison object. 冷房条件開始から1時間までの時間区間における実施例1〜3,比較例3の輻射空調パネルの伝熱板表面の温度分布の測定結果を表す図である。It is a figure showing the measurement result of the temperature distribution of the heat exchanger plate surface of the radiation air-conditioning panel of Examples 1-3 and the comparative example 3 in the time interval from the cooling condition start to 1 hour. 冷房条件開始から1時間までの時間区間における実施例1〜3,比較例3の輻射空調パネルの伝熱板表面の温度分布の測定結果を表す図である。It is a figure showing the measurement result of the temperature distribution of the heat exchanger plate surface of the radiation air-conditioning panel of Examples 1-3 and the comparative example 3 in the time interval from the cooling condition start to 1 hour. 実施例1〜3の各測定点において測定された温度の平均値の時間変化を表す図である。It is a figure showing the time change of the average value of the temperature measured in each measurement point of Examples 1-3. 図23の差分温度の時間変化を表す図である。It is a figure showing the time change of the difference temperature of FIG. 本発明の実施例6に係る輻射空調パネルの吹出口部分の拡大図である。It is an enlarged view of the blower outlet part of the radiation air-conditioning panel which concerns on Example 6 of this invention. 本発明の実施例7に係る輻射空調パネルの背面側から視た外観斜視図である。It is the external appearance perspective view seen from the back side of the radiation air-conditioning panel which concerns on Example 7 of this invention. 図26の輻射空調パネルのパネル筐体2の内部(背面材5を外した状態)を表す斜視図である。It is a perspective view showing the inside (state which removed the back material 5) of the panel housing | casing 2 of the radiation air-conditioning panel of FIG.

以下、本発明を実施するための形態について、図面を参照しながら説明する。
〔1〕輻射空調パネルの構成
Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
[1] Configuration of radiation air conditioning panel

図1は、本発明の実施例1に係る輻射空調パネルの外観斜視図である。図1(a)は正面側から視た斜視図、図1(b)は背面側から視た斜視図を表す。   FIG. 1 is an external perspective view of a radiation air-conditioning panel according to Embodiment 1 of the present invention. 1A is a perspective view seen from the front side, and FIG. 1B is a perspective view seen from the back side.

本実施例の輻射空調パネル1は、中空の矩形箱状のパネル筐体2を備え、パネル筐体2は、良熱伝導性材料により形成された片面が開口した扁平矩形筺状の前面材2aと、前面材2aの開口面を閉蓋する矩形平板状の背面板2bとから構成されている(図2参照)。そして、パネル筐体2の内部空間が通風路8(図5参照)となっている。背面板2bの上端近傍の板面中央には円形の吹込口3が開口形成され、背面板2bの下端近傍の板面には、略板幅全体に亘って細長いスリット状の吹出口4が開口形成されている。吹込口3には、温調空気を供給する給気配管が接続される。外部の空調設備から給気配管へ供給される温調空気は、吹込口3からパネル筐体2の筺内に送入され、筺内を通過して下部の吹出口4からパネル筐体2の背面側へ排出される。この間、温調空気は前面材2aの前面板(以下、「伝熱板2aa」という。)を介して室内空気と熱交換し、これにより輻射空調が行われる。   The radiation air-conditioning panel 1 of the present embodiment includes a hollow rectangular box-shaped panel housing 2, and the panel housing 2 is a flat rectangular bowl-shaped front material 2 a that is formed of a good heat conductive material and has one side opened. And a rectangular flat plate 2b that closes the opening surface of the front member 2a (see FIG. 2). And the internal space of the panel housing | casing 2 becomes the ventilation path 8 (refer FIG. 5). A circular air inlet 3 is formed in the center of the plate surface near the upper end of the back plate 2b, and a slit-like air outlet 4 is opened on the plate surface near the lower end of the back plate 2b over substantially the entire plate width. Is formed. An air supply pipe for supplying temperature-controlled air is connected to the inlet 3. Temperature-controlled air supplied from the external air conditioning equipment to the air supply pipe is fed into the tub of the panel housing 2 from the blow-in port 3, passes through the tub and passes through the tub to the panel housing 2. It is discharged to the back side. During this time, the temperature-controlled air exchanges heat with room air via the front plate of the front member 2a (hereinafter referred to as “heat transfer plate 2aa”), thereby performing radiant air conditioning.

図2は、図1の輻射空調パネル1の分解斜視図である。図3は、図1の前面材2aの拡大斜視図である。図4は、輻射空調パネル1を図1(b)のA−A線に垂直な面で切断した拡大断面図である。図4(a)は吹込口3側、図4(b)は吹出口4側を表す。図5は、輻射空調パネル1を図1(b)のA−A線に垂直な面で切断した破断斜視図である。   FIG. 2 is an exploded perspective view of the radiant air conditioning panel 1 of FIG. FIG. 3 is an enlarged perspective view of the front member 2a of FIG. FIG. 4 is an enlarged cross-sectional view of the radiant air conditioning panel 1 cut along a plane perpendicular to the line AA in FIG. 4A shows the inlet 3 side, and FIG. 4B shows the outlet 4 side. FIG. 5 is a cutaway perspective view of the radiant air conditioning panel 1 cut along a plane perpendicular to the line AA in FIG.

前述の通り、パネル筐体2は背面側に向かって開口する前面材2aと、前面材2aの開口面を閉蓋する背面板2bとを備えている。背面板2bの内側面(前面材2aに対向する面)には、平板状の断熱材2eは貼着されており、この断熱材2eにも、背面板2bの吹込口3及び吹出口4に対応する位置に、同型の吹込口3及び吹出口4が開口形成されている。この背面板2bと断熱材2eの一体組立体が背面材5である。   As described above, the panel housing 2 includes the front member 2a that opens toward the back side, and the back plate 2b that closes the opening surface of the front member 2a. A flat heat insulating material 2e is attached to the inner surface of the back plate 2b (the surface facing the front material 2a), and the heat insulating material 2e is also connected to the air inlet 3 and the air outlet 4 of the back plate 2b. In the corresponding positions, the same type of blowout port 3 and blowout port 4 are formed as openings. The integrated assembly of the back plate 2b and the heat insulating material 2e is the back material 5.

