JP4759672B1 - Heating system - Google Patents

Heating system Download PDF

Info

Publication number
JP4759672B1
JP4759672B1 JP2010144482A JP2010144482A JP4759672B1 JP 4759672 B1 JP4759672 B1 JP 4759672B1 JP 2010144482 A JP2010144482 A JP 2010144482A JP 2010144482 A JP2010144482 A JP 2010144482A JP 4759672 B1 JP4759672 B1 JP 4759672B1
Authority
JP
Japan
Prior art keywords
air
outlet
floor
passage
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010144482A
Other languages
Japanese (ja)
Other versions
JP2012007816A (en
Inventor
三上征宏
Original Assignee
三上 征宏
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三上 征宏 filed Critical 三上 征宏
Priority to JP2010144482A priority Critical patent/JP4759672B1/en
Application granted granted Critical
Publication of JP4759672B1 publication Critical patent/JP4759672B1/en
Publication of JP2012007816A publication Critical patent/JP2012007816A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】
暖房能力が高く、熱損失が少なく、全館暖房に好適である暖房装置を提供する。
【解決手段】
暖房装置は床下空間にファンと熱交換器を有するファンコイル30と吸込装置50と吹出装置60とダクト71と72を備える。ボイラー39に温められた熱媒体が、循環する空気を温めて床下空間を温め、床全体を温め、居住空間を温める。床下空間に温風を吹き出す吹出装置60は、上面と下面の間隔が吹出口に向かって徐々に小さくなり、両側面の間隔が吹出口に向かって徐々に大きくなる吹出筐体を含む。吹出装置60は床と仕切り部材81の間に形成される流路領域に温風を吹き出し、仕切り部材81の上に配置されたガイド85と85Aと85Bはその温風をスムーズに分散させる。この構造により、吹出装置60から吹き出された温風は床の直下の広い領域に乱流を生成し、暖房能力を大幅に高めると共に熱損失を大幅に削減する。
【選択図】 図14
【Task】
Provided is a heating device that has high heating capacity, has little heat loss, and is suitable for whole building heating.
[Solution]
The heating device includes a fan coil 30 having a fan and a heat exchanger, a suction device 50, a blowing device 60, and ducts 71 and 72 in the underfloor space. The heat medium warmed by the boiler 39 warms the circulating air, warms the space under the floor, warms the entire floor, and warms the living space. The blow-out device 60 that blows warm air into the underfloor space includes a blow-out housing in which the distance between the upper surface and the lower surface gradually decreases toward the air outlet, and the distance between both side surfaces gradually increases toward the air outlet. The blow-out device 60 blows hot air into a flow path region formed between the floor and the partition member 81, and the guides 85, 85A, and 85B arranged on the partition member 81 smoothly disperse the hot air. With this structure, the hot air blown out from the blowing device 60 generates turbulent flow in a wide area immediately below the floor, greatly increasing the heating capacity and greatly reducing heat loss.
[Selection] FIG.

Description

本発明は、床を温めて室内を暖房する暖房装置に関する。 The present invention relates to a heating device that heats a room by warming a floor.

近年、床を温めて暖房する床暖房は、室内の温度がほぼ均一で、且つ室内に温風が無く、快適な居住空間を提供するので広く使われている。床に温水管や電熱線を埋設した床暖房が普及しているが設備費が高価である。外断熱の住宅のように床下に換気口がない、または換気口が冬季に閉じられている住宅向けに安価な床暖房装置として床下を温風で暖める床下暖房装置が提案されている。 In recent years, floor heating, which heats a floor by heating, has been widely used because the room temperature is almost uniform and there is no warm air in the room to provide a comfortable living space. Floor heating with hot water pipes and heating wires embedded in the floor is widespread, but the equipment costs are expensive. An underfloor heating apparatus that warms the underfloor with warm air has been proposed as an inexpensive floor heating apparatus for a house that does not have a ventilator under the floor like an externally insulated house or has a ventilator closed in winter.

特許文献1に記載された太陽熱利用暖房システムは、太陽熱の集熱器で温められた熱媒がファンコイルユニットに送られ、ファンコイルユニットによって、熱媒の熱が床下空間に放出される。この放出された熱は、基礎に設けた断熱材によって地中や屋外に漏れるのが阻止され、床下空間、並びにこの床下空間に面する基礎の側板、土台、根太、および床材に顕熱として蓄熱される。この顕熱は、床材の上面から室内に放射される。
特許文献2に記載された温風床暖房装置は、床下空間の内側上部に、温風通路ボックスを床板の裏面に密着して取付けて二重の空間を形成し、この温風通路ボックスの内部に仕切板を設けて蛇行した温風循環通路を形成し、この温風循環通路の内側底面に断熱材を設け、温風循環通路の途中に、温水が循環して放熱する温風発生器を設置したものである。
In the solar-heated heating system described in Patent Document 1, the heat medium heated by the solar heat collector is sent to the fan coil unit, and the heat of the heat medium is released into the underfloor space by the fan coil unit. This released heat is prevented from leaking underground or outdoors by the heat insulating material provided on the foundation, and as sensible heat to the underfloor space and the side plates, foundations, joists and flooring of the foundation facing this underfloor space. Heat is stored. This sensible heat is radiated into the room from the upper surface of the flooring.
In the warm air floor heating device described in Patent Document 2, a hot air passage box is attached in close contact with the back surface of the floor board at the upper part inside the underfloor space to form a double space. A hot air circulation passage that snakes with a partition plate is formed, a heat insulating material is provided on the inner bottom surface of this hot air circulation passage, and a hot air generator that circulates hot water and dissipates heat in the middle of the hot air circulation passage. It is installed.

特開2001−132986号公報JP 2001-132986 A 特開2007−127372号公報JP 2007-127372 A

特許文献1に記載された太陽熱利用暖房システムは、ファンコイルユニットで生成された温風が床材を温め、温められた床材が室内を暖房する構造であるが、温風がファンコイルユニットから直接床下空間に放出されるので温風が床に直接接触する面積が比較的小さく、そのため太陽熱利用暖房システムの暖房能力は比較的低い。 The solar-powered heating system described in Patent Document 1 has a structure in which warm air generated by the fan coil unit warms the flooring and the heated flooring heats the room. Since it is directly discharged into the underfloor space, the area where the warm air is in direct contact with the floor is relatively small. Therefore, the heating capacity of the solar heating heating system is relatively low.

次に、太陽熱利用暖房システムの暖房能力が比較的低い理由を詳細に説明する。図18に従来の暖房装置160と建物10の床下の平面図と床の直下の空気の流れを模式的に示す。図19は図18のA−Aの断面とその断面における温風の流れを模式的に示す。なお、暖房装置160は太陽熱利用暖房システムと同様に温風41Cをファンコイルユニット30から直接床下空間21に放出する構造である。
暖房装置160が配置される建物10は、基礎部11の上に柱と壁を含む側壁12が構築され、床17が側壁12に支持される構造である。床下空間21は床17と基礎部11と四面の側壁12で囲まれた空間である。基礎部11は床下空間21の底面であり、コンクリートや地盤等で構築される。床17は床板16と根太15と大引き14で構成される。床17は建物の構造や部屋の大きさ等により床板16だけで構成される場合もあり、また床板16と根太15で構成される場合もある。
床下空間21に換気口のような外気との直接の空気の通路がある建物の場合、熱損失を削減するために、その換気口を閉じるのが好ましい。しかし、床下空間21は密閉空間である必要はなく、床下空間21と居住空間22は床板16の隙間や床板16と水道の配管との隙間等で連結されていても良い。
Next, the reason why the heating capacity of the solar thermal heating system is relatively low will be described in detail. FIG. 18 schematically shows a plan view under the floor of the conventional heating device 160 and the building 10 and the flow of air directly under the floor. FIG. 19 schematically shows a cross section taken along the line AA in FIG. 18 and the flow of warm air in the cross section. In addition, the heating apparatus 160 is a structure which discharge | releases the warm air 41C from the fan coil unit 30 directly to the underfloor space 21 similarly to a solar-heated heating system.
The building 10 in which the heating device 160 is arranged has a structure in which a side wall 12 including a pillar and a wall is constructed on a base portion 11 and a floor 17 is supported by the side wall 12. The underfloor space 21 is a space surrounded by the floor 17, the base portion 11, and the four side walls 12. The foundation 11 is the bottom surface of the underfloor space 21 and is constructed of concrete, ground or the like. The floor 17 is composed of a floor board 16, a joist 15 and a large pull 14. The floor 17 may be composed of only the floor board 16 depending on the structure of the building, the size of the room, or the like, or may be composed of the floor board 16 and the joists 15.
In the case of a building having a direct air passage with outside air such as a ventilation opening in the underfloor space 21, it is preferable to close the ventilation opening in order to reduce heat loss. However, the underfloor space 21 does not need to be a sealed space, and the underfloor space 21 and the living space 22 may be connected by a gap between the floorboard 16 and a gap between the floorboard 16 and the water supply pipe.

暖房装置160は、暖房の熱源であるボイラー39と、床下空間21に配置されるファンコイルユニット30と、ボイラー39とファンコイルユニット30との間に熱媒体を循環させるための熱媒体循環路38と、熱媒体循環路38に熱媒体を循環させるポンプ37で構成される。
ファンコイルユニット30はファンコイル吸込口34から吸い込まれた空気をファンコイル吹出口35に導く空気通路36を形成するファンコイル筐体31と空気通路36に配置された熱交換器33と空気を送風する送風機32で構成される。熱交換器33は熱媒体を流す流路を有し、空気通路36に流れる空気と流路に流れる熱媒体との熱交換を行なう。熱媒体循環路38は熱交換器33の熱媒体を流す流路に接続される。この構成により、ボイラー39の熱は熱媒体により熱交換器33に運ばれ、熱交換器33で空気通路36に流れる空気に伝達され、送風機32により床下空間21に送られ、床17を温める。そして温められた床17が居住空間22を温める。
The heating device 160 includes a boiler 39 that is a heat source for heating, the fan coil unit 30 disposed in the underfloor space 21, and a heat medium circulation path 38 for circulating a heat medium between the boiler 39 and the fan coil unit 30. And a pump 37 that circulates the heat medium in the heat medium circulation path 38.
The fan coil unit 30 blows air through a fan coil housing 31 that forms an air passage 36 that guides air sucked from the fan coil suction port 34 to the fan coil air outlet 35, and a heat exchanger 33 that is disposed in the air passage 36. It is comprised with the air blower 32 to do. The heat exchanger 33 has a flow path through which the heat medium flows, and performs heat exchange between the air flowing through the air passage 36 and the heat medium flowing through the flow path. The heat medium circulation path 38 is connected to a flow path through which the heat medium of the heat exchanger 33 flows. With this configuration, the heat of the boiler 39 is transferred to the heat exchanger 33 by the heat medium, transmitted to the air flowing through the air passage 36 by the heat exchanger 33, sent to the underfloor space 21 by the blower 32, and warms the floor 17. The warmed floor 17 warms the living space 22.

