JP2023150361A - Radiation/convection air conditioning system - Google Patents

Radiation/convection air conditioning system Download PDF

Info

Publication number
JP2023150361A
JP2023150361A JP2022059447A JP2022059447A JP2023150361A JP 2023150361 A JP2023150361 A JP 2023150361A JP 2022059447 A JP2022059447 A JP 2022059447A JP 2022059447 A JP2022059447 A JP 2022059447A JP 2023150361 A JP2023150361 A JP 2023150361A
Authority
JP
Japan
Prior art keywords
floor
hot
conditioning system
air conditioning
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022059447A
Other languages
Japanese (ja)
Inventor
政吉 石丸
Masakichi Ishimaru
隆 京村
Takashi Kyomura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MIMASA BUSSAN KK
Kansai Engineering Co Ltd
Original Assignee
MIMASA BUSSAN KK
Kansai Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MIMASA BUSSAN KK, Kansai Engineering Co Ltd filed Critical MIMASA BUSSAN KK
Priority to JP2022059447A priority Critical patent/JP2023150361A/en
Publication of JP2023150361A publication Critical patent/JP2023150361A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)
  • Duct Arrangements (AREA)

Abstract

To provide a radiation/convection air conditioning system which achieves uniform temperature in an underfloor space, construction cost reduction, and maintenance-free underfloor installation.SOLUTION: Provided is a radiation/convection air conditioning system which makes warm/cool air flowed out of an opening at a lower end of a vertical duct which is connected to an air conditioner and is a flow passage from an on-floor side to an underfloor side flow into an underfloor space and return the air into a room from a returning port disposed on a floor material. In the radiation/convection air conditioning system, in a plan view, a linear- or curve-shaped thin and belt-like distributing plate is installed to stand by having an upper end side in a short-side direction brought into contact with a bottom surface of the floor material and both end sides in a long-side direction brought into contact with side walls in such a manner that the underfloor space can be divided into a space in the vertical duct side and a space in the returning port side at a predetermined position; and an opening disposed on an upper end side or near the upper end side in the short-side direction of the distributing plate and an opening disposed on a lower end side or near the lower end side are alternately disposed in the long-side direction.SELECTED DRAWING: Figure 1

Description

本発明は、一戸建て、マンション又はオフィスビルなどの低床構造の室内を、床下空間に温冷風を流動させて輻射・対流により空調する輻射・対流空調システムに関する。 The present invention relates to a radiation/convection air conditioning system that air-conditions the interior of a low-floor structure such as a single-family house, condominium, or office building by flowing hot and cold air into the space under the floor using radiation and convection.

現在実施されている輻射・対流空調システムは、図13に示すように、室内にある空調機に接続され床下まで延設された縦ダクトの最下部の流出口から、空調機からの温冷風を床下空間に流出させ、前記温冷風を前記空調機から離隔した位置の床材に設けた還流口から室内に還流させながら、前記床下空間を流動する温冷風の温度を前記床材に伝熱させて前記床材からの輻射と、前記還流口からの還流による対流とによって室内の温度を制御するシステムがある。 As shown in Figure 13, the currently implemented radiant/convection air conditioning system releases warm and cold air from the air conditioner through the outlet at the bottom of a vertical duct that is connected to the indoor air conditioner and extends below the floor. The temperature of the hot and cold air flowing through the underfloor space is transferred to the flooring while flowing into the underfloor space and circulating the hot and cold air into the room from a recirculation port provided in the flooring located at a distance from the air conditioner. There is a system that controls the indoor temperature using radiation from the flooring material and convection due to reflux from the reflux port.

特許文献1には、下部空調エア通路内に送気された空気調和機からの温冷風の空調エアを下部空調エア通路内に送気し、更に該下部空調エア通路から送気孔を介して上部空調エア通路に送気して、各パネルボードを冷却または加温すると共に、下張り下面より冷却または加温して、冷気または暖気を部屋内へ放射する床放射冷暖房装置と、前記下部空調エア通路内に送気された空気調和機からの温冷風の空調エアを、グリルに開口されたスリットを通して部屋へ吹出す床吹出し冷暖房装置との組合せにより構成する住宅用全空気方式床冷暖房システムが開示されている。 Patent Document 1 discloses that hot and cold air-conditioned air from an air conditioner is sent into the lower air-conditioned air passage into the lower air-conditioned air passage, and further from the lower air-conditioned air passage to the upper air through the air supply hole. A floor radiant air conditioning system that cools or heats each panel board by supplying air to the conditioned air passageway, cools or warms it from the lower surface of the underlayment, and radiates cold or warm air into the room; and the lower air conditioning air passageway. An all-air floor heating and cooling system for residential use is disclosed, which is constructed by combining hot and cold air conditioned air from an air conditioner into the room with a floor-blowing air-conditioning device that blows hot and cold air into the room through slits opened in the grille. ing.

特許文献2には、床面を形成する天板部、及びこの天板部の四隅部に設けられた支持脚からなるフロア部材と、底板部、及びこの底板部の両側から上方に向けて形成される側板部からなる断面コの字状の床ダクト材と、を有するフロアの空調構造であって、上記床ダクト材の底板部に、上記フロア部材の支持脚が挿通する脚孔部を設け、上記床ダクト材を室内の床基礎面から所定の高さ位置に配設し、この床ダクト材の底板部と上記床基礎面との間に空間部を形成し、上記床基礎面上に、上記フロア部材を縦方向及び横方向に並べて設置するとともに、上記床ダクト材が配置された個所に上記フロア部材を設置する際には、このフロア部材の支持脚を上記床ダクト材の脚孔部に挿通させて床基礎面に設置し、上記床ダクト材に空調空気を導入して空調を行うフロアの空調構造が開示されている。 Patent Document 2 describes a top plate portion forming a floor surface, a floor member consisting of support legs provided at the four corners of the top plate portion, a bottom plate portion, and a floor member formed upward from both sides of the bottom plate portion. A floor air conditioning structure having a floor duct material having a U-shaped cross section and having a side plate portion, the bottom plate portion of the floor duct material being provided with a leg hole portion through which the support leg of the floor member is inserted. , the above-mentioned floor duct material is arranged at a predetermined height position from the floor foundation surface in the room, a space is formed between the bottom plate part of the floor duct material and the above-mentioned floor foundation surface, and a space is formed on the floor foundation surface. , When installing the floor members side by side in the vertical and horizontal directions and installing the floor member at the location where the floor duct material is arranged, the support legs of the floor member should be inserted into the leg holes of the floor duct material. A floor air conditioning structure is disclosed in which the floor duct material is inserted into the floor foundation surface and installed on the floor foundation surface, and air conditioning is performed by introducing conditioned air into the floor duct material.

特許文献3には、外部から断熱された床下空間を有する家屋の内部を冷房または暖房する冷暖房システムであって、前記家屋外に設置される室外機と、前記室外機からの熱媒体との熱交換により前記家屋内の空気を冷却または加熱する室内機と、前記室内機の下方の前記床下空間に設置されるチャンバーボックスであって、前記室内機により冷却または加熱された空気が供給されるチャンバーボックスと、複数の居住ゾーンに対応して設けられる複数のダクトであって、一端が前記チャンバーボックスに接続された複数のダクトと、前記チャンバーボックスに供給された空気を、対応する前記複数のダクトに供給する複数のファンと、前記複数のファンの動作を制御するコントローラと、を備え、前記複数のダクトの他端は、対応する前記複数の居住ゾーンの下方の前記床下空間内で開放される冷暖房システムが開示されている。 Patent Document 3 describes an air-conditioning system that cools or heats the inside of a house having an underfloor space insulated from the outside, in which heat is generated between an outdoor unit installed outside the house and a heat medium from the outdoor unit. An indoor unit that cools or heats the air inside the house by replacement, and a chamber box installed in the underfloor space below the indoor unit, the chamber to which air cooled or heated by the indoor unit is supplied. A box, a plurality of ducts provided corresponding to a plurality of residential zones, the plurality of ducts having one end connected to the chamber box, and a plurality of ducts that connect the air supplied to the chamber box to the corresponding plurality of ducts. a plurality of fans, and a controller for controlling operation of the plurality of fans, the other ends of the plurality of ducts being open in the underfloor space below the corresponding plurality of living zones. A heating and cooling system is disclosed.

特許文献4には、二重床パネルを用いて床スラブ上に構成した二重床下空間を、空調機からの空調空気供給用チャンバーとして、二重床パネルに備え付けられた床吹出し口から空調空気を室内に吹出すアンダーフロア空調システムにおいて、前記二重床下空間で前記空調機が設置されていない隅部に少なくとも一ヵ所、熱交換器と送風ファンとで構成される補助熱源装置を備えたアンダーフロア空調システムが開示されている。 Patent Document 4 describes that a double underfloor space constructed on a floor slab using a double floor panel is used as a chamber for supplying conditioned air from an air conditioner, and the conditioned air is supplied from a floor outlet provided on the double floor panel. In an underfloor air conditioning system that blows air into a room, the underfloor air conditioning system is equipped with an auxiliary heat source device consisting of a heat exchanger and a blower fan located at least one corner of the double underfloor space where the air conditioner is not installed. A floor air conditioning system is disclosed.

特開2003-322360号公報Japanese Patent Application Publication No. 2003-322360 特開2013-185725号公報Japanese Patent Application Publication No. 2013-185725 特開2013-194947号公報Japanese Patent Application Publication No. 2013-194947 特開平8-121851号公報Japanese Patent Application Publication No. 8-121851

現在実施されている輻射・対流空調システムは、縦ダクトの流出口から流出された温冷風は床下空間内を層流となって還流口に向かって流れる。前記床下空間は、上面を床材の底面、下面を床スラブの表面、周囲の側面を壁部で構成されている。前記床材の底面に沿って温度境界層が生成され、同じように前記床スラブの表面に沿って温度境界層が生成されるが、前記縦ダクトの流出口から離隔するほど前記床下空間を囲繞する床材の底面及び床スラブの表面との摩擦による圧力損失が増加し、前記還流口に近づくほど温冷風の流速が低下することから、前記温度境界層の厚さが厚くなり、前記温度境界層は厚みが厚いほど断熱効果が高まることから、温冷風から床材への対流熱伝達が減少するという問題があった。 In the currently implemented radiant/convection air conditioning system, hot and cold air flowing out from the outlet of a vertical duct flows in the underfloor space as a laminar flow toward the return outlet. The underfloor space has an upper surface formed by the bottom surface of the flooring material, a lower surface formed by the surface of the floor slab, and a surrounding side surface formed by a wall portion. A thermal boundary layer is generated along the bottom surface of the flooring material, and a thermal boundary layer is similarly generated along the surface of the floor slab, but the further away from the outlet of the vertical duct, the more the thermal boundary layer surrounds the underfloor space. The pressure loss due to friction between the bottom surface of the flooring material and the surface of the floor slab increases, and the flow velocity of the hot and cold air decreases as it approaches the recirculation port, so the thickness of the temperature boundary layer increases and the temperature boundary layer increases. Since the thicker the layer, the higher the insulation effect, there was a problem in that convective heat transfer from hot and cold air to the flooring material was reduced.