前面材2aは、背面開口側の縁全体に、内側に向かって垂直に延出形成されたフランジ2cが形成され、フランジ2cには複数の掛止孔2dが形成されている。背面板2bの内側面の、これら掛止孔2dに対応する位置には、掛止爪(図示せず)が突設されており、各掛止爪を各掛止孔2dに掛止することで、背面板2bは前面材2aに固定される。前面材2a内の各掛止孔2d下部には、掛止孔2dを取り囲むように防漏金具2fが設けられており、防漏金具2fとフランジ2cとにより掛止孔2dの下部を閉鎖空間とすることで、パネル筐体2内部の通風路8から掛止孔2dへ温調空気が抜けることを防止している。   The front material 2a is formed with a flange 2c extending vertically inward on the entire edge on the back opening side, and a plurality of retaining holes 2d are formed in the flange 2c. A latching claw (not shown) protrudes from the inner surface of the back plate 2b at a position corresponding to these latching holes 2d, and each latching claw is latched in each latching hole 2d. The back plate 2b is fixed to the front material 2a. A leak-proof fitting 2f is provided at the lower part of each latching hole 2d in the front member 2a so as to surround the latching hole 2d, and the lower part of the latching hole 2d is closed by the leak-proof fitting 2f and the flange 2c. By doing so, the temperature-controlled air is prevented from escaping from the ventilation path 8 inside the panel housing 2 to the retaining hole 2d.

前面材2aの筺内には、吹込口3に対向する位置に、上端から下方に向かって背面側から正面側に向かって傾斜したスロープ面状の導流部8が配設されている。吹込口3から供給される調温空気は、導流部8のスロープ面に衝突して筺内下方に向かうように約90度変向される。   In the ridge of the front material 2a, a slope-surface-shaped flow guide portion 8 that is inclined downward from the upper end toward the front side from the upper end is disposed at a position facing the blowing port 3. The temperature-controlled air supplied from the blowing port 3 is deflected by about 90 degrees so as to collide with the slope surface of the flow guide portion 8 and toward the lower side of the tub.

また、前面材2aの筺内の上部から下部に亘って、複数の乱流促進体7が配設されている。各乱流促進体7は、コの字状に曲折された長尺棒板状の溝形材により形成されており(図4参照)、該溝形材の曲折された両側部のフランジ7c,7cは、一方が前面材2aの伝熱板2aaに固着され、他方が背面材5の内側面に当接されている。また、乱流促進体7のウェブ7b(前面材2aから起立した腹板の部分)の板面には、背面材5側に偏倚して、横長矩形孔状の開口7a,7a,7a,7aが複数形成されており(図3,図5参照)、これら開口7a,7a,7a,7aは乱流促進体7の長手方向に直列して設けられている。パネル筐体2内を流れる温調空気は、これらの開口7aを通過して吹込口3から吹出口4へ向かって通風路8内を通流する。   A plurality of turbulence promoting bodies 7 are disposed from the upper part to the lower part of the front member 2a. Each of the turbulent flow promoting bodies 7 is formed of a long bar plate-like groove shape bent in a U-shape (see FIG. 4), and flanges 7c on both sides of the groove shape are bent. One of the 7c is fixed to the heat transfer plate 2aa of the front member 2a, and the other is in contact with the inner surface of the back member 5. The plate surface of the web 7b of the turbulent flow promoting body 7 (the portion of the abdomen that stands up from the front member 2a) is biased toward the back member 5 and has openings 7a, 7a, 7a, 7a that are horizontally long rectangular holes. Are formed (see FIGS. 3 and 5), and these openings 7 a, 7 a, 7 a, 7 a are provided in series in the longitudinal direction of the turbulent flow promoting body 7. The temperature-controlled air flowing in the panel housing 2 passes through the openings 7 a and flows through the ventilation path 8 from the blowing port 3 toward the blowing port 4.

尚、乱流促進体7の素材については、本発明では特に限定しないが、熱効率をできるだけ向上させる観点から、金属のような熱伝導率の大きい素材を使用することが好ましい。また、本実施例の乱流促進体7は、調温空気を攪拌すると同時に、前面材2aの板面(伝熱板2aa)と背面材5との間の補強をする根太材としての機能も併せ持つ。従って、乱流促進体7の素材としては、出来るだけ強度の高い物を用いるのが好ましい。   In addition, although it does not specifically limit in the present invention about the raw material of the turbulent flow promoting body 7, From a viewpoint of improving thermal efficiency as much as possible, it is preferable to use a raw material with high thermal conductivity like a metal. Moreover, the turbulent flow promoting body 7 of the present embodiment also functions as a joist to reinforce between the plate surface (heat transfer plate 2aa) and the back member 5 of the front member 2a while stirring the temperature-controlled air. Have both. Therefore, it is preferable to use a material having the highest possible strength as the material for the turbulence promoting body 7.

本実施例2の輻射空調パネル1は、基本的な構成は実施例1と同様であるが、乱流促進帯7の構造のみが異なる。図6は、実施例2に係る輻射空調パネル1の前面材2aを背面側から視た図である。図7は、実施例2に係る輻射空調パネル1を、図6の(a)A−A線及び(b)B−B線で切断した断面図である。図6,図7において、実施例1の輻射空調パネル1に対応する構成部分には同符号を付している。尚、図6において、背面材5に形成されている吹込口3及び吹出口4の位置を一点鎖線で示している。   The basic configuration of the radiation air-conditioning panel 1 of the second embodiment is the same as that of the first embodiment, but only the structure of the turbulent flow promotion zone 7 is different. FIG. 6 is a view of the front member 2a of the radiant air conditioning panel 1 according to the second embodiment when viewed from the back side. FIG. 7 is a cross-sectional view of the radiant air conditioning panel 1 according to the second embodiment, cut along line (a) AA and line (b) BB in FIG. 6. In FIG. 6, FIG. 7, the same code | symbol is attached | subjected to the component corresponding to the radiation air-conditioning panel 1 of Example 1. FIG. In addition, in FIG. 6, the position of the blower inlet 3 and the blower outlet 4 currently formed in the back material 5 is shown with the dashed-dotted line.

本実施例2の乱流促進体7は、図7に示したように、L字状に曲折された長尺板材により構成されている。そして、各乱流促進体7は、図6に示したように、パネル筐体2の空洞(通風路8)の左端と右端との間全体に亘って水平に設けられている。各乱流促進体7は伝熱板2aaの内面に接合されており、乱流促進体7の伝熱板2aaから垂直に起立した立片7dの高さは、通風路8の高さのおよそ半分程度とされている。   As shown in FIG. 7, the turbulence promoting body 7 of the second embodiment is constituted by a long plate material bent into an L shape. And each turbulent flow promotion body 7 is horizontally provided over the whole between the left end and the right end of the cavity (ventilation path 8) of the panel housing | casing 2, as shown in FIG. Each turbulent flow promoting body 7 is joined to the inner surface of the heat transfer plate 2aa, and the height of the standing piece 7d that stands upright from the heat transfer plate 2aa of the turbulent flow promoting body 7 is approximately the height of the ventilation path 8. It is said to be about half.