暖房装置160はボイラー39とポンプ37と送風機32を制御する暖房制御部(不図示)を有する。暖房制御部は、暖房スイッチ等から生成される信号に基づいてボイラー39とポンプ37の運転を制御する。ボイラー39とポンプ37が運転されると、熱媒体循環路38を循環する熱媒体の温度が上昇する。暖房制御部は、室温が所定の暖房設定温度より低く、且つ熱交換器33付近の熱媒体の温度を検出する熱媒体温度検出器(不図示)の検出温度が所定の熱媒体設定温度より高い場合に送風機32を運転する。送風機32が運転された場合、ファンコイル吸込口34から床下空間21の空気が吸い込まれ、その空気は熱交換器33で温められ、ファンコイル吹出口35から床下空間21に戻される。この空気の循環により熱交換器33で放出された熱が床下空間21の空気と床17を温める。そして温められた床17が居住空間22を温める。 The heating device 160 includes a heating control unit (not shown) that controls the boiler 39, the pump 37, and the blower 32. The heating control unit controls the operation of the boiler 39 and the pump 37 based on a signal generated from a heating switch or the like. When the boiler 39 and the pump 37 are operated, the temperature of the heat medium circulating in the heat medium circulation path 38 increases. The heating control unit has a room temperature lower than a predetermined heating set temperature, and a detection temperature of a heat medium temperature detector (not shown) that detects the temperature of the heat medium near the heat exchanger 33 is higher than a predetermined heat medium setting temperature. If so, the blower 32 is operated. When the blower 32 is operated, the air in the underfloor space 21 is sucked from the fan coil suction port 34, the air is warmed by the heat exchanger 33, and returned to the underfloor space 21 from the fan coil blowout port 35. The heat released by the heat exchanger 33 due to the air circulation warms the air in the underfloor space 21 and the floor 17. The warmed floor 17 warms the living space 22.

次に、温風41Cの床下空間21内の流れと、床17と温風41Cとの間の熱伝達について説明する。温風41Cは、送風機32と熱交換器33により生成され、空気通路36と床下空間21を循環する温かい空気の流れである。温風41Cは、ファンコイル吹出口35から吹き出される時の速度が充分高く、ファンコイル吸込口34とファンコイル吹出口35付近に乱流を生成するとする。温風41Cは、床下空間21において、層流42Cと乱流43Cで構成される。温風41Cは、床下空間21の空気の定常状態(上方の空気の温度が下方の空気の温度より高い状態)の温度分布を乱すので自然対流44Cを発生させ、自然対流44Cは温風41Cの熱を床17に伝達する。床17の直下の乱流43Cは温風41Cと床17の間の熱伝達率を大幅に大きくする。そして、床17の直下の乱流43Cの面積が大きいほど温風41Cと床17との間の熱伝達量は大きい。自然対流44Cが床に接触する面積は大きいが自然対流44Cの熱伝達率は極めて小さいので、温風41Cから自然対流44Cを介して床へ伝達される熱量は少ない。 Next, the flow of the warm air 41C in the underfloor space 21 and the heat transfer between the floor 17 and the warm air 41C will be described. The hot air 41 </ b> C is a flow of warm air that is generated by the blower 32 and the heat exchanger 33 and circulates through the air passage 36 and the underfloor space 21. It is assumed that the hot air 41 </ b> C has a sufficiently high speed when being blown from the fan coil air outlet 35 and generates turbulent flow in the vicinity of the fan coil inlet 34 and the fan coil air outlet 35. The warm air 41C is composed of a laminar flow 42C and a turbulent flow 43C in the underfloor space 21. The warm air 41C disturbs the temperature distribution in the steady state of the air in the underfloor space 21 (the state in which the temperature of the upper air is higher than the temperature of the lower air), so that natural convection 44C is generated, and the natural convection 44C Heat is transferred to the floor 17. The turbulent flow 43C immediately below the floor 17 greatly increases the heat transfer coefficient between the warm air 41C and the floor 17. The larger the area of the turbulent flow 43C immediately below the floor 17, the greater the amount of heat transfer between the warm air 41C and the floor 17. Although the area where the natural convection 44C comes into contact with the floor is large, the heat transfer coefficient of the natural convection 44C is extremely small, so that the amount of heat transferred from the warm air 41C to the floor via the natural convection 44C is small.

図18は床17の直下の空気の流れを矢印で模式的に示す。空気の粘性により床17に極めて近い領域では空気の流れが小さいので層流の粘性底層がある。図18はその粘性底層より下方の乱流が存在する領域の空気の流れを示す。乱流領域23Cはファンコイル吸込口34に吸い込まれる温風41Cが生成する乱流の領域であり、乱流領域24Cはファンコイル吹出口35から吹き出される温風41Cが生成する乱流の領域である。乱流領域23Cと24C以外の領域には層流と自然対流が存在し、温風41Cと床17との間の熱伝達は層流42Cと自然対流44Cにより行なわれる。層流42Cは主に気圧の勾配による流れであり、その速度は乱流領域23Cと24Cから離れるに従って急激に低くなる。一方、自然対流44Cは定常状態の温度分布の乱れによる流れであり、その速度は乱流領域23Cと24Cから離れるに従って徐々に低くなる。
乱流領域23Cと24C付近において、層流42Cの速度は自然対流44Cの速度より遥かに大きいので、温風41Cと床17との間の層流42Cによる熱伝達率は、温風41Cと床17との間の自然対流44Cによる熱伝達率より遥かに大きい。一方、乱流領域23Cと24Cから充分離れた場所において、層流42Cの速度は自然対流44Cの速度より小さくなるので、温風41Cと床17との間の層流42Cによる熱伝達率は、温風41Cと床17との間の自然対流44Cによる熱伝達率より小さい。
層流領域25Cは、温風41Cと床17との間の層流42Cによる熱伝達率が、温風41Cと床17との間の自然対流44Cによる熱伝達率より大きい領域とし、自然対流領域26Cは、温風41Cと床17との間の自然対流44Cによる熱伝達率が、温風41Cと床17との間の層流42Cによる熱伝達率より大きい領域とする。
乱流領域23Cと24Cにおける温風41Cと床17との間の平均の熱伝達率は層流領域25Cにおける温風41Cと床17との間の平均の熱伝達率より遥かに大きい。層流領域25Cは乱流領域23Cまたは24Cを囲んで存在し、自然対流領域26Cは層流領域25Cの外側に存在する。なお、乱流領域23Cと24Cにおいても自然対流44Cは存在する。
FIG. 18 schematically shows the flow of air immediately below the floor 17 with arrows. Since the air flow is small in the region very close to the floor 17 due to the viscosity of the air, there is a laminar viscous bottom layer. FIG. 18 shows the air flow in a region where turbulent flow exists below the viscous bottom layer. The turbulent flow area 23C is a turbulent flow area generated by the hot air 41C sucked into the fan coil suction port 34, and the turbulent flow area 24C is a turbulent flow area generated by the hot air 41C blown from the fan coil air outlet 35. It is. Laminar flow and natural convection exist in regions other than the turbulent flow regions 23C and 24C, and heat transfer between the hot air 41C and the floor 17 is performed by the laminar flow 42C and natural convection 44C. The laminar flow 42C is mainly a flow due to a gradient of atmospheric pressure, and its velocity rapidly decreases as the distance from the turbulent flow regions 23C and 24C increases. On the other hand, the natural convection 44C is a flow due to the disturbance of the temperature distribution in the steady state, and its velocity gradually decreases as the distance from the turbulent regions 23C and 24C increases.
In the vicinity of the turbulent flow regions 23C and 24C, the speed of the laminar flow 42C is much higher than the speed of the natural convection 44C, so that the heat transfer coefficient by the laminar flow 42C between the hot air 41C and the floor 17 is as follows. Much higher than the heat transfer coefficient due to natural convection 44C between On the other hand, in a place sufficiently away from the turbulent flow areas 23C and 24C, the speed of the laminar flow 42C is smaller than the speed of the natural convection 44C, so the heat transfer coefficient by the laminar flow 42C between the hot air 41C and the floor 17 is It is smaller than the heat transfer coefficient by the natural convection 44C between the hot air 41C and the floor 17.
The laminar flow region 25C is a region in which the heat transfer coefficient by the laminar flow 42C between the hot air 41C and the floor 17 is larger than the heat transfer coefficient by the natural convection 44C between the hot air 41C and the floor 17, and the natural convection region 26C is a region in which the heat transfer coefficient by the natural convection 44C between the hot air 41C and the floor 17 is larger than the heat transfer coefficient by the laminar flow 42C between the hot air 41C and the floor 17.
The average heat transfer coefficient between the hot air 41C and the floor 17 in the turbulent flow regions 23C and 24C is much larger than the average heat transfer coefficient between the hot air 41C and the floor 17 in the laminar flow region 25C. The laminar flow region 25C exists around the turbulent flow region 23C or 24C, and the natural convection region 26C exists outside the laminar flow region 25C. Note that the natural convection 44C exists also in the turbulent flow regions 23C and 24C.

ファンコイル吹出口35から吹き出る時の温風41Cの速度が大きいほど乱流領域23Cと24Cと層流領域25Cが大きくなり、自然対流領域26Cが小さくなる。乱流領域23Cと24Cの形状は、根太15と大引き14のサイズ、ファンコイル吹出口35の向き、床17とファンコイル吹出口35間の距離、温風41Cの温度と風速等の条件により大きく変わる。また、層流領域25Cの形状も条件により大きく変わる。
以下、図に示す乱流領域の形状は、吹出口または吸込口の形状が、他の条件を変えずに、相対的に乱流領域の面積をどのように変えるかを示すための模式的な形状を示すものとし、具体的な形状を示すものではない。
層流領域25Cにおいて、空気の浮力により、床17で冷された温風41Cは下降し、温かい温風41Cは上昇し、床17で冷されて下降する。また、空気に対して気圧が低いファンコイル吸込口34の方向に力が働くので、ファンコイル吸込口34の方向に徐々に方向を変える。つまり、層流領域25Cにおいて、温風41Cは、上昇または下降しながら、または上昇と下降を繰り返しながら、ファンコイル吸込口34の方向に徐々に方向を変えて流れ、ファンコイル吸込口34に吸い込まれる。
The larger the speed of the hot air 41C at the time of blowing from the fan coil outlet 35, the larger the turbulent flow areas 23C and 24C and the laminar flow area 25C, and the smaller the natural convection area 26C. The shape of the turbulent flow areas 23C and 24C depends on conditions such as the size of the joist 15 and the large pull 14, the direction of the fan coil air outlet 35, the distance between the floor 17 and the fan coil air outlet 35, the temperature and the wind speed of the hot air 41C, etc. It will change greatly. Also, the shape of the laminar flow region 25C varies greatly depending on conditions.
Hereinafter, the shape of the turbulent flow region shown in the figure is a schematic for showing how the shape of the air outlet or the suction port relatively changes the area of the turbulent flow region without changing other conditions. It indicates the shape, not the specific shape.
In the laminar flow region 25C, due to the buoyancy of air, the warm air 41C cooled by the floor 17 descends, the warm hot air 41C rises, cools by the floor 17 and descends. Further, since a force acts in the direction of the fan coil suction port 34 where the atmospheric pressure is low with respect to the air, the direction is gradually changed in the direction of the fan coil suction port 34. That is, in the laminar flow region 25 </ b> C, the hot air 41 </ b> C flows while gradually changing in the direction of the fan coil suction port 34 while being raised or lowered, or repeatedly raised and lowered, and is sucked into the fan coil suction port 34. It is.