特許文献1に記載の発明は、ダクトから流出した温冷風は床下空間を還流口であるグリルに向かって流動するが、床下底面に接する凹部の空間に温冷風を流出させる孔を設けた突起の開口部が温冷風の流れ方向に対して平行な面に開口しているため、温冷風の多くは還流口に流れて、突起内には少ししか流れない。このため、床への対流熱伝達の伝熱量が少ないという問題があり、室内は還流口付近の温度が高く、室内全体の温度分布にムラが大きいという問題があった。 In the invention described in Patent Document 1, the hot and cold air flowing out of the duct flows through the underfloor space toward the grille, which is the recirculation port. Since the opening is opened in a plane parallel to the flow direction of the hot and cold air, most of the hot and cold air flows to the recirculation port, and only a small amount flows into the protrusion. For this reason, there is a problem that the amount of convective heat transfer to the floor is small, the temperature in the room is high near the reflux port, and there is a problem that the temperature distribution throughout the room is highly uneven.

特許文献2に記載の発明は、細長い直線状の管路、T字型管路及びL字型管路を構成する、底壁と側壁に孔を設けたコ字状の床ダクト材と、前記底壁に設けた穴に貫通させる支持脚を垂設させたフロア部材との複雑な組み合わせ構造は高コストになるという問題があった。また、細い管路をコ字状に構成しているので、管摩擦による圧力損失が大きくなり温冷風の流速が低下し、前記管路の孔から流出した温冷風の流速は大きく低下するので、床材の底面には厚みの厚い温度境界層が形成され断熱効果のために室内の温度を温かく又は涼しくするのが一層難しくなり、室内全域にわたって室内の温度差を小さくすることができにくいという問題もあった。 The invention described in Patent Document 2 includes a U-shaped floor duct material with holes provided in a bottom wall and a side wall, constituting an elongated linear pipe, a T-shaped pipe, and an L-shaped pipe; A complicated combination structure with a floor member having vertical support legs penetrating through holes provided in the bottom wall has the problem of high cost. In addition, since the narrow pipes are configured in a U-shape, pressure loss due to pipe friction increases and the flow velocity of hot and cold air decreases, and the flow velocity of hot and cold air flowing out from the holes in the pipes decreases significantly. The problem is that a thick thermal boundary layer is formed on the bottom of the flooring material, making it more difficult to warm or cool the indoor temperature due to its insulation effect, making it difficult to reduce the temperature difference within the room throughout the room. There was also.

特許文献3に記載の発明は、床下に設置した数本のダクトの温冷風を流出する部位が、各室内への還流口近傍にまで延設されているので、前記流出した温冷風はすぐ近くにある還流口に向けて流れるため、しかも還流口以外に温冷風の流出口はないことから、温冷風は還流口以外の部位である床材の底面全域に流れにくい。このため、温冷風の流速はかなり低下するので、床材の底面には厚みの厚い温度境界層が形成され前記温度境界層の断熱効果により、床材に対する温冷風からの対流熱伝達の伝熱量が小さくなるので、床面からの輻射で室内の温度を変える効果は期待できにくく、室内全域にわたって室内の温度差を小さくすることができにくいという問題があった。また、床下に設けたチャンバーボックス内にファンを設けているためファンのメンテナンスが困難という問題もあった。 In the invention described in Patent Document 3, the portions of several ducts installed under the floor from which hot and cold air flows out are extended to the vicinity of the return ports into each room, so the hot and cold air that flows out is immediately nearby. Since the hot and cold air flows toward the reflux port located at the reflux port, and since there is no outlet for hot and cold air other than the reflux port, it is difficult for the hot and cold air to flow over the entire bottom surface of the flooring material other than the reflux port. For this reason, the flow velocity of hot and cold air decreases considerably, and a thick thermal boundary layer is formed at the bottom of the flooring material. Due to the insulating effect of the temperature boundary layer, the amount of heat transferred by convective heat transfer from hot and cold air to the flooring material. is small, so it is difficult to expect the effect of changing the indoor temperature by radiation from the floor surface, and there is a problem that it is difficult to reduce the temperature difference in the room throughout the room. Another problem was that maintenance of the fan was difficult because the fan was installed in a chamber box located under the floor.

特許文献4に記載の発明は、床下のコーナー部ごとに小型水熱交換機及び局所昇圧ファンを設けているので、長年の使用により水漏れや腐食が発生し小型水熱交換機が故障しやすく、かつ小型水熱交換機及び局所昇圧ファンのメンテナンスが困難であるという問題があった。また、複数の小型水熱交換機及び局所昇圧ファンを設けるため工事費用が高くなるという問題もあった。 The invention described in Patent Document 4 has a small water heat exchanger and a local pressure booster fan installed at each corner under the floor, so water leakage and corrosion occur due to long-term use, and the small water heat exchanger is likely to break down. There was a problem in that maintenance of the small water heat exchanger and the local booster fan was difficult. There was also the problem that construction costs were high because multiple small water heat exchangers and local pressure boosting fans were provided.

本発明はこうした問題に鑑み創案されたもので、工事費用の低コスト化、床下のメンテナンスフリーを実現でき、室内全域にわたって室内の温度差を小さくすることができる輻射・対流空調システムを提供することを課題とする。 The present invention was devised in view of these problems, and an object of the present invention is to provide a radiation/convection air conditioning system that can reduce construction costs, eliminate maintenance under the floor, and reduce indoor temperature differences throughout the room. The task is to

本発明において、輻射は熱輻射、熱放射、放射と同義語であり、対流は熱伝達、対流熱伝達、熱対流と同義語であるので、以下、対流熱伝達と輻射で記載する。 In the present invention, radiation is a synonym for heat radiation, thermal radiation, and radiation, and convection is a synonym for heat transfer, convection heat transfer, and thermal convection, so the following description will be made using convection heat transfer and radiation.

請求項1に記載の輻射・対流空調システムは、空調機に接続され床上側から床下側への流路となる縦ダクトの下端部の開口部から流出された温冷風を、床下空間に流動させて床材に設けた還流口から室内に還流させる輻射・対流空調システムであって、前記床下空間を前記縦ダクト側空間と前記還流口側空間とに所定の位置で区分可能に、短手方向の上端辺を前記床材の底面に接触させ、下端辺を床スラブの上面に接触させ、長手方向の両端辺を前記床下空間の側壁に接触させて、平面視で直線状又は曲線状で薄厚かつ帯状の整流板を立設し、前記整流板の短手方向の上端辺又は前記上端辺近傍に、長手方向で全長にわたり所定の間隔をあけて複数の開口部を設けたことを特徴とする。 The radiation/convection air conditioning system according to claim 1 allows hot and cold air flowing out from an opening at the lower end of a vertical duct connected to an air conditioner and serving as a flow path from the upper side of the floor to the lower side of the floor to flow into the underfloor space. A radiant/convection air conditioning system in which air flows back into the room from a return port provided in a floor material, wherein the underfloor space can be divided into the vertical duct side space and the return port side space at a predetermined position, The upper edge is in contact with the bottom surface of the flooring material, the lower edge is in contact with the upper surface of the floor slab, and both longitudinal edges are in contact with the side walls of the underfloor space, so that it is straight or curved and thin in plan view. A band-shaped rectifying plate is provided upright, and a plurality of openings are provided at or near the upper end of the rectifying plate in the transverse direction at predetermined intervals over the entire length of the rectifying plate. .

請求項2に記載の輻射・対流空調システムは、空調機に接続され床上側から床下側への流路となる縦ダクトの下端部の開口部から流出された温冷風を、床下空間に流動させて床材に設けた還流口から室内に還流させる輻射・対流空調システムであって、前記床下空間を前記縦ダクト側空間と前記還流口側空間とに所定の位置で区分可能に、短手方向の上端辺を前記床材の底面に接触させ、下端辺を床スラブの上面に接触させ、長手方向の両端辺を前記床下空間の側壁に接触させて立設した、平面視で直線状又は曲線状で薄厚かつ帯状の整流板を設置し、前記整流板の短手方向の上端辺又は前記上端辺近傍に設けた開口部と、下端辺又は前記下端辺近傍に設けた開口部とを、長手方向で全長にわたり交互に設けたことを特徴とする。 The radiation/convection air conditioning system according to claim 2 allows hot and cold air flowing out from an opening at the lower end of a vertical duct connected to an air conditioner and serving as a flow path from the upper side of the floor to the lower side of the floor to flow into the underfloor space. A radiant/convection air conditioning system in which air flows back into the room from a return port provided in a floor material, wherein the underfloor space can be divided into the vertical duct side space and the return port side space at a predetermined position, A straight or curved line in plan view, erected with the upper edge in contact with the bottom surface of the floor material, the lower edge in contact with the upper surface of the floor slab, and both longitudinal edges in contact with the side walls of the underfloor space. A thin, band-shaped rectifying plate is installed, and an opening provided at or near the upper end side of the rectifying plate in the transverse direction, and an opening provided at or near the lower end side of the rectifying plate in the longitudinal direction. It is characterized by being provided alternately over the entire length in the direction.

請求項3に記載の輻射・対流空調システムは、請求項1又は2において、前記整流板ごとに、前記整流板に設けられた複数の前記開口部の大きさを、温冷風の下流側の位置になるほど前記開口部の大きさを大きくしたことを特徴とする。 In the radiation/convection air conditioning system according to claim 3, in accordance with claim 1 or 2, the size of the plurality of openings provided in the current plate is determined based on the downstream position of the hot and cold air. The present invention is characterized in that the size of the opening is increased as the size of the opening increases.