本実施例3の輻射空調パネル1は、基本的な構成は実施例1と同様であるが、乱流促進帯7の構造のみが異なる。図8は、実施例3に係る輻射空調パネル1の部分断面図である。図8(a)(b)の部分は、図7(a)(b)における3つの切断片図のうちの中央の部分に相当する。本実施例の乱流促進帯7は、曲折された長尺板材により構成されているが、乱流促進体7の伝熱板2aaから起立した立片7dは、伝熱板2aaに対して垂直ではなく、風上方向(吹込口3側の方向)に傾斜して構成されている。その他の構成については、実施例1,2と同様である。   The basic configuration of the radiant air-conditioning panel 1 of the third embodiment is the same as that of the first embodiment, but only the structure of the turbulent flow promoting zone 7 is different. FIG. 8 is a partial cross-sectional view of the radiation air conditioning panel 1 according to the third embodiment. 8 (a) and 8 (b) correspond to the central portion of the three cut pieces in FIGS. 7 (a) and 7 (b). Although the turbulent flow promotion zone 7 of the present embodiment is formed of a bent long plate material, the standing piece 7d erected from the heat transfer plate 2aa of the turbulent flow promoting body 7 is perpendicular to the heat transfer plate 2aa. Instead, it is configured to be inclined in the windward direction (direction on the air inlet 3 side). Other configurations are the same as those in the first and second embodiments.

本実施例4の輻射空調パネル1は、基本的な構成は実施例1と同様であるが、乱流促進帯7の構造のみが異なる。図9(a)(b)は、実施例4に係る輻射空調パネル1の部分断面図である。図9(a)(b)の部分は、図7(a)(b)における3つの切断片図のうちの中央の部分に相当する。本実施例の乱流促進帯7は、曲折された長尺板材により構成されているが、乱流促進体7の伝熱板2aaから起立した立片7dは、伝熱板2aaに対して垂直ではなく、風上方向(吹込口3側の方向)に弧状に湾曲して構成されている。その他の構成については、実施例1,2と同様である。   The basic configuration of the radiation air-conditioning panel 1 of the fourth embodiment is the same as that of the first embodiment, but only the structure of the turbulent flow promotion zone 7 is different. FIGS. 9A and 9B are partial cross-sectional views of the radiant air conditioning panel 1 according to the fourth embodiment. 9 (a) and 9 (b) correspond to the central portion of the three cut pieces in FIGS. 7 (a) and 7 (b). Although the turbulent flow promotion zone 7 of the present embodiment is formed of a bent long plate material, the standing piece 7d erected from the heat transfer plate 2aa of the turbulent flow promoting body 7 is perpendicular to the heat transfer plate 2aa. Instead, it is configured to be curved in an arc shape in the windward direction (direction on the air inlet 3 side). Other configurations are the same as those in the first and second embodiments.

本実施例5の輻射空調パネル1は、基本的な構成は実施例1と同様であるが、乱流促進帯7の構造のみが異なる。図9(c)(d)は、実施例5に係る輻射空調パネル1の部分断面図である。図9(c)(d)の部分は、図7(a)(b)における3つの切断片図のうちの中央の部分に相当する。本実施例の乱流促進帯7は、曲折された長尺板材により構成されているが、乱流促進体7の伝熱板2aaから起立した立片7dは、伝熱板2aaに対して垂直ではなく、風上方向(吹込口3側の方向)に弧状に湾曲して構成されている。その他の構成については、実施例1,2と同様である。   The basic configuration of the radiant air-conditioning panel 1 of the fifth embodiment is the same as that of the first embodiment, but only the structure of the turbulent flow promoting zone 7 is different. FIGS. 9C and 9D are partial cross-sectional views of the radiant air conditioning panel 1 according to the fifth embodiment. 9 (c) and 9 (d) correspond to the central portion of the three cut pieces in FIGS. 7 (a) and 7 (b). Although the turbulent flow promotion zone 7 of the present embodiment is formed of a bent long plate material, the standing piece 7d erected from the heat transfer plate 2aa of the turbulent flow promoting body 7 is perpendicular to the heat transfer plate 2aa. Instead, it is configured to be curved in an arc shape in the windward direction (direction on the air inlet 3 side). Other configurations are the same as those in the first and second embodiments.

〔2〕作用効果及びその検証
以上のように構成された本実施例に係る輻射空調パネル1について、以下その作用を説明する。
[2] Operational effect and its verification The operation of the radiation air conditioning panel 1 according to the present embodiment configured as described above will be described below.

(1)使用方法
本実施例の輻射空調パネル1は、手術室やクリーンルームの壁材として使用される。設置に際しては、前面材2aの伝熱板2aaを室内,背面板2bを室外に向けて設置し、背面板2b上部の吹込口3に調温空気を供給する空調管を接続する。これにより、空調管から供給される調温空気は吹込口3から輻射空調パネル1内の通風路8を通過して、背面板2b下部の吹出口4から排出される。この際、調温空気は前面材2aの伝熱板2aaを介して室内空気と熱交換し、これにより室内の輻射空調が行われる。
(1) Usage method The radiation air-conditioning panel 1 of a present Example is used as a wall material of an operating room or a clean room. At the time of installation, the heat transfer plate 2aa of the front member 2a is installed indoors and the back plate 2b faces the outside, and an air conditioning pipe for supplying temperature-controlled air is connected to the blowing port 3 above the back plate 2b. Thereby, the temperature-controlled air supplied from the air conditioning pipe passes through the ventilation path 8 in the radiant air conditioning panel 1 from the air inlet 3 and is discharged from the air outlet 4 below the back plate 2b. At this time, the temperature-controlled air exchanges heat with room air via the heat transfer plate 2aa of the front face member 2a, thereby performing indoor radiant air conditioning.

(2)作用
調温空気が輻射空調パネル1内の通風路8を通過する際には、まず導流部6の盤面に当たって下方及び左右に広がり、更に、最上部の乱流促進体7により流路が絞られているために調温空気が通風路8の幅全体に広がる。また、各乱流促進体7は、溝形材により形成され、ウェブ7bの背面材5側に偏倚して、該溝形材の長手方向に向けて横長な開口7a,7a,7a,7aが複数直列に形成されている。そのため、調温空気の気流はウェブ7bによって乱流を生じ攪拌される。これにより調温空気の熱が効率的に前面材2aの板面(伝熱板2aa)に伝達され、熱利用効率が向上する。
(2) Action When the temperature-controlled air passes through the ventilation path 8 in the radiant air-conditioning panel 1, it first strikes the board surface of the flow guide section 6 and spreads downward and to the left and right. Since the path is narrowed, the temperature-controlled air spreads over the entire width of the ventilation path 8. Each of the turbulent flow promoting bodies 7 is formed of a groove-shaped member, and is biased toward the back material 5 side of the web 7b, and has laterally elongated openings 7a, 7a, 7a, 7a in the longitudinal direction of the groove-shaped member. A plurality are formed in series. Therefore, the air flow of temperature-controlled air is turbulent and stirred by the web 7b. Thereby, the heat of the temperature-controlled air is efficiently transmitted to the plate surface (heat transfer plate 2aa) of the front member 2a, and the heat utilization efficiency is improved.