図20にファンコイルユニット30のファンコイル筐体31の斜視図を示す。送風機32と熱交換器33はファンコイル筐体31の内部に配置される。送風機32は一台または複数台の送風機で構成する場合があり、熱交換器33も一台または複数台の熱交換器で構成する場合がある。
ファンコイルユニット30は、温風または冷風を生成する装置であり、一般的に暖房と冷房に使用される。ファンコイルユニット30は暖房能力または冷房能力が高く、小型で、安価なものが好ましい。ファンコイル吹出口35の幅W対高さHの比(W/H)を大きくすると、多数の送風機が必要、特殊なファンが必要等によりコストパフォーマンスが低下するために、空気通路36の断面の幅対高さの比は比較的小さく設定される。その結果、ファンコイル吹出口35の幅Wが比較的小さく設定されるので、乱流領域23Cと24Cの幅が比較的小さい。なお、ファンコイル吹出口35の温風41Cの風速は送風機32の回転数等により調整でき、乱流領域23Cと24Cの長さ(温風41Cが吹き出す方向の長さ)は、温風41Cの風速が大きいほど大きい。
従って、ファンコイル吹出口35の幅が比較的小さく、乱流領域23Cと24Cの幅が比較的小さいので乱流領域23Cと24Cの面積が比較的小さい。
また、温風41Cがファンコイル吹出口35から直接(ダクトを経由せずに)床下空間21に吹き出され、ファンコイル吸込口34から直接(ダクトを経由せずに)吸い込まれるので床下空間21内の温風41Cの経路が短く、層流領域25Cの面積は比較的小さい。
従って、暖房装置160は乱流領域23Cと24Cと層流領域25Cの面積が比較的小さいので温風41Cから床17に伝達される熱量は比較的少ない。つまり、暖房装置160の暖房能力は比較的低い。
FIG. 20 is a perspective view of the fan coil casing 31 of the fan coil unit 30. The blower 32 and the heat exchanger 33 are disposed inside the fan coil housing 31. The blower 32 may be composed of one or a plurality of blowers, and the heat exchanger 33 may be composed of one or a plurality of heat exchangers.
The fan coil unit 30 is a device that generates hot air or cold air, and is generally used for heating and cooling. The fan coil unit 30 preferably has a high heating capacity or cooling capacity, is small, and is inexpensive. If the ratio (W / H) of the width W to the height H of the fan coil outlet 35 is increased, the cost performance is lowered due to the necessity of a large number of blowers and the need for a special fan. The ratio of width to height is set relatively small. As a result, since the width W of the fan coil outlet 35 is set to be relatively small, the widths of the turbulent flow regions 23C and 24C are relatively small. The wind speed of the hot air 41C from the fan coil outlet 35 can be adjusted by the rotational speed of the blower 32, and the lengths of the turbulent flow areas 23C and 24C (the length in the direction in which the hot air 41C blows out) are the same as those of the hot air 41C. The greater the wind speed, the greater.
Accordingly, the width of the fan coil outlet 35 is relatively small, and the width of the turbulent flow regions 23C and 24C is relatively small, so that the areas of the turbulent flow regions 23C and 24C are relatively small.
Further, since the warm air 41C is blown directly from the fan coil outlet 35 (without going through the duct) into the underfloor space 21 and directly sucked from the fan coil suction port 34 (without going through the duct), The path of the warm air 41C is short, and the area of the laminar flow region 25C is relatively small.
Therefore, since the heating device 160 has relatively small areas of the turbulent flow regions 23C and 24C and the laminar flow region 25C, the amount of heat transferred from the warm air 41C to the floor 17 is relatively small. That is, the heating capacity of the heating device 160 is relatively low.

従って、特許文献1に記載された太陽熱利用暖房システムの構造は暖房装置160の構造と同様であるので、その暖房能力は比較的低い。なお、温風41Cは基礎部11に接触するが基礎部11上に断熱材13が敷設されているので暖房装置160の熱損失は少ない。 Therefore, since the structure of the solar-heated heating system described in Patent Document 1 is the same as the structure of the heating device 160, its heating capacity is relatively low. In addition, although the warm air 41C contacts the base part 11, since the heat insulating material 13 is laid on the base part 11, the heat loss of the heating apparatus 160 is small.

特許文献2に記載された温風床暖房装置は、熱損失が少なく、暖房能力が高いが、温風通路ボックスは温風を蛇行させる通路を有するので気密性が必要であり、更に、温風通路ボックス毎に放熱器と送風機が必要であるので高価であり、全館暖房には適さない。 The hot air floor heating device described in Patent Document 2 has low heat loss and high heating capacity, but the hot air passage box has a passage that causes the hot air to meander, and therefore requires airtightness. Since a radiator and a blower are required for each passage box, it is expensive and is not suitable for heating the entire building.

本発明は、上記の課題を鑑みてなされたものであり、暖房能力が高く、熱損失が少なく、全館暖房に好適である暖房装置を提供する。 The present invention has been made in view of the above-described problems, and provides a heating apparatus that has high heating capacity, low heat loss, and is suitable for whole building heating.

本発明の暖房装置は、床下空間に細長い略矩形の吹出口を有する吹出装置を備え、吹出装置から温風を床下に幅広く吹き出す。その温風は床下に大きい面積の乱流領域を生成する。乱流領域において温風と床の間の熱伝達率が大きいので本発明の暖房装置の暖房能力は高い。更に、温風は基礎部から離れているので熱損失が少ない。更に、温風は、床下空間の空気の定常状態の温度分布を乱すので自然対流を発生させ、自然対流は温風の熱を床全体に伝達するので本発明の暖房装置は全館暖房に好適である。 The heating device of the present invention includes a blowing device having an elongated rectangular outlet in the underfloor space, and blows warm air from the blowing device widely under the floor. The warm air creates a large area of turbulent flow under the floor. Since the heat transfer coefficient between the warm air and the floor is large in the turbulent region, the heating capacity of the heating device of the present invention is high. Furthermore, since the warm air is away from the base, there is little heat loss. Furthermore, since the warm air disturbs the steady-state temperature distribution of the air in the underfloor space, natural convection is generated, and natural convection transfers the heat of the warm air to the entire floor, so the heating device of the present invention is suitable for heating in the entire building. is there.

本発明の暖房装置は、床下に配置された仕切り部材を備え、温風を吹出口から床と仕切り部材の間に吹き出す。仕切り部材は、乱流領域の面積を大きくするので本発明の暖房装置の暖房能力を高くする。更に、仕切り部材の下方の基礎部へ流れる温風を抑制するので本発明の暖房装置の基礎部への熱損失は小さい。 The heating device of the present invention includes a partition member arranged under the floor, and blows warm air from the outlet between the floor and the partition member. Since a partition member enlarges the area of a turbulent flow area | region, it raises the heating capability of the heating apparatus of this invention. Furthermore, since the warm air which flows into the base part under a partition member is suppressed, the heat loss to the base part of the heating apparatus of this invention is small.

本発明の暖房装置は、暖房能力が高く、熱損失が少なく、全館暖房に好適である。 The heating device of the present invention has a high heating capacity and a small heat loss, and is suitable for whole building heating.

本発明の暖房装置の第一実施形態である暖房装置100と建物10の床下の平面図と床の直下の空気の流れを模式的に示す。The heating apparatus 100 which is 1st embodiment of the heating apparatus of this invention, the top view of the floor under the building 10, and the flow of the air just under a floor are shown typically. 図1のA−Aの断面とその断面における温風の流れを模式的に示す。FIG. 1 schematically shows a cross section taken along line A-A in FIG. 1 and the flow of hot air in the cross section. 吸込装置50と吹出装置60の斜視図を示す。The perspective view of the suction apparatus 50 and the blowing apparatus 60 is shown. 吹出装置60Aの斜視図を示す。The perspective view of blowing apparatus 60A is shown. 吸込装置50Bと吹出装置60Bの斜視図を示す。The perspective view of suction device 50B and blowing device 60B is shown. 吹出装置60Cの斜視図を示す。The perspective view of the blowing apparatus 60C is shown. 本発明の暖房装置の第二実施形態である暖房装置110と建物10の床下の平面図を模式的に示す。The top view under the floor of the heating apparatus 110 which is 2nd embodiment of the heating apparatus of this invention, and the building 10 is shown typically. 図7のA−Aの断面を模式的に示す。The cross section of AA of FIG. 7 is shown typically. 本発明の暖房装置の第三実施形態である暖房装置120と建物10の床下の平面図を模式的に示す。The top view under the floor of the heating apparatus 120 which is 3rd embodiment of the heating apparatus of this invention, and the building 10 is shown typically. 図9のA−Aの断面を模式的に示す。The cross section of AA of FIG. 9 is shown typically. 仕切り部材82と83の斜視図を示す。The perspective view of the partition members 82 and 83 is shown. 本発明の暖房装置の第四実施形態である暖房装置130と建物10の床下の平面図を模式的に示す。The top view under the floor of the heating apparatus 130 which is 4th embodiment of the heating apparatus of this invention and the building 10 is shown typically. 図12のA−Aの断面を模式的に示す。The cross section of AA of FIG. 12 is shown typically. 本発明の暖房装置の第五実施形態である暖房装置140と建物10の床下の平面図を模式的に示す。The top view under the floor of the heating apparatus 140 which is 5th embodiment of the heating apparatus of this invention and the building 10 is shown typically. 図14のA−Aの断面を模式的に示す。The cross section of AA of FIG. 14 is shown typically. 本発明の暖房装置の第六実施形態である暖房装置150と建物10の床下の平面図を模式的に示す。The top view under the floor of the heating apparatus 150 which is 6th embodiment of the heating apparatus of this invention and the building 10 is shown typically. 図16のA−Aの断面を模式的に示す。FIG. 17 schematically shows a cross section taken along line A-A in FIG. 16. 従来の暖房装置160と建物10の床下の平面図と床の直下の空気の流れを模式的に示す。The top view under the floor of the conventional heating apparatus 160 and the building 10, and the flow of the air just under a floor are shown typically. 図18のA−Aの断面とその断面における温風の流れを模式的に示す。FIG. 18 schematically shows a cross section taken along line A-A in FIG. 18 and the flow of hot air in the cross section. ファンコイル筐体31の斜視図を示す。The perspective view of the fan coil housing | casing 31 is shown. 吸込装置50Bと吹出装置60Bを備える暖房装置100Aと建物10の床下の平面図を示す。The top view under the floor of 100 A of heating apparatuses and the building 10 provided with the suction apparatus 50B and the blowing apparatus 60B is shown.