請求項4に記載の輻射・対流空調システムは、請求項1~3のいずれかにおいて、前記床材が複数層からなり、前記複数層のうちの最下層に該当する下地材を、前記下地材の上面の全域に熱伝導率の高い材質からなる薄厚シートを張りつけた積層構造にしたことを特徴とする。 In the radiation/convection air conditioning system according to claim 4, in any one of claims 1 to 3, the flooring material is composed of a plurality of layers, and the base material corresponding to the lowest layer of the plurality of layers is replaced with the base material. It is characterized by a laminated structure in which a thin sheet made of a material with high thermal conductivity is pasted over the entire upper surface of the device.

本発明の請求項1に記載の輻射・対流空調システムは、縦ダクトの最下端の流出口から流出された温冷風を整流板でせき止めしながら、前記整流板の狭い開口部から温冷風を流出させるので、温冷風は流速を高めることができる。これにより、その流速が高まった温冷風は乱流となって床材底面近傍に向かって流動するので、床材の底面の温度境界層の厚みを薄くすることができ、かつ流速を速くしたのでコアンダ効果により前記温冷風が前記床材の底面に沿って流動しやすくなるという現象が現れる。したがって前記温冷風から前記床材への対流熱伝達が大きくなり、室内の温度をより一層効果的に上げたり下げたりすることができるという効果を奏する。 In the radiation/convection air conditioning system according to claim 1 of the present invention, the hot and cold air flowing out from the outlet at the lowest end of the vertical duct is blocked by the current plate, while the hot and cold air flows out from the narrow opening of the current plate. As a result, the flow velocity of hot and cold air can be increased. As a result, the hot and cold air with increased flow velocity becomes a turbulent flow and flows toward the bottom of the flooring material, making it possible to reduce the thickness of the temperature boundary layer at the bottom of the flooring material and increasing the flow velocity. Due to the Coanda effect, a phenomenon occurs in which the hot and cold air flows more easily along the bottom surface of the flooring material. Therefore, the convective heat transfer from the hot/cold air to the flooring becomes large, and the indoor temperature can be raised or lowered more effectively.

また、前記整流板は前記床下空間を縦ダクト側空間と還流口側空間とに所定の位置で区分するように立設することから、前記整流板により新たなチャンバーが形成されていき、前記整流板の前記開口部から流出した温冷風を床下空間の各チャンバー内に満遍なく流動させることができ、室内の全域にわたって温度差を一層小さくすることができる。 Furthermore, since the rectifying plate is erected so as to divide the underfloor space into the vertical duct side space and the return port side space at a predetermined position, a new chamber is formed by the rectifying plate, and the rectifying The hot and cold air flowing out from the opening of the plate can be made to flow evenly into each chamber of the underfloor space, and the temperature difference can be further reduced throughout the room.

また、床下空間には薄板状の整流板を立設するが、小型水熱交換機及び局所昇圧ファンなどの機器を床下空間に設けない構成であるので、輻射・対流空調システムの工事費用の低コスト化、及び、床下のメンテナンスフリーを実現することができた。 In addition, although a thin rectifier plate is installed in the underfloor space, equipment such as a small water heat exchanger and local booster fan is not installed in the underfloor space, resulting in lower construction costs for the radiant/convection air conditioning system. We were able to achieve a maintenance-free underfloor structure.

本発明の請求項2に記載の輻射・対流空調システムは、床材の底面の温度境界層の厚み、及び、床スラブ上面の温度境界層の厚みを薄くすることができ、かつ流速を速くしたのでコアンダ効果により前記温冷風が前記床材の底面に沿って、及び、前記床スラブの上面に沿って流動しやすくなる。したがって前記温冷風から前記床材への、及び、前記床スラブへの対流熱伝達が大きくなり、前記床スラブからの輻射も加わり、室内の温度をより一層効果的に上げたり下げたりすることができるという効果を奏する。 The radiation/convection air conditioning system according to claim 2 of the present invention can reduce the thickness of the temperature boundary layer on the bottom surface of the flooring material and the thickness of the temperature boundary layer on the top surface of the floor slab, and increase the flow velocity. Therefore, the hot and cold air flows easily along the bottom surface of the flooring material and along the top surface of the floor slab due to the Coanda effect. Therefore, the convective heat transfer from the hot and cold air to the flooring material and the floor slab increases, and radiation from the floor slab is also added, making it possible to raise or lower the indoor temperature even more effectively. It has the effect of being able to do it.

本発明の請求項3に記載の輻射・対流空調システムは、前記縦ダクトの流出口から離隔するほど低下する温冷風の流速を回復させて開口部から次のチャンバーへ流出させるので、床材への対流熱伝達の大きさの差を極小化できるため、室内の温度のムラを極小化できるという効果を奏する。 The radiation/convection air conditioning system according to claim 3 of the present invention restores the flow velocity of the hot and cold air, which decreases as the distance from the outlet of the vertical duct increases, and causes the air to flow out from the opening to the next chamber, so that the air flows to the flooring material. Since the difference in the size of convective heat transfer can be minimized, it is possible to minimize the unevenness of indoor temperature.

本発明の請求項4に記載の輻射・対流空調システムは、床材の下地材へ対流熱伝達された熱をより多く床仕上げ材に熱伝導させることができるので、室内の温度をより早く温めたり涼しくしたりすることができる。 The radiation/convection air conditioning system according to claim 4 of the present invention can heat the indoor temperature more quickly because more of the heat transferred to the base material of the floor material can be transferred to the floor finishing material. It can also make you feel cool.

本発明の輻射・対流空調システムを設置した状態の室内側からの斜視概要説明図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic perspective view from the inside of a room in which the radiation/convection air conditioning system of the present invention is installed. 本発明の輻射・対流空調システムを設置した状態の室内側からの平面視の概要説明図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic plan view from the inside of a room in which the radiation/convection air conditioning system of the present invention is installed. 本発明の輻射・対流空調システムを設置し、支持脚に固定された床材を未設置の状態の室内側からの斜視概要説明図である。FIG. 2 is a schematic perspective view from inside the room in which the radiant/convection air conditioning system of the present invention is installed, but the flooring fixed to the support legs is not installed. 支持脚に固定された床材の下地材の室内側からの斜視概要説明図である。FIG. 2 is a perspective schematic explanatory diagram of the base material of the flooring material fixed to the support legs, viewed from the indoor side. 床材の床仕上げ材のみの斜め上方からの斜視概要説明図である。FIG. 2 is a perspective schematic explanatory diagram of only the floor finishing material of the floor material, viewed diagonally from above. 床材の還流口に嵌設される通気体の例示説明図である。It is an illustration explanatory view of the ventilation body fitted in the reflux port of flooring material. 床材の説明図で、(a)は二重層構造の形態の説明図で、(b)は三重層構造の形態の説明図で、(c)は下地材の説明図である。These are explanatory diagrams of flooring materials, (a) is an explanatory diagram of a double layer structure, (b) is an explanatory diagram of a triple layer structure, and (c) is an explanatory diagram of a base material. 縦ダクトと床下空間との縦断面視の概要説明図である。FIG. 2 is a schematic explanatory diagram of a longitudinal cross-sectional view of a vertical duct and an underfloor space. 床材と支持脚との構成説明図で、(a)は側面視の全体概要説明図で、(b)は(a)のA部拡大図である。FIGS. 2A and 2B are explanatory views of the structure of flooring and support legs, in which (a) is an overall schematic explanatory view as viewed from the side, and (b) is an enlarged view of section A in (a). 整流板の説明図で、(a)は正面視の概要説明図で、(b)は平面視の概要説明図で、(c)は左側面視の概要説明図である。2A and 2B are explanatory diagrams of a current plate, in which (a) is a schematic explanatory diagram as viewed from the front, (b) is a schematic explanatory diagram as viewed from above, and (c) is a schematic explanatory diagram as viewed from the left side. 図3の概要説明図における温冷風の流れ方向の説明図である。FIG. 4 is an explanatory diagram of the flow direction of hot and cold air in the schematic explanatory diagram of FIG. 3; 本発明の、上側と下側に開口部を設けた整流板を設置した場合の輻射・対流空調システムを設置した状態における温冷風の流れ方向の説明図である。FIG. 2 is an explanatory diagram of the flow direction of hot and cold air in a state in which a radiation/convection air conditioning system is installed in which a rectifier plate having openings on the upper and lower sides of the present invention is installed. 図12の拡大説明図で、(a)は図12におけるB部拡大図であり、(b)は図12におけるC部拡大図である。12, (a) is an enlarged view of section B in FIG. 12, and (b) is an enlarged view of section C in FIG. 12. 本発明の、真ん中を含む上側に開口部を設けた整流板を設置した場合の輻射・対流空調システムを設置した状態における温冷風の流れ方向の説明図である。FIG. 2 is an explanatory diagram of the flow direction of hot and cold air in a state in which a radiation/convection air conditioning system is installed in which a rectifier plate having an opening on the upper side including the center is installed according to the present invention. 比較例としての一般的な輻射・対流空調システムの概要説明図である。FIG. 2 is a schematic explanatory diagram of a general radiation/convection air conditioning system as a comparative example. 平面視で整流板の設置例を示した図で、(a)は直線状の整流板を1か所のみ設置した形態の説明図で、(b)は直線状の整流板を2か所列設した形態の説明図で、(c)は直線状の整流板を3か所列設した形態の説明図で、(d)は曲線状の整流板を1か所のみ設置した形態の説明図である。Figures illustrating an example of installing a rectifier plate in a plan view; (a) is an explanatory diagram of a configuration in which a linear rectifier plate is installed at only one location, and (b) is an explanatory diagram in which a linear rectifier plate is installed in two locations. (c) is an explanatory diagram of the configuration in which linear rectifier plates are installed in three locations, and (d) is an explanatory diagram of the configuration in which curved rectifier plates are installed in only one location. It is. 開口部が切欠けで上辺側と下辺側の両側にある場合の整流板の形態の説明図で、(a)は切欠けを上辺側と下辺側とで長手方向の間をあけることなく交互に設けた形態の説明図で、(b)は切欠けを上辺側と下辺側とで長手方向で間をあけながら交互に設けた形態の説明図である。This is an explanatory diagram of the form of a rectifying plate in which the openings are notches on both sides of the upper side and the lower side. (a) is a diagram in which the notches are arranged alternately on the upper side and the lower side without leaving a gap in the longitudinal direction. (b) is an explanatory view of a form in which notches are provided alternately on the upper side and the lower side with gaps in the longitudinal direction. 開口部が流出孔で上辺側と下辺側の両側にある場合の整流板の形態の説明図で、(a)は流出孔を上辺側と下辺側とで長手方向の間をあけることなく交互に設けた形態の説明図で、(b)は流出孔を上辺側と下辺側とで長手方向で間をあけながら交互に設けた形態の説明図である。This is an explanatory diagram of the form of the current plate when the openings are outflow holes and are located on both sides of the upper side and the lower side. (a) shows the outflow holes arranged alternately on the upper side and the lower side without leaving a gap in the longitudinal direction. (b) is an explanatory diagram of a configuration in which outflow holes are provided alternately on the upper side and the lower side with gaps in the longitudinal direction. 開口部を上側のみに設けた場合の整流板の形態の説明図で、(a)は切欠けを上端辺に所定の間隔をあけて設けた形態の説明図で、(b)は流出孔を上端辺近傍(上端辺に極めて近い位置)に所定の間隔をあけて設けた形態の説明図で、(c)は流出孔を上端辺近傍(上端辺と下端辺との中間位置)に所定の間隔をあけて設けた形態の説明図である。This is an explanatory diagram of the form of the current plate when openings are provided only on the upper side, (a) is an explanatory diagram of the form in which cutouts are provided at a predetermined interval on the upper edge, and (b) is an explanatory diagram of the form in which outflow holes are provided. This is an explanatory diagram of a configuration in which outflow holes are provided at predetermined intervals near the top edge (position extremely close to the top edge), and (c) is an explanatory diagram of a configuration in which outflow holes are provided near the top edge (at a position intermediate between the top edge and the bottom edge) at a predetermined interval. It is an explanatory view of a form provided at intervals. 図18(a)における縦断面図で、(a)は開口部が水平方向の貫通孔の場合のF-F断面で、(b)は開口部が上向き傾斜の貫通孔の場合のF-F断面で、(c)は開口部が下向き傾斜の貫通孔の場合のH-H断面である。FIG. 18(a) is a vertical cross-sectional view of FIG. 18(a), where (a) is the FF cross section when the opening is a horizontal through hole, and (b) is the FF cross section when the opening is an upwardly inclined through hole. In the cross section, (c) is the HH cross section when the opening is a downwardly sloping through hole. 整流板の開口部を長手方向で徐々に大きくした形態の説明図である。It is an explanatory view of a form in which the opening of the current plate is gradually enlarged in the longitudinal direction.

温度境界層と対流熱伝達について説明する。平板上を温冷風が流れるときに、平板表面から十分に離れたところでは流速は一定の層流であるが、温冷風の粘性によって流速は急激に変化し平板表面では温冷風の流速が極小になる。このように速度が変わる範囲を速度境界層というが、該速度境界層の厚みと前記温度境界層の厚みは相似関係にあり、前記温度境界層は断熱効果を有する。そして、対流熱伝達による伝熱量の大きさは、流体の熱伝導率を温度境界層の厚さで除した値と比例することから、温度境界層の厚さが厚くなると対流熱伝達による伝熱量が小さくなり断熱効果が高まり、前記温度境界層の厚さが薄くなると対流熱伝達による伝熱量が大きくなり断熱効果が低下する。また、前記温度境界層の厚みは、温冷風の流速が速くなるほど薄くなり、層流よりも乱流の方が薄くなる。 Explain the temperature boundary layer and convective heat transfer. When hot and cold air flows over a flat plate, the flow velocity is constant and laminar at a sufficient distance from the flat plate surface, but the flow velocity changes rapidly due to the viscosity of the hot and cold air, and the flow velocity of the hot and cold air becomes minimal at the flat plate surface. Become. The range in which the velocity changes in this way is called a velocity boundary layer, and the thickness of the velocity boundary layer and the temperature boundary layer have a similar relationship, and the temperature boundary layer has a heat insulating effect. Since the amount of heat transferred by convective heat transfer is proportional to the value obtained by dividing the thermal conductivity of the fluid by the thickness of the temperature boundary layer, the amount of heat transferred by convective heat transfer increases as the thickness of the temperature boundary layer increases. As the temperature decreases, the heat insulating effect increases, and as the thickness of the temperature boundary layer decreases, the amount of heat transferred by convective heat transfer increases and the heat insulating effect decreases. Further, the thickness of the temperature boundary layer becomes thinner as the flow velocity of hot and cold air increases, and is thinner in turbulent flow than in laminar flow.

次に、コアンダ効果と対流熱伝達について説明する。前記コアンダ効果とは、温冷風の流速が速くなるほど温冷風が床材の底面や床スラブの上面に沿って流れる現象を意味し、温冷風の流速が速くなるほど、温冷風は床材の底面に沿って、又は、床スラブの上面に沿って流れるので、温冷風から床材や床スラブへの対流熱伝達の伝熱量が大きくなる。 Next, the Coanda effect and convective heat transfer will be explained. The above-mentioned Coanda effect refers to a phenomenon in which the hot and cold air flows along the bottom surface of the flooring material and the top surface of the floor slab as the flow speed of the hot and cold air increases. Since the air flows along or along the upper surface of the floor slab, the amount of convective heat transfer from hot and cold air to the flooring and floor slab increases.

本発明の輻射・対流空調システムは、一戸建て、マンション又はオフィスビルなどの住宅又は事務所の低床で作られた室内を効果的に冷暖房するシステムである。 The radiant/convection air conditioning system of the present invention is a system that effectively cools and heats a low-floor interior of a residence or office such as a single-family home, condominium, or office building.

比較例として、一般的に床下に温冷風を流す空調システム1は、図15に示すように、室内20側にある空調機(図なし)に接続され床下まで延設された縦ダクト6の最下部の開口部6aから温冷風を床下空間10に流出させ、床下空間10には流路を変更させる部材が存在しないので、前記温冷風は層流となって前記縦ダクト6から離隔した位置の床材7に設けた還流口11へ流動し、前記還流口11から室内20に還流させる構成である。床材7の底面及び床スラブ8の上面との摩擦により温冷風の流速は下流側にいくほど、すなわち前記還流口11に近づくほど徐々に低下する。 As a comparative example, an air conditioning system 1 that generally blows hot and cold air under the floor, as shown in FIG. Hot and cold air flows out from the lower opening 6a into the underfloor space 10, and since there is no member in the underfloor space 10 that changes the flow path, the hot and cold air becomes a laminar flow and flows into the underfloor space 10 at a position distant from the vertical duct 6. The structure is such that the fluid flows to a reflux port 11 provided in the floor material 7, and is refluxed from the reflux port 11 to the room 20. Due to friction between the bottom surface of the floor material 7 and the top surface of the floor slab 8, the flow velocity of the hot and cold air gradually decreases as it goes downstream, that is, as it approaches the recirculation port 11.

そのため、温冷風の流れの下流側にいくほど、床材7の底面には厚みが厚い温度境界層15aが形成され、床スラブ8の上面にも厚みが厚い温度境界層15bが形成されることから、床材7の温度は縦ダクト7寄りの範囲が還流口11寄りの範囲に比較して高く、床材7全体では部位によって温度差が大きく生ずるため輻射による室内20の温度にムラが生じる。 Therefore, as you go downstream in the flow of hot and cold air, a thicker temperature boundary layer 15a is formed on the bottom surface of the flooring material 7, and a thicker temperature boundary layer 15b is formed on the upper surface of the floor slab 8. Therefore, the temperature of the flooring 7 is higher in the area closer to the vertical duct 7 than in the area closer to the recirculation port 11, and because there is a large temperature difference depending on the part of the entire flooring 7, the temperature in the room 20 due to radiation becomes uneven. .

そこで、本発明の発明者は床材7全域にわたる温度差を極小化させ、かつ温冷風から床材7への対流熱伝達による伝熱量を大きくする輻射・対流空調システム1を想到するに至った。本発明の輻射・対流空調システム1は、図1、図2又は図8に示すように、空調機に接続され床上側から床下側への流路となる縦ダクト6の下端部の開口部6aから流出された温冷風を、床下空間10に流動させて床材7に設けた還流口11から室内20に還流させる輻射・対流空調システム1であって、前記床下空間10を前記縦ダクト6側空間と前記還流口11側空間とに所定の位置で区分可能に、短手方向の上端辺を前記床材7の底面に接触させ、下端辺を床スラブ8の上面に接触させ、長手方向の両端辺を前記床下空間10の側壁9に接触させて、平面視で直線状又は曲線状で薄厚かつ帯状の整流板2を立設し、前記整流板2の短手方向の上端辺又は前記上端辺近傍に、長手方向で全長にわたり所定の間隔をあけて複数の開口部2を設けた。 Therefore, the inventor of the present invention came up with a radiation/convection air conditioning system 1 that minimizes the temperature difference across the entire flooring material 7 and increases the amount of heat transferred by convective heat transfer from hot and cold air to the flooring material 7. . As shown in FIG. 1, FIG. 2, or FIG. 8, the radiation/convection air conditioning system 1 of the present invention has an opening 6a at the lower end of a vertical duct 6 that is connected to an air conditioner and serves as a flow path from the upper side of the floor to the lower side of the floor. A radiation/convection air conditioning system 1 that flows hot and cold air flowing out of a floor space 10 into an indoor room 20 from a reflux port 11 provided in a flooring material 7, and in which the underfloor space 10 is connected to the vertical duct 6 side. The upper end side in the transverse direction is in contact with the bottom surface of the flooring 7, the lower end side is in contact with the upper surface of the floor slab 8, and the longitudinal direction A rectifying plate 2 that is linear or curved, thin, and strip-shaped in plan view is erected with both end sides in contact with the side walls 9 of the underfloor space 10, and the upper end side of the rectifying plate 2 in the transverse direction or the upper end A plurality of openings 2 were provided near the sides at predetermined intervals over the entire length in the longitudinal direction.

また、本発明の輻射・対流空調システム1は、図1、図2、図8、図10又は図11に示すように、空調機に接続され床上側から床下側への流路となる縦ダクト6の下端部の開口部6aから流出された温冷風を、床下空間10に流動させて床材7に設けた還流口11から室内20に還流させる輻射・対流空調システム1であって、前記床下空間10を前記縦ダクト6側空間と前記還流口11側空間とに所定の位置で区分可能に、短手方向の上端辺を前記床材7の底面に接触させ、下端辺を床スラブ8の上面に接触させ、長手方向の両端辺を前記床下空間10の側壁9に接触させて、平面視で直線状又は曲線状で薄厚かつ帯状の整流板2を立設し、前記整流板2の短手方向の上端辺又は前記上端辺近傍に設けた開口部3aと、下端辺又は前記下端辺近傍に設けた開口部3bとを、長手方向で全長にわたり交互に設けた。 The radiation/convection air conditioning system 1 of the present invention also includes a vertical duct connected to an air conditioner and serving as a flow path from the upper side of the floor to the lower side of the floor, as shown in FIG. 1, FIG. 2, FIG. 8, FIG. 10, or FIG. A radiation/convection air conditioning system 1 in which hot and cold air flowing out from an opening 6a at the lower end of the air conditioning system 1 flows into an underfloor space 10 and flows back into a room 20 from a reflux port 11 provided in a flooring 7. The upper end side in the transverse direction is brought into contact with the bottom surface of the flooring material 7, and the lower end side is brought into contact with the bottom surface of the flooring material 7, so that the space 10 can be divided into a space on the side of the vertical duct 6 and a space on the side of the recirculation port 11 at a predetermined position. A rectifying plate 2 that is linear or curved and thin and strip-shaped in plan view is erected in contact with the upper surface and both ends of the longitudinal direction are in contact with the side walls 9 of the underfloor space 10. Openings 3a provided at or near the upper end in the hand direction, and openings 3b provided at or near the lower end in the longitudinal direction, were alternately provided over the entire length in the longitudinal direction.

前記室内20は、図1又は図8に示すように、空調機に接続された縦ダクト6が設置され、前記縦ダクト6から離隔された部位の床材7に還流口11が設けられている。そして、前記縦ダクト6の開口部6aから温冷風が床下空間10に流出される。 As shown in FIG. 1 or FIG. 8, the room 20 is equipped with a vertical duct 6 connected to an air conditioner, and a return port 11 is provided in the flooring 7 at a portion separated from the vertical duct 6. . Then, hot and cold air flows out from the opening 6a of the vertical duct 6 into the underfloor space 10.

前記床下空間10は、図1、図2又は図8に示すように、前記床材7の底面と、床スラブ8の上面と、側壁9の各構成部材に囲繞された、各構成部材間の隙間にはシール処置がされた密閉構造の空間である。そして、前記床下空間10は、一戸建て、マンション又はオフィスビルなどの住宅又は事務所の床下空間10であり、低床構造の床下空間10である。前記床下空間10の前記床材7の底面と前記床スラブ8との上下方向の間は約10cmである。 As shown in FIG. 1, FIG. 2, or FIG. The gap is a sealed space with a sealed structure. The underfloor space 10 is the underfloor space 10 of a residence or office such as a single-family house, an apartment building, or an office building, and has a low floor structure. The distance between the bottom surface of the floor material 7 of the underfloor space 10 and the floor slab 8 in the vertical direction is about 10 cm.

前記低床構造は、図9(a)又は(b)に示すように、床材7が床スラブ8上に立設する複数の支持脚12に支持された構造であり、前記床材7は、二重層構造の場合は、図7(a)に示すように、下側の下地材7bと上側の床仕上げ材7aとを張り合わせた構造からなり、三重層構造の場合は、図7(b)に示すように、下側の下地材7bと、中間層の合板7cと、上側の床仕上げ材7aとを張り合わせた積層構造からなる。 As shown in FIG. 9(a) or (b), the low-floor structure is a structure in which a flooring material 7 is supported by a plurality of support legs 12 erected on a floor slab 8, and the flooring material 7 is In the case of a double layer structure, as shown in FIG. 7(a), it consists of a structure in which a lower base material 7b and an upper floor finishing material 7a are laminated together, and in the case of a triple layer structure, as shown in FIG. 7(b). ), it has a laminated structure in which a lower base material 7b, an intermediate layer of plywood 7c, and an upper floor finishing material 7a are laminated together.

いずれも場合においても、最下層に該当する下地材7bは、図7(c)に示すように、前記下地材7bの上面に熱伝導率の高い材質からなる薄厚シート40を張りつけた積層構造にしている。前記熱伝導率の高い材質からなる薄厚シート40としては、例えばアルミニウム薄厚シート、銅薄厚シート又は炭素繊維薄厚シートがある。 In either case, the base material 7b corresponding to the lowest layer has a laminated structure in which a thin sheet 40 made of a material with high thermal conductivity is pasted on the upper surface of the base material 7b, as shown in FIG. 7(c). ing. Examples of the thin sheet 40 made of a material with high thermal conductivity include a thin aluminum sheet, a thin copper sheet, and a thin carbon fiber sheet.

本発明の輻射・対流空調システム1は、図3に示すように、空調機に接続された縦ダクト6が室内20側から床下空間10まで垂設され、例えば、床スラブ8上に整流板2a、2bが立設され、図4に示すように、支持脚12に支持された床材7の下地材7bが前記床スラブ8の上方に前記床スラブ8を覆うように設置され、さらに床材7が二重層構造の場合は、前記下地材7bの上に、図5に示すような、例えばフローリング等の前記床仕上げ材7aが積層構造で張り付けられ、図6に示すような通気構造体11aが前記床材7に設けた還流口11に嵌設される。前記通気構造体11aは、図6に示すような櫛状の形状に限らず、室内20にいる人が落下せず温冷風を通気可能な構造体であればいずれの形状でもよい。 In the radiation/convection air conditioning system 1 of the present invention, as shown in FIG. , 2b are erected, and as shown in FIG. When 7 has a double layer structure, the floor finishing material 7a, such as flooring, as shown in FIG. is fitted into the reflux port 11 provided in the floor material 7. The ventilation structure 11a is not limited to the comb-like shape as shown in FIG. 6, but may have any shape as long as it is a structure that allows hot and cold air to pass through without allowing people in the room 20 to fall.

そして、本発明の輻射・対流空調システム1は、前記縦ダクト6の最下端の開口部6aから流出された温冷風が還流口11に向かって流れるが、前記整流板2の狭い開口部3から流出させることにより、前記温冷風の流速を速めたり、前記温冷風を乱流に変えたりして流動させ、前記還流口11から室内20に還流させるシステムである。 In the radiation/convection air conditioning system 1 of the present invention, hot and cold air flowing out from the opening 6a at the lowermost end of the vertical duct 6 flows toward the recirculation port 11, but from the narrow opening 3 of the rectifying plate 2. By flowing out, the system increases the flow rate of the hot and cold air, or changes the hot and cold air into a turbulent flow, causing the hot and cold air to flow, and then flowing back into the room 20 from the reflux port 11.

よって、本発明の輻射・対流空調システム1は、前記温冷風からの対流熱伝達により温冷化された前記床材7からの輻射により室内20の気温を室内満遍なく温度差が極小となるように温冷化でき、かつ、前記還流口11から室内20に還流した温冷風の対流により室内20の気温を短時間で温冷化させられる輻射・対流空調システムである。 Therefore, the radiation/convection air conditioning system 1 of the present invention uses radiation from the flooring material 7, which has been warmed and cooled by convective heat transfer from the hot and cold air, to uniformly control the temperature in the room 20 so that the temperature difference is minimized. This is a radiation/convection air conditioning system that can heat and cool the air temperature in the room 20 in a short time by convection of hot and cold air that has returned to the room 20 from the recirculation port 11.

次に、整流板2について説明する。前記整流板2の全体形状は、図10(a)~(c)に示すように、薄板状の帯状体である。そして、図16(a)~(c)に示すように直線状、又は、図16(d)に示すように曲線状がある。前記整流板2の形状は、直線状又は曲線状に限らず、異なる曲線のつなぎ合わせた形状、異なる方向の直線状で折り曲げ部位を有する形状などでもよく、薄板状の帯状体であればいずれの形状でもよい。 Next, the current plate 2 will be explained. The overall shape of the current plate 2 is a thin strip-shaped body, as shown in FIGS. 10(a) to 10(c). The shape may be linear as shown in FIGS. 16(a) to 16(c), or curved as shown in FIG. 16(d). The shape of the current plate 2 is not limited to a straight line or a curved shape, but may be a shape in which different curves are connected, a shape in which straight lines in different directions have bending parts, etc. It can also be a shape.

次に、前記整流板2に設けられている開口部3の形状について説明する。前記開口部3aの形状は、図17(a)又は図19(a)に示すように前記整流板2の短手方向の上端辺に設けた形態の場合は切欠け部4a、あるいは、図18(a)、図19(b)又は図19(c)に示すように前記整流板2の短手方向の上端辺近傍に設けた形態の場合は流出孔5aがあり、前記開口部3bの形状は、図17(b)に示すように前記整流板2の短手方向の下端辺に設けた形態の場合は欠け部4b、又は、図18(b)に示すように前記整流板2の短手方向の下端辺近傍に設けた形態の場合は流出孔5bがある。 Next, the shape of the opening 3 provided in the current plate 2 will be explained. The shape of the opening 3a is a notch 4a in the case where it is provided on the upper end side in the transverse direction of the current plate 2 as shown in FIG. 17(a) or FIG. 19(a), or As shown in FIG. 19(a), FIG. 19(b), or FIG. 19(c), in the case where the current plate 2 is provided near the upper end side in the transverse direction, there is an outflow hole 5a, and the shape of the opening 3b is 17(b), in the case of a form provided at the lower end side of the rectifying plate 2 in the transverse direction, the notch 4b, or as shown in FIG. 18(b), the short portion of the rectifying plate 2. In the case of a configuration provided near the lower end side in the hand direction, there is an outflow hole 5b.

ここで、低床構造であるため、前記床下空間10の上下方向が約10cmしかないので、上端辺近傍には、前記流出孔5aが前記整流板2の上下方向の略中央部に形成される形態も含まれる。この形態の場合にも、前記開口部3aから流出し、流速を速め乱流となった温冷風は前記床材7の底面に十分に到達可能である。 Here, because of the low-floor structure, the underfloor space 10 is only about 10 cm in the vertical direction, so the outflow hole 5a is formed in the approximate center of the rectifier plate 2 in the vertical direction near the upper end. It also includes form. Even in this case, the hot and cold air flowing out from the opening 3a and increasing the flow velocity to become a turbulent flow can sufficiently reach the bottom surface of the flooring 7.