(3)二次元流体計算による攪拌の様子の観察
図10は、実施例1〜5の輻射空調パネル1内の通風路8に通風した場合の流れを計算した結果である。(a)が実施例1,2の輻射空調パネル、(b)が実施例3の輻射空調パネル、(c)が実施例4の輻射空調パネル、(d)が実施例5の輻射空調パネルである。図10における流れの計算は2次元有限要素法により非圧縮性流体により行い、通風路8の幅は160mm、乱流促進体7の高さは80mm、乱流促進体7の間隔は400mm、通風路8内の入力流速は1m/sとした。また、図10(b)では、乱流促進体7の立片7dの伝熱板2aaに対する傾きは60度、図10(c)(d)では、乱流促進体7の立片7dの湾曲形状は円弧状とした。また、図10(a)〜(d)では、通風路8内の流速を背景色の濃淡により表示しており、また流線を白線により示している。
(3) Observation of the state of stirring by the two-dimensional fluid calculation FIG. 10 is a result of calculating the flow in the case of passing through the ventilation path 8 in the radiant air conditioning panel 1 of Examples 1 to 5. (A) is the radiation air-conditioning panel of Examples 1 and 2, (b) is the radiation air-conditioning panel of Example 3, (c) is the radiation air-conditioning panel of Example 4, and (d) is the radiation air-conditioning panel of Example 5. is there. The calculation of the flow in FIG. 10 is performed with an incompressible fluid by the two-dimensional finite element method, the width of the ventilation path 8 is 160 mm, the height of the turbulence promoting body 7 is 80 mm, the interval between the turbulence promoting bodies 7 is 400 mm, The input flow velocity in the path 8 was 1 m / s. 10B, the inclination of the standing piece 7d of the turbulent flow promoting body 7 with respect to the heat transfer plate 2aa is 60 degrees, and in FIGS. 10C and 10D, the bending of the standing piece 7d of the turbulent flow promoting body 7 is performed. The shape was an arc. Further, in FIGS. 10A to 10D, the flow velocity in the ventilation path 8 is indicated by the shade of the background color, and the streamline is indicated by a white line.

図10より、実施例1〜5の輻射空調パネル1においては、どのケースにおいても、通風路8を流れる調温空気は、乱流促進体7の上流側に渦流を生じ攪拌されていることが分かる。この攪拌作用によって、調温空気の熱は伝熱板2aaに効率よく伝達される。また、調温空気の攪拌の度合いを比較すると、実施例5の乱流促進体7(図10(d))及び実施例3の乱流促進体7(図10(b))が最もよく攪拌しており、次いで実施例1,2の乱流促進体7(図10(a))及び実施例4の乱流促進体7(図10(c))がよく攪拌している。従って、調温空気の攪拌による伝熱効率の向上という観点からは、実施例5,3が最も伝熱効率の向上が見込まれ、次いで、実施例1,2,実施例3の順に伝熱効率の向上が見込まれる。   From FIG. 10, in any case, in the radiation air-conditioning panel 1 of Examples 1-5, the temperature-controlled air which flows through the ventilation path 8 produces a vortex on the upstream side of the turbulence promoting body 7 and is stirred. I understand. By this stirring action, the heat of the conditioned air is efficiently transmitted to the heat transfer plate 2aa. Further, when the degree of stirring of the temperature-controlled air is compared, the turbulent flow promoting body 7 (FIG. 10 (d)) of Example 5 and the turbulent flow promoting body 7 (FIG. 10 (b)) of Example 3 are best stirred. Then, the turbulent flow promoting body 7 (FIG. 10 (a)) of Examples 1 and 2 and the turbulent flow promoting body 7 of Example 4 (FIG. 10 (c)) are well stirred. Therefore, from the viewpoint of improving the heat transfer efficiency by stirring the temperature-controlled air, the heat transfer efficiency is expected to be most improved in Examples 5 and 3, and then the heat transfer efficiency is improved in the order of Examples 1, 2, and 3. Expected.

(4)三次元熱流体計算による伝熱効率の計算
熱流体計算により、乱流促進体7のない輻射空調パネルと本実施例の輻射空調パネル1との熱伝導状態を計算した結果を示す。図11,図12は乱流促進体7のない輻射空調パネルの計算結果、図13,図14は本実施例の輻射空調パネル1の計算結果である。また、図11,図13は中央線で切断した断面、図12,図14は正面側から視た前面材2aの表面を示す。
(4) Calculation of heat transfer efficiency by three-dimensional thermo-fluid calculation The result of calculating the heat conduction state between the radiation air-conditioning panel without the turbulence promoting body 7 and the radiation air-conditioning panel 1 of this embodiment by thermo-fluid calculation is shown. 11 and 12 show the calculation results of the radiation air-conditioning panel without the turbulence promoting body 7, and FIGS. 13 and 14 show the calculation results of the radiation air-conditioning panel 1 of this embodiment. 11 and 13 show cross sections cut along the center line, and FIGS. 12 and 14 show the surface of the front member 2a as viewed from the front side.

本計算では、吹込口3から10℃の冷房用調温空気を送入し、伝熱板2aa付近の室内空気の温度変化を算出した。図11,図13は吹込口3付近の温度分布であるが、両者を比較すると、乱流促進体7のない輻射空調パネルに比べて実施例1の輻射空調パネル1のほうが、伝熱板2aa表面付近の室内空気の温度が1℃程度低下しており、熱交換効率が向上していることが分かる。また、図12と図14を比較すると、乱流促進体7のない輻射空調パネルに比べて実施例1の輻射空調パネル1のほうが、伝熱板2aaの板面全体に亘ってより均等に温度低下が生じており、通風路8に流入した調温空気が横幅全体に広がって効率よく熱交換が行われていることが分かる。   In this calculation, the temperature-controlled air for cooling at 10 ° C. was fed from the blowing port 3, and the temperature change of the room air near the heat transfer plate 2aa was calculated. 11 and 13 show the temperature distribution in the vicinity of the air inlet 3, but comparing the two, the radiation air-conditioning panel 1 of Example 1 is more heat-conductive plate 2aa than the radiation air-conditioning panel without the turbulence promoting body 7. It can be seen that the temperature of the indoor air near the surface is reduced by about 1 ° C., and the heat exchange efficiency is improved. Further, comparing FIG. 12 with FIG. 14, the radiant air conditioning panel 1 of Example 1 has a more uniform temperature over the entire plate surface of the heat transfer plate 2aa than the radiant air conditioning panel without the turbulence promoting body 7. It can be seen that the temperature is lowered and the temperature-controlled air flowing into the ventilation path 8 spreads over the entire width and heat is efficiently exchanged.