以下、図面を参照して本発明の実施の形態を詳細に説明する。図1に本発明の暖房装置の第一実施形態である暖房装置100と建物10の床下の平面図と床の直下の空気の流れを模式的に示す。図2は図1のA−Aの断面とその断面における温風の流れを模式的に示す。
暖房装置100は、暖房装置160と同様に、建物10に配置される。また、暖房装置100は、暖房装置160と同様に、暖房の熱源であるボイラー39と、床下空間21に配置されるファンコイルユニット30と、ボイラー39とファンコイルユニット30との間に熱媒体を循環させるための熱媒体循環路38と、熱媒体循環路38に熱媒体を循環させるポンプ37を備える。更に、暖房装置100は、吸込装置50と、吸込装置50とファンコイル吸込口34を接続するダクト71と、吹出装置60と、吹出装置60とファンコイル吹出口35を接続するダクト72とを備える。つまり、暖房装置100は、暖房装置160にダクト71と72と吸込装置50と吹出装置60を追加した構成である。
暖房装置100は、熱媒体を温める熱源としてボイラー39を使用した例であるが、暖房の熱源として燃料電池の排熱を使用しても良い。また、ヒートポンプを利用し外気の熱で熱媒体を温めても良い。更に、熱交換器33を使わずに、電気ヒータで空気通路36内の空気を直接温めても良い。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 schematically shows a plan view under the floor of a heating apparatus 100 and a building 10 according to a first embodiment of the heating apparatus of the present invention, and a flow of air directly under the floor. FIG. 2 schematically shows a cross section AA in FIG. 1 and the flow of warm air in the cross section.
The heating device 100 is arranged in the building 10 like the heating device 160. Similarly to the heating device 160, the heating device 100 generates a heat medium between the boiler 39 that is a heat source for heating, the fan coil unit 30 disposed in the underfloor space 21, and the boiler 39 and the fan coil unit 30. A heat medium circulation path 38 for circulation and a pump 37 for circulating the heat medium in the heat medium circulation path 38 are provided. Furthermore, the heating device 100 includes a suction device 50, a duct 71 that connects the suction device 50 and the fan coil suction port 34, a blower device 60, and a duct 72 that connects the blower device 60 and the fan coil blower outlet 35. . That is, the heating device 100 has a configuration in which the ducts 71 and 72, the suction device 50, and the blowing device 60 are added to the heating device 160.
Although the heating apparatus 100 is an example in which the boiler 39 is used as a heat source for heating the heat medium, the exhaust heat of the fuel cell may be used as a heat source for heating. Further, the heat medium may be warmed by the heat of the outside air using a heat pump. Further, the air in the air passage 36 may be directly warmed with an electric heater without using the heat exchanger 33.

図3(A)に吸込装置50の斜視図を示し、図3(B)に本発明の第一吹出装置の一実施形態である吹出装置60の斜視図を示す。吸込装置50は細長い略矩形の吸込口53から吸込んだ空気を吸込筐体出口51に導く空気の通路を形成する吸込筐体52とダクト71に連結するための部品(不図示)等で構成される。吸込筐体52の上面は床17に略並行であり、吸込口53の床17に略並行な長辺の長さは吸込筐体出口51の床17に略並行な辺の長さより大きく、吸込口53の短辺の長さは吸込筐体出口51の床17に略直交な辺の長さより小さい。吸込筐体52の上面と下面は平板で構成され、吸込筐体52の上面と下面の間隔は吸込口53に向かって徐々に小さくなる。吸込筐体52の両側面は平板で構成され、吸込筐体52の両側面の間隔は、吸込口53に向かって徐々に大きくなる。この吸込装置50の構造は吸込口53と吸込筐体出口51の間の圧力損失を抑制する。
吹出装置60は、吹出筐体入口61から吸込んだ空気を細長い略矩形の吹出口63に導く空気の通路を形成する吹出筐体62とダクト72に連結するための部品(不図示)等で構成される。吹出筐体62の上面は床17に略並行であり、吹出口63の床17に略並行な長辺の長さは吹出筐体入口61の床17に略並行な辺の長さより大きく、吹出口63の短辺の長さは吹出筐体入口61の床17に略直交な辺の長さより小さい。吹出筐体62の上面と下面は平板で構成され、吹出筐体62の上面と下面の間隔は吹出口63に向かって徐々に小さくなる。吹出筐体62の両側面は平板で構成され、吹出筐体62の両側面の間隔は、吹出口63に向かって徐々に大きくなる。この吹出装置60の構造は吹出筐体入口61と吹出口63の間の圧力損失を抑制する。
熱交換器33が本発明の加熱器に相当し、ダクト72の吹出装置60側の端が本発明の通路出口に相当し、吸込筐体52とダクト71とファンコイル筐体31とダクト72を連結したものが本発明の通路形成体に相当し、吹出装置60が本発明の第一吹出装置に相当する。
FIG. 3 (A) shows a perspective view of the suction device 50, and FIG. 3 (B) shows a perspective view of a blowing device 60 which is an embodiment of the first blowing device of the present invention. The suction device 50 includes a suction housing 52 that forms an air passage for guiding air sucked from an elongated, substantially rectangular suction port 53 to the suction housing outlet 51, and parts (not shown) that are connected to the duct 71. The The upper surface of the suction housing 52 is substantially parallel to the floor 17, and the length of the long side substantially parallel to the floor 17 of the suction port 53 is larger than the length of the side substantially parallel to the floor 17 of the suction housing outlet 51. The length of the short side of the mouth 53 is smaller than the length of the side substantially orthogonal to the floor 17 of the suction housing outlet 51. The upper surface and the lower surface of the suction housing 52 are constituted by flat plates, and the distance between the upper surface and the lower surface of the suction housing 52 gradually decreases toward the suction port 53. Both side surfaces of the suction housing 52 are formed of flat plates, and the interval between the both side surfaces of the suction housing 52 gradually increases toward the suction port 53. The structure of the suction device 50 suppresses pressure loss between the suction port 53 and the suction housing outlet 51.
The blow-out device 60 is composed of a blow-out housing 62 that forms an air passage for guiding the air sucked from the blow-out housing inlet 61 to an elongated rectangular outlet 63, a part (not shown) for connecting to the duct 72, and the like. Is done. The upper surface of the blowout housing 62 is substantially parallel to the floor 17, and the length of the long side substantially parallel to the floor 17 of the blowout outlet 63 is larger than the length of the side substantially parallel to the floor 17 of the blowout housing inlet 61. The length of the short side of the outlet 63 is smaller than the length of the side substantially orthogonal to the floor 17 of the blowout housing inlet 61. The upper surface and the lower surface of the blowout housing 62 are constituted by flat plates, and the distance between the upper surface and the lower surface of the blowout housing 62 gradually decreases toward the blowout port 63. Both side surfaces of the blowout housing 62 are formed of flat plates, and the distance between both side surfaces of the blowout housing 62 gradually increases toward the blowout port 63. This structure of the blower device 60 suppresses pressure loss between the blower housing inlet 61 and the blower outlet 63.
The heat exchanger 33 corresponds to the heater of the present invention, the end of the duct 72 on the outlet device 60 side corresponds to the passage outlet of the present invention, and the suction housing 52, the duct 71, the fan coil housing 31, and the duct 72 are connected. What connected is equivalent to the channel | path formation body of this invention, and the blowing apparatus 60 is equivalent to the 1st blowing apparatus of this invention.

暖房装置100はボイラー39とポンプ37を制御するボイラー制御部(不図示)と、ボイラー制御部と独立に動作し、送風機32を制御する室温制御部(不図示)を有する。ボイラー制御部は、暖房スイッチ等から生成される信号に基づいてボイラー39とポンプ37の運転を制御する。ボイラー39とポンプ37が運転されると、熱媒体循環路38を循環する熱媒体の温度が上昇する。室温制御部は、室温が所定の暖房設定温度より低く、且つ熱交換器33付近の熱媒体の温度を検出する熱媒体温度検出器(不図示)の検出温度が所定の熱媒体設定温度より高い場合に送風機32を運転する。
一般に、ボイラー制御部はボイラーの一部であるのでボイラー制御部を変更するのは困難である。室温制御部はボイラー制御部と独立に動作するので、ボイラー制御部を変更する必要は無い。つまり、暖房装置100は、市販のボイラーを変更せずに使用し、室温制御部を追加することにより室温を制御できる。
The heating apparatus 100 includes a boiler control unit (not shown) that controls the boiler 39 and the pump 37, and a room temperature control unit (not shown) that operates independently of the boiler control unit and controls the blower 32. The boiler control unit controls the operation of the boiler 39 and the pump 37 based on a signal generated from a heating switch or the like. When the boiler 39 and the pump 37 are operated, the temperature of the heat medium circulating in the heat medium circulation path 38 increases. The room temperature control unit is configured such that the room temperature is lower than a predetermined heating temperature, and the detection temperature of a heat medium temperature detector (not shown) that detects the temperature of the heat medium near the heat exchanger 33 is higher than the predetermined heat medium setting temperature. If so, the blower 32 is operated.
Generally, since a boiler control part is a part of boiler, it is difficult to change a boiler control part. Since the room temperature controller operates independently of the boiler controller, there is no need to change the boiler controller. That is, the heating device 100 can control the room temperature by using a commercially available boiler without changing it and adding a room temperature control unit.

暖房装置100の温風41と暖房装置160の温風41Cの流れの違いを図1と18を参照して説明する。暖房装置100は、吸込装置50とファンコイルユニット30をダクト71で連結し、ファンコイルユニット30と吹出装置60をダクト72で連結した構成である。ここで、ダクト71と72の両端の形状とサイズは同一とする。つまり、吸込筐体出口51とファンコイル吸込口34の形状とサイズは同一であり、ファンコイル吹出口35と吹出筐体入口61の形状とサイズは同一であるとする。
吹出口63の幅は、吹出筐体入口61の幅より大きいのでファンコイル吹出口35の幅より大きい。従って、吹出口63から吹き出された温風41により生成される乱流領域24の幅は、乱流領域24Cの幅より大きい。また吹出口63の高さは、吹出筐体入口61の高さより小さく、ファンコイル吹出口35の高さより小さいので、吹出口63をファンコイル吹出口35より基礎部11から離して配置できる。更に、吹出口63の高さを十分小さくして吹出口63の面積をファンコイル吹出口35の面積より小さくできる。その場合、吹出口63から吹き出される温風41の風速はファンコイル吹出口35から吹き出される温風41Cの風速より大きくなり、乱流領域24の長さを乱流領域24Cの長さより大きくできる。
従って、吹出口63の幅を吹出筐体入口61の幅より大きくし、吹出口63の高さを吹出口63の面積が吹出筐体入口61の面積より小さくなるように小さくすることにより乱流領域24の面積を乱流領域24Cの面積より大きくできる。
The difference in the flow of the warm air 41 of the heating device 100 and the warm air 41C of the heating device 160 will be described with reference to FIGS. The heating device 100 has a configuration in which the suction device 50 and the fan coil unit 30 are connected by a duct 71, and the fan coil unit 30 and the blowing device 60 are connected by a duct 72. Here, the shapes and sizes of both ends of the ducts 71 and 72 are the same. That is, the shape and size of the suction housing outlet 51 and the fan coil suction port 34 are the same, and the shape and size of the fan coil air outlet 35 and the blowing housing inlet 61 are the same.
Since the width of the air outlet 63 is larger than the width of the air outlet housing inlet 61, it is larger than the width of the fan coil air outlet 35. Therefore, the width of the turbulent flow region 24 generated by the hot air 41 blown from the outlet 63 is larger than the width of the turbulent flow region 24C. Moreover, since the height of the blower outlet 63 is smaller than the height of the blower housing inlet 61 and smaller than the height of the fan coil blower outlet 35, the blower outlet 63 can be arranged away from the base part 11 from the fan coil blower outlet 35. Furthermore, the height of the air outlet 63 can be made sufficiently small so that the area of the air outlet 63 can be made smaller than the area of the fan coil air outlet 35. In that case, the wind speed of the warm air 41 blown from the blower outlet 63 is larger than the wind speed of the warm air 41C blown from the fan coil blower outlet 35, and the length of the turbulent flow region 24 is larger than the length of the turbulent flow region 24C. it can.
Therefore, the turbulent flow is achieved by making the width of the outlet 63 larger than the width of the outlet casing inlet 61 and reducing the height of the outlet 63 so that the area of the outlet 63 is smaller than the area of the outlet casing inlet 61. The area of the region 24 can be made larger than the area of the turbulent region 24C.