次に、前記整流板2設けた開口部3の位置形態について説明する。第一の形態は、図19に示すように、前記整流板2の短手方向の上端辺又は上端辺近傍に開口部3aを設けた形態である。この形態の場合は、図19(a)に示すように、切欠け部4a(開口部3a)を長手方向で所定の間隔G5をあけて上端辺に形成した形態、図19(b)に示すように、流出孔5a(開口部3a)を長手方向で所定の間隔G5をあけて上端辺近傍(整流板2の高さ方向で中央位置より上端辺寄り)に形成した形態、図19(c)に示すように、流出孔5a(開口部3a)を長手方向で所定の間隔G5をあけて上端辺近傍(整流板2の高さ方向でほぼ中央位置)に形成した形態などがある。 Next, the positional form of the opening 3 provided in the baffle plate 2 will be explained. In the first form, as shown in FIG. 19, an opening 3a is provided at or near the upper end of the current plate 2 in the transverse direction. In this case, as shown in FIG. 19(a), notches 4a (openings 3a) are formed on the upper edge side at a predetermined interval G5 in the longitudinal direction, and as shown in FIG. 19(b). As shown in FIG. 19(c), the outflow holes 5a (openings 3a) are formed near the upper end side (closer to the upper end side than the center position in the height direction of the current plate 2) with a predetermined interval G5 in the longitudinal direction. ), there is a configuration in which outflow holes 5a (openings 3a) are formed near the upper end side (approximately at the center position in the height direction of the current plate 2) at a predetermined interval G5 in the longitudinal direction.

次に、第二の形態は、図17又は図18に示すように、前記整流板2の短手方向の上端辺又は上端辺近傍に設けた開口部3aと、前記整流板2の短手方向の下端辺又は下端辺近傍に開口部3bとを、長手方向で交互に設けた形態である。この形態の場合は、前記整流板2の前記開口部3が上辺側及び下辺側に設けられた場合は、図17(a)に示すように、切欠け部4a(開口部3a)と切欠け部4b(開口部3b)との長手方向の間隔G1を設けずに交互に設けた形態、図17(b)に示すように、切欠け部4a(開口部3a)と切欠け部4b(開口部3b)との長手方向の間隔G2を所定の長さほど設けて交互に設けた形態、図18(a)に示すように、流出孔5a(開口部3a)と流出孔5b(開口部3b)との長手方向の間隔G3を設けずに交互に設けた形態、図17(b)に示すように、流出孔5a(開口部3a)と流出孔5b(開口部3b)との間隔G4を所定の長さほど設けて交互に設けた形態などがある。 Next, as shown in FIG. 17 or 18, the second form has an opening 3a provided at or near the upper end side of the rectifying plate 2 in the transverse direction, and Openings 3b are provided alternately in the longitudinal direction at or near the lower end. In this form, if the openings 3 of the current plate 2 are provided on the upper side and the lower side, as shown in FIG. 17(a), the notch 4a (opening 3a) As shown in FIG. 17(b), the notch 4a (opening 3a) and the notch 4b (opening 18(a), the outflow holes 5a (openings 3a) and the outflow holes 5b (openings 3b) As shown in FIG. 17(b), the interval G4 between the outflow hole 5a (opening 3a) and the outflow hole 5b (opening 3b) is set to a predetermined value. There is a form in which they are provided about the length of , and are provided alternately.

また、前記開口部3の流路の上流側から下流側に向けた方向の形態について説明する。前記開口部3の流路としての上流側から下流側に向けた方向の形態は、図20(a)に示すように温冷風を水平方向の流れとして流出させる水平形態、図20(b)に示すように温冷風を上向きの流れに変えて流出させる上向き形態、又は、図20(c)に示すように温冷風を下向きの流れに変えて流出させる下向き形態がある。次のチャンバーに対してどういう方向に流出させるのが伝熱量をより大きくできるかによって選択する。 Further, the configuration of the opening 3 in the direction from the upstream side to the downstream side of the flow path will be explained. The flow path of the opening 3 in the direction from the upstream side to the downstream side is a horizontal form in which the hot and cold air flows out as a horizontal flow as shown in FIG. 20(a), and a horizontal form as shown in FIG. 20(b). As shown in FIG. 20, there is an upward type in which hot and cold air is changed into an upward flow and flows out, and a downward type in which hot and cold air is changed into a downward flow and is caused to flow out, as shown in FIG. 20(c). The choice is made depending on which direction the heat should flow to the next chamber to increase the amount of heat transfer.

次に、前記整流板2ごとに、前記整流板2に設けられた複数の前記開口部3の大きさを、温冷風の下流側の位置になるほど前記開口部3の大きさを大きくする。例えば、図21に示すように、整流板2の長手方向から順に設けた開口部31aの長さL1、開口部31bの長さL2、開口部31cの長さL3、開口部31dの長さL4、開口部31eの長さL5と順に少しずつ長くしている。これにより、下流側にいくほど温冷風の流速が低下しても単位時間当たりの流量を流速の速い上流側と、少しずつ遅くなる下流側とで、温冷風の流量の差を極小化させることができ、上流側と下流側とで対流熱伝達による伝熱量の差を極小化させることができる。 Next, for each of the baffle plates 2, the size of the plurality of openings 3 provided in the baffle plate 2 is made larger as the position becomes more downstream of the hot and cold air. For example, as shown in FIG. 21, the length L1 of the opening 31a provided in order from the longitudinal direction of the current plate 2, the length L2 of the opening 31b, the length L3 of the opening 31c, and the length L4 of the opening 31d , and the length L5 of the opening 31e. As a result, even if the flow rate of hot and cold air decreases as it goes downstream, the difference in the flow rate of hot and cold air per unit time can be minimized between the upstream side where the flow rate is fast and the downstream side where the flow rate is gradually slower. This makes it possible to minimize the difference in heat transfer due to convective heat transfer between the upstream and downstream sides.

次に、前記整流板2の前記床下空間10への配設形態について説明する。前記整流板2は、図1、図3、図11又は図14に示すように、短手方向の上端辺を前記床材7の底面に接触させ、下端辺を前記床スラブ8の上面に接触させ、長手方向の両端を、前記床下空間10を前記縦ダクト6側空間と前記還流口11側空間とに区分するように前記側壁9に接続させて立設する。これにより、前記整流板2が立設されると、図16に示すように新たなチャンバーを形成することになる。 Next, the manner in which the baffle plate 2 is arranged in the underfloor space 10 will be explained. As shown in FIG. 1, FIG. 3, FIG. 11, or FIG. and both ends in the longitudinal direction are connected to the side wall 9 so as to divide the underfloor space 10 into a space on the side of the vertical duct 6 and a space on the side of the recirculation port 11. As a result, when the baffle plate 2 is erected, a new chamber is formed as shown in FIG. 16.

前記整流板2は、図3又は図16に示すように、前記床下空間10を前記縦ダクト6側空間と前記還流口11側空間とに区分可能にする形態であればいずれの形態でもよく、例えば図16(a)に示すように1本の直線状で帯状の整流板2aで前記床下空間10を区分し第一チャンバー22と第二チャンバー23を形成する形態、図16(b)に示すように2本の直線状で帯状の整流板2a、2bで前記床下空間10を区分し第一チャンバー22、第二チャンバー23及び第三チャンバー24を形成する形態、図16(c)に示すように3本の直線状で帯状の整流板2a、2b、2cで前記床下空間10を区分し第一チャンバー22、第二チャンバー23、第三チャンバー24及び第四チャンバー25を形成する形態、又は、図16(d)に示すように1本の曲線状で帯状の整流板2dで区分し第一チャンバー28及び第二チャンバー29を形成する形態などがある。 The current plate 2 may have any form as long as it can divide the underfloor space 10 into a space on the vertical duct 6 side and a space on the reflux port 11 side, as shown in FIG. 3 or 16. For example, as shown in FIG. 16(a), the underfloor space 10 is divided into a first chamber 22 and a second chamber 23 by a single linear band-shaped current plate 2a, as shown in FIG. 16(b). As shown in FIG. 16(c), the underfloor space 10 is divided by two straight, band-shaped current plates 2a and 2b to form a first chamber 22, a second chamber 23, and a third chamber 24. A configuration in which the underfloor space 10 is divided by three linear band-shaped rectifier plates 2a, 2b, and 2c to form a first chamber 22, a second chamber 23, a third chamber 24, and a fourth chamber 25, or As shown in FIG. 16(d), there is a configuration in which a first chamber 28 and a second chamber 29 are divided by a single curved band-shaped current plate 2d.

整流板2で温冷風の流れを堰き止めながら小さい開口部3から温冷風を流出させることは、床下空間10の流路の流路断面積の大きさに比較して、前記整流板2の開口部3の開口面積を極めて小さくすることになり、温冷風が狭い前記開口部3を通過すると、温冷風は流速を速くしかつ乱流となって流動する。このことから、例えば図16(b)に示すように2本の直線状で帯状の整流板2a、2bで前記床下空間10を区分する形態の場合は、温冷風の流速を床下空間10内の流動途中において流速を2回速め2回乱流をつくることができ、図16(c)に示すように3本の直線状で帯状の整流板2a、2b、2cで前記床下空間10を区分する形態の場合は温冷風の流速を床下空間10内の流動途中において流速を3回速め3回乱流をつくることができる。 The flow of hot and cold air is dammed up by the current plate 2 while the hot and cold air flows out through the small opening 3. Compared to the size of the cross-sectional area of the flow path in the underfloor space 10, the opening of the current plate 2 is The opening area of the portion 3 is made extremely small, and when hot and cold air passes through the narrow opening 3, the hot and cold air increases its flow rate and flows in a turbulent flow. From this, for example, in the case of a configuration in which the underfloor space 10 is divided by two linear band-shaped current plates 2a and 2b as shown in FIG. During the flow, the flow velocity can be increased twice to create turbulent flow twice, and the underfloor space 10 is divided by three straight, band-shaped rectifier plates 2a, 2b, and 2c, as shown in FIG. 16(c). In this case, the flow velocity of hot and cold air can be increased three times during the flow in the underfloor space 10 to create turbulent flow three times.

温冷風の流れを速くしかつ乱流にすることにより、前記温度境界層15a、15bの厚みを薄くでき、前記温冷風の流速を速くすることによりコアンダ効果により前記床材7の底面に沿うように流動させることができるので、温冷風から前記床材7などへの対流熱伝達の伝熱量が大きくすることができる。これにより、前記床材7から室内20への輻射による伝熱量を大きくし、前記還流口11から前記室内20に還流する温冷風による対流による伝熱量を大きくすることができる。また、1つの整流板2の中で下流側に行くほど開口部3の開口面積を大きくするので上流側と下流側との流量の差を極小化でき、これにより室内20の室温のムラを極小化できる。 By making the hot and cold air flow faster and more turbulent, the thickness of the temperature boundary layers 15a and 15b can be reduced, and by increasing the flow rate of the hot and cold air, it can be made to flow along the bottom surface of the flooring 7 due to the Coanda effect. Therefore, the amount of convective heat transfer from the hot and cold air to the floor material 7 and the like can be increased. Thereby, the amount of heat transferred from the flooring 7 to the indoor room 20 by radiation can be increased, and the amount of heat transferred by convection due to hot and cold air flowing back from the reflux port 11 to the indoor 20 can be increased. In addition, since the opening area of the opening 3 increases toward the downstream side within one rectifying plate 2, the difference in flow rate between the upstream side and the downstream side can be minimized, thereby minimizing unevenness in the room temperature in the room 20. can be converted into

次に、温冷風の流れと対流熱伝達について、温風を送風する場合で説明する。比較例としての一般的な輻射・対流空調システムの場合は、図15に示すように、縦ダクト6から流下し開口部6aから流出した温風の流れK4は温められていない空気より軽いのでいったん上昇し、その後温められていない空気との対流により温度が低下し、温風の流速S3は層流となって流れ、縦ダクト6側から還流口11側に下流側になるほど摩擦により低下する。また、温風の流れK4は開口部6aから前記還流口11まで層流となって流れるので、床材7の底面には厚みが厚い温度境界層15aが形成されやすく、床スラブ8の上面にも厚みが厚い温度境界層15bが形成されやすいので、前記温度境界層15a、15bの断熱効果により温風から前記床材7への対流熱伝達の伝熱量が小さくなる。さらに、温風の流速S3は下流側にいくほど摩擦により低下するので前記温度境界層15a、15bの厚みは下流側にいきほど厚くなりやすい。 Next, the flow of hot and cold air and convection heat transfer will be explained using the case of blowing hot air. In the case of a general radiation/convection air conditioning system as a comparative example, as shown in FIG. The temperature rises, and then the temperature decreases due to convection with unwarmed air, and the flow velocity S3 of the warm air flows as a laminar flow, and decreases due to friction as it moves downstream from the vertical duct 6 side to the return port 11 side. Furthermore, since the hot air flow K4 flows as a laminar flow from the opening 6a to the reflux port 11, a thick temperature boundary layer 15a is likely to be formed on the bottom surface of the flooring 7, and Since a thick temperature boundary layer 15b is likely to be formed, the amount of convective heat transfer from the hot air to the flooring 7 is reduced due to the heat insulating effect of the temperature boundary layers 15a, 15b. Further, since the flow velocity S3 of the hot air decreases as it goes downstream due to friction, the thickness of the temperature boundary layers 15a, 15b tends to increase as it goes downstream.

これにより、前記床材7から室内20への輻射による伝熱量が小さくなり、前記還流口11から前記室内20に還流する温風の対流による室内20への伝熱量が小さくなる。また、縦ダクト6側の上流側と、前記還流口11側の下流側とで、温風から床材7への伝熱量に相対的に大きな差が生じるので、室内20の室温にムラが生じる。 As a result, the amount of heat transferred from the flooring 7 to the indoor room 20 by radiation becomes small, and the amount of heat transferred to the indoor room 20 due to the convection of warm air flowing back into the indoor room 20 from the reflux port 11 becomes small. In addition, there is a relatively large difference in the amount of heat transferred from the hot air to the flooring 7 between the upstream side of the vertical duct 6 and the downstream side of the recirculation port 11, resulting in uneven room temperature in the room 20. .

これに対して、本発明の輻射・対流空調システム1の場合は、図11、図12又は図13に示すように、縦ダクト6から流出し流出口6aから流出した温風の流れは、例えば流れK1、K2のように種々の流れが生ずるが、例えば、流れK1は、図11に示すように、第一チャンバー22から整流板2aの上端辺に設けた開口部3aである切欠け部4aを通過し、第二チャンバー23に流入後、整流板2bの下端辺に設けた開口部3bである切欠け部4bを通過し、第三チャンバー24に流入し還流口11から室内20に温風が還流するという流れが生ずる。また、流れK2は、図11に示すように、第一チャンバー22から整流板2aの下端辺に設けた開口部3bである切欠け部4bを通過し、第二チャンバー23に流入後、整流板2bの上端辺に設けた開口部3aである切欠け部4aを通過し、第三チャンバー24に流入し還流口11から室内20に温風が還流するという流れが生ずる。 On the other hand, in the case of the radiation/convection air conditioning system 1 of the present invention, as shown in FIG. 11, FIG. 12 or FIG. Various flows such as flows K1 and K2 are generated. For example, as shown in FIG. After flowing into the second chamber 23, the hot air passes through the notch 4b, which is an opening 3b provided at the lower end of the rectifier plate 2b, and flows into the third chamber 24, where the hot air flows into the room 20 from the reflux port 11. A flow of reflux occurs. Further, as shown in FIG. 11, the flow K2 passes from the first chamber 22 through the notch 4b, which is an opening 3b provided at the lower end of the rectifying plate 2a, and flows into the second chamber 23, after which the flow K2 flows through the rectifying plate A flow occurs in which hot air passes through the notch 4a, which is an opening 3a provided on the upper end side of the hot air 2b, flows into the third chamber 24, and flows back into the room 20 from the reflux port 11.

前記流れK1について詳しく説明する。図13(a)に示すように、温風は第一チャンバー22から整流板2aの上端辺に設けた開口部3aである切欠け部4aを通過し第二チャンバー23に流入する。この流入した直後は、温風が第一チャンバー22の流路の流路断面積よりも狭い開口面積を有する開口部3aである切欠け部4aを通過するために流速S1が速くなる。また、狭い開口部3aである切欠け部4aから流出した温風は乱流となる。前記乱流を前記床材7の底面近傍で発生させかつ流速を速くさせることにより温度境界層15aの厚みが薄くなり、流速が速くなると、図13(a)の範囲E1に示すように、コアンダ効果により、温風は床材7の底面に近づき前記底面に沿うように流れる。これにより、温度境界層15aの断熱効果が低下したところに温風が前記底面に沿うように流動するので、温風から床材7への対流熱伝達の伝熱量が前記比較例よりも大きくなる。 The flow K1 will be explained in detail. As shown in FIG. 13(a), the hot air flows from the first chamber 22 into the second chamber 23 through the notch 4a, which is an opening 3a provided at the upper end of the rectifier plate 2a. Immediately after this inflow, the flow rate S1 increases because the hot air passes through the notch 4a, which is the opening 3a, which has an opening area narrower than the cross-sectional area of the flow path of the first chamber 22. Further, the hot air flowing out from the notch 4a, which is the narrow opening 3a, becomes a turbulent flow. By generating the turbulent flow near the bottom surface of the flooring material 7 and increasing the flow velocity, the thickness of the temperature boundary layer 15a becomes thinner, and when the flow velocity increases, the Coandas flow increases as shown in the range E1 of FIG. 13(a). As a result of this effect, the warm air approaches the bottom surface of the flooring 7 and flows along the bottom surface. As a result, the hot air flows along the bottom surface where the thermal insulation effect of the temperature boundary layer 15a is reduced, so that the amount of convective heat transfer from the hot air to the flooring material 7 is larger than in the comparative example. .

さらに、前記床材7には、図7(c)に示すように、下地材7bに熱伝導率の高い材質からなる薄厚シート40を張りつけているので、床仕上げ材7aへの熱伝導の伝熱量を減少しにくくしている。 Furthermore, as shown in FIG. 7(c), the flooring material 7 has a thin sheet 40 made of a material with high thermal conductivity attached to the base material 7b, so that heat conduction to the flooring material 7a is improved. It makes it difficult to reduce the amount of heat.

次に、第二チャンバー23に流入した温風は、第二チャンバー23から整流板2bの下端辺に設けた開口部3bである切欠け部4bを通過し、還流口11に向かって流動する。図13(b)の範囲E2に示すように、この流入した直後は、温風が第二チャンバー23の流路断面積よりも狭い開口面積の開口部3bである切欠け部4bを通過するために流速S1が速くなる。また、狭い開口部3bである切欠け部4bから流出した温風は乱流となる。前記乱流を前記床スラブ8の上面近傍で発生させかつ流速を速くさせることにより温度境界層15bの厚みが薄くなり、流速が速くなると、図13(b)の範囲E3に示すように、コアンダ効果により、温風は床スラブ8の上面に近づき前記上面に沿うように流れる。これにより、温度境界層15bの断熱効果が低下したところに温風が前記上面に沿うように流動するので、温風から床スラブ8への対流熱伝達の伝熱量が前記比較例よりも大きくなる。 Next, the hot air that has flowed into the second chamber 23 passes through the notch 4b, which is an opening 3b provided on the lower end side of the current plate 2b, and flows toward the reflux port 11. As shown in range E2 in FIG. 13(b), immediately after this inflow, the hot air passes through the notch 4b, which is the opening 3b with an opening area narrower than the cross-sectional area of the flow path of the second chamber 23. The flow velocity S1 becomes faster. Further, the hot air flowing out from the notch 4b, which is the narrow opening 3b, becomes a turbulent flow. By generating the turbulent flow in the vicinity of the upper surface of the floor slab 8 and increasing the flow velocity, the thickness of the temperature boundary layer 15b becomes thinner, and when the flow velocity increases, as shown in range E3 in FIG. As a result, the hot air approaches the upper surface of the floor slab 8 and flows along the upper surface. As a result, the hot air flows along the upper surface where the thermal insulation effect of the temperature boundary layer 15b is reduced, so that the amount of convective heat transfer from the hot air to the floor slab 8 is larger than in the comparative example. .

ここで、前記床スラブ8の上に熱伝導率が高いアルミニウムを主成分とするアルミシート30を覆設すると、温風から床スラブ8への大きくなった対流熱伝達の伝熱量によりアルミシート30を温め、図13(b)の範囲E3に示すように、前記アルミシート30からの熱放射が生じ、これにより温風を温める効果が生ずる。 Here, when an aluminum sheet 30 mainly made of aluminum having high thermal conductivity is placed over the floor slab 8, the amount of convective heat transfer from the warm air to the floor slab 8 increases, causing the aluminum sheet 30 to As shown in range E3 in FIG. 13(b), heat radiation is generated from the aluminum sheet 30, thereby producing the effect of warming the hot air.

そして、温風の流れK1は、温風が温められて図13(b)の範囲E4に示すように上昇気流となって還流口11に向かって流れ、一般的に使用されている図15に示すような、比較例である輻射・対流空調システムに比較して暖かい温風を室内20に還流させることができる。 Then, the flow K1 of the warm air is heated and becomes an upward air current as shown in the range E4 of FIG. As shown, warmer air can be returned to the room 20 compared to the radiation/convection air conditioning system as a comparative example.

また、図19に示すような開口部3を上端辺又は前記上端辺近傍に設けた整流板2を設けた場合は、温風の流れは、図14に示すように、縦ダクト6から流出し流出口6aから流出した温風の流れは、例えば、流れK3は、図14に示すように、第一チャンバー22から整流板2aの上端辺に設けた開口部3aを通過し、第二チャンバー23に流入後、整流板2bの上端辺に設けた開口部3bを通過し、第三チャンバー24に流入し還流口11から室内20に温風が還流するという流れが生ずる。 Furthermore, when a rectifying plate 2 with an opening 3 provided at or near the upper end as shown in FIG. 19 is provided, the flow of hot air flows out from the vertical duct 6 as shown in FIG. The flow of warm air flowing out from the outlet 6a, for example, a flow K3, passes from the first chamber 22 through the opening 3a provided on the upper end side of the rectifier plate 2a, and passes through the second chamber 23, as shown in FIG. After flowing into the air, the hot air passes through the opening 3b provided on the upper end side of the rectifier plate 2b, flows into the third chamber 24, and flows back into the room 20 from the reflux port 11.

これにより、前記整流板2aの上端辺に設けた開口部3aを通過した温風は、流速S1が速くなり、かつ乱流となることから、温風から床材7の底面に対する伝熱量は前記比較例に比較して大きくなり、次の前記整流板2bの上端辺に設けた開口部3aを通過した温風は、流速S1が速くなり、かつ乱流となることから、温風から床材7の底面に対する伝熱量は前記比較例より大きくなる。 As a result, the flow velocity S1 of the hot air passing through the opening 3a provided on the upper end side of the baffle plate 2a increases and the flow becomes turbulent, so that the amount of heat transferred from the hot air to the bottom surface of the flooring 7 is The warm air is larger than that of the comparative example and passes through the opening 3a provided on the upper end side of the next rectifying plate 2b, and the flow velocity S1 becomes faster and the flow becomes turbulent. The amount of heat transferred to the bottom surface of No. 7 is larger than that of the comparative example.

温風から床材7への伝熱量が、整流板2を設置していない前記比較例よりも大きくなるので、室内20を前記比較例よりも短時間で暖かくすることができる。 Since the amount of heat transferred from the warm air to the floor material 7 is greater than that in the comparative example in which the current plate 2 is not installed, the room 20 can be warmed in a shorter time than in the comparative example.

1 輻射・対流空調システム
2 整流板
3 開口部
4 切欠け部
5 流出孔
6 縦ダクト
6a 流出口
7 床材
7a 床仕上げ材
7b 下地材
8 床スラブ
9 側壁
10 床下空間
11 還流口
11a 通気構造体
12 支持脚
15 温度境界層
18 床材底面ライン
19 床スラブ上面ライン
20 室内
22 第一チャンバー
23 第二チャンバー
24 第三チャンバー
25 第四チャンバー
28 第一チャンバー
29 第二チャンバー
30 アルミシート
31 開口部
40 薄厚シート
E 範囲
G 間隔
K 流れ
L 長さ
S 流速
1 Radiant/convection air conditioning system 2 Current plate 3 Opening 4 Notch 5 Outflow hole 6 Vertical duct 6a Outlet 7 Floor material 7a Floor finishing material 7b Base material 8 Floor slab 9 Side wall 10 Underfloor space 11 Return port 11a Ventilation structure 12 Support legs 15 Temperature boundary layer 18 Floor material bottom line 19 Floor slab top line 20 Indoor 22 First chamber 23 Second chamber 24 Third chamber 25 Fourth chamber 28 First chamber 29 Second chamber 30 Aluminum sheet 31 Opening 40 Thin sheet E Range G Distance K Flow L Length S Flow speed

Claims (4)

空調機に接続され床上側から床下側への流路となる縦ダクトの下端部の開口部から流出された温冷風を、床下空間に流動させて床材に設けた還流口から室内に還流させる輻射・対流空調システムであって、
前記床下空間を前記縦ダクト側空間と前記還流口側空間とに所定の位置で区分可能に、短手方向の上端辺を前記床材の底面に接触させ、下端辺を床スラブの上面に接触させ、長手方向の両端辺を前記床下空間の側壁に接触させて、平面視で直線状又は曲線状で薄厚かつ帯状の整流板を立設し、
前記整流板の短手方向の上端辺又は前記上端辺近傍に、長手方向で全長にわたり所定の間隔をあけて複数の開口部を設けたことを特徴とする輻射・対流空調システム。
Hot and cold air flows out from the opening at the bottom of the vertical duct that is connected to the air conditioner and serves as a flow path from the upper side of the floor to the lower side of the floor, flows into the underfloor space, and is returned to the room through the reflux port provided in the flooring material. A radiant/convection air conditioning system,
The underfloor space can be divided into the vertical duct side space and the return port side space at predetermined positions, with the upper end side in the transverse direction contacting the bottom surface of the flooring material, and the lower end side contacting the upper surface of the floor slab. erecting a thin, band-shaped rectifier plate that is linear or curved in plan view, with both longitudinal ends in contact with the side walls of the underfloor space;
A radiation/convection air conditioning system characterized in that a plurality of openings are provided at or near the upper end side in the transverse direction of the rectifying plate at predetermined intervals over the entire length in the longitudinal direction.
空調機に接続され床上側から床下側への流路となる縦ダクトの下端部の開口部から流出された温冷風を、床下空間に流動させて床材に設けた還流口から室内に還流させる輻射・対流空調システムであって、
前記床下空間を前記縦ダクト側空間と前記還流口側空間とに所定の位置で区分可能に、短手方向の上端辺を前記床材の底面に接触させ、下端辺を床スラブの上面に接触させ、長手方向の両端辺を前記床下空間の側壁に接触させて立設した、平面視で直線状又は曲線状で薄厚かつ帯状の整流板を設置し、
前記整流板の短手方向の上端辺又は前記上端辺近傍に設けた開口部と、下端辺又は前記下端辺近傍に設けた開口部とを、長手方向で全長にわたり交互に設けたことを特徴とする輻射・対流空調システム。
Hot and cold air flows out from the opening at the bottom of the vertical duct that is connected to the air conditioner and serves as a flow path from the upper side of the floor to the lower side of the floor, flows into the underfloor space, and is returned to the room through the reflux port provided in the flooring material. A radiant/convection air conditioning system,
The underfloor space can be divided into the vertical duct side space and the return port side space at predetermined positions, with the upper end side in the transverse direction contacting the bottom surface of the flooring material, and the lower end side contacting the upper surface of the floor slab. and installing a thin, band-shaped rectifier plate that is linear or curved in plan view and erected with both longitudinal ends in contact with the side walls of the underfloor space,
The rectifying plate is characterized in that openings provided at or near the upper end in the transverse direction and openings provided at or near the lower end of the current plate are alternately provided over the entire length in the longitudinal direction. radiant/convection air conditioning system.
前記整流板ごとに、前記整流板に設けられた複数の前記開口部の大きさを、温冷風の下流側の位置になるほど前記開口部の大きさを大きくしたことを特徴とする請求項1又は2に記載の輻射・対流空調システム。 10. The size of the plurality of openings provided in each of the rectifying plates is increased as the position on the downstream side of the hot and cold air increases. 2. The radiant/convection air conditioning system described in 2. 前記床材が複数層からなり、前記複数層のうちの最下層に該当する下地材を、前記下地材の上面の全域に熱伝導率の高い材質からなる薄厚シートを張りつけた積層構造にしたことを特徴とする請求項1~3のいずれかに記載の輻射・対流空調システム。 The flooring material consists of multiple layers, and the base material corresponding to the lowest layer of the multiple layers has a laminated structure in which a thin sheet made of a material with high thermal conductivity is pasted over the entire upper surface of the base material. The radiation/convection air conditioning system according to any one of claims 1 to 3, characterized in that:
JP2022059447A 2022-03-31 2022-03-31 Radiation/convection air conditioning system Pending JP2023150361A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022059447A JP2023150361A (en) 2022-03-31 2022-03-31 Radiation/convection air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022059447A JP2023150361A (en) 2022-03-31 2022-03-31 Radiation/convection air conditioning system

Publications (1)

Publication Number Publication Date
JP2023150361A true JP2023150361A (en) 2023-10-16

Family

ID=88326922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022059447A Pending JP2023150361A (en) 2022-03-31 2022-03-31 Radiation/convection air conditioning system

Country Status (1)

Country Link
JP (1) JP2023150361A (en)

Similar Documents

Publication Publication Date Title
US6213867B1 (en) Venturi type air distribution system
JP6512658B2 (en) Radiant air conditioning system
US6623353B1 (en) Venturi type air distribution system
JP3613694B2 (en) Air conditioning method
JP2023150361A (en) Radiation/convection air conditioning system
JP7045710B2 (en) Buildings that utilize radiant heat
JP3152415U (en) House structure
JPH0141065Y2 (en)
JP7468870B2 (en) Floor radiant convection heating and cooling system
JP5335376B2 (en) Air conditioning system
CN112197376B (en) Indoor ceiling radiation plate
JP2004308401A (en) Air conditioning air korean floor heater structure
JP4759672B1 (en) Heating system
JP7033486B2 (en) Personal air conditioning system
JP2004060901A (en) Device for preventing dew formation inside of building
JP7286830B2 (en) personal air conditioning system
JP2020085314A (en) Ceiling radiation panel and ceiling radiation air-conditioning system
JP7507928B2 (en) Building air conditioning systems
JP5749935B2 (en) Partition panel and radiant cooling and heating system
JP5829202B2 (en) Flow regulator
JP6895667B2 (en) Air conditioning system
JP3602110B2 (en) Residential all-air floor cooling and heating system
JP2008292082A (en) Heat storage device and air conditioning system using the same
JP2675682B2 (en) Ceiling radiation cooling and heating system
JPH08296872A (en) Floor structure for radiant air conditioning of building

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20241003