次に、特許文献1,2に記載の輻射空調パネル(輻射ダクト(10)又は輻射式暖冷房用放熱筐(5))との作用効果の比較をするため、比較例として特許文献1,2のように乱流促進体の幅を通風路8の幅の1/2とし左右に交互に配置して流路をジグザグとした場合について熱流体計算を行い、実施例1の輻射空調パネル1との比較を行った。   Next, in order to compare the effects of the radiation air-conditioning panel described in Patent Documents 1 and 2 (radiation duct (10) or radiation-type heating / cooling case (5)), Patent Documents 1 and 2 are used as comparative examples. The thermal fluid calculation is performed for the case where the width of the turbulent flow promoting body is ½ of the width of the air passage 8 and the flow path is zigzag alternately and the radiant air conditioning panel 1 of the first embodiment is A comparison was made.

図15は、乱流促進体の幅を通風路幅の1/2とし左右に交互に配置して流路をジグザグとした輻射空調パネル(比較例2)の熱伝導状態を計算した結果(正面側から視た前面材2aの表面)である。図16は実施例1の輻射空調パネル1の熱伝導状態を計算した結果(正面側から視た前面材2aの表面)、図17は実施例2の輻射空調パネル1の熱伝導状態を計算した結果(正面側から視た前面材2aの表面)、図18は実施例3の輻射空調パネル1の熱伝導状態を計算した結果(正面側から視た前面材2aの表面)である。比較のため、入力流速や入力風温度等の計算条件は図15と図16〜図18とで同条件とした。図15の輻射空調パネルでは、左右の乱流促進体7が途切れた中心線付近に調温空気の流れが集中する傾向が見られ、これにより、中心線付近の温度が他の領域に比べて大きく温度が低下する。そのため、実施例1〜3の場合(図16〜図18)に比べると、前面材2aの表面の温度斑が非常に大きくなる。そのため、特許文献1,2に記載の輻射空調パネルでは、室内の湿度が高いときに中心線付近に結露が生じやすくなり、壁面にドレン水が発生するという問題があることが分かる。それに対して、実施例1〜3の輻射空調パネル1では、前面材2aの表面の温度勾配が小さく、結露が生じ難い。   FIG. 15 shows the result of calculating the heat conduction state of the radiation air-conditioning panel (Comparative Example 2) in which the width of the turbulent flow promoting body is ½ of the air passage width and is alternately arranged on the left and right sides and the flow path is zigzag. The surface of the front member 2a as viewed from the side). FIG. 16 shows the result of calculating the heat conduction state of the radiant air-conditioning panel 1 of Example 1 (surface of the front material 2a as viewed from the front side), and FIG. 17 shows the heat conduction state of the radiant air-conditioning panel 1 of Example 2. FIG. 18 shows the result (surface of the front member 2a viewed from the front side), which is the result (surface of the front member 2a viewed from the front side), and FIG. 18 shows the heat conduction state of the radiant air-conditioning panel 1 of Example 3. For comparison, the calculation conditions such as the input flow velocity and the input air temperature are the same in FIG. 15 and FIGS. In the radiation air-conditioning panel of FIG. 15, the flow of temperature-controlled air tends to concentrate near the center line where the left and right turbulence promoting bodies 7 are interrupted, so that the temperature near the center line is higher than in other regions. The temperature drops significantly. Therefore, compared with the case of Examples 1-3 (FIGS. 16-18), the temperature spot on the surface of the front material 2a becomes very large. Therefore, it can be seen that the radiation air-conditioning panels described in Patent Documents 1 and 2 tend to cause condensation near the center line when indoor humidity is high, and drain water is generated on the wall surface. On the other hand, in the radiation air-conditioning panel 1 of Examples 1 to 3, the temperature gradient of the surface of the front member 2a is small, and condensation is unlikely to occur.

(5)実験結果
最後に、本発明に係る輻射空調パネル1の熱伝導状態について、試作機による実験観察を行った結果について説明する。実験は、実施例1〜3の輻射空調パネル1、及び特許文献6に記載の、パネル筐体内に線状の空気流通溝が間隔を空けて複数形成された輻射空調パネル(比較例3)を用いて行った。
(5) Experimental Results Finally, the results of experimental observations using a prototype for the heat conduction state of the radiant air conditioning panel 1 according to the present invention will be described. In the experiment, the radiation air-conditioning panel 1 of Examples 1 to 3 and the radiation air-conditioning panel (Comparative Example 3) in which a plurality of linear air circulation grooves are formed in the panel housing with an interval are described. Used.

実験は、環境条件を均一とするため、図19に示すように、室内の壁面の一部に比較例3の輻射空調パネルと供試体の輻射空調パネルを並べて設置し、背面から冷房用の調温空気を通風させ、室内に設置されたサーモカメラにより、各輻射空調パネルの表面を撮影することにより行った(図19(a)(c)参照)。サーモカメラは、InfReC製赤外線サーモグラフィ装置を使用した。また、各輻射空調パネルの表面の複数の測定点(図19(b)参照)において、温度計により表面温度を測定し、また、各輻射空調パネルの吹出口に風速計を設置して出口風速の測定を行った。   In order to make the environmental conditions uniform, as shown in FIG. 19, the radiant air conditioning panel of Comparative Example 3 and the radiant air conditioning panel of the specimen were installed side by side on a part of the wall surface of the room, and the control for cooling was performed from the back. This was done by passing warm air and photographing the surface of each radiation air-conditioning panel with a thermo camera installed indoors (see FIGS. 19A and 19C). As the thermo camera, an infrared thermography device manufactured by InfReC was used. Further, at a plurality of measurement points on the surface of each radiant air-conditioning panel (see FIG. 19B), the surface temperature is measured by a thermometer, and an anemometer is installed at the outlet of each radiant air-conditioning panel, and the exit wind speed Was measured.