吸込口53の幅は、吸込筐体出口51の幅より大きいのでファンコイル吸込口34の幅より大きい。従って、吸込口53に吸い込まれる温風41により生成される乱流領域23の幅は乱流領域23Cの幅より大きい。また吸込口53の高さは、吸込筐体出口51の高さより小さく、ファンコイル吸込口34の高さより小さいので、吸込口53をファンコイル吸込口34より基礎部11から離して配置できる。更に、吸込口53の高さを十分小さくして吸込口53の面積をファンコイル吸込口34の面積より小さくできる。その場合、吸込口53に吸い込まれる温風41の速度は、ファンコイル吸込口34に吸い込まれる温風41Cの速度より大きくなり、乱流領域23の長さを乱流領域23Cの長さより大きくできる。
従って、吸込口53の幅を吸込筐体出口51の幅より大きくし、吸込口53の高さを吸込口53の面積が吸込筐体出口51の面積より小さくなるように小さくすることにより乱流領域23の面積を乱流領域23Cの面積より大きくできる。
吸込口53と吹出口63の間の距離は、ファンコイル吸込口34とファンコイル吹出口35の間の距離より大きいので層流領域25の面積は層流領域25Cの面積より大きい。
従って、暖房装置100の乱流領域23と24と層流領域25の面積は、それぞれ、暖房装置160の乱流領域23Cと24Cと層流領域25Cの面積より大きいので、暖房装置100の暖房能力は暖房装置160の暖房能力より高い。
Since the width of the suction port 53 is larger than the width of the suction housing outlet 51, it is larger than the width of the fan coil suction port 34. Therefore, the width of the turbulent flow region 23 generated by the hot air 41 sucked into the suction port 53 is larger than the width of the turbulent flow region 23C. Further, since the height of the suction port 53 is smaller than the height of the suction housing outlet 51 and smaller than the height of the fan coil suction port 34, the suction port 53 can be arranged away from the base portion 11 from the fan coil suction port 34. Further, the height of the suction port 53 can be made sufficiently small so that the area of the suction port 53 can be made smaller than the area of the fan coil suction port 34. In that case, the speed of the warm air 41 sucked into the suction port 53 is larger than the speed of the warm air 41C sucked into the fan coil suction port 34, and the length of the turbulent flow region 23 can be made larger than the length of the turbulent flow region 23C. .
Therefore, the turbulent flow is achieved by making the width of the suction port 53 larger than the width of the suction housing outlet 51 and reducing the height of the suction port 53 so that the area of the suction port 53 is smaller than the area of the suction housing outlet 51. The area of the region 23 can be made larger than the area of the turbulent region 23C.
Since the distance between the suction port 53 and the air outlet 63 is larger than the distance between the fan coil air inlet 34 and the fan coil air outlet 35, the area of the laminar flow region 25 is larger than the area of the laminar flow region 25C.
Therefore, the areas of the turbulent flow regions 23 and 24 and the laminar flow region 25 of the heating device 100 are larger than the areas of the turbulent flow regions 23C and 24C and the laminar flow region 25C of the heating device 160, respectively. Is higher than the heating capacity of the heating device 160.

図4に吹出装置60の吹出口63にノズル65を連結した構造の吹出装置60Aの斜視図を示す。ノズル65は、ノズル入口64から流入した空気をノズル吹出口66に導く通路を形成する。ノズル入口64は吹出口63に連結される。ノズル65は、ノズル上面とノズル下面と両ノズル側面で構成され、そのノズル上面とノズル下面は互いに略平行であり、両ノズル側面の間隔はノズル吹出口66に向けて徐々に大きくなっている。
ノズル65は、ノズル上面とノズル下面が互いに略平行であり、空気の流れを吹き出す方向に整えるので、ノズル吹出口66から吹き出された温風が生成する乱流領域の長さを大きくする。またノズル吹出口66から吹き出された温風が生成する乱流領域の幅は乱流領域24の幅より少し大きい。つまり、ノズル吹出口66から吹き出された温風が生成する乱流領域の面積は乱流領域24の面積より大きい。従って、吹出装置60Aを備えた暖房装置の暖房能力は、吹出装置60を備えた暖房装置の暖房能力より高い。
FIG. 4 shows a perspective view of a blowing device 60 </ b> A having a structure in which a nozzle 65 is connected to a blowing port 63 of the blowing device 60. The nozzle 65 forms a passage that guides the air flowing from the nozzle inlet 64 to the nozzle outlet 66. The nozzle inlet 64 is connected to the outlet 63. The nozzle 65 includes a nozzle upper surface, a nozzle lower surface, and both nozzle side surfaces. The nozzle upper surface and the nozzle lower surface are substantially parallel to each other, and the distance between the nozzle side surfaces gradually increases toward the nozzle outlet 66.
The nozzle 65 has a nozzle upper surface and a nozzle lower surface that are substantially parallel to each other and is arranged in a direction in which the air flow is blown out. Therefore, the length of the turbulent flow region generated by the hot air blown from the nozzle blowout port 66 is increased. The width of the turbulent flow region generated by the hot air blown from the nozzle outlet 66 is slightly larger than the width of the turbulent flow region 24. That is, the area of the turbulent flow region generated by the warm air blown from the nozzle outlet 66 is larger than the area of the turbulent flow region 24. Therefore, the heating capacity of the heating device provided with the blowing device 60 </ b> A is higher than that of the heating device provided with the blowing device 60.

図5(A)と(B)に吸込装置50Bと本発明の暖房装置に備えられる第二吹出装置の第一実施形態である吹出装置60Bの斜視図を示す。図21に吸込装置50Bと吹出装置60Bを備える暖房装置100Aと建物10の床下の平面図を示す。暖房装置100Aの構成は吸込装置50の代わりに吸込装置50Bを配置し、吹出装置60の代わりに吹出装置60Bを配置し、ダクト71の代わりにダクト71Aを配置し、ダクト72の代わりにダクト72Aを配置した暖房装置100の構成と同様であり、暖房装置100Aの動作は暖房装置100の動作と同様である。
吸込装置50Bは直方体の構造の吸込筐体62Bとダクト等に連結するための部品(不図示)等で構成され、上面が床17に略並行になるように配置される。床下空間21から温風を吸込む吸込口53Bの形状は細長い略矩形であり、略矩形のダクトやファンコイル等に連結する吸込筐体入口51Bの形状は略矩形である。
吹出装置60Bは、直方体の構造の吹出筐体62Bとダクト等に連結するための部品(不図示)等で構成され、上面が床17に略並行になるように配置される。床下空間21に温風を吹き出す吹出口63Bの形状は細長い略矩形であり、略矩形のダクトやファンコイル等に連結する吹出筐体入口61Bの形状は略矩形である。
吹出口63Bの床17に略並行な長辺の長さは吹出筐体入口61Bの床17に略並行な辺の長さの二倍以上であり、吹出口63Bの短辺の長さは吹出筐体入口61Bの床17に略直交な辺の長さの二分の一以下である。
ダクト72Aの吹出装置60B側の端が本発明の通路出口に相当し、吸込筐体52Bとダクト71Aとファンコイル筐体31とダクト72Aを連結したものが本発明の通路形成体に相当し、吹出装置60Bが本発明の第二吹出装置に相当する。
5A and 5B are perspective views of a suction device 50B and a blowing device 60B that is a first embodiment of the second blowing device provided in the heating device of the present invention. FIG. 21 shows a plan view of the heating device 100A including the suction device 50B and the blowing device 60B and the floor under the building 10. The configuration of the heating device 100A includes a suction device 50B instead of the suction device 50, a blower device 60B instead of the blower device 60, a duct 71A instead of the duct 71, and a duct 72A instead of the duct 72. The operation of the heating device 100 </ b> A is the same as the operation of the heating device 100.
The suction device 50B is composed of a suction housing 62B having a rectangular parallelepiped structure and parts (not shown) for connecting to a duct or the like, and is arranged so that the upper surface thereof is substantially parallel to the floor 17. The shape of the suction port 53B for sucking warm air from the underfloor space 21 is an elongated rectangular shape, and the shape of the suction housing inlet 51B connected to a substantially rectangular duct, fan coil or the like is substantially rectangular.
The blow-out device 60B includes a blow-out housing 62B having a rectangular parallelepiped structure and parts (not shown) for connecting to a duct or the like, and is arranged so that the upper surface thereof is substantially parallel to the floor 17. The shape of the air outlet 63B that blows warm air into the underfloor space 21 is an elongated, substantially rectangular shape, and the shape of the air outlet housing inlet 61B that is connected to a substantially rectangular duct, fan coil, or the like is substantially rectangular.
The length of the long side substantially parallel to the floor 17 of the outlet 63B is more than twice the length of the side substantially parallel to the floor 17 of the outlet casing inlet 61B, and the length of the short side of the outlet 63B is the outlet. It is one half or less of the length of the side substantially orthogonal to the floor 17 of the housing entrance 61B.
The end of the duct 72A on the blowing device 60B side corresponds to the passage outlet of the present invention, and the connection of the suction housing 52B, the duct 71A, the fan coil housing 31, and the duct 72A corresponds to the passage forming body of the present invention. The blowing device 60B corresponds to the second blowing device of the present invention.

乱流領域の幅は温風の幅に略比例するので吹出口63Bから吹き出された温風が生成する乱流領域24Dの幅は、吹出筐体入口61Bと同一のサイズの温風吹出口から吹き出された温風が生成する乱流領域の幅より略二倍以上大きい。また、吹出口63Bの面積を吹出筐体入口61Bの面積より小さくすることができ、吹出口63Bの温風の速度を吹出筐体入口61Bの温風の速度より大きくすることができるので乱流領域24Dの長さを、吹出筐体入口61Bと同一のサイズの温風吹出口から吹き出された温風が生成する乱流領域の長さより大きくすることが可能である。つまり、吹出装置60Bは、乱流領域24Dの面積を吹出筐体入口61Bと同一のサイズの温風吹出口から吹き出された温風が生成する乱流領域の面積より大きくすることを可能にする。
従って、吹出装置60Bを備えた暖房装置の暖房能力を吹出装置60Bを備えない暖房装置の暖房能力より大きくすることができる。更に、吹出口63Bを吹出筐体入口61Bと同一のサイズの温風吹出口より基礎部11から離すことができるので熱損失を削減できる。
Since the width of the turbulent flow area is approximately proportional to the width of the hot air, the width of the turbulent flow area 24D generated by the hot air blown from the blower outlet 63B is blown from the hot air blowout outlet having the same size as the blowout housing inlet 61B. It is approximately twice or more larger than the width of the turbulent region where the generated warm air is generated. Moreover, the area of the blower outlet 63B can be made smaller than the area of the blower casing inlet 61B, and the speed of the warm air at the blower outlet 63B can be made larger than the speed of the hot air at the blower casing inlet 61B. The length of the region 24D can be made larger than the length of the turbulent flow region generated by the hot air blown from the hot air blowout port having the same size as the blowout housing inlet 61B. That is, the blowing device 60B makes it possible to make the area of the turbulent flow region 24D larger than the area of the turbulent flow region generated by the hot air blown from the hot air blowing port having the same size as the blowing housing inlet 61B.
Therefore, the heating capability of the heating device provided with the blowing device 60B can be made larger than the heating capability of the heating device not provided with the blowing device 60B. Furthermore, since the blower outlet 63B can be separated from the base part 11 from the hot air outlet having the same size as the blower casing inlet 61B, heat loss can be reduced.