図20は、比較対象として使用した比較例3の輻射空調パネル100のパネル筐体101内の構造を表す図である。比較例3の輻射空調パネル100は、特許文献6に記載の輻射パネルと同様のものであり、図20(b)に示すように、上部中央の背面板に吹込口102が設けられ、下部に吹出口103が設けられている構成は、本実施例のものと同様である。パネル筐体101内には、中央に上下方向に幅広の空気流通溝104が上下幅一杯に形成され、この空気流通溝104を対称軸として左右に対称に複数の空気流通溝105が水平に形成されている。吹込口102から送入された調温空気は、これら空気流通溝104,105を通過して吹出口103から排出される。その間に、空気流通溝104,105の正面側に設けられた伝熱板を介して室内空気と熱交換する。   FIG. 20 is a diagram illustrating a structure inside the panel casing 101 of the radiation air-conditioning panel 100 of Comparative Example 3 used as a comparison target. The radiant air conditioning panel 100 of Comparative Example 3 is the same as the radiant panel described in Patent Document 6, and as shown in FIG. The structure in which the blower outlet 103 is provided is the same as that of a present Example. In the panel casing 101, an air flow groove 104 that is wide in the vertical direction at the center is formed to fill up and down, and a plurality of air flow grooves 105 are formed horizontally symmetrically about the air flow groove 104 as a symmetry axis. Has been. The temperature-controlled air sent from the blow-in port 102 passes through the air circulation grooves 104 and 105 and is discharged from the blow-out port 103. Meanwhile, heat is exchanged with room air via a heat transfer plate provided on the front side of the air circulation grooves 104 and 105.

図21,図22は、冷房条件開始から1時間までの時間区間における実施例1〜3,比較例3の輻射空調パネルの伝熱板表面の温度分布の測定結果を表す図である。本実験では実施例1〜3を同時に測定することはできないため、実施例1〜3の測定では室内温度条件が均一ではない。従って、実施例1〜3の輻射空調パネル1を比較例3の輻射空調パネル100と並べて測定し、従来の輻射空調パネル100と比較するとともに、輻射空調パネル100を環境条件補正用のリファレンスとして用いている。   21 and 22 are diagrams showing measurement results of the temperature distribution on the surface of the heat transfer plate of the radiation air conditioning panels of Examples 1 to 3 and Comparative Example 3 in the time interval from the start of the cooling condition to 1 hour. In this experiment, Examples 1 to 3 cannot be measured at the same time, so the room temperature conditions are not uniform in the measurements of Examples 1 to 3. Therefore, the radiation air-conditioning panel 1 of Examples 1 to 3 is measured side by side with the radiation air-conditioning panel 100 of Comparative Example 3, and compared with the conventional radiation air-conditioning panel 100, and the radiation air-conditioning panel 100 is used as a reference for correcting environmental conditions. ing.

図21,図22から明らかなように、実施例1〜3の輻射空調パネル1では、伝熱板2aaの表面における温度変化が緩やかであり、局所的な低温部分は生じにくい。また、盤面全体の温度低下が早く、比較例3よりもより低温まで温度が降下している。従って、実施例1〜3の輻射空調パネル1は比較例3よりも伝熱効率が高いことが分かる。   As is clear from FIGS. 21 and 22, in the radiant air conditioning panels 1 of Examples 1 to 3, the temperature change on the surface of the heat transfer plate 2aa is gradual and local low temperature portions are unlikely to occur. Moreover, the temperature drop of the whole board surface is quick, and the temperature is lowered to a lower temperature than in Comparative Example 3. Therefore, it can be seen that the radiation air conditioning panels 1 of Examples 1 to 3 have higher heat transfer efficiency than Comparative Example 3.

図23は、実施例1〜3の各測定点において測定された温度の平均値の時間変化を表す図である。図24は、図23の差分温度の時間変化を表す図である。図23(a)〜(c)は、測定温度の平均値そのものを表しており、同時に測定された比較例3の測定値も併せて示している。図24は、図23(a)〜(c)の其々について、各時刻における各実施例の平均温度から当該時刻の比較例3の平均温度を引いた差分を表す。尚、図24においては、差分温度の値の正負を逆転して示しており、上にゆくほど比較例3に比べて温度が低いことを示している。   FIG. 23 is a diagram illustrating a temporal change in the average value of the temperatures measured at each measurement point in Examples 1 to 3. FIG. 24 is a diagram illustrating the change over time of the differential temperature in FIG. FIGS. 23A to 23C show the average values of the measured temperatures themselves, and also show the measured values of Comparative Example 3 measured at the same time. FIG. 24 shows the difference which subtracted the average temperature of the comparative example 3 of the said time from the average temperature of each Example in each time about each of FIG.23 (a)-(c). In FIG. 24, the positive and negative values of the differential temperature value are reversed, and the temperature is lower as compared with Comparative Example 3 as it goes upward.

図24より、実施例1〜3の輻射空調パネル1では、比較例3の輻射空調パネル100と比較して、測定点での平均温度が1.5〜1.7℃程度低く観測された。また、図23より、比較例3の輻射空調パネル100では15℃に達するまでの時間が40分程度要するのに対し、実施例1〜3の輻射空調パネル1では何れも10分程度で15℃に達しており、温度の低下速度も速くなっていることが分かる。   24, in the radiation air-conditioning panel 1 of Examples 1 to 3, the average temperature at the measurement point was observed to be lower by about 1.5 to 1.7 ° C. than the radiation air-conditioning panel 100 of Comparative Example 3. Further, from FIG. 23, it takes about 40 minutes for the radiation air-conditioning panel 100 of Comparative Example 3 to reach 15 ° C., whereas all of the radiation air-conditioning panels 1 of Examples 1 to 3 have a temperature of 15 ° C. in about 10 minutes. It can be seen that the rate of temperature decrease is faster.

図25は、本発明の実施例6に係る輻射空調パネルの吹出口4部分の拡大図である。図25(a)は吹出口4にスリット板状の分散板9を形成した実施形態、図25(b)は吹出口4に多孔板状の分散板9を形成した実施形態を表している。本実施例の輻射空調パネル1は、吹出口4以外の部分の構成については、実施例1と同様であり、説明は省略する。尚、図25(a),(b)では、分散板9は、背面板2bと一体とし背面板2bにスリット又は小孔を打ち抜くことに形成されているが、分散板9は、背面板2bと別板により形成して背面板2bに固定するように構成しても良い。   FIG. 25 is an enlarged view of a portion of the air outlet 4 of the radiation air-conditioning panel according to Embodiment 6 of the present invention. FIG. 25A shows an embodiment in which a slit plate-like dispersion plate 9 is formed at the outlet 4, and FIG. 25B shows an embodiment in which a porous plate-like dispersion plate 9 is formed at the outlet 4. The radiation air-conditioning panel 1 of the present embodiment is the same as that of the first embodiment with respect to the configuration of parts other than the air outlet 4, and the description thereof is omitted. In FIGS. 25 (a) and 25 (b), the dispersion plate 9 is formed integrally with the back plate 2b by punching slits or small holes in the back plate 2b. And may be configured to be formed on a separate plate and fixed to the back plate 2b.

このように吹出口4に分散板9を形成することによって、吹出口4に全体的に一様な流路抵抗が発生するため、パネル筐体2内の通風路8において、分散板9のない場合に比べて、調温空気の流れが横幅全体に広がりやすくなる。これにより、伝熱板2aaの温度をより一様にすることができる。   By forming the dispersion plate 9 at the air outlet 4 in this way, a uniform flow resistance is generated at the air outlet 4 as a whole, and therefore there is no dispersion plate 9 in the ventilation path 8 in the panel housing 2. Compared to the case, the flow of the temperature-controlled air tends to spread over the entire width. Thereby, the temperature of the heat transfer plate 2aa can be made more uniform.

図26は、本発明の実施例7に係る輻射空調パネルの背面側から視た外観斜視図である。正面側は図1(a)と同様であるため省略する。図27は、図26の輻射空調パネルのパネル筐体2の内部(背面材5を外した状態)を表す斜視図である。図26,図27において、実施例1の輻射空調パネルの各構成部分に対応する部分については、同符号を付している。   FIG. 26 is an external perspective view of the radiant air-conditioning panel according to Embodiment 7 of the present invention viewed from the back side. Since the front side is the same as FIG. FIG. 27 is a perspective view showing the inside of the panel housing 2 of the radiant air conditioning panel of FIG. 26 (a state in which the back material 5 is removed). In FIG. 26 and FIG. 27, parts corresponding to the respective constituent parts of the radiation air conditioning panel of the first embodiment are denoted by the same reference numerals.

実施例7の輻射空調パネル1では、吹込口3が背面材5の中央に開口形成されている。また、背面材5の4つの周縁に沿って、各周縁全体に亘り周縁近傍の背面材5の板面上に、細長い矩形状の吹出口4が開口形成されている。パネル筐体2の内部には、吹込口3を中心とし吹込口3を取り囲む矩形枠状に、吹込口3から吹出口4に亘って、複数の乱流促進体7が設けられている。各乱流促進体7は、長尺板の両側が曲折されたコの字状の溝形材で構成され、溝形材の両端部のフランジは、一方が前面材2aに、他方が背面材5に固定されている。また、乱流促進体7をなす溝形材の両フランジ間のウェブには、背面材5側に偏倚して、該溝形材の長手方向に横長な開口が複数形成されている。この乱流促進体7の形状については、実施例1と同様である。尚、各乱流促進体7は、本体の空洞を挟む両板材(伝熱板2aaと背面材5)が撓まないように補強をする根太材としての機能も併せ持つ。   In the radiation air-conditioning panel 1 of the seventh embodiment, the air inlet 3 is formed in the center of the back material 5. In addition, along the four peripheral edges of the backing material 5, an elongated rectangular outlet 4 is formed on the plate surface of the backing material 5 in the vicinity of the peripheral edge over the entire periphery. Inside the panel housing 2, a plurality of turbulence promoting bodies 7 are provided from the blowing port 3 to the blowing port 4 in a rectangular frame shape that surrounds the blowing port 3 with the blowing port 3 as the center. Each turbulent flow promoting body 7 is formed of a U-shaped groove member in which both sides of a long plate are bent. One of the flanges at both ends of the groove member is the front member 2a, and the other is the rear member. 5 is fixed. The web between the two flanges of the channel member forming the turbulent flow promoting body 7 is formed with a plurality of laterally elongated openings in the longitudinal direction of the channel member, being biased toward the back member 5 side. The shape of the turbulence promoting body 7 is the same as that in the first embodiment. Each turbulence promoting body 7 also has a function as a joist material that reinforces the two plate members (the heat transfer plate 2aa and the back member 5) sandwiching the cavity of the main body so as not to bend.

このように、吹込口3を背面材5の中央に配置し、吹出口4を背面材5の周縁全体に亘って配設することにより、調温空気は中央部の吹込口3から周辺に向かって均等に広がる。これにより、伝熱板2aaの温度をより一様にすることができる。   Thus, by arranging the blowing port 3 in the center of the back material 5 and arranging the blowing port 4 over the entire periphery of the back material 5, the temperature-controlled air is directed from the blowing port 3 in the center toward the periphery. Spread evenly. Thereby, the temperature of the heat transfer plate 2aa can be made more uniform.

1 輻射空調パネル
2 パネル筐体
2a 前面材
2aa 伝熱板
2b 背面板
2c フランジ
2d 掛止孔
2e 断熱材
2f 防漏金具
3 吹込口
4 吹出口
5 背面材
6 導流部
7 乱流促進体
7a 開口
7b ウェブ
7c フランジ
7d 立片
8 通風路
9 分散板
DESCRIPTION OF SYMBOLS 1 Radiation air-conditioning panel 2 Panel housing | casing 2a Front surface material 2aa Heat-transfer plate 2b Rear surface plate 2c Flange 2d Stopping hole 2e Heat insulation material 2f Leak-proof metal fitting 3 Blowing port 4 Outlet port 5 Back surface material 6 Conducting part 7 Turbulence promotion body 7a Opening 7b Web 7c Flange 7d Standing piece 8 Ventilation path 9 Dispersing plate

Claims (6)

良熱伝導性の前面材と断熱性の背面材を有し、前記背面材の一端に吹込口が形成され前記背面材の他端に吹出口が形成された空洞箱状の本体を備え、前記吹込口から前記吹出口へ前記本体の空洞内に調温空気を通風させることにより、前記前面材を通して前記本体の前方の空気との熱交換を行う輻射空調パネルであって、
前記本体の空洞内に、前記前面材から突出して形成された複数の乱流促進体を備え、
前記吹込口を上として前記前面材から前記背面材の方向に向かって視たとき前記本体の右側の端縁を右端、左側の端縁を左端とすると、前記各乱流促進体は、前記本体の空洞の左端と右端との間全体に亘って水平に設けられていることを特徴とする輻射空調パネル。
It has a good heat conductive front material and a heat insulating back material, and comprises a hollow box-shaped body in which a blow-in port is formed at one end of the back material and a blow-out port is formed at the other end of the back material, A radiant air-conditioning panel that exchanges heat with air in front of the main body through the front material by allowing temperature-controlled air to flow into the cavity of the main body from the inlet to the outlet,
In the cavity of the main body, a plurality of turbulence promoting bodies formed to protrude from the front material,
When viewed from the front material toward the back material with the blowing port facing up, if the right edge of the main body is the right end and the left edge is the left end, each turbulence promoting body is the main body A radiant air-conditioning panel, which is horizontally provided between the left end and the right end of the cavity.
前記乱流促進体は、長尺板の両側が曲折されたコの字状の溝形材により構成され、前記溝形材の曲折された両端部のフランジは、一方が前記前面材に固定され、他方が前記背面材に固定又は当接されており、
前記両フランジ間のウェブには、前記背面材側に偏倚して、該溝形材の長手方向に向けて横長な開口が複数形成されていることを特徴とする、請求項1記載の輻射空調パネル。
The turbulent flow promoting body is constituted by a U-shaped groove member in which both sides of a long plate are bent, and one of the flanges at both ends of the groove member is fixed to the front member. The other is fixed or in contact with the back material,
The radiant air conditioner according to claim 1, wherein the web between the two flanges is formed with a plurality of laterally elongated openings in the longitudinal direction of the channel-shaped member, being biased toward the back member side. panel.
前記乱流促進体は、断面が曲折した長尺な金属板により構成されたことを特徴とする、請求項1記載の輻射空調パネル。   The radiant air-conditioning panel according to claim 1, wherein the turbulent flow promoting body is formed of a long metal plate having a bent cross section. 前記乱流促進体は、前記前面材から突出した部分が、気流の上流側又は下流側に向かって湾曲されていることを特徴とする、請求項1記載の輻射空調パネル。   The radiant air-conditioning panel according to claim 1, wherein the turbulent flow promoting body is curved at a portion protruding from the front material toward an upstream side or a downstream side of the airflow. 前記本体の空洞内の吹出口の上流側に、多孔板又はスリット板からなる分散板を備えたことを特徴とする請求項1乃至4の何れか一記載の輻射空調パネル。   The radiation air-conditioning panel according to any one of claims 1 to 4, further comprising a dispersion plate made of a porous plate or a slit plate on the upstream side of the air outlet in the cavity of the main body. 前記吹込口は前記背面材の中央に開口形成され、前記吹出口は、前記背面材の周縁全体に亘って形成され、
前記各乱流促進体は、前記吹込口を中心とし前記吹込口を取り囲む矩形状に、前記吹込口から前記吹出口に亘って複数設けられたことを特徴とする請求項1記載の輻射空調パネル。
The blow-in opening is formed in the center of the back material, and the blow-out port is formed over the entire periphery of the back material,
The radiant air-conditioning panel according to claim 1, wherein a plurality of the turbulent flow promoting bodies are provided in a rectangular shape centering on the air inlet and surrounding the air outlet from the air outlet to the air outlet. .
JP2017119298A 2017-06-19 2017-06-19 Radiant air conditioning panel Active JP6197139B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017119298A JP6197139B1 (en) 2017-06-19 2017-06-19 Radiant air conditioning panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017119298A JP6197139B1 (en) 2017-06-19 2017-06-19 Radiant air conditioning panel

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015145518A Division JP6197006B2 (en) 2015-07-23 2015-07-23 Radiant air conditioning panel

Publications (2)

Publication Number Publication Date
JP6197139B1 JP6197139B1 (en) 2017-09-13
JP2017194267A true JP2017194267A (en) 2017-10-26

Family

ID=59854867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017119298A Active JP6197139B1 (en) 2017-06-19 2017-06-19 Radiant air conditioning panel

Country Status (1)

Country Link
JP (1) JP6197139B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107524250A (en) * 2017-09-19 2017-12-29 浙江佳中木业有限公司 A kind of integrated network formula heating-cooling double-effect metope structure

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5263114A (en) * 1990-11-13 1993-11-16 Sertim Teval Ceiling element for regulating temperature
JPH0894111A (en) * 1994-09-27 1996-04-12 Nippon Steel Corp Air-conditioning equipment
US5632327A (en) * 1992-03-20 1997-05-27 Energy Ceiling Company Limited Temperature control
JPH10170692A (en) * 1996-12-06 1998-06-26 Nichias Corp Box-type heat insulating panel
JPH10232077A (en) * 1997-02-20 1998-09-02 Taisei Corp Ceiling structure of refrigerating storehouse
JP2002250572A (en) * 2001-02-22 2002-09-06 Komatsu Electronics Inc Heat exchanger
EP2180108A1 (en) * 2008-10-21 2010-04-28 Autarkis B.V. Ceiling panel activations and a modular ceiling comprising these panels
JP2012225517A (en) * 2011-04-14 2012-11-15 Yonden Energy Service Kk Radiation air conditioning apparatus and dehumidification and humidification air conditioning system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5263114A (en) * 1990-11-13 1993-11-16 Sertim Teval Ceiling element for regulating temperature
US5632327A (en) * 1992-03-20 1997-05-27 Energy Ceiling Company Limited Temperature control
JPH0894111A (en) * 1994-09-27 1996-04-12 Nippon Steel Corp Air-conditioning equipment
JPH10170692A (en) * 1996-12-06 1998-06-26 Nichias Corp Box-type heat insulating panel
JPH10232077A (en) * 1997-02-20 1998-09-02 Taisei Corp Ceiling structure of refrigerating storehouse
JP2002250572A (en) * 2001-02-22 2002-09-06 Komatsu Electronics Inc Heat exchanger
EP2180108A1 (en) * 2008-10-21 2010-04-28 Autarkis B.V. Ceiling panel activations and a modular ceiling comprising these panels
JP2012225517A (en) * 2011-04-14 2012-11-15 Yonden Energy Service Kk Radiation air conditioning apparatus and dehumidification and humidification air conditioning system

Also Published As

Publication number Publication date
JP6197139B1 (en) 2017-09-13

Similar Documents

Publication Publication Date Title
JP5733951B2 (en) Pneumatic radiant panel device
JP6433582B2 (en) Heat source unit
JP3936962B1 (en) Radiant air conditioning unit
JP6197006B2 (en) Radiant air conditioning panel
JP2016217630A (en) Radiation air-conditioning system
JP5542167B2 (en) Air conditioning system and air conditioner room
JP6197139B1 (en) Radiant air conditioning panel
JP2014134301A (en) Ceiling air conditioning unit and air conditioning system using the same
JP2018091498A (en) Heat exchange type ventilation device
JP2019027770A (en) Air conditioning control method
JP2018091497A (en) Heat exchange type ventilation device
JP5899561B2 (en) Temperature control system
JP4729874B2 (en) Air conditioner
JP4557207B2 (en) Ventilation replacement air conditioner
JP5749935B2 (en) Partition panel and radiant cooling and heating system
JP2015094500A (en) Radiator and air conditioning system using the same
CN217402654U (en) Heating device, air conditioning apparatus, and air conditioning system
JP6890366B1 (en) Radiant panel
CN218042251U (en) Electrical apparatus box heat radiation structure and air conditioner
CN217817053U (en) Indoor unit of air conditioner
JP5315387B2 (en) Cooling panel
JP4140398B2 (en) Air conditioner and radiation panel structure
JP2559203B2 (en) Radiant cooling system with ice heat storage tank
JP6289256B2 (en) Air conditioner for vehicles
JP2023150361A (en) Radiation/convection air conditioning system

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170619

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170619

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20170619

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170727

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170821

R150 Certificate of patent or registration of utility model

Ref document number: 6197139

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250