図6に本発明の暖房装置に備えられる第二吹出装置の第二実施形態である吹出装置60Cの斜視図を示す。吹出装置60Cは、直方体の構造の吹出筐体62Cとダクト等に連結するための部品(不図示)等で構成され、上面が床17に略並行になるように配置される。吹出装置60Cが備えられる暖房装置は、空気の通路の形状を除いて暖房装置100Aと同様であるので、その説明は省く。
床下空間21に温風を吹き出す吹出口63Cの形状は細長い略矩形であり、略円形のダクト等に連結する吹出筐体入口61Cの形状は略円形である。吹出口63Cの床17に略並行な長辺の長さは吹出筐体入口61Cの直径の二倍以上であり、吹出口63Cの短辺の長さは吹出筐体入口61Cの直径の三分の一以下である。
FIG. 6 shows a perspective view of a blowing device 60C that is a second embodiment of the second blowing device provided in the heating device of the present invention. The blowing device 60 </ b> C includes a blowing housing 62 </ b> C having a rectangular parallelepiped structure and parts (not shown) for connecting to a duct and the like, and is arranged so that the upper surface is substantially parallel to the floor 17. The heating device provided with the blow-out device 60C is the same as the heating device 100A except for the shape of the air passage, and a description thereof will be omitted.
The shape of the air outlet 63C that blows warm air into the underfloor space 21 is an elongated and substantially rectangular shape, and the shape of the air outlet housing inlet 61C that is connected to a substantially circular duct or the like is substantially circular. The length of the long side substantially parallel to the floor 17 of the outlet 63C is at least twice the diameter of the outlet casing inlet 61C, and the length of the short side of the outlet 63C is a third of the diameter of the outlet casing inlet 61C. Or less.

乱流領域の幅は温風の幅に略比例するので吹出口63Cから吹き出された温風が生成する乱流領域の幅は、吹出筐体入口61Cと同一のサイズの温風吹出口から吹き出された温風が生成する乱流領域の幅より略二倍以上大きい。また、吹出口63Cの面積を吹出筐体入口61Cの面積より小さくすることができ、吹出口63Cの温風の速度を吹出筐体入口61Cの温風の速度より大きくすることができるので吹出口63Cから吹き出された温風が生成する乱流領域の長さを、吹出筐体入口61Cと同一のサイズの温風吹出口から吹き出された温風が生成する乱流領域の長さより大きくすることが可能である。つまり、吹出装置60Cは、吹出口63Cから吹き出された温風が生成する乱流領域の面積を吹出筐体入口61Cと同一のサイズの温風吹出口から吹き出された温風が生成する乱流領域の面積より大きくすることを可能にする。
従って、吹出装置60Cを備えた暖房装置の暖房能力を吹出装置60Cを備えない暖房装置の暖房能力より大きくすることができる。更に、吹出口63Cを吹出筐体入口61Cと同一のサイズの温風吹出口より基礎部11から離すことができるので熱損失を削減できる。
Since the width of the turbulent flow area is substantially proportional to the width of the hot air, the width of the turbulent flow area generated by the hot air blown from the outlet 63C is blown from the hot air outlet having the same size as the outlet casing inlet 61C. It is approximately twice or more larger than the width of the turbulent flow region generated by hot air. Further, the area of the outlet 63C can be made smaller than the area of the outlet casing inlet 61C, and the speed of the warm air at the outlet 63C can be made larger than the speed of the hot air at the outlet casing 61C. The length of the turbulent flow region generated by the hot air blown out from 63C may be made larger than the length of the turbulent flow region generated by the hot air blown out from the hot air blowout port having the same size as the blowing housing inlet 61C. Is possible. In other words, the blower device 60C has a turbulent flow area generated by the hot air blown from the hot air blowout outlet having the same size as the blowout housing inlet 61C in the area of the turbulent flow area generated by the hot air blown from the blowout outlet 63C. It is possible to make it larger than the area.
Therefore, the heating capability of the heating device provided with the blowing device 60C can be made larger than the heating capability of the heating device not provided with the blowing device 60C. Furthermore, since the air outlet 63C can be separated from the base portion 11 from the hot air outlet having the same size as the air outlet 61C, heat loss can be reduced.

図7に本発明の暖房装置の第二実施形態である暖房装置110と建物10の床下の平面図を模式的に示す。図8は図7のA−Aの断面を模式的に示す。
暖房装置110は暖房装置100に仕切り部材81を追加したものである。仕切り部材81は平板であり、吹出口63の下に、床17に並行に、床17との間に空気の流路を形成するように配置される。流路領域28は床17と仕切り部材81の間の領域であり、流路領域28の側面は開いている。
吹出口63から流路領域28に吹き出された温風は、仕切り部材81により下方への流れは制限され、流路領域28の側面から流路領域28の外部に流れる。流路領域28の外部に流れた温風は、流れの方向を気圧の低い吸込装置50の方向に徐々に変えながら流れ、吸込装置50に吸い込まれる。仕切り部材81は流路領域28内の乱流を強くし、乱流の領域を拡大する。つまり、仕切り部材81は乱流領域24Aの面積を暖房装置100の乱流領域24の面積より大きくする。また暖房装置110の乱流領域23Aと層流領域25Aの面積は暖房装置100の乱流領域23と層流領域25の面積と略等しい。従って、暖房装置110の暖房能力は暖房装置100の暖房能力より高い。つまり、仕切り部材81は暖房能力を高める効果を果たす。
更に、吹出口63から吹き出された温風は、仕切り部材81により下方への流れは抑制されるので、その温風と基礎部11との接触が抑制される。
仕切り部材81の形状が乱流領域24Aの形状と略同一の場合、流路領域28の外部に生成される乱流は弱いので温風は基礎部11と接触せず、熱損失が生じない。従って、仕切り部材81は暖房装置110の熱損失を減少させ、基礎部11の上の断熱材を不要にする。仕切り部材81の形状は乱流領域24Aの形状と略同一が好ましい。
連結した吸込筐体52とダクト71とファンコイル筐体31とダクト72と吹出筐体62が本発明の通路形成体に相当し、吹出口63が本発明の通路出口に相当する。
FIG. 7 schematically shows a plan view of the heating apparatus 110 according to the second embodiment of the present invention and the floor under the building 10. FIG. 8 schematically shows a cross section taken along line AA of FIG.
The heating device 110 is obtained by adding a partition member 81 to the heating device 100. The partition member 81 is a flat plate, and is arranged below the air outlet 63 so as to form an air flow path between the partition 17 and the floor 17. The channel region 28 is a region between the floor 17 and the partition member 81, and the side surface of the channel region 28 is open.
The warm air blown from the outlet 63 to the flow channel region 28 is restricted from flowing downward by the partition member 81, and flows from the side surface of the flow channel region 28 to the outside of the flow channel region 28. The warm air that has flowed to the outside of the flow path region 28 flows while gradually changing the flow direction toward the suction device 50 having a low atmospheric pressure, and is sucked into the suction device 50. The partition member 81 strengthens the turbulent flow in the flow channel region 28 and enlarges the region of the turbulent flow. That is, the partition member 81 makes the area of the turbulent flow region 24 </ b> A larger than the area of the turbulent flow region 24 of the heating device 100. Further, the areas of the turbulent flow region 23A and the laminar flow region 25A of the heating device 110 are substantially equal to the areas of the turbulent flow region 23 and the laminar flow region 25 of the heating device 100. Therefore, the heating capability of the heating device 110 is higher than the heating capability of the heating device 100. That is, the partition member 81 has the effect of increasing the heating capacity.
Further, since the warm air blown out from the outlet 63 is prevented from flowing downward by the partition member 81, the contact between the warm air and the base portion 11 is suppressed.
When the shape of the partition member 81 is substantially the same as the shape of the turbulent flow region 24A, since the turbulent flow generated outside the flow channel region 28 is weak, the warm air does not contact the base portion 11 and heat loss does not occur. Therefore, the partition member 81 reduces the heat loss of the heating device 110 and eliminates the need for a heat insulating material on the base portion 11. The shape of the partition member 81 is preferably substantially the same as the shape of the turbulent flow region 24A.
The connected suction housing 52, duct 71, fan coil housing 31, duct 72, and blowing housing 62 correspond to the passage forming body of the present invention, and the air outlet 63 corresponds to the passage outlet of the present invention.

図9に本発明の暖房装置の第三実施形態である暖房装置120と建物10の床下の平面図を模式的に示す。図10に図9のA−Aの断面を模式的に示す。
暖房装置120は、暖房装置160に仕切り部材82と83を追加したものである。図11(A)に仕切り部材82の斜視図を示す。仕切り部材82は底板82Aと傾斜した傾斜板82Bと82Cと82Dで構成される。仕切り部材82は底板82Aがファンコイル吸込口34の下に位置するように配置される。
流路領域29は床17と仕切り部材82の間の領域であり、流路領域29の側面は開いている。流路領域29内の空気はファンコイル吸込口34の方向に流れ、乱流を生成し、ファンコイル吸込口34に吸い込まれる。流路領域29の外側の空気は流路領域29の側面を通り、ファンコイル吸込口34に吸い込まれる。流路領域29の側面は床17と仕切り部材82の端の隙間であり、その全側面の合計の面積が充分小さい場合、流路領域29の側面を通過する温風の速度は大きく、流路領域29の側面付近に乱流が生成される。つまり、仕切り部材82は、流路領域29内の乱流を強くし、乱流が生成される領域を拡大し、乱流領域23Bの面積を暖房装置160の乱流領域23Cの面積より大きくする。更に、仕切り部材82は温風と基礎部11との接触を抑制する。
FIG. 9 schematically shows a plan view of the heating device 120 according to the third embodiment of the heating device of the present invention and the floor under the building 10. FIG. 10 schematically shows a cross section taken along line AA of FIG.
The heating device 120 is obtained by adding partition members 82 and 83 to the heating device 160. FIG. 11A shows a perspective view of the partition member 82. The partition member 82 includes a bottom plate 82A and inclined plates 82B, 82C, and 82D that are inclined. The partition member 82 is disposed such that the bottom plate 82A is positioned below the fan coil suction port 34.
The channel region 29 is a region between the floor 17 and the partition member 82, and the side surface of the channel region 29 is open. The air in the flow path region 29 flows in the direction of the fan coil suction port 34, generates a turbulent flow, and is sucked into the fan coil suction port 34. Air outside the flow channel region 29 passes through the side surface of the flow channel region 29 and is sucked into the fan coil suction port 34. The side surface of the flow channel region 29 is a gap between the floor 17 and the end of the partition member 82. When the total area of all the side surfaces is sufficiently small, the speed of the hot air passing through the side surface of the flow channel region 29 is large. Turbulence is generated near the side surface of the region 29. That is, the partition member 82 strengthens the turbulent flow in the flow path region 29, expands the region where the turbulent flow is generated, and makes the area of the turbulent flow region 23B larger than the area of the turbulent flow region 23C of the heating device 160. . Further, the partition member 82 suppresses contact between the warm air and the base portion 11.

図11(B)に仕切り部材83の斜視図を示す。仕切り部材83は底板83Aと傾斜した傾斜板83Bと83Cと83Dで構成される。仕切り部材83は底板83Aがファンコイル吹出口35の下に位置するように配置される。
流路領域28Aは床17と仕切り部材83の間の領域であり、流路領域28Aの側面は開いている。ファンコイル吹出口35から流路領域28Aに吹き出された温風は、仕切り部材83により、床17の方向に変更され、流路領域28Aの側面を通り、流路領域28Aの外部に流れる。流路領域28Aの側面は床17と仕切り部材83の端の隙間であり、その全側面の合計の面積が充分小さい場合、流路領域28Aの側面を通過する温風の速度は大きく、流路領域28Aの側面付近に乱流が生成される。つまり、仕切り部材83は、流路領域28A内の乱流を強くし、乱流が生成される領域を拡大し、乱流領域24Bの面積を暖房装置160の乱流領域24Cの面積より大きくする。更に、仕切り部材83は温風と基礎部11との接触を抑制する。
従って、暖房装置120は暖房装置160より暖房能力が高い。
ファンコイル吸込口34とファンコイル吹出口35とファンコイル筐体31がそれぞれ本発明の吸込口と通路出口と通路形成体に相当する。なお、仕切り部材81、82、83の材料は金属でも木材でも他の材料でも良い。
FIG. 11B shows a perspective view of the partition member 83. The partition member 83 includes a bottom plate 83A and inclined plates 83B, 83C, and 83D that are inclined. The partition member 83 is disposed such that the bottom plate 83A is positioned below the fan coil blower outlet 35.
The channel region 28A is a region between the floor 17 and the partition member 83, and the side surface of the channel region 28A is open. The warm air blown out from the fan coil blower outlet 35 to the flow channel region 28A is changed by the partition member 83 in the direction of the floor 17, flows through the side surface of the flow channel region 28A, and flows outside the flow channel region 28A. The side surface of the flow channel region 28A is a gap between the floor 17 and the end of the partition member 83. When the total area of all the side surfaces is sufficiently small, the speed of the hot air passing through the side surface of the flow channel region 28A is large. Turbulence is generated near the side surface of the region 28A. That is, the partition member 83 strengthens the turbulent flow in the flow path region 28A, expands the region where the turbulent flow is generated, and makes the area of the turbulent flow region 24B larger than the area of the turbulent flow region 24C of the heating device 160. . Further, the partition member 83 suppresses contact between the warm air and the base portion 11.
Therefore, the heating device 120 has a higher heating capacity than the heating device 160.
The fan coil suction port 34, the fan coil blowout port 35, and the fan coil housing 31 correspond to the suction port, the passage outlet, and the passage formation body of the present invention, respectively. The material of the partition members 81, 82, 83 may be metal, wood, or other materials.

図12に本発明の暖房装置の第四実施形態である暖房装置130と建物10の床下の平面図を模式的に示す。図13に図12のA−Aの断面を模式的に示す。
暖房装置130は暖房装置110に流路上面部材84を追加したものである。流路上面部材84は平板であり、仕切り部材81と略同一の形状とサイズであり、床17と吹出口63の間に床17に並行に配置される。流路領域28Bは流路上面部材84と仕切り部材81の間の領域であり、流路領域28Bの側面は開いている。温風は吹出口63から流路領域28Bに吹き出される。
暖房装置110において、吹出口63から吹き出された温風は流路領域28を流れるが、流路領域28の上面は大引き14と根太15と床板16で構成され、凹凸があるので、温風の流れが抑制さる。一方、暖房装置130において、吹出口63から吹き出された温風は流路領域28Bを流れ、流路領域28Bの上面は流路上面部材84であり、平面であるので、流路領域28B内の温風の速度は、暖房装置110の場合に比べて、大きくなる。従って、暖房装置130の乱流領域(不図示)の面積は暖房装置110の乱流領域24Aの面積より大きい。
FIG. 12 schematically shows a plan view of the heating apparatus 130 according to the fourth embodiment of the present invention and the floor under the building 10. FIG. 13 schematically shows a cross section taken along line AA of FIG.
The heating device 130 is obtained by adding a flow path upper surface member 84 to the heating device 110. The flow path upper surface member 84 is a flat plate, has substantially the same shape and size as the partition member 81, and is disposed in parallel with the floor 17 between the floor 17 and the outlet 63. The channel region 28B is a region between the channel upper surface member 84 and the partition member 81, and the side surface of the channel region 28B is open. The warm air is blown out from the outlet 63 to the flow path region 28B.
In the heating device 110, the warm air blown from the outlet 63 flows through the flow path region 28, but the upper surface of the flow path region 28 is composed of the large pull 14, the joists 15, and the floor board 16, and has warm and undulated hot air. The flow of is suppressed. On the other hand, in the heating device 130, the warm air blown from the outlet 63 flows through the flow channel region 28B, and the upper surface of the flow channel region 28B is the flow channel upper surface member 84, which is a flat surface. The speed of the warm air is higher than that of the heating device 110. Therefore, the area of the turbulent region (not shown) of the heating device 130 is larger than the area of the turbulent region 24A of the heating device 110.

床17と流路上面部材84との間に空気の流路は必要ではないので、流路上面部材84を大引き14に密着して取り付けても良い。流路上面部材84の上の床17を温風で温めるために、流路上面部材84は高熱伝導性の金属板や金属箔が好ましい。流路上面部材84として木材のような熱伝導性が低い部材を使用する場合、流路上面部材84に空気を流通させる複数の孔を開けて流路領域28B内に流れる温風と床17との熱伝達率を高くするのが好ましい。
流路上面部材84は、吹出口63から吹き出された温風を直接床板16に接触させず、また床17の凹凸を回避し高速に温風を流すので、温められる床17の面積を拡大し、床17の温度をより均一にする。従って、流路上面部材84を備える暖房装置130は、暖房装置110より高い温度の温風をより高速に吹き出すことができ、暖房装置130は大容量の暖房が必要とされる建物に好適である。
Since no air flow path is required between the floor 17 and the flow path upper surface member 84, the flow path upper surface member 84 may be attached in close contact with the large pull 14. In order to warm the floor 17 on the channel upper surface member 84 with warm air, the channel upper surface member 84 is preferably a highly heat conductive metal plate or metal foil. When a member having low thermal conductivity such as wood is used as the flow path upper surface member 84, the warm air flowing through the flow path region 28B by opening a plurality of holes through which air flows in the flow path upper surface member 84 and the floor 17 It is preferable to increase the heat transfer coefficient.
The flow path upper surface member 84 does not directly contact the hot air blown from the blower outlet 63 with the floor plate 16, and avoids the unevenness of the floor 17 to flow the hot air at a high speed, thereby increasing the area of the heated floor 17. The temperature of the floor 17 is made more uniform. Therefore, the heating device 130 including the flow path upper surface member 84 can blow out hot air having a temperature higher than that of the heating device 110 at a higher speed, and the heating device 130 is suitable for a building that requires large-capacity heating. .

図14に本発明の暖房装置の第五実施形態である暖房装置140と建物10の床下の平面図を模式的に示す。図15に図14のA−Aの断面を模式的に示す。
暖房装置140は暖房装置110にガイド85と85Aと85Bを追加したものである。流路領域28Cは床17と仕切り部材81の間の領域であり、流路領域28Cの側面は開いている。ガイド85と85Aと85Bは、吹出口63から吹き出された温風が、流路領域28C内をスムーズに流れ、流路領域28Cの側面から流路領域28Cの外部に流出するように、仕切り部材81の上に配置される。ガイド85と85Aと85Bは温風の速度を大きくするので、乱流領域の面積を大きくし、暖房能力を大きくする。
側壁12に沿って配置されたガイド85は温風と側壁12との接触を抑制する。なお、温風を放熱が大きい側壁に沿って流し、室内の温度をより均一にするようにガイドを配置することも可能である。また、曲面の部材で構成されたガイドは温風の速度を大きくするので好ましい。ガイド85と85Aと85Bの材料は金属でも木材でも他の材料でも良い。
FIG. 14 is a plan view schematically showing a heating device 140 according to the fifth embodiment of the heating device of the present invention and the floor under the building 10. FIG. 15 schematically shows a cross section taken along line AA of FIG.
The heating device 140 is obtained by adding guides 85, 85A, and 85B to the heating device 110. The channel region 28C is a region between the floor 17 and the partition member 81, and the side surface of the channel region 28C is open. The guides 85, 85A, and 85B are partition members so that warm air blown from the outlet 63 flows smoothly in the flow channel region 28C and flows out of the flow channel region 28C from the side surface of the flow channel region 28C. 81. Since the guides 85, 85A, and 85B increase the speed of the warm air, the area of the turbulent flow area is increased and the heating capacity is increased.
The guide 85 arranged along the side wall 12 suppresses contact between the warm air and the side wall 12. In addition, it is also possible to arrange | position a guide so that warm air may be flowed along the side wall with large heat dissipation, and the indoor temperature may be made more uniform. Further, a guide made of a curved member is preferable because it increases the speed of hot air. The material of the guides 85, 85A and 85B may be metal, wood or other materials.

図16に本発明の暖房装置の第六実施形態である暖房装置150と建物10の床下の平面図を模式的に示す。図17に図16のA−Aの断面を模式的に示す。
暖房装置150は暖房装置130にガイド86と86Aと86Bを追加したものである。流路領域28Dは流路上面部材84と仕切り部材81の間の領域であり、流路領域28Dの側面は開いている。
ガイド86と86Aと86Bは、吹出口63から吹き出された温風が、流路領域28D内をスムーズに流れ、流路領域28Dの側面から流路領域28Dの外部に流出するように、仕切り部材81と流路上面部材84の間に配置される。ガイド86と86Aと86Bは温風の速度を大きくするので、乱流領域の面積を大きくし、暖房能力を大きくする。
側壁12に沿って配置されたガイド86は温風と側壁12との接触を抑制する。なお、温風を放熱が大きい側壁に沿って流し、室内の温度をより均一にするようにガイドを配置することも可能である。また、曲面の部材で構成されたガイドは温風の速度を大きくするので好ましい。ガイド86と86Aと86Bの材料は金属でも木材でも他の材料でも良い。
FIG. 16 schematically shows a plan view of the heating apparatus 150 according to the sixth embodiment of the present invention and the floor under the building 10. FIG. 17 schematically shows a cross section taken along line AA of FIG.
The heating device 150 is obtained by adding guides 86, 86A, and 86B to the heating device 130. The channel region 28D is a region between the channel upper surface member 84 and the partition member 81, and the side surface of the channel region 28D is open.
The guides 86, 86A, and 86B are partition members so that the warm air blown from the outlet 63 flows smoothly in the flow channel region 28D and flows out of the flow channel region 28D from the side surface of the flow channel region 28D. 81 and the flow path upper surface member 84. Since the guides 86, 86A and 86B increase the speed of the hot air, the area of the turbulent flow area is increased and the heating capacity is increased.
The guide 86 disposed along the side wall 12 suppresses contact between the warm air and the side wall 12. In addition, it is also possible to arrange | position a guide so that warm air may be flowed along the side wall with large heat dissipation, and the indoor temperature may be made more uniform. Further, a guide made of a curved member is preferable because it increases the speed of hot air. The material of the guides 86, 86A and 86B may be metal, wood or other materials.

以上、本発明の暖房装置の実施形態を述べたが本発明はこれらに限られるものではない。例えば、暖房装置100において、ダクト72または71を分岐し、複数の吹出装置または吸込装置を配置しても良い。 As mentioned above, although embodiment of the heating apparatus of this invention was described, this invention is not limited to these. For example, in the heating device 100, the duct 72 or 71 may be branched and a plurality of blowing devices or suction devices may be arranged.

10 建物、11 基礎部、12 側壁、13 断熱材、14 大引き、15 根太、16 床板、17 床
21 床下空間、22 居住空間、23 24 乱流領域、25 層流領域、26 自然対流領域、28 29 流路領域
30 ファンコイル、31 ファンコイル筐体、32 送風機、 33 熱交換器、34 ファンコイル吸込口、35 ファンコイル吹出口、36 空気通路、37 ポンプ、38 熱媒体循環路、39 ボイラー
41 温風、42 層流、43 乱流、44 自然対流
50 吸込装置、51 吸込筐体出口、52 吸込筐体、53 吸込口
60 吹出装置、61 吹出筐体入口、62 吹出筐体、63 吹出口、64 ノズル入口、65 ノズル、66 ノズル吹出口
71 72 ダクト
81〜83 仕切り部材、84 流路上面部材、85 86 ガイド
100〜160 暖房装置
10 Buildings, 11 Foundations, 12 Side Walls, 13 Thermal Insulation, 14 Large Pulls, 15 joists, 16 Floorboards, 17 Floors
21 underfloor space, 22 living space, 23 24 turbulent flow region, 25 laminar flow region, 26 natural convection region, 28 29 flow channel region 30 fan coil, 31 fan coil housing, 32 blower, 33 heat exchanger, 34 fan coil Suction port, 35 Fan coil outlet, 36 Air passage, 37 Pump, 38 Heat medium circulation path, 39 Boiler 41 Hot air, 42 Laminar flow, 43 Turbulence, 44 Natural convection 50 Suction device, 51 Suction housing outlet, 52 Suction housing, 53 Suction port 60 Blowout device, 61 Blowout housing inlet, 62 Blowout housing, 63 Blowout port, 64 Nozzle inlet, 65 Nozzle, 66 Nozzle blowout port 71 72 Duct 81-83 Partition member, 84 Flow path upper surface Member, 85 86 guide 100-160 heating device

Claims (6)

建物の床の下の床下空間に配置された吸込口から吸い込んだ空気を、一辺が前記床に略並行な略矩形の通路出口に導く空気の通路を形成する通路形成体と、
前記吸込口から前記通路出口に向けて空気を送風する送風機と、
前記通路形成体内の空気を加熱する加熱器と、
前記通路出口に連結する吹出筐体入口から流入した空気を、前記床下空間に空気を吹き出す吹出口に導く空気の通路を形成する吹出筐体を含む第一吹出装置を備え、
前記吹出口は長辺が前記床に略並行な細長い略矩形の形状であり、
前記吹出筐体は上面と下面と両側面で空気の通路を形成し、
前記長辺の長さは前記一辺の長さより大きく、
前記吹出口の短辺の長さは前記一辺に直交する辺の長さより小さく、
前記上面と前記下面の間隔は、前記吹出口に向かって徐々に小さくなり、
前記両側面の間隔は、前記吹出口に向かって徐々に大きくなることを特徴とする暖房装置。
A passage forming body that forms air passages for guiding air sucked from a suction port arranged in a subfloor space under the floor of a building to a substantially rectangular passage outlet having one side substantially parallel to the floor;
A blower that blows air from the suction port toward the passage outlet;
A heater for heating air in the passage-forming body;
A first blower device including a blowout housing that forms an air passage that guides air flowing from a blowout housing inlet connected to the passage outlet to a blowout port that blows air into the underfloor space;
The air outlet has an elongated rectangular shape whose long side is substantially parallel to the floor,
The blowout housing forms an air passage on the upper surface, the lower surface and both side surfaces,
The length of the long side is larger than the length of the one side,
The length of the short side of the outlet is smaller than the length of the side orthogonal to the one side,
The distance between the upper surface and the lower surface gradually decreases toward the air outlet,
The heating apparatus according to claim 1, wherein a distance between the side surfaces gradually increases toward the outlet.
前記吹出口に連結するノズル入口から流入した空気を、前記床下空間に空気を吹き出す細長い略矩形のノズル吹出口に導く空気の通路を形成するノズルを更に備え、
前記ノズルはノズル上面とノズル下面と両ノズル側面で空気の通路を形成し、
前記ノズル上面と前記ノズル下面は互いに略平行であることを特徴とする請求項1に記載の暖房装置。
A nozzle that further forms an air passage that guides air that has flowed from a nozzle inlet connected to the air outlet to an elongated, substantially rectangular nozzle air outlet that blows air into the underfloor space;
The nozzle forms an air passage on the nozzle upper surface, the nozzle lower surface, and both nozzle side surfaces,
The heating apparatus according to claim 1, wherein the nozzle upper surface and the nozzle lower surface are substantially parallel to each other.
建物の床の下の床下空間に配置された吸込口から吸い込んだ空気を、一辺が前記床に略並行な略矩形の、または略円形の通路出口に導く空気の通路を形成する通路形成体と、
前記吸込口から前記通路出口に向けて空気を送風する送風機と、
前記通路形成体内の空気を加熱する加熱器と、
前記通路出口に連結する吹出筐体入口から流入した空気を、前記床下空間に空気を吹き出す吹出口に導く空気の通路を形成する吹出筐体を含む第二吹出装置を備え、
前記吹出口は長辺が前記床に略並行な細長い略矩形の形状であり、
前記通路出口が略矩形の場合、
前記吹出口の長辺の長さは前記一辺の長さの二倍以上であり、
前記吹出口の短辺の長さは前記一辺に直交する辺の長さの二分の一以下であり、
前記通路出口が略円形の場合、
前記吹出口の長辺の長さは前記通路出口の直径の二倍以上であり、
前記吹出口の短辺の長さは前記通路出口の直径の三分の一以下であることを特徴とする暖房装置。
A passage forming body that forms air passages for guiding air sucked from a suction port disposed in an underfloor space under the floor of a building to a substantially rectangular or substantially circular passage outlet having one side substantially parallel to the floor; ,
A blower that blows air from the suction port toward the passage outlet;
A heater for heating air in the passage-forming body;
A second blow-out device including a blow-out case that forms a passage for air that guides air flowing from a blow-out case inlet connected to the passage outlet to a blow-out port that blows air into the underfloor space;
The air outlet has an elongated rectangular shape whose long side is substantially parallel to the floor,
When the passage exit is substantially rectangular,
The length of the long side of the air outlet is at least twice the length of the one side,
The length of the short side of the outlet is less than or equal to one half of the length of the side orthogonal to the one side,
When the passage exit is substantially circular,
The length of the long side of the outlet is at least twice the diameter of the passage outlet,
The length of the short side of the said blower outlet is 1/3 or less of the diameter of the said channel | path exit, The heating apparatus characterized by the above-mentioned.
建物の床の下の床下空間に前記床との間に空気の流路を形成するように配置された仕切り部材と、
前記床下空間に配置された吸込口から吸い込んだ空気を、通路出口に導くと共に前記通路出口から前記床と前記仕切り部材の間に吹き出すように空気の通路を形成する通路形成体と、
前記吸込口から前記通路出口に向けて空気を送風する送風機と、
前記通路形成体内の空気を加熱する加熱器を備えることを特徴とする暖房装置。
A partition member arranged to form an air flow path between the floor and the floor under the floor of the building;
A passage forming body that guides air sucked from a suction port arranged in the underfloor space to a passage outlet and forms an air passage so as to blow out between the floor and the partition member from the passage outlet;
A blower that blows air from the suction port toward the passage outlet;
A heating apparatus comprising a heater for heating air in the passage forming body.
建物の床の直下に配置された流路上面部材と、
前記流路上面部材の下方に、前記流路上面部材との間に空気の流路を形成するように配置された仕切り部材と、
前記床の下の床下空間に配置された吸込口から吸い込んだ空気を、通路出口に導くと共に前記通路出口から前記流路上面部材と前記仕切り部材の間に吹き出すように空気の通路を形成する通路形成体と、
前記吸込口から前記通路出口に向けて空気を送風する送風機と、
前記通路形成体内の空気を加熱する加熱器を備えることを特徴とする暖房装置。
A channel upper surface member arranged directly under the floor of the building;
A partition member disposed below the flow path upper surface member so as to form an air flow path with the flow path upper surface member;
A passage that forms air passages so that air sucked from a suction port disposed in the underfloor space under the floor is guided to a passage outlet and is blown out from the passage outlet between the flow path upper surface member and the partition member. A formed body;
A blower that blows air from the suction port toward the passage outlet;
A heating apparatus comprising a heater for heating air in the passage forming body.
前記通路出口から吹き出された空気の流れの方向を所定の方向に導くように、前記仕切り部材の上に配置された単数または複数のガイドを備えることを特徴とする請求項4または5に記載の暖房装置。 6. The guide according to claim 4, further comprising one or a plurality of guides disposed on the partition member so as to guide a flow direction of the air blown out from the passage outlet in a predetermined direction. Heating device.
JP2010144482A 2010-06-25 2010-06-25 Heating system Expired - Fee Related JP4759672B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010144482A JP4759672B1 (en) 2010-06-25 2010-06-25 Heating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010144482A JP4759672B1 (en) 2010-06-25 2010-06-25 Heating system

Publications (2)

Publication Number Publication Date
JP4759672B1 true JP4759672B1 (en) 2011-08-31
JP2012007816A JP2012007816A (en) 2012-01-12

Family

ID=44597185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010144482A Expired - Fee Related JP4759672B1 (en) 2010-06-25 2010-06-25 Heating system

Country Status (1)

Country Link
JP (1) JP4759672B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6630526B2 (en) * 2015-09-30 2020-01-15 大和ハウス工業株式会社 Air conditioning system
JP2018096585A (en) * 2016-12-12 2018-06-21 菊川工業株式会社 Radiation type air conditioner

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53105850A (en) * 1977-02-26 1978-09-14 Kato Kazuyoshi Method of heating room
JP2001132986A (en) * 1999-11-04 2001-05-18 Sekisui Chem Co Ltd Solar energy-utilizing heating system
JP3555109B2 (en) * 2000-04-26 2004-08-18 株式会社マイルドホーム Hot air floor heating system
JP4272466B2 (en) * 2003-05-22 2009-06-03 積水ハウス株式会社 Underfloor heat storage structure
JP2007078324A (en) * 2005-09-16 2007-03-29 Sekisui House Ltd Air conditioning system of building

Also Published As

Publication number Publication date
JP2012007816A (en) 2012-01-12

Similar Documents

Publication Publication Date Title
US6213867B1 (en) Venturi type air distribution system
JPH01300135A (en) Ventilation and circulating type air cooling and heating facility
JP4759672B1 (en) Heating system
CN103683050A (en) Sound-insulation cooling device for indoor transformer/electric reactor
US20110083384A1 (en) Changing the temperature of a thermal load
EP1923643A2 (en) A building system
JP4751119B2 (en) Air conditioner
JP3562527B1 (en) Geothermal air conditioning system
KR100803376B1 (en) Heat exchange device
JP2004020047A (en) Air conditioner
JP2005127536A (en) Underfloor heat storage structure
JP2002277034A (en) Air conditioner
JP3927090B2 (en) Condensation prevention device in the building
KR20100090147A (en) Heater that provides comportable heating
JP5705015B2 (en) Air conditioning system and building
JP4933748B2 (en) Solar system
JP2023150361A (en) Radiation/convection air conditioning system
KR100814116B1 (en) Double floor structure
JP3062718B2 (en) Air conditioner and air conditioner method
JP2019100179A (en) Radiation heat utilization building
JP3138278U (en) CO2 refrigerant heat pump type water heater cooling system using exhaust air.
KR101319067B1 (en) Device for Supplying Air for Building Ventilation
JP2006017414A (en) Air conditioner
JP3909405B2 (en) Heating system
JP2021042628A (en) Air conditioning system for buildings

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110331

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees