JP5369260B2 - Air heat exchange system and air heat exchanger used - Google Patents

Air heat exchange system and air heat exchanger used Download PDF

Info

Publication number
JP5369260B2
JP5369260B2 JP2011236008A JP2011236008A JP5369260B2 JP 5369260 B2 JP5369260 B2 JP 5369260B2 JP 2011236008 A JP2011236008 A JP 2011236008A JP 2011236008 A JP2011236008 A JP 2011236008A JP 5369260 B2 JP5369260 B2 JP 5369260B2
Authority
JP
Japan
Prior art keywords
air
circuit
heat exchanger
air heat
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011236008A
Other languages
Japanese (ja)
Other versions
JP2013092330A (en
Inventor
高光 櫻庭
奉昭 井浦
和彦 富田
博康 白土
秀夫 保科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido Research Organization
Original Assignee
Hokkaido Research Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido Research Organization filed Critical Hokkaido Research Organization
Priority to JP2011236008A priority Critical patent/JP5369260B2/en
Publication of JP2013092330A publication Critical patent/JP2013092330A/en
Application granted granted Critical
Publication of JP5369260B2 publication Critical patent/JP5369260B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an in-room air conditioning system for circulating hot and chilled water to a radiation panel heater in which a humidity control system in a room is reasonably integrated. <P>SOLUTION: In the air conditioning system of a hot and chilled water circulation type where a heat radiation circuit 7 is pulled out from a water heat exchange unit 6C and a radiation panel heater 7A is disposed, a hot and chilled water circulation circuit 6 for an air heat exchanger 1 is branched from the vicinity of the water heat exchange unit 6C of the heat radiation circuit 7. The hot and chilled water circulation circuit 6 makes the return flow of the hot and chilled water merged with the heat radiation circuit 7 via the air heat exchanger 1 and makes the return flow return to the water heat exchange unit. In the air heat exchanger 1, an air suction circuit 3, a supply circuit 4, and a drain circuit 8 are continuously arranged. A temperature and humidity in a room and a temperature of circulation water is detected by a detection circuit 5 to control the operation of the air conditioning system. <P>COPYRIGHT: (C)2013,JPO&amp;INPIT

Description

本発明は、冷温水循環による室内輻射冷暖房システムに、居室内空気を除湿又は加湿する空気熱交換システムを付加したものであり、エアーコンディショニングの技術分野に属するものである。   The present invention is obtained by adding an air heat exchange system for dehumidifying or humidifying indoor air to an indoor radiant cooling / heating system using cold / hot water circulation, and belongs to the technical field of air conditioning.

空気は、冷却器で冷却と同時に相対湿度が上昇し、露点温度(dew point)より低下すると、その水分差は凝縮水となって冷却器から排水出来、所謂減湿作用が出来るもので、該作用を利用した空気の減湿器は、大型のオフィスビルなどの建物のエアーコンディショニングから一般家庭まで、多用途に広く採用されており、建物内空気の除湿手段は各種提案され、実施されている。   When the air is cooled by the cooler and the relative humidity rises and falls below the dew point, the moisture difference becomes condensed water that can be drained from the cooler, so-called dehumidifying action. Air dehumidifiers that use the action are widely used in a wide range of applications, from air conditioning in buildings such as large office buildings to general households. Various dehumidifying means for building air have been proposed and implemented. .

図8(A)は、従来例1の除湿器であって、特許文献1として挙げたものであり、本体内には、居室内空気中の水蒸気を吸着する除湿ロータと、除湿ロータを回転させる駆動手段と、除湿ロータから水蒸気を放出させる発熱ユニットと、発熱ユニットによって除湿ロータから放出された高温高湿空気を結露させる熱交換器と、熱交換器を通過した高温高湿空気を発熱手段に戻すダクトを収納し、発熱ユニット、除湿ロータ、熱交換器、ダクトは仕切板によって支持されて、本体内部に固定されている。   FIG. 8 (A) is a dehumidifier of Conventional Example 1, which is cited as Patent Document 1. In the main body, a dehumidification rotor that adsorbs water vapor in indoor air and a dehumidification rotor are rotated. Drive means, a heat generating unit that discharges water vapor from the dehumidification rotor, a heat exchanger that condenses high-temperature and high-humidity air discharged from the dehumidification rotor by the heat generation unit, and high-temperature and high-humidity air that has passed through the heat exchanger as heat generation means The return duct is accommodated, and the heat generating unit, the dehumidifying rotor, the heat exchanger, and the duct are supported by a partition plate and fixed inside the main body.

そして、第1送風手段によって、発熱ユニット、除湿ロータ、熱交換器、ダクトの順序で通過する閉循環風路と、第2送風手段によって、熱交換器で冷却するとともに、除湿ロータに水分を吸着させて吹出口から乾燥空気を送出する風路を形成している。
尚、閉循環風路中の熱交換器内で結露して生じた結露水は、排水タンクに貯えるようになっている。
Then, the first air blowing means cools the heat generating unit, the dehumidifying rotor, the heat exchanger, and the duct in order, and the second air blowing means cools the heat exchanger and adsorbs moisture to the dehumidifying rotor. Thus, an air passage is formed to send dry air from the outlet.
In addition, the dew condensation water produced by dew condensation in the heat exchanger in the closed circulation air passage is stored in a drain tank.

また、図8(B)は、従来例2の除湿器であって、特許文献2として挙げたものであり、水分吸着材である除湿ロータと、室内からの空気を除湿ロータの吸着領域を介して室内に戻すための除湿通路と、室内からの空気を除湿ロータの再生領域を介して屋外に排出するための排気通路と、排気通路の除湿ロータの上流域に配置して除湿ロータの再生領域に流入する空気を加熱する加熱手段と、除湿通路及び排気通路に風を送るファン、とを備えたものである。   FIG. 8B shows a dehumidifier of Conventional Example 2, which is cited as Patent Document 2. A dehumidification rotor that is a moisture adsorbing material and air from the room are passed through an adsorption region of the dehumidification rotor. A dehumidification passage for returning to the room indoors, an exhaust passage for discharging the air from the room to the outside through the regeneration area of the dehumidification rotor, and a regeneration area of the dehumidification rotor disposed in the upstream area of the dehumidification rotor of the exhaust passage A heating means for heating the air flowing into the fan, and a fan for sending air to the dehumidification passage and the exhaust passage.

そして、除湿器は、ファンによって除湿通路に風を送り、室内からの空気を除湿ロータの吸着領域を介して室内に戻すことにより、室内空気の水蒸気を除湿ロータの吸着領域の吸着材に吸着させ、除湿された空気を加熱手段により加熱した後、除湿ロータの再生領域を介して室外にする。
そして、除湿ロータに吸着した水蒸気で脱着された空気を加湿し、加湿された空気を屋外に排出すると共に、除湿ロータを回転して有効吸着材を吸着領域に移し、吸着材の再生と再生吸着材の吸着領域への転位により、除湿ロータでの反復除湿作用を可能とし、室内空気の水分を多湿空気として屋外に排出するものである。
The dehumidifier then sends air to the dehumidification passage by the fan and returns the indoor air to the room through the adsorption area of the dehumidification rotor, thereby adsorbing the water vapor of the room air to the adsorbent in the adsorption area of the dehumidification rotor. After the dehumidified air is heated by the heating means, it is made outdoor through the regeneration area of the dehumidifying rotor.
Then, the air desorbed by the water vapor adsorbed on the dehumidifying rotor is humidified, and the humidified air is discharged to the outside, and the dehumidifying rotor is rotated to move the effective adsorbent to the adsorption area, so that the adsorbent is regenerated and regenerated. By shifting the material to the adsorption region, the dehumidification rotor can be repeatedly dehumidified, and the moisture in the room air is discharged outdoors as humid air.

また、図9(A)は、従来例3の水熱源ヒートポンプ式輻射パネル用空調機の説明図であって、特許文献3として挙げたものであり、冷媒回路は、圧縮機、四方弁、第1水熱交換器、減圧弁、第2水熱交換器、除湿用空気熱交換器、更に四方弁、アキュームレーター及び圧縮機の順に冷媒が循環する。
また、第1水循環回路が、第1水熱交換器、温水ボイラー、クーリングタワー及び第1循環ポンプから形成され、第2水循環回路(冷温水循環回路)が、第2水熱交換器、輻射冷暖房用パネル、及び第2循環ポンプから形成されたものである。
FIG. 9 (A) is an explanatory view of a water heat source heat pump type radiant panel air conditioner of Conventional Example 3 and is cited as Patent Document 3. The refrigerant circuit includes a compressor, a four-way valve, The refrigerant circulates in the order of 1 water heat exchanger, pressure reducing valve, second water heat exchanger, dehumidifying air heat exchanger, four-way valve, accumulator, and compressor.
The first water circulation circuit is formed by a first water heat exchanger, a hot water boiler, a cooling tower, and a first circulation pump, and the second water circulation circuit (cold and hot water circulation circuit) is a second water heat exchanger and a panel for radiation cooling and heating. , And a second circulation pump.

そして、空調機の冷房運転時には、冷媒は、圧縮機で圧縮された後、四方弁を通り、第1水熱交換器で凝縮し、減圧弁を経て減圧され、第2水熱交換器及び除湿用空気熱交換機で蒸発し、四方弁及びアキュームレーターを経由して圧縮機に戻り、冷媒回路を循環する。
この間、第2循環ポンプを駆動すると、冷媒は、第2水熱交換器内部で循環水と熱交換し、冷水が第2水循環回路の輻射パネルに送水されて輻射冷房に供される。
更に、冷媒は、空気熱交換器で、除湿用ファンによって送風される室内空気と熱交換し、冷却された空気は、強制対流によって冷房に供され、このとき、室内空気の露点温度が、空気熱交換器内の冷媒の蒸発温度以上のときは除湿される。
During the cooling operation of the air conditioner, the refrigerant is compressed by the compressor, passes through the four-way valve, condenses in the first water heat exchanger, is depressurized through the pressure reducing valve, the second water heat exchanger and the dehumidifier It evaporates in the air heat exchanger, returns to the compressor via the four-way valve and accumulator, and circulates in the refrigerant circuit.
During this time, when the second circulation pump is driven, the refrigerant exchanges heat with the circulating water inside the second water heat exchanger, and the cold water is sent to the radiation panel of the second water circulation circuit to be used for radiation cooling.
Furthermore, the refrigerant exchanges heat with the indoor air blown by the dehumidifying fan in the air heat exchanger, and the cooled air is supplied to the cooling by forced convection. At this time, the dew point temperature of the indoor air is When the temperature is equal to or higher than the evaporation temperature of the refrigerant in the heat exchanger, it is dehumidified.

そして、除湿用空気熱交換器での冷媒の蒸発温度を調整して、空気熱交換器で除湿される室内空気の露点温度より、輻射パネルの表面温度は高く設定されるので、輻射パネル表面に結露が発生することはない。
該輻射パネルと除湿用空気熱交換器とを備えた空調機では、冷房開始時に、室内空気が所定の温度に低下するまで強制対流により室内を冷房し、その後、空気熱交換器による弱冷房と、輻射パネルによる輻射冷房とを組み合せることと成る。
また、暖房運転時には、除湿用ファンの駆動を停止して、空気熱交換器での室内空気との熱交換は実施しない。
Then, the surface temperature of the radiant panel is set higher than the dew point temperature of the room air dehumidified by the air heat exchanger by adjusting the evaporation temperature of the refrigerant in the air heat exchanger for dehumidification. Condensation does not occur.
In an air conditioner provided with the radiation panel and an air heat exchanger for dehumidification, at the start of cooling, the room air is cooled by forced convection until the room air falls to a predetermined temperature, and then the air cooling is performed by weak cooling by an air heat exchanger. In combination with radiation cooling by a radiation panel.
Further, during the heating operation, the driving of the dehumidifying fan is stopped and heat exchange with room air in the air heat exchanger is not performed.

また、図9(B)は従来例4であって、非特許文献1として挙げたもので、ルームエアコンとして普及しているものであり、室内の空気をルームエアコン内に吸い込み、フィルターやコイルの中を通過させて、吹出口から再び室内に送風するための送風機と、送風機によって導かれた室内空気から熱を奪って冷却し、更に空気中の水分を取り除く冷媒コイルと、室内空気に熱を加えて暖める電気ヒーターと、空気中のゴミを濾過するエアフィルターと、冷媒コイルからの低圧高温の冷媒ガスを圧縮し、高温高圧ガスとしてコンデンサ(凝縮機)に送る圧縮機と、コンデンサファンによって冷やして、ガスを液体に戻す空冷コンデンサと、空冷コンデンサからの冷媒をガス状冷媒にする膨張弁とから成り、膨張弁によって低温低圧となった冷媒は冷媒コイルに送られるもので、該使用サイクルを順次繰返すものである。   FIG. 9B is a conventional example 4, which is cited as Non-Patent Document 1, and is widely used as a room air conditioner. Air in a room is sucked into the room air conditioner, and a filter or coil is used. A blower for passing the air through the air outlet and blowing air into the room again from the air outlet, a refrigerant coil for removing heat from the indoor air guided by the air blower and removing moisture in the air, and heat to the indoor air In addition, an electric heater that warms the air, an air filter that filters dust in the air, a compressor that compresses the low-pressure and high-temperature refrigerant gas from the refrigerant coil and sends it to the condenser (condenser) as a high-temperature and high-pressure gas, and a condenser fan cools it. And an air-cooled condenser that returns the gas to a liquid, and an expansion valve that uses the refrigerant from the air-cooled condenser as a gaseous refrigerant. Those sent to the refrigerant coil, in which successively repeating the cycle for said use.

また、ケーシング内に収納するサーモスタットは、室内温度を一定にするもので、夏季は、室内が暑ければ冷凍機(圧縮機、コンデンサ、膨張弁等)を稼動し、寒ければ停止させるもので、冬季は、寒ければ電気ヒーターを稼動し、暑くなれば停止させるものである。   The thermostat housed in the casing keeps the room temperature constant. In summer, the refrigerator (compressor, condenser, expansion valve, etc.) is operated when the room is hot, and stopped when it is cold. In winter, the electric heater is turned on when it is cold and stopped when it gets hot.

特開2006−20718号公報JP 2006-20718 A 特開2002−102642号公報JP 2002-102642 A 特開2006−349270号公報JP 2006-349270 A

(株)オーム社、平成22年3月20日、第1版第42刷発行、小原淳平編、「100万人の空気調和」第140頁「第6章、空調方法さまざま」、「6.1項、いちばん簡単な空調方法 図6.1、ルームクーラー」Co., Ltd., March 20, 2010, 1st edition, 42nd edition, Kohei Kohara, “Air conditioning for 1 million people”, page 140 “Chapter 6, Various air conditioning methods”, “6. Item 1, the simplest air conditioning method Figure 6.1, Room Cooler "

従来例1(図8(A))の除湿器は、凝縮の熱源として室内空気を使用するため、再生用空気の温度を、発熱ユニットにより室温以上に上昇させなければならず、発熱ユニットへの入力エネルギーが大となり、且つ電力を減湿熱源とし、電力を熱に換えるため、エネルギー効率が悪く、ランニングコスト上、問題がある。
また、除湿器は、排水タンクの容量が小さく、排水処理手段が煩わしい。
Since the dehumidifier of Conventional Example 1 (FIG. 8A) uses room air as a heat source for condensation, the temperature of the regeneration air must be raised above room temperature by the heat generating unit. Since the input energy becomes large and the electric power is used as a dehumidifying heat source and the electric power is changed to heat, the energy efficiency is low and there is a problem in running cost.
Further, the dehumidifier has a small capacity of the drainage tank, and the wastewater treatment means is troublesome.

従来例2(図8(B))の除湿器は、吸着材が、ハニカム状又は多孔に形成される除湿ロータの吸着領域を、ターボファンによって室内空気が通って除湿された後に、ターボファンに吸い込まれて除湿された空気の一部は、除湿回路を介して一方の吹出口から吹出して、ヒーターにより加熱し、除湿ロータの再生領域に供給して再生領域の吸着材から水を脱着する。
そして、水分を脱着して加湿された加湿空気を、排気通路から屋外に排出するため、凝縮機やタンクは不要となる。
In the dehumidifier of Conventional Example 2 (FIG. 8B), the adsorbent is dehumidified by passing the indoor air through the adsorption area of the dehumidification rotor in which the adsorbent is formed in a honeycomb or porous shape. Part of the sucked and dehumidified air is blown out from one outlet through a dehumidifying circuit, heated by a heater, supplied to the regeneration region of the dehumidification rotor, and desorbs water from the adsorbent in the regeneration region.
Further, since the humidified air dehumidified and dehumidified is discharged to the outside from the exhaust passage, a condenser and a tank become unnecessary.

しかし、吸着材を除湿ロータとして用いるため、吸着材は高湿度(相対湿度:60%)からのみの反応であり、除湿ロータの形状を大きくすれば、駆動、騒音、ケーシングの制約上から、充分な除湿能力が得られない。
また、空気を加熱するヒーターは消費電力が大きく、除湿器は室内側の外壁面配置となるため、逆風に対応する必要があり、ターボファンの能力が大となるので運転時の騒音が大となる欠陥を有し、室内への給気温度が除湿時の反応熱で上昇する欠陥もある。
However, since the adsorbent is used as a dehumidifying rotor, the adsorbent reacts only from high humidity (relative humidity: 60%), and if the dehumidifying rotor is made larger, it is sufficient due to restrictions on driving, noise, and casing. Dehumidifying ability is not obtained.
In addition, the heater that heats air consumes a large amount of power, and the dehumidifier is located on the outside wall surface on the indoor side. Therefore, it is necessary to cope with headwinds, and the capacity of the turbofan increases, so the noise during operation is large. There is also a defect that the air supply temperature to the room rises due to reaction heat during dehumidification.

また、従来例3(図9(A))の水熱源ヒートポンプ式輻射パネル用空調機は、冷媒回路の四方弁及び第2水熱交換器間に、除湿用空気熱交換器、除湿用ファンを配置して、除湿用ファンで送風する室内空気を除湿用空気熱交換器で熱交換冷却するものであり、室内空気の露点温度が空気熱交換器内の冷媒の蒸発温度以上のとき、除湿されるものである。   Further, the water heat source heat pump type radiation panel air conditioner of Conventional Example 3 (FIG. 9A) includes a dehumidifying air heat exchanger and a dehumidifying fan between the four-way valve of the refrigerant circuit and the second water heat exchanger. It is arranged and the indoor air blown by the dehumidifying fan is heat-exchanged and cooled by the dehumidifying air heat exchanger, and is dehumidified when the dew point temperature of the indoor air is equal to or higher than the evaporation temperature of the refrigerant in the air heat exchanger. Is.

そして、冷房開始時には、室内空気が所定の温度に低下するまで、強制対流により室内を冷房し、その後、空気熱交換器による弱冷房と、輻射パネルによる輻射冷房との協仂冷房となり、空気用及び水用の2回路の設置が必要で、コスト面の課題がある。
また、熟練の技術者での作業となり、且つ空調機械室を設置しての維持保守技術者の配置も必要となる。
従って、従来例3の空調機は、冷暖房時に、室内が設定温度に達するまでは、強制対流が必須で、床面及び浮遊するゴミ、埃を巻き上げる風を受けることとなり、人身に不快となると共に、ダクトを介しての空気伝播音や固体伝播音による騒音、及び気流や空気分布による温度斑が発生する。
また、不良導体の空気を、熱媒体とするため、熱ロスや経済性の課題がある。
At the start of cooling, the room is cooled by forced convection until the room air drops to a predetermined temperature, after which it becomes a cooperative cooling of weak cooling by an air heat exchanger and radiant cooling by a radiant panel. In addition, it is necessary to install two circuits for water and there is a problem of cost.
Moreover, it becomes a work by a skilled engineer, and the arrangement | positioning of the maintenance engineer who installs an air-conditioning machine room is also needed.
Therefore, in the air conditioner of Conventional Example 3, forced convection is indispensable until the room reaches the set temperature at the time of cooling and heating, and it receives a wind that winds up the floor surface, floating dust and dust, and is uncomfortable to the human body. , Noise due to air propagation sound and solid propagation sound through the duct, and temperature spots due to airflow and air distribution are generated.
Moreover, since the air of a defective conductor is used as a heat medium, there are problems of heat loss and economy.

また、従来例4(図9(B))のルームエアコンは、普及率が高く、手軽に使用出来て、省エネルギー効率も高いが、寒冷地での暖房熱不足、立上りの遅さが欠陥であり、強制対流方式であるため、吹付け風による不快感、チリ、埃を巻き上げる衛生上の欠陥、居室内の温度分布に不均斉を生ずる問題がある。   In addition, the room air conditioner of Conventional Example 4 (FIG. 9B) has a high penetration rate, can be used easily, and has high energy saving efficiency. However, the lack of heating heat in cold regions and the slow start-up are defects. Because of the forced convection method, there are problems such as discomfort caused by blowing air, dust, sanitary defects that wind up dust, and uneven temperature distribution in the room.

また、温度環境は、高温でも低湿度であれば涼しさを感じるものであるが、従来例4の如き、ルームエアコンは、減湿しながら居室内の温度を下降させるサーモスタットによる温度コントロールであって、指定温度に達すると室外機、ルームエアコン内の送風機が停止し、湿度が高くても室温のみで停止するため、湿度調整が出来ず、減湿は、必要以上に室温を低下させることとなり不快となる。   Moreover, although the temperature environment is cool even if the temperature is low and the humidity is low, the room air conditioner as in the conventional example 4 is a temperature control by a thermostat that lowers the temperature in the room while dehumidifying. When the specified temperature is reached, the blower in the outdoor unit and room air conditioner stops. Even if the humidity is high, it stops only at room temperature, so the humidity cannot be adjusted, and dehumidification lowers the room temperature more than necessary. It becomes.

そして、該ルームエアコンは、外気を取り入れて室内空気と共に、夏季は、低温低湿にして室内に給気し、冬季は、高温低湿で室内に給気するため、熱的に非効率である。
しかも、冬季は屋外の乾燥空気を室内に採り入れるため、居室内の湿度に影響を与え、バクテリア、ウィルスの活動を活発にし、居室内に呼吸疾患を招く問題すらある。
本発明の空気熱交換システムは、これら従来例の問題を解決し、小規模の戸建住宅から、大中規模の共同住宅まで、居室内に、夏季、冬季から春秋の中間季まで、居室内に快適な温湿度環境を提供出来るものである。
The room air conditioner is thermally inefficient because it takes in outside air and supplies indoor air together with room air at low temperatures and low humidity in summer and supplies air indoors at high temperature and low humidity in winter.
Moreover, since outdoor dry air is taken indoors in the winter, it affects the humidity in the living room, activates the activities of bacteria and viruses, and even causes a respiratory disease in the living room.
The air heat exchange system of the present invention solves the problems of these conventional examples, from small detached houses to large and medium-sized apartments, in living rooms, from summer, winter to the middle of spring and autumn, It can provide a comfortable temperature and humidity environment.

本発明の空気熱交換システムは、図1に示す如く、室外の水熱交換ユニット6Cから居室内の輻射用パネルヒーター7Aに冷温水循環の放熱回路7を配置し、放熱回路7の水熱交換ユニット6C近傍から分岐して放熱回路7に還流復帰する冷温水循環回路6に空気熱交換器1を配置し、空気熱交換器1には、結露水を排出するドレン回路8と、居室内空気を吸気して空気熱交換器1内に送風する吸気回路3と、空気熱交換器1から空気を居室内に送風する供給回路4とを配置し、居室内の温湿度、及び循環水の温度を検知回路5で検知して制御運転するシステムであって、空気熱交換器1を天井内に配置して吸気回路3及び供給回路4をダクト方式とし、供給回路4を供給グリル4Gで居室内と接続し、空気熱交換器1からの送風空気の一部を、吹出口4Kから輻射用のパネルヒーター7A周面に吹き下ろすものである。
As shown in FIG. 1, the air heat exchange system of the present invention includes a cold / hot water circulation heat dissipating circuit 7 from an outdoor water heat exchanging unit 6 </ b> C to a radiant panel heater 7 </ b> A. An air heat exchanger 1 is arranged in a cold / hot water circulation circuit 6 that branches from the vicinity of 6C and returns to the heat dissipation circuit 7. The air heat exchanger 1 draws a drain circuit 8 that discharges condensed water and air in the room. Then, an intake circuit 3 for blowing air into the air heat exchanger 1 and a supply circuit 4 for blowing air from the air heat exchanger 1 into the living room are arranged to detect the temperature and humidity in the living room and the temperature of the circulating water. A system for detecting and controlling the circuit 5 and controlling the air heat exchanger 1 in the ceiling so that the intake circuit 3 and the supply circuit 4 are of a duct type, and the supply circuit 4 is connected to the living room by a supply grill 4G. And part of the air blown from the air heat exchanger 1 , In which down blow the panel heater 7A peripheral surface for radiation from the air outlet 4K.

この場合、冷温水循環回路6及び放熱回路7の循環水は、図1(A)に示す如く、室外ユニット6Aと冷媒管6Bで接続する室外水熱交換ユニット6Cから送水するものであって、図2(B)に示す如く、室外ユニット6Aは、慣用の、コンデンサ(凝縮機)6a及びコンデンサファン6b、圧縮機6dを内臓するものであり、水熱交換ユニット6Cは、慣用の、冷温水コイル6mを収納する水熱交換器6f及び膨張弁6e、循環ポンプ6n、タンク6iを収納するものである。   In this case, the circulating water in the cold / hot water circulation circuit 6 and the heat radiation circuit 7 is supplied from an outdoor water heat exchange unit 6C connected to the outdoor unit 6A through the refrigerant pipe 6B as shown in FIG. As shown in FIG. 2B, the outdoor unit 6A includes a conventional condenser (condenser) 6a, condenser fan 6b, and compressor 6d, and the water heat exchange unit 6C includes a conventional cold / hot water coil. The water heat exchanger 6f that stores 6m, the expansion valve 6e, the circulation pump 6n, and the tank 6i are stored.

また、空気熱交換器1用の冷温水循環回路6は、図1(A)に示す如く、水熱交換ユニット6Cから放熱回路7の往き側ヘッダー6Sへの送水パイプ6P”から往き用分岐パイプ6P´を引出して空気熱交換器1に送水し、空気熱交換器1内で貫流空気に熱伝達して、空気熱交換器1から戻り用分岐パイプ6P´で、放熱回路7の戻り側ヘッダー6Rと接続させれば良く、空気熱交換器1は、冷温水コンデンサを内蔵し、コンデンサの周囲に空気が貫流出来る筒形状であれば良く、円筒でも角筒でも良い。   Further, as shown in FIG. 1A, the cold / hot water circulation circuit 6 for the air heat exchanger 1 includes a water supply pipe 6P ″ from the water heat exchange unit 6C to the outward header 6S of the heat radiating circuit 7 and a forward branch pipe 6P. ′ Is drawn out and sent to the air heat exchanger 1, heat is transferred to the once-through air in the air heat exchanger 1, and the return side header 6 </ b> R of the heat radiation circuit 7 is returned from the air heat exchanger 1 by the return branch pipe 6 </ b> P ′. The air heat exchanger 1 may have a cylindrical shape that includes a cold / hot water condenser and allows air to flow around the condenser, and may be a cylinder or a square cylinder.

また、図2(A),(B)の流水回路図で示す如く、放熱回路7は、水熱交換ユニット6Cから大径(標準:内径21.2mm、肉厚2.9mm)のプラスチック樹脂パイプ6P”内を流水し、循環ポンプ6Nを経て往き側ヘッダー6Sの弁6Eから連続する小径(標準:内径9.8mm、肉厚1.6mm)のプラスチック樹脂パイプ6P内を流水し、輻射用パネルヒーター7Aへは、供給口7Sから流入し、パネルヒーター7A内を循環して排出口7Rから流出し、小径のプラスチック樹脂パイプ6Pによって戻り側ヘッダー6Rに流入し、戻り側ヘッダー6Rから大径のプラスチック樹脂パイプ6P”で水熱交換ユニット6Cに流入させれば良い。   2A and 2B, the heat radiating circuit 7 is a plastic resin pipe having a large diameter (standard: inner diameter 21.2 mm, wall thickness 2.9 mm) from the hydrothermal exchange unit 6C. 6P "flows through the plastic pump pipe 6P with a small diameter (standard: 9.8mm inner diameter, 1.6mm wall thickness) that continues from the valve 6E of the forward header 6S via the circulation pump 6N, and radiates the panel. The heater 7A flows from the supply port 7S, circulates through the panel heater 7A, flows out from the discharge port 7R, flows into the return side header 6R through the small diameter plastic resin pipe 6P, and flows from the return side header 6R to the large diameter. What is necessary is just to make it flow in into the water heat exchange unit 6C with the plastic resin pipe 6P ".

また、空気熱交換器1用の往き用分岐パイプ6P´及び戻り用分岐パイプ6P´は、放熱回路7の小径のプラスチック樹脂パイプ6Pと同一のパイプを採用すれば良い。
また、空気熱交換器1に付設する吸気回路3及び供給回路4は、慣用の、ダクトファン3F手段を採用すれば良く、空気熱交換器1は、吸気回路3と接続する前端から供給回路4と接続する後端まで空気流の貫流する筒体であって、内部には、それ自体慣用の冷温水コイル2を内蔵すれば良く、典型的には、図5(A)に示す如く、長尺筒本体1A内に、長尺筒体内配置用に開発した冷温水コイル2を内蔵したものである。
また、検知回路5は、慣用の、湿度検知器5E及び温度検知器5Sを居室壁面に配置し、空気熱交換器1の吸気回路3、及び放熱回路7の循環水温を制御すれば良い。
The forward branch pipe 6P ′ and the return branch pipe 6P ′ for the air heat exchanger 1 may be the same pipe as the small-diameter plastic resin pipe 6P of the heat dissipation circuit 7.
The intake circuit 3 and the supply circuit 4 attached to the air heat exchanger 1 may adopt a conventional duct fan 3F means. The air heat exchanger 1 is connected to the intake circuit 3 from the front end connected to the intake circuit 3. 5 to the rear end of the cylinder, and a conventional cold / hot water coil 2 may be built in the cylinder. Typically, as shown in FIG. A chilled / hot water coil 2 developed for placement in a long tubular body is built into the long tubular body 1A.
Moreover, the detection circuit 5 should just arrange the humidity detector 5E and the temperature detector 5S which are used on the wall surface of a living room, and should control the circulating water temperature of the intake circuit 3 of the air heat exchanger 1, and the thermal radiation circuit 7. FIG.

従って、本発明の空気熱交換システムは、空気熱交換器1内に内蔵した冷温水コイル2への循環水として、冷暖房用の輻射用パネルヒーターの冷温水循環システム、即ち放熱回路を利用するため、省エネルギーの下に、設備費も合理化出来、冷暖房システムへの除湿システムの付加一体化が合理的に実施出来、冷暖房システムにおける湿度コントロールが簡単、且つ低コストで実施出来る。
そして、減湿には、空気熱交換器1へ居室内空気を送り込む吸気回路3、及び居室内へ空気を送風する供給回路4にダクト管3D,4Dを採用し、消費電力の少ないダクトファン3F(標準消費電力:10.5w)を配置すれば良いので、コスト面で有利であり、従来例1(図8(A))や従来例2(図8(B))のように、電力を熱に換える加熱器を採用しないので、ランニングコストが低減出来る。
Therefore, the air heat exchange system of the present invention uses the cold / hot water circulation system of the radiant panel heater for air conditioning as the circulating water to the cold / hot water coil 2 built in the air heat exchanger 1, that is, the heat dissipation circuit. The equipment cost can be rationalized while saving energy, the dehumidification system can be rationally integrated with the air conditioning system, and the humidity control in the air conditioning system can be performed easily and at low cost.
For the dehumidification, duct pipes 3D and 4D are employed in the intake circuit 3 for sending the room air to the air heat exchanger 1 and the supply circuit 4 for blowing the air into the room, and the duct fan 3F with low power consumption. (Standard power consumption: 10.5 w) may be arranged, which is advantageous in terms of cost. As in the conventional example 1 (FIG. 8A) and the conventional example 2 (FIG. 8B), the power is reduced. Since a heater that replaces heat is not used, running costs can be reduced.

また、従来例3(図9(A))のように、除湿用ファン送風機から各室へ、給気ダクト及び還気ダクトをおのおの連続することなく、略中央にダクトファン3Fを配置し、一方を吸気、他方を供給とするため、ダクト形状が小さく出来て天井内にも容易に配置可能となる。
しかも、空気流速も低いため、騒音の発生は無く、自然対流に近くなって、気流による温度斑も生じない。
Further, as in Conventional Example 3 (FIG. 9A), the duct fan 3F is arranged in the substantially center without the supply air duct and the return air duct being continuous from the dehumidifying fan blower to each room, Since the air is taken in and the other is supplied, the duct shape can be made small and can be easily arranged in the ceiling.
Moreover, since the air flow velocity is low, no noise is generated, natural convection is approached, and temperature spots due to airflow do not occur.

しかも、本発明空気熱交換システムは、除湿機能を発揮する空気熱交換器1が、冷暖房用放熱回路7から分岐配管手段で配置出来るため、空気熱交換器1は、天井裏等、配置の自由度があり、小規模住宅にも自在に施工出来る。
また、本発明にあっては、室内空気を吸気し、空気熱交換器1で減湿(除湿)した空気を居室内に冷却空気として送風するため、直接、屋外の高温高湿(夏季)又は低温低湿(冬季)空気の影響を受けないので、居室内の温湿度コントロールが省エネルギーで達成出来る。
また、本発明の空気熱交換システムにあっては、顕熱、即ち物体の相変化(固体→液体→気体)や化学変化を伴わないで、温度を変化させる熱は輻射用パネルヒーター7Aによる冷暖房で、潜熱、即ち相変化のための熱で、他の物体の温度変化には寄与しない、例えば人体の発汗や呼吸の熱は空気熱交換器でおのおの制御するため、湿度のコントロールを伴った快適な冷暖房が提供出来、従来例3(図9(A))の如く、空気による強制対流方式及び水循環による輻射方式とのツーウェイ式の冷暖房のように、設備が過大とならず、設備及び運転コストが安価である。
また、本発明の空気熱交換器システムは、図1(B)に示す如く、空気熱交換器1を天井内に配置して吸気回路3及び供給回路4をダクト方式とし、供給回路4を供給グリル4Gで居室内と接続し、空気熱交換器1からの送風空気の一部を、吹出口4Kから輻射用のパネルヒーター7A周面に吹き下ろす点も、必須要件としている
この場合、輻射用パネルヒーター7Aは、典型的には、上端及び下端の横パイプ間に、通水放熱用の縦パイプ群を並列連通したプラスチック樹脂パイプ製であって、間仕切壁Wi内、若しくは、間仕切壁Wiに沿って、垂直形態で配置したものであり、吹出口4Kは、図1(A),(B)に示す如く、輻射用パネルヒーター7Aの上方の天井C面で居室側放熱面の左右方向中央部に整合して配置すれば良い。
本発明の空気熱交換システムにあっては、従来の空調システム内の、冷凍コイル内蔵の除湿器、即ち空気熱交換器のみを別体として、輻射冷暖房用パネルの冷温水循環回路から分岐した冷温水循環回路に配置するため、空気熱交換器のみは小型となって、天井内配置が簡便且つ施工性良く実施出来る
そして、空気熱交換器と接続する、吸入側の吸気回路3も放出側の供給回路4も、慣用のダクト手段を採用し、適切な、例えばフレキシブルダクト管を選択採用することにより、空気熱交換器1は天井内に収納配置出来、供給回路4から居室内への送風口に付設する慣用の供給グリル4Gも、需要者の好みに応じて自在に配置出来る
従って、居室内の任意位置に対する供給グリル4Gからの冷暖房送風が、天井内ダクトからの分岐配管で簡便、且つ自在となる
そして、空気熱交換システムの冷房運転中には、輻射用パネルヒーター7A表面に送風空気の一部を、天井Cの吹出口4Kから吹き下ろすため、パネルヒーター7A表面に当接する静止空気層と、静止空気層の外側の上下層流とを吹き飛ばして、ヒーター7A表面での空気熱伝達作用を高めて冷房効果を上げると共に、輻射用パネルヒーター7A表面の結露の発生も抑制出来る
Moreover, in the air heat exchange system of the present invention, since the air heat exchanger 1 that exhibits the dehumidifying function can be arranged by branch piping means from the heat radiation circuit 7 for cooling and heating, the air heat exchanger 1 can be freely arranged such as the back of the ceiling. There is a degree, and it can be freely installed in small houses.
Further, in the present invention, since indoor air is sucked and the air dehumidified (dehumidified) by the air heat exchanger 1 is blown into the living room as cooling air, the outdoor high temperature and high humidity (summer) or directly Because it is not affected by low-temperature and low-humidity (winter season) air, temperature and humidity control in the room can be achieved with energy saving.
In the air heat exchange system of the present invention, heat that changes the temperature without sensible heat, that is, phase change of the object (solid → liquid → gas) or chemical change, is cooled or heated by the radiation panel heater 7A. Therefore, it is a latent heat, that is, heat for phase change and does not contribute to the temperature change of other objects. For example, the heat of sweating and breathing of the human body is controlled by an air heat exchanger, so it is comfortable with humidity control. As in the conventional example 3 (FIG. 9A), the equipment is not excessive, and the equipment and operating costs are not excessive, as in the two-way air conditioning with the forced convection method using air and the radiation method using water circulation. Is cheap.
In the air heat exchanger system of the present invention, as shown in FIG. 1B, the air heat exchanger 1 is arranged in the ceiling, the intake circuit 3 and the supply circuit 4 are of a duct type, and the supply circuit 4 is supplied. It is also an essential requirement that the grill 4G is connected to the living room and a part of the blown air from the air heat exchanger 1 is blown down to the peripheral surface of the panel heater 7A for radiation from the outlet 4K .
In this case, the radiation panel heater 7A is typically made of a plastic resin pipe in which a vertical pipe group for water flow and heat radiation is connected in parallel between the upper and lower horizontal pipes, and the partition wall Wi or The air outlet 4K is arranged in a vertical form along the partition wall Wi, and the air outlet 4K is radiated on the room side on the ceiling C surface above the radiation panel heater 7A as shown in FIGS. 1 (A) and 1 (B). What is necessary is just to arrange | position in alignment with the center part of the left-right direction of a surface.
In the air heat exchange system of the present invention, the chilled / hot water circulation branched from the chilled / hot water circulation circuit of the panel for radiant cooling / heating, with the refrigeration coil built-in dehumidifier in the conventional air conditioning system, that is, only the air heat exchanger, as a separate body. Since it is arranged in the circuit, only the air heat exchanger becomes small, and the arrangement in the ceiling can be carried out simply and with good workability .
Then, both the intake-side intake circuit 3 and the discharge-side supply circuit 4 connected to the air heat exchanger adopt conventional duct means, and select and adopt an appropriate, for example, flexible duct pipe, thereby exchanging air heat. The container 1 can be housed and arranged in the ceiling, and a conventional supply grill 4G attached to the blower opening from the supply circuit 4 to the living room can be freely arranged according to the preference of the consumer .
Therefore, the cooling / heating blast from the supply grille 4G to an arbitrary position in the living room can be easily and freely performed by the branch piping from the duct in the ceiling .
During cooling operation of the air heat exchange system, in order to blow a part of the blown air on the surface of the radiation panel heater 7A from the outlet 4K of the ceiling C, a still air layer in contact with the surface of the panel heater 7A, By blowing off the upper and lower layer flow outside the still air layer, the air heat transfer action on the surface of the heater 7A is enhanced to increase the cooling effect, and the occurrence of condensation on the surface of the radiation panel heater 7A can also be suppressed .

また、本発明の空気熱交換システムにあっては、空気熱交換器1には、図1(A)に示す如く、空気熱交換器1内を洗浄する洗浄回路9及び空気熱交換器1内に水を噴霧して居室内に加湿空気を供給する加湿回路10を接続するのが好ましい。   In the air heat exchanger system of the present invention, the air heat exchanger 1 includes a cleaning circuit 9 for cleaning the air heat exchanger 1 and the air heat exchanger 1 as shown in FIG. It is preferable to connect a humidifying circuit 10 for spraying water to supply humidified air into the living room.

この場合、洗浄回路9は、空気熱交換器1内に、必要に応じて、洗浄水を付与出来れば良く、図1(A)に示す如く、空気熱交換器1内に洗浄ノズル9A群を配置し、洗浄ノズル9A群での噴射水によって、チリ、ゴミの付着し易い冷温水コイル2の全長が洗浄出来れば良い。
また、加湿回路10は、空気熱交換器1内を貫流する空気に、必要に応じて蒸気が供給出来れば良く、図1(A)に示す如く、空気熱交換器1内の吸気回路3側に噴霧ノズル10Aを配置し、噴霧ノズル10Aを、居室内の湿度を検出する湿度検知器5Eの制御の下に駆動すれば良い。
In this case, the cleaning circuit 9 only needs to apply cleaning water to the air heat exchanger 1 as necessary. As shown in FIG. 1A, the cleaning nozzle 9A group is provided in the air heat exchanger 1. It suffices if the entire length of the cold / hot water coil 2 to which dust and dirt easily adhere can be cleaned by the water sprayed by the cleaning nozzle 9A group.
Further, the humidification circuit 10 only needs to supply steam as necessary to the air flowing through the air heat exchanger 1, and as shown in FIG. 1A, the air intake circuit 3 side in the air heat exchanger 1 is used. The spray nozzle 10 </ b> A may be disposed in the air and the spray nozzle 10 </ b> A may be driven under the control of the humidity detector 5 </ b> E that detects the humidity in the room.

従って、冬季等、空気の乾燥状態での居室内暖房時に、冷温水循環回路6の温水循環によって空気熱交換器1内で加温暖房された貫流空気に、空気熱交換器1内で、加湿回路10によって簡便に加湿出来、居室内の暖房状態の空気に、必要な湿度が供給出来、居室内を適切な温湿度と出来る。
また、空気熱交換器1に洗浄回路9を配置したことにより、必要に応じて、空気熱交換器1内の冷温水コイル2のゴミ、埃等が洗浄出来て、空気熱交換器の熱交換機能低下が防止出来、洗浄水は空気熱交換器1のドレン回路8から支承無く排除出来る。
Therefore, the humidification circuit in the air heat exchanger 1 is converted into the once-through air heated in the air heat exchanger 1 by the hot water circulation of the cold / hot water circulation circuit 6 at the time of heating the room in the dry state of air, such as in winter. 10 can be easily humidified, the required humidity can be supplied to the heated air in the room, and the room can be set to an appropriate temperature and humidity.
In addition, by arranging the cleaning circuit 9 in the air heat exchanger 1, dust, dust, etc. in the cold / hot water coil 2 in the air heat exchanger 1 can be cleaned as necessary, and heat exchange of the air heat exchanger is possible. The deterioration of the function can be prevented, and the washing water can be removed without any support from the drain circuit 8 of the air heat exchanger 1.

また、本発明の空気熱交換システムにあっては、図1に示す如く、室内に配置した温度検知器5Sが、放熱回路7の循環水を、空気熱交換器1への冷温水循環回路6の分岐点P1の下流で温度制御し、居室内に配置して、吸気回路3と、加湿回路10とに接続した湿度検知器5Eが、空気熱交換器1の加湿回路10を制御するのが好ましい。   Further, in the air heat exchange system of the present invention, as shown in FIG. 1, the temperature detector 5 </ b> S arranged indoors uses the circulating water in the heat radiation circuit 7 to the chilled / hot water circulation circuit 6 to the air heat exchanger 1. It is preferable that the humidity detector 5E that controls the temperature downstream of the branch point P1, is disposed in the room, and is connected to the intake circuit 3 and the humidification circuit 10 controls the humidification circuit 10 of the air heat exchanger 1. .

この場合、居室内冷暖房用の放熱回路7の循環水温度は、空気熱交換器1用の冷温水循環回路6の循環水温度とは独立的に制御出来、例えば、冷房運転時に、除湿に必要な冷温水循環回路の水温(標準:7℃)を維持した状態で、放熱回路7の循環水温は選定出来るため、輻射用パネルヒーター7Aの放熱調整が自在となる。
そして、加湿回路10も、吸気回路3での空気熱交換器1内への居室内空気の循環供給中であれば、湿度検知器5Eの指令に応じて、必要時に循環空気流に加湿出来、空気熱交換システムは、除湿機能及び加湿機能の担保の下での、自在な冷暖房が可能となる。
In this case, the circulating water temperature of the heat radiating circuit 7 for cooling and heating the room can be controlled independently of the circulating water temperature of the chilled water circulating circuit 6 for the air heat exchanger 1, and is necessary for dehumidification, for example, during cooling operation. Since the circulating water temperature of the heat radiating circuit 7 can be selected while maintaining the water temperature of the cold / hot water circulating circuit (standard: 7 ° C.), the radiation of the radiation panel heater 7A can be adjusted freely.
And if the humidification circuit 10 is also in the circulation supply of the indoor air in the air heat exchanger 1 in the intake circuit 3, according to the instruction | command of the humidity detector 5E, it can humidify to a circulating air flow as needed, The air heat exchange system can be freely cooled and heated under the guarantee of a dehumidifying function and a humidifying function.

また、本発明の空気熱交換システムにあって、洗浄回路9は、図1(A)に示す如く、給水主管9Cと接続した給水管9Bから、図5(A)に示す如く、空気熱交換器1内に洗浄ノズル9A群を突設し、給水管9Bに介在配置した電磁弁6M(図2(A)参照)をタイマースイッチ9Dで洗浄作用制御するのが好ましい。   Further, in the air heat exchange system of the present invention, the cleaning circuit 9 is configured so that the air heat exchange is performed from the water supply pipe 9B connected to the water supply main pipe 9C as shown in FIG. 5A, as shown in FIG. It is preferable to provide a cleaning nozzle 9A group in the container 1 and control the cleaning action of the electromagnetic valve 6M (see FIG. 2A) interposed between the water supply pipes 9B with a timer switch 9D.

この場合、洗浄ノズル9Aは、噴射能力を勘案して、各ノズル9Aを間隔配置すれば良い。
従って、夏季の冷房運転期間には除湿器として運転し、冬季の暖房運転期間には加湿器として運転する空気熱交換器1は、定期的に洗浄することにより、冷温水コイル2の貫流空気への熱伝達機能の劣化が抑制出来、洗浄作用で空気熱交換器1の底面に流下した洗浄水は、ドレン回路8から支障無く排除出来る。
In this case, in the cleaning nozzle 9A, the nozzles 9A may be arranged at intervals in consideration of the jetting ability.
Accordingly, the air heat exchanger 1 that operates as a dehumidifier during the cooling operation period in summer and operates as a humidifier during the heating operation period in winter is periodically washed to return to the once-through air of the cold / hot water coil 2. The deterioration of the heat transfer function can be suppressed, and the washing water that has flowed down to the bottom surface of the air heat exchanger 1 by the washing action can be removed from the drain circuit 8 without any trouble.

また、加湿回路10は、図1(A)に示す如く、給湯管10Cと接続した枝管10Bから空気熱交換器1内に噴霧ノズル10Aを突設し、枝管10Bに介在配置した電磁弁6Mを湿度検知器5Eで噴霧作用制御するのが好ましい。
この場合、噴霧ノズル10Aとしては、加圧性を備えた、それ自体慣用の噴霧ノズルを採用すれば良い。
Further, as shown in FIG. 1A, the humidifying circuit 10 is a solenoid valve in which a spray nozzle 10A is protruded from the branch pipe 10B connected to the hot water supply pipe 10C into the air heat exchanger 1 and interposed in the branch pipe 10B. It is preferable to control the spray action of 6M with the humidity detector 5E.
In this case, the spray nozzle 10 </ b> A may be a conventional spray nozzle having pressurization.

また、噴霧ノズル10Aは、空気熱交換器1内を貫流する送風内に水を噴霧すれば良いが、空気熱交換器1内の吸気端部近辺、即ち、前端近辺に配置すれば、一部水滴と化した水も、居室内へ飛散させることなく空気熱交換器1の底面に溜り、空気熱交換器1内のドレン回路で排除出来るので好都合である。
そして、居室内に送風される空気は空気熱交換器1内で噴霧加湿されるため、居室内の空気は、常時湿度検知器5Eで監視出来て、所望湿度が維持出来る。
Further, the spray nozzle 10A may spray water in the air flowing through the air heat exchanger 1, but if the spray nozzle 10A is arranged near the intake end in the air heat exchanger 1, that is, near the front end, a part of the spray nozzle 10A may be used. Water that has been turned into water droplets can be conveniently accumulated on the bottom surface of the air heat exchanger 1 without being scattered into the living room, and can be eliminated by the drain circuit in the air heat exchanger 1.
Since the air blown into the living room is sprayed and humidified in the air heat exchanger 1, the air in the living room can always be monitored by the humidity detector 5E and the desired humidity can be maintained.

従って、冬季等、空気が乾燥している場合に、空気熱交換器1内に温水(標準:45℃)を循環させて、居室内空気を吸気回路3から空気熱交換器1内に送風し、湿度検知器5E及び電磁弁6Mによって噴霧ノズル10Aを作用制御することにより、空気熱
交換器1の供給回路4から高温高湿空気が居室内に送風出来、居室内は、放熱回路7を介した輻射用パネルヒーター7Aでの輻射放熱暖房に、空気熱交換器1からの高温、高湿空気の吹出しによる暖房作用が付加出来て、必要湿度を伴った、必要暖房が合理的に達成出来る。
Accordingly, when the air is dry, such as in winter, hot water (standard: 45 ° C.) is circulated in the air heat exchanger 1 to blow the indoor air from the intake circuit 3 into the air heat exchanger 1. By controlling the action of the spray nozzle 10A by the humidity detector 5E and the electromagnetic valve 6M, high-temperature and high-humidity air can be blown from the supply circuit 4 of the air heat exchanger 1 into the living room. The heating operation by blowing high-temperature and high-humidity air from the air heat exchanger 1 can be added to the radiation heat radiation heating by the radiation panel heater 7A, and the necessary heating with the required humidity can be achieved reasonably.

また、本発明の空気熱交換システムにあっては、図2の流水回路図に示す如く、放熱回路7の冷温水循環は、水熱交換ユニット6Cから電動三方弁6Tを介在して往き側ヘッダー6S、輻射用パネルヒーター7A、戻り側ヘッダー6R、水熱交換ユニット6C)へと循環し、空気熱交換器1の循環回路6の循環水は、放熱回路7の電動三方弁6T上流の分岐点P1から分流して、空気熱交換器1を経て、戻り側ヘッダー6Rで放熱回路循環水と合流し、戻り側ヘッダー6Rから水熱交換ユニット6Cへの戻り側循環水は、経路中の分岐点P2から往き側経路中の電動三方弁6Tへのバイパス流路b7を介して、戻り側循環水の温度に応じた制御流量を電動三方弁6Tから往き側経路にバイパス流入させるのが好ましい。   In the air heat exchanging system of the present invention, as shown in the flowing water circuit diagram of FIG. 2, the cold / hot water circulation of the heat radiating circuit 7 is carried out from the water heat exchanging unit 6C via the electric three-way valve 6T to the outgoing header 6S. Circulated to the radiation panel heater 7A, the return side header 6R, the water heat exchange unit 6C), and the circulating water in the circulation circuit 6 of the air heat exchanger 1 is a branch point P1 upstream of the electric three-way valve 6T of the heat dissipation circuit 7. From the return side header 6R, and merges with the heat radiation circuit circulating water at the return side header 6R, and the return side circulating water from the return side header 6R to the water heat exchange unit 6C passes through the branch point P2 in the path. From the electric three-way valve 6T, it is preferable to bypass the control flow rate according to the temperature of the return-side circulating water via the bypass flow path b7 to the electric three-way valve 6T in the forward-side path.

この場合、電動三方弁6Tとしては、流れ方向の異なる2つの低温、高温の流体を、比例分配方式で混合して、一定温度として一方方向に切換えるものであれば良く、(株)ベン製、ML−TT型電動弁を採用すれば良い。
また、放熱回路7の循環水は、図2(A)に示す如く、水熱交換ユニット6Cから、大径のプラスチック樹脂パイプ6P”(標準:内径21.2mm、肉厚2.9mm)で流水して、電動三方弁6T及び循環ポンプ6Nを経て、往き側ヘッダー6Sの弁6Eから連続する小径のプラスチック樹脂パイプ6P(標準:内径9.8mm、肉厚1.6mm)内を流水して輻射用パネルヒーター7Aに、供給口7Sから流入して排出口7Rから流出し、小径のプラスチック樹脂パイプ6Pを経て戻り側ヘッダー6Rに流入し、戻り側の大径のプラスチック樹脂パイプ6P”によって、サーモセンサー5Tを経て水熱交換ユニット6Cに還水させれば良い。
In this case, as the electric three-way valve 6T, two low-temperature and high-temperature fluids having different flow directions may be mixed by a proportional distribution method and switched to one direction as a constant temperature. An ML-TT type electric valve may be employed.
As shown in FIG. 2 (A), the circulating water in the heat radiating circuit 7 flows from the hydrothermal exchange unit 6C through a large-diameter plastic resin pipe 6P ″ (standard: inner diameter 21.2 mm, wall thickness 2.9 mm). Then, after passing through the electric three-way valve 6T and the circulation pump 6N, water is radiated in the small plastic resin pipe 6P (standard: inner diameter 9.8 mm, wall thickness 1.6 mm) continuous from the valve 6E of the forward header 6S. Flows into the panel heater 7A from the supply port 7S and flows out from the discharge port 7R, flows into the return side header 6R through the small diameter plastic resin pipe 6P, and is returned to the thermostat by the return side large diameter plastic resin pipe 6P ". The water may be returned to the water heat exchange unit 6C through the sensor 5T.

また、空気熱交換器1の冷温水循環回路6の循環水は、図2(A),(B)に示す如く、放熱回路7の往き側の大径パイプ6P”の電動三方弁6Tの上流の分岐点P1から小径のプラスチック樹脂パイプ6P´を接続して、該プラスチック樹脂パイプ6P´を空気熱交換器1の、往き側接続口2Sに流入し、空気熱交換器内の冷温水コイル2内を循環させた後、戻り側接続口2Rから、小径のプラスチック樹脂パイプ6P´で戻り側ヘッダー6Rに流入し、放熱回路7の還流水と混合して大径のプラスチック樹脂パイプ6P”で、放熱回路の循環水として水熱交換ユニット6Cに還流させれば良い。   The circulating water in the cold / hot water circulation circuit 6 of the air heat exchanger 1 is upstream of the electric three-way valve 6T of the large-diameter pipe 6P ″ on the forward side of the heat dissipation circuit 7, as shown in FIGS. 2 (A) and 2 (B). A small-sized plastic resin pipe 6P ′ is connected from the branch point P1, and the plastic resin pipe 6P ′ flows into the forward connection port 2S of the air heat exchanger 1 to enter the cold / hot water coil 2 in the air heat exchanger. Is then circulated from the return side connection port 2R into the return side header 6R through the small diameter plastic resin pipe 6P ', mixed with the reflux water of the heat dissipation circuit 7, and radiated through the large diameter plastic resin pipe 6P ". What is necessary is just to recirculate to the water heat exchange unit 6C as circulating water of a circuit.

そして、放熱回路7の、還流大径パイプ6P”と、往流大径パイプ6P”の電動三方弁6Tとを、大径パイプ6P”で接続して、還流大径パイプ6P”と往流大径パイプ6P”間に、大径パイプ6P”によるバイパス流路b7を形成しておく。
この場合、冷温水循環回路用の小径パイプ6P´は、放熱回路7の小径プラスチック樹脂パイプ6Pと同一パイプを採用し、往流大径パイプ6P”からの分岐点P1での小径パイプ6P´の接続、及び還流大径パイプ6P”からの分岐点P2でのバイパス流路用の大径パイプ6P”の接続は、慣用のT型ソケットで実施すれば良い。
Then, the return large-diameter pipe 6P ″ of the heat radiating circuit 7 and the electric three-way valve 6T of the forward large-diameter pipe 6P ″ are connected by the large-diameter pipe 6P ″, and the return large-diameter pipe 6P ″ and the large forward flow pipe 6P ″ are connected. Between the diameter pipes 6P ″, a bypass flow path b7 is formed by the large diameter pipe 6P ″.
In this case, the small-diameter pipe 6P ′ for the cold / hot water circulation circuit adopts the same pipe as the small-diameter plastic resin pipe 6P of the heat dissipation circuit 7, and the small-diameter pipe 6P ′ is connected at the branch point P1 from the large-diameter pipe 6P ″. The connection of the large-diameter pipe 6P ″ for the bypass passage at the branch point P2 from the reflux large-diameter pipe 6P ″ may be performed by a conventional T-type socket.

従って、該空気熱交換システムによれば、例えば、冷房運転時では、水熱交換ユニット6Cから空気熱交換器1の冷温水コイル2への7℃(標準)の冷却水は、冷温水コイル2での除湿作用で6℃放熱して、標準13℃で戻り側ヘッダー6Rに流入し、放熱回路7の冷却水15℃(標準)は、輻射用パネルヒーター7Aを還流放熱して10℃上昇して戻り側ヘッダー6Rに25℃(標準)で還流して、冷温水コイル2からの還流と、パネルヒーター7Aの還流とが合流して還流大径パイプ6P”から水熱交換ユニット6Cに入る。   Therefore, according to the air heat exchange system, for example, at the time of cooling operation, the 7 ° C. (standard) cooling water from the water heat exchange unit 6C to the cold / hot water coil 2 of the air heat exchanger 1 is supplied to the cold / hot water coil 2. The dehumidifying action radiates 6 ° C and flows into the return header 6R at a standard 13 ° C. The cooling water 15 ° C (standard) of the heat radiating circuit 7 recirculates heat from the radiation panel heater 7A and rises 10 ° C. Then, the refrigerant flows back to the return side header 6R at 25 ° C. (standard), and the reflux from the cold / hot water coil 2 and the reflux of the panel heater 7A merge to enter the hydrothermal exchange unit 6C from the reflux large-diameter pipe 6P ″.

そして、戻り側ヘッダー6Rからの流体温度を検知して、電動三方弁6Tに通知し、電動三方弁6Tは、水熱交換ユニット6Cからの流体温度(標準:7℃)を検知して、適宜、水熱交換ユニット6Cからの流量及び還流大径パイプのバイパス流路b7からの流量を比例開放して適温(標準:15℃)に混流した後、往き側ヘッダー6Sに供給することとなり、水熱交換ユニット6Cへの還流量が減少出来、水熱交換ユニット6Cでの冷却(又は加熱)負荷が軽減出来る。   Then, the fluid temperature from the return side header 6R is detected and notified to the electric three-way valve 6T, and the electric three-way valve 6T detects the fluid temperature (standard: 7 ° C.) from the water heat exchange unit 6C and appropriately The flow rate from the water heat exchange unit 6C and the flow rate from the bypass flow path b7 of the reflux large-diameter pipe are proportionally released and mixed at an appropriate temperature (standard: 15 ° C.) and then supplied to the forward header 6S. The amount of reflux to the heat exchange unit 6C can be reduced, and the cooling (or heating) load in the water heat exchange unit 6C can be reduced.

従って、本発明の空気熱交換システムは、冷暖房の熱放出量の大な放熱回路7に、熱放出量の小な空気熱交換器用の冷温水循環回路6を分岐形態で配置したため、輻射用パネルヒーター7Aによる冷暖房システムの設備を利用しての除湿、加湿システムの付加配置となり、冷暖房システムと除加湿システムの合体化が簡便に実施出来、施工面、コスト面で合理化出来、冷暖房システムへの除加湿システムの一体化が簡便、且つメンテナンス容易に実施出来る。
そして、例えば冷暖房システムにあっては、冷暖房システムの循環水(冷房標準:往き15℃、戻り25℃)と、除湿、加湿システムの冷温水循環水(除湿標準:往き7℃、戻り13℃)とを1つの水熱交換ユニット6Cによって熱交換するため、省エネルギー化、高効率化となる。
Therefore, in the air heat exchange system of the present invention, the cold / hot water circulation circuit 6 for the air heat exchanger with a small heat release amount is arranged in a branched form in the heat dissipation circuit 7 with a large heat release amount of the air conditioner. The dehumidification and humidification system using the equipment of the air conditioning system by 7A will be added, the integration of the air conditioning system and the dehumidification system can be carried out easily, rationalization in terms of construction and cost, dehumidification and humidification to the air conditioning system System integration is simple and easy to maintain.
For example, in the case of an air conditioning system, circulating water in the air conditioning system (cooling standard: forward 15 ° C., return 25 ° C.) and cold / hot water circulating water in the dehumidification / humidification system (dehumidification standard: forward 7 ° C., return 13 ° C.) Since heat is exchanged by one water heat exchange unit 6C, energy saving and high efficiency are achieved.

また、往き側経路中の電動三方弁6Tには、温度検知器5Sと温度設定ダイヤル6gを介在し、戻り側循環水の温度をサーモセンサー5Tで検出して、戻り側経路の分岐点P2から、バイパス流路b7を介して戻り循環水の一部を電動三方弁6Tにバイパス流入し、合流した電動三方弁6T下流の往き側循環水の温度を、常時設定温度に維持するのが好ましい。   In addition, a temperature detector 5S and a temperature setting dial 6g are interposed in the electric three-way valve 6T in the forward side path, and the temperature of the return side circulating water is detected by the thermosensor 5T, and from the branch point P2 of the return side path. It is preferable that a part of the return circulating water is bypassed into the electric three-way valve 6T via the bypass flow path b7, and the temperature of the circulating circulating water downstream of the combined electric three-way valve 6T is always maintained at the set temperature.

この場合、図2(B)に示す如く、サーモセンサー5Tは、戻り側経路の大径パイプ6P”の、バイパス流路b7の分岐点P2の近傍上流側に配置して電動三方弁6Tと電線5Rで接続すれば良く、バイパス流路b7は、戻り経路の大径パイプ6P”と同材のパイプ片を用いて、慣用のT型ソケット6Dで分岐すれば良い。   In this case, as shown in FIG. 2 (B), the thermosensor 5T is disposed on the upstream side in the vicinity of the branch point P2 of the bypass flow path b7 of the large-diameter pipe 6P ″ of the return side path and the electric three-way valve 6T and the electric wire. The bypass channel b7 may be branched by a conventional T-shaped socket 6D using a pipe piece made of the same material as the large-diameter pipe 6P ″ of the return path.

従って、例えば、冷房時の電動三方弁6Tの、流入口6Xへの水熱交換ユニット6Cからの冷却水(標準:7℃)と流出口6Zの設定温度(標準:15℃)に対するバイパス流路の流入口6Yからの流入パーセントが、サーモセンサー5Tからの通知により決定され、水熱交換ユニット6Cからの7℃の流入量%(+)バイパス流路b7からのx℃の流量%=設定値(15℃)で混流され、水熱交換ユニット6Cへの還水量が減量出来、水熱交換ユニットの熱交換負荷が軽減される。
しかも、空気熱交換器1の除湿に必要な所定冷却水温(標準:7℃)、即ち、除湿機能に影響を与えることなく、輻射用パネルヒーター7Aの放熱量調整は自在となる。
Therefore, for example, the bypass flow path for the cooling water (standard: 7 ° C.) from the water heat exchange unit 6C to the inlet 6X and the set temperature (standard: 15 ° C.) of the outlet 6Z of the electric three-way valve 6T during cooling. The inflow percentage from the inlet 6Y is determined by the notification from the thermosensor 5T, and the inflow rate 7% from the water heat exchange unit 6C (+) the flow rate x x from the bypass passage b7 = setting value It is mixed at (15 ° C.), the amount of return water to the water heat exchange unit 6C can be reduced, and the heat exchange load of the water heat exchange unit is reduced.
In addition, the heat radiation amount of the radiation panel heater 7A can be freely adjusted without affecting the predetermined cooling water temperature (standard: 7 ° C.) required for dehumidification of the air heat exchanger 1, that is, the dehumidification function.

また、図2(B)に示す如く、往き側経路中の分岐点P1と電動三方弁6Tとの間、及び戻り側経路中の分岐点P2と電動三方弁6Tとの間のバイパス流路b7に仕切弁6Fを配置するのが好ましい。
この場合、仕切弁6Fは慣用の管路仕切弁を採用すれば良い。
そして、往き側経路、即ち放熱回路の往き側大径パイプ6P”の流路と、戻り側流路から電動三方弁6Tへのバイパス流路b7の大径パイプ6P”の流路とを閉止すれば、水熱交換ユニット6Cからの冷温水循環は、空気熱交換器1用の冷温水循環回路6のみでの循環流となる。
Further, as shown in FIG. 2B, a bypass flow path b7 between the branch point P1 in the forward path and the electric three-way valve 6T and between the branch point P2 in the return path and the electric three-way valve 6T. It is preferable to arrange the gate valve 6F.
In this case, a conventional pipe gate valve may be adopted as the gate valve 6F.
Then, the forward path, that is, the flow path of the forward large diameter pipe 6P ″ of the heat dissipation circuit and the flow path of the large diameter pipe 6P ″ of the bypass flow path b7 from the return side flow path to the electric three-way valve 6T are closed. For example, the cold / hot water circulation from the water heat exchange unit 6 </ b> C becomes a circulation flow only in the cold / hot water circulation circuit 6 for the air heat exchanger 1.

従って、春、秋等の冷暖房の必要性の少ない中間期にあっては、必要に応じて、空気熱交換器1に、吸気回路3及び供給回路4を稼動して居室内空気を貫流させ、空気熱交換器1の冷温水循環回路6のみの稼動、即ち冷温水コイル2のみの放熱によって、必要な低温減湿空気、又は高温加湿空気を居室内に送風提供出来、中間期では、輻射用パネルヒーター7Aへの冷温水の送水を閉止した省エネルギー運転の状態で、快適な居室内温湿度環境が提供出来る。   Therefore, in the intermediate period when there is little necessity for air conditioning such as spring and autumn, if necessary, the air heat exchanger 1 is operated with the intake circuit 3 and the supply circuit 4 to let the indoor air flow through. By operating only the cold / hot water circulation circuit 6 of the air heat exchanger 1, that is, radiating heat only from the cold / hot water coil 2, the necessary low-temperature dehumidified air or high-temperature humidified air can be blown into the living room. A comfortable room temperature and humidity environment can be provided in a state of energy saving operation in which the supply of cold / hot water to the heater 7A is closed.

また、図3(C),(D)に示す如く、供給側ダクト管4Dと供給グリル4Gの間にラッパ管4Rを配置して、供給グリル4Gからは、供給側ダクト管4Dからの放出空気流がラッパ管から天井内空気を吸引合流して放出するのが好ましい。   Further, as shown in FIGS. 3C and 3D, a trumpet pipe 4R is arranged between the supply side duct pipe 4D and the supply grille 4G, and air discharged from the supply side duct pipe 4D is supplied from the supply grille 4G. Preferably, the flow sucks and joins the air in the ceiling from the trumpet.

この場合、ラッパ管4Rとダクト管4Dとの関係構造を、ダクト管4Dの先端がラッパ管4R内に突入し、ラッパ管4Rの内周面とダクト管4Dの外周面との間に空気吸入用のスペースを形成すれば良く、典型的には、図3(D)に示す如く、円筒管4Bから拡開する円錐管4Uを備えたラッパ管4Rを、図3(C)に示す如く、天井面に配置した供給グリル4Gの垂直管4F外周に円筒管4Bを空密嵌合止着し、慣用の、ガラス繊維保温材で被覆したダクト管4Dは、先端を20mm厚の被覆保温材から若干(標準:20mm)露出して、保温材先端が円錐管4Uの外端と前後方向が揃う状態に配置し、円錐管4Uの外端縁内周と、ダクト管被服保温層4A外周との間に15mmのスペースSを形成する。   In this case, the relationship between the trumpet pipe 4R and the duct pipe 4D is such that the end of the duct pipe 4D enters the trumpet pipe 4R, and air is sucked between the inner peripheral surface of the trumpet pipe 4R and the outer peripheral surface of the duct pipe 4D. As shown in FIG. 3 (D), a trumpet tube 4R having a conical tube 4U that expands from the cylindrical tube 4B is typically formed as shown in FIG. 3 (C). The cylindrical tube 4B is airtightly fitted and fixed to the outer periphery of the vertical tube 4F of the supply grille 4G arranged on the ceiling surface, and the conventional duct tube 4D covered with a glass fiber heat insulating material is made of a coated heat insulating material having a thickness of 20 mm. A little (standard: 20 mm) is exposed and the tip of the heat insulating material is arranged so that the outer end of the conical tube 4U is aligned with the front-rear direction, and the inner periphery of the outer end edge of the conical tube 4U and the outer periphery of the duct tube clothing heat insulating layer 4A A space S of 15 mm is formed between them.

従って、図3(C)に示す如く、空気熱交換器1で冷却又は加熱された空気が、ダクト管4Dから供給グリル4Gを介して居室内に送風される際に、ダクト内空気流a6は、ラッパ管4Rとダクト管4Dとの間のスペースSから天井内空気の吸引流acを合流させるため、例えば、空気熱交換器1で低温除湿、又は高温加湿された空気流a6に、天井内の空気が混入されるため、空気熱交換器1からの送風空気流a6は、天井内空気流acの混入により、温和な冷却(加熱)空気流となり、輻射用パネルヒーター7Aからの温和な、冷房(暖房)作用を受けている居室者に対する、過激、且つ不快な冷気(暖気)の吹付けが抑制出来る。   Therefore, as shown in FIG. 3C, when the air cooled or heated by the air heat exchanger 1 is blown from the duct pipe 4D into the living room through the supply grille 4G, the air flow a6 in the duct is In order to join the suction flow ac of the air in the ceiling from the space S between the trumpet pipe 4R and the duct pipe 4D, for example, the air flow a6 that has been dehumidified or humidified at a low temperature by the air heat exchanger 1 Therefore, the air flow a6 from the air heat exchanger 1 becomes a gentle cooling (heating) air flow due to the mixing of the air flow ac in the ceiling, and the mild air from the radiation panel heater 7A. Radiant and unpleasant cold air (warm air) can be prevented from being blown to the occupants who are receiving the cooling (heating) action.

請求項1の空気熱交換システムに用いる空気熱交換器1は、例えば図4(A)に示す如く、筒本体1Aの、前端には吸気側ダクト管3Dを、後端には供給側ダクト管4Dを接続し、筒本体1A内には、例えば図5(A)に示す如く、長手方向に冷温水コイル2を配置し、筒本体1A上面からは、冷温水コイル2の上面に対して洗浄ノズル9A群を前後間隔垂下し、筒本体1Aの前部上面からは、噴霧ノズル10Aを垂下し、筒本体1Aの下面の、後部からはドレンパイプ8Aを垂下し、筒本体1Aの、後端内底面には止水板8Rを配置したものである。   The air heat exchanger 1 used in the air heat exchange system according to claim 1 includes an intake side duct pipe 3D at the front end and a supply side duct pipe at the rear end, as shown in FIG. 4D is connected, and a cold / hot water coil 2 is arranged in the longitudinal direction in the cylinder body 1A, for example, as shown in FIG. 5A, and the upper surface of the cold / hot water coil 2 is cleaned from the upper surface of the cylinder body 1A. A group of nozzles 9A is suspended from front to back, the spray nozzle 10A is suspended from the upper surface of the front portion of the cylinder body 1A, the drain pipe 8A is suspended from the rear surface of the cylinder body 1A, and the rear end of the cylinder body 1A. A water stop plate 8R is disposed on the inner bottom surface.

この場合、冷温水コイル2は、循環パイプ2Aの外周に放熱用フィン群2Fを配置し、循環パイプ2A内に冷温水を循環させて放熱フィン群2Fによって周囲の空気を冷却又は加熱するものであって、典型的には、図6に示す如く、高熱伝導性(熱伝導率:320kcal/mh℃)の銅管の循環パイプ2A群を、千鳥形状に上下おのおの4本配置して、供給側1Rは、ヘアピンチューブ2Bで並列に溶接し、吸気側1Sは、上下傾斜状にUベント2Cで接続して、全循環パイプ2A群を連通形態として、全循環パイプ2A群が貫通形態で、放熱フィン2F群を循環パイプ2A群の外周に、平行密接配置したものである。   In this case, the cold / hot water coil 2 arranges the fin group 2F for heat radiation on the outer periphery of the circulation pipe 2A, circulates cold / hot water in the circulation pipe 2A, and cools or heats the surrounding air by the radiation fin group 2F. Typically, as shown in FIG. 6, four high-conductivity (thermal conductivity: 320 kcal / mh ° C.) copper pipe circulation pipes 2A are arranged in a staggered pattern on the upper and lower sides, and the supply side 1R is welded in parallel with a hairpin tube 2B, and the intake side 1S is connected with a U vent 2C in a vertically inclined manner so that the entire circulation pipe 2A group is in a communicating form, and the entire circulation pipe 2A group is in a penetrating form. The fins 2F are arranged in parallel and closely on the outer periphery of the circulation pipe 2A group.

そして、循環パイプ2A群に水熱交換ユニット6Cからの冷温水を循環させて、放熱フィン2F群により空気熱交換器1内を貫流する空気に熱伝達するものであり、冷温水コイル2の長さ、幅、厚さは、筒本体1Aとの関係で決定すれば良く、筒本体1Aは、冷温水コイルを長手方向に収納出来れば良いが、典型的には、筒本体1Aは、図4に示す如く、長さL1が890mm、内径r1が131mmの円筒体であり、冷温水コイル2は、図6に示す如く、長さL2が650mmで、幅W2が106.5mmで、厚さh2が42.3mmの断面長方形であり、冷温水コイル2の出入口管2Dの、往き側接続口2Sと戻り側接続口2Rは筒本体1Aの吸気側1Sから上方へ突出させたものである。   Then, the hot and cold water from the water heat exchange unit 6C is circulated through the circulation pipe 2A group, and heat is transferred to the air flowing through the air heat exchanger 1 by the radiating fins 2F group. The length, width, and thickness may be determined in relation to the cylinder main body 1A, and the cylinder main body 1A only needs to be able to accommodate the cold / hot water coil in the longitudinal direction. As shown in FIG. 6, the cold / hot water coil 2 has a length L1 of 890 mm and an inner diameter r1 of 131 mm, and the cold / hot water coil 2 has a length L2 of 650 mm, a width W2 of 106.5 mm, and a thickness h2. Is a rectangular shape with a cross section of 42.3 mm, and the outlet side connection port 2S and the return side connection port 2R of the inlet / outlet pipe 2D of the cold / hot water coil 2 are projected upward from the intake side 1S of the cylinder body 1A.

また、吸気側ダクト管3D及び供給側ダクト管4Dは、慣用のダクト手段を適用すれば良く、変形自在なアルミニウム製のフレキシブルダクト管を採用すれば施工性が良い。
また、洗浄ノズル9A群としては、円錐形状に放水する慣用の水噴射ノズルを、洗浄回路9に連通形態で採用すれば良く、典型的には、図5(A)に示す如く、間隔110mmで、洗浄回路9の給水管9Bに連通形態で筒本体1Aから垂下する。
また、噴霧ノズル10Aは、慣用の加圧機能内蔵の噴霧ノズルを採用すれば良く、湿度検知器5Eの作動制御を受ける加湿回路10の枝管10Bに連通形態で、筒本体1Aの吸気側1Sの上部から垂下すれば良い。
The intake duct tube 3D and the supply duct tube 4D may be constructed by using conventional duct means, and workability is improved if a deformable aluminum flexible duct tube is employed.
Further, as the group of cleaning nozzles 9A, a conventional water spray nozzle that discharges water in a conical shape may be employed in a communication form with the cleaning circuit 9. Typically, as shown in FIG. 5A, the interval is 110 mm. Then, it hangs down from the cylinder main body 1A in communication with the water supply pipe 9B of the cleaning circuit 9.
The spray nozzle 10A may be a conventional spray nozzle with a built-in pressurizing function. The spray nozzle 10A communicates with the branch pipe 10B of the humidifying circuit 10 that receives the operation control of the humidity detector 5E, and is connected to the intake side 1S of the cylinder body 1A. Just hang down from the top of the.

また、止水板8Rは、筒本体1A底面に溜まる水が送風と共に居室内に放水されるのを阻止出来れば良く、典型的には、図5(G),(H)に示す如く、筒本体1Aの内周面の下半を閉止する形状、即ち筒本体1Aの内周と同一の曲率の円弧面8Tの下辺と水平上辺8Fで面板8Rを補強した円弧形態の止水板とし、円弧面8Tを筒本体1Aの底周面に水密固定したものである。
また、ドレンパイプ8Aは、図5(A)に示す如く、筒本体1Aの底面で、後端の止水板8Rの近傍に配置すれば良く、典型的には、筒本体1Aの後端から75mmの位置から下方に突設する。
The water stop plate 8R only needs to be able to prevent the water accumulated on the bottom surface of the cylinder main body 1A from being discharged into the living room together with the air blowing. Typically, as shown in FIGS. A shape that closes the lower half of the inner peripheral surface of the main body 1A, that is, an arc-shaped waterstop plate in which the face plate 8R is reinforced by the lower side of the arc surface 8T and the horizontal upper side 8F having the same curvature as the inner periphery of the cylinder main body 1A, The surface 8T is watertightly fixed to the bottom peripheral surface of the cylinder body 1A.
Further, as shown in FIG. 5 (A), the drain pipe 8A may be disposed in the vicinity of the water stop plate 8R at the rear end on the bottom surface of the cylinder main body 1A, and typically from the rear end of the cylinder main body 1A. Project downward from 75mm.

従って、本発明の空気熱交換器1は、前端に吸気側ダクト管3Dを、後端に供給側ダクト管4Dを接続出来る場所であれば設置可能であり、冷温水コイル2によって、筒本体1A内を吸気側ダクト管3Dから供給側ダクト管4Dへと流れる空気に、夏季の冷却作用による除湿が出来ると共に、冬季の加熱作用時には、噴霧ノズル10Aでの水蒸気付加によって、乾燥空気に加湿して居室内に送風出来、居室内への供給空気流に、所望の除湿、及び加湿が出来る。   Therefore, the air heat exchanger 1 of the present invention can be installed in a place where the intake side duct pipe 3D can be connected to the front end and the supply side duct pipe 4D can be connected to the rear end. The air flowing from the intake side duct pipe 3D to the supply side duct pipe 4D can be dehumidified by the cooling action in the summer, and at the time of the heating action in the winter, the air is humidified by the addition of water vapor at the spray nozzle 10A. The air can be blown into the living room, and desired dehumidification and humidification can be performed in the air flow supplied to the living room.

そして、除湿によって生ずる結露水は好適にドレンパイプ8Aから排除出来、加湿作用時に、例え水滴が空気熱交換器1の底面に溜まっても、ドレンパイプ8Aの存在によって水漏れの支障は生じない。
また、冷温水コイル2の周面、即ちフィン2F群の周面に付着した埃やゴミも、冷温水コイル2上の長手方向に間隔配置した洗浄ノズル9A群での定期的洗浄作用によって洗い流すことが出来、冷温水コイル2のゴミの付着による熱交換効率の低下は阻止出来る。
そして、冷温水コイル2の洗浄によって生ずる多量の流水も、支障無くドレンパイプ8Aから除去出来る。
Condensed water generated by dehumidification can be preferably removed from the drain pipe 8A, and even when water drops accumulate on the bottom surface of the air heat exchanger 1 during the humidifying action, the presence of the drain pipe 8A does not hinder water leakage.
Also, dust and debris adhering to the peripheral surface of the cold / hot water coil 2, that is, the peripheral surface of the fin 2F group, are washed away by a periodic cleaning action in the cleaning nozzle 9A group arranged in the longitudinal direction on the cold / hot water coil 2. Therefore, it is possible to prevent a decrease in heat exchange efficiency due to the adhesion of dust on the cold / hot water coil 2.
A large amount of flowing water generated by cleaning the cold / hot water coil 2 can be removed from the drain pipe 8A without any trouble.

そのため、本発明の空気熱交換器1は、居室内空気に対する、必要な除湿作用、加湿作用及び空気熱交換器1内の洗浄作用が、水漏れの心配無く実施出来て、天井内等、狭い空間への設置も可能となり、輻射用パネルヒーター7Aによる冷暖房システムに於いて、輻射用パネルヒーター7Aによる配置位置の制約を受けることなく、空気熱交換器1の配置が自在となり、請求項1の空気熱交換システムが好適に実施出来る。   Therefore, the air heat exchanger 1 of the present invention can perform necessary dehumidifying action, humidifying action and cleaning action in the air heat exchanger 1 on the air in the room without worrying about water leakage, and is narrow in the ceiling or the like. The air heat exchanger 1 can be arranged freely without being restricted by the arrangement position by the radiation panel heater 7A in the cooling and heating system by the radiation panel heater 7A. An air heat exchange system can be suitably implemented.

また、空気熱交換器1の発明にあっては、冷温水コイル2は、例えば図6に示す如く、筒本体1Aの長手方向に並列連通した複数本の循環パイプ2A群に幅方向のフィン2F群を密集平行配置して、図5(A)に示す如く、筒本体1Aの上下方向中央部位置で長手方向に延展配置し、冷温水コイル2の下側では、冷温水コイル2の吸気側1Sの端部に、後方に上昇傾斜する風偏向板bbを筒本体1A下面から配置して、吸引空気流a3の冷温水コイル2下面への流入を抑制し、冷温水コイル2の上側では、後方に下降傾斜する風偏向板bt群を、吸気側1Sから供給側1Rに亘って順次通過風量が減少するように間隔配置し、吸気側1Sから流入する空気流a3を冷温水コイル2の上面側から下面側に順次偏向して、フィン群2Fの隙間を上側から下側に貫流案内し、供給側1Rでは、冷温水コイル2の下面からの空気流a4として流出させるのが好ましい。   In the invention of the air heat exchanger 1, the cold / hot water coil 2 includes, for example, as shown in FIG. 6, a plurality of circulation pipes 2A connected in parallel in the longitudinal direction of the cylinder main body 1A and a fin 2F in the width direction. As shown in FIG. 5 (A), the groups are arranged in a densely parallel manner, extending in the longitudinal direction at the center of the cylinder body 1A in the vertical direction, and below the cold / hot water coil 2, on the intake side of the cold / hot water coil 2 At the end of 1S, a wind deflection plate bb that rises and tilts backward is arranged from the bottom surface of the cylinder body 1A to suppress the inflow of the suction air flow a3 to the bottom surface of the cold / hot water coil 2, and on the upper side of the cold / hot water coil 2, A group of wind deflecting plates bt inclined downward and rearward are arranged so that the passing air volume gradually decreases from the intake side 1S to the supply side 1R, and the air flow a3 flowing from the intake side 1S is placed on the upper surface of the cold / hot water coil 2 The gap between the fin groups 2F is increased by sequentially deflecting from the lower side to the lower side. Flow guided to the lower side from the supply side 1R, preferable to flow out as the air flow a4 from the lower surface of the cold and hot water coil 2.

この場合、冷温水コイル2は、それ自体慣用の手法で、図6に示す如く、アルミニウム製の肉厚0.12mmのフィン2Fを間隔0.54mmで平行配置して両端のエンドプレート2E,2E´で循環パイプ2A群上に固定したものであり、冷温水コイル2の筒本体1A内への配置は、図5(A),(B)に示す如く、筒本体1Aの内面適所に配置固定した、下側受金具2K及び上側受金具2Kで挟着把持すれば良い。   In this case, the cold / hot water coil 2 is a conventional technique, as shown in FIG. 6, with fins 2F made of aluminum having a thickness of 0.12 mm arranged in parallel at an interval of 0.54 mm, and end plates 2E, 2E at both ends. 'Is fixed on the circulation pipe 2A group, and the arrangement of the cold / hot water coil 2 in the cylinder main body 1A is arranged and fixed at an appropriate position on the inner surface of the cylinder main body 1A as shown in FIGS. 5 (A) and 5 (B). What is necessary is just to pinch and hold with the lower receiving metal fitting 2K and the upper receiving metal fitting 2K.

また、下側及び上側の風偏向板bb,btは、冷温水コイル2のフィン2F又は循環パイプ2A等に、慣用の、係止手段、接着手段等で配置すれば良く、上側の風偏向板bt群としては、順次、風偏向板の面積が小から大へと変化する複数板を、吸気側1Sから供給側1Rに亘って、順次、筒本体1Aで内周面と風偏向板btとの空気流a3の通過間隔が狭まるように配置すれば良い。   Further, the lower and upper wind deflecting plates bb and bt may be disposed on the fins 2F or the circulation pipe 2A of the cold / hot water coil 2 by conventional locking means, adhesive means, etc. As the bt group, a plurality of plates in which the area of the wind deflecting plate changes from small to large sequentially, from the intake side 1S to the supply side 1R, the inner peripheral surface and the wind deflecting plate bt on the cylinder main body 1A sequentially. What is necessary is just to arrange | position so that the passage space | interval of the air flow a3 may narrow.

従って、空気熱交換器1内に、吸気側ダクト管3Dからダクトファン3Fを介して居室内空気を送風すれば、図3(B)に示す如く、送風空気流a3は、筒本体1A内に入ると、冷温水コイル2の吸気側1Sの端部の風偏向板bbによって冷温水コイル2の上部へ入り、吸気側1Sから供給側1Rに亘って、順次、寸法が小から大へと変化する風偏向板bt群によって、空気流a3は、各風偏向板bt毎に分割偏向し、冷温水コイル2間、即ちフィン2F間を空気流a4として下方に貫流し、供給側1Rでは、冷温水コイル2の下側から吹出空気流a5として居室内に送風出来る。   Therefore, if the indoor air is blown into the air heat exchanger 1 through the duct fan 3F from the intake duct tube 3D, the blown air flow a3 is moved into the cylinder body 1A as shown in FIG. Upon entering, the wind deflector bb at the end of the intake / air side 1S of the cold / hot water coil 2 enters the upper part of the cold / hot water coil 2, and the dimensions sequentially change from small to large from the intake side 1S to the supply side 1R. The air flow a3 is divided and deflected for each wind deflection plate bt by the group of wind deflecting plates bt, and flows downward between the cold / hot water coils 2, that is, between the fins 2F, as the air flow a4. The air can be blown into the living room from the lower side of the water coil 2 as a blown air flow a5.

そして、ダクトファン3Fによる送風中は、筒本体1A内では、冷温水コイル2の、下面空間Sdが低圧、上面空間Suが高圧状態となって、高圧の上面空間Suから低圧の下面空間Sdへの空気流a3→a4→a5と流れるため、吸気側ダクト管3Dから供給側ダクト管4Dへの空気流に対するフィン2F群による有効な熱伝達が達成出来ると共に、フィン2F群の表面結露水も、フィン2Fの隙間を下方へ貫流する空気流a4によって筒本体1Aの底面に誘導出来、空気熱交換器1は、断面積が小で長尺であり、天井内等、狭い空間に配置可能でありながら、長尺、短幅の冷温水コイル2によって、強力な除湿機能を発揮すると共に、派生する結露水をドレンパイプ8Aによって完全に排除出来、配置場所も自在な高性能除湿器となる。   During the blowing by the duct fan 3F, the lower surface space Sd of the cold / hot water coil 2 is in a low pressure state and the upper surface space Su is in a high pressure state in the cylinder main body 1A, and the high pressure upper surface space Su is changed to a lower pressure lower surface space Sd. Air flow a3 → a4 → a5, so that effective heat transfer by the fin 2F group can be achieved for the air flow from the intake side duct pipe 3D to the supply side duct pipe 4D, and the surface dew condensation water of the fin 2F group The air flow a4 that flows downward through the gaps of the fins 2F can be guided to the bottom surface of the cylinder body 1A, and the air heat exchanger 1 has a small cross-sectional area and is long and can be arranged in a narrow space such as in the ceiling. However, the long and short cold / hot water coil 2 exhibits a powerful dehumidifying function, and the condensed water derived therefrom can be completely eliminated by the drain pipe 8A, so that the high-performance dehumidifier can be arranged freely.

また、風偏向板bb,btは、図5に示す如く、垂直のアンカー片anを備えた傾斜板であり、風偏向板bb,btの傾斜した外周形状が筒本体1Aの内周形状と相似形であって、各風偏向板bb,btは、アンカー片anを、冷温水コイル2のフィン2Fの隙間に挿入して配置し、冷温水コイル2の、前端下面に配置する風偏向板bbと後端上面に配置する風偏向板btは、筒本体1Aの内面を閉止するのが好ましい。   Further, the wind deflection plates bb and bt are inclined plates provided with vertical anchor pieces an as shown in FIG. 5, and the inclined outer peripheral shape of the wind deflection plates bb and bt is similar to the inner peripheral shape of the cylinder body 1A. The wind deflection plates bb and bt are arranged in such a manner that the anchor pieces an are inserted into the gaps between the fins 2F of the cold / hot water coil 2 and arranged on the lower surface of the front end of the cold / hot water coil 2. The wind deflector bt disposed on the upper surface of the rear end preferably closes the inner surface of the cylinder body 1A.

この場合、筒本体1Aが断面円形の場合は、図5に示す如く、風偏向板bb,btは、傾斜した円弧板の弦辺fbから垂直のアンカー片an群を間隔突出させ、上側用の傾斜形態の風偏向板btは、円弧板の外周縁が、筒本体1Aの内周面と同一曲率の下で、順次小径としたbt1,bt2,bt3,bt4,bt5,bt6で準備すれば良い。
そして、上側の最後端の風偏向板bt1と下側の風偏向板bbとは、傾斜円弧板の外周縁が筒本体1Aの内周に当接するサイズとすれば良い。
In this case, when the cylindrical main body 1A has a circular cross section, as shown in FIG. 5, the wind deflection plates bb and bt project the vertical anchor pieces an group apart from the chord side fb of the inclined arc plate, The inclined wind deflector bt may be prepared with bt1, bt2, bt3, bt4, bt5, and bt6 with the outer peripheral edge of the circular arc plate having the same curvature as that of the inner peripheral surface of the cylinder main body 1A and gradually decreasing in diameter. .
The uppermost wind deflection plate bt1 and the lower wind deflection plate bb may be sized such that the outer peripheral edge of the inclined arc plate contacts the inner periphery of the cylinder body 1A.

また、風偏向板bb,btの厚さは、フィン2Fの隙間に挿入出来るように、例えば、各フィン2F間の間隔が0.54mmの標準タイプに対しては、肉厚0.4mmとし、風偏向板bb,btの弦辺fbが循環パイプ2Aに当接するまで、アンカー片anをフィン2F隙間に押込めば、風偏向板bb,btの配置確保が可能であり、上側の最後端の風偏向板btと下側の風偏向板bbとは、アンカー片anをエンドプレート2E,2E´と最外端のフィン2Fとの間に挿入すれば良い。   Further, the thickness of the wind deflector plates bb and bt is set to 0.4 mm for the standard type in which the distance between the fins 2F is 0.54 mm so that it can be inserted into the gap between the fins 2F. If the anchor piece an is pushed into the gap of the fin 2F until the chordal side fb of the wind deflecting plates bb and bt comes into contact with the circulation pipe 2A, the arrangement of the wind deflecting plates bb and bt can be ensured. For the wind deflection plate bt and the lower wind deflection plate bb, the anchor piece an may be inserted between the end plates 2E, 2E ′ and the outermost fin 2F.

従って、各風偏向板bb,btの設置、がフィン2Fの隙間への挿入で簡便に実施出来、上側風偏向板bt(bt1,bt2・・・)群による、図3(B)の如き、筒本体1A内の、上側貫流空気流a3の下側貫流空気流a4への空気流分配が自在となり、空気熱交換器1は、長尺筒体内に、幅方向配列のフィン2F群を備えた冷温水コイル2を配置したものでありながら、貫流全空気は、フィン2F間の貫流降下によって高効率の熱交換作用を受け、各フィン2Fに生ずる結露水も、フィン2F間の下方への貫流空気で底面に誘導出来、各フィン2Fの結露水の集積排出の保証の下に、高い除湿機能を発揮する。   Therefore, the installation of the respective wind deflecting plates bb and bt can be easily performed by inserting them into the gaps of the fins 2F, and the upper wind deflecting plates bt (bt1, bt2...) Group as shown in FIG. The air flow can be freely distributed to the lower through air flow a4 of the upper through air flow a3 in the cylinder main body 1A, and the air heat exchanger 1 includes a group of fins 2F arranged in the width direction in the long cylindrical body. Although the cold / hot water coil 2 is arranged, the through-flowing whole air undergoes a high-efficiency heat exchange action due to the flow-down between the fins 2F, and the condensed water generated in each fin 2F also flows downward between the fins 2F. It can be guided to the bottom with air, and exhibits a high dehumidifying function under the guarantee of condensation discharge of each fin 2F.

本発明の空気熱交換システムは、空気熱交換器1に内臓した冷温水コイル2への循環水として冷暖房用の輻射パネルヒーターの冷温水循環システム、即ち輻射用パネルヒーター7A用の放熱回路7の設備が利用出来るため、冷温水循環型の1つの冷暖房システム内に、除湿及び加湿システムが簡単に付加出来、冷暖房機能と除湿機能を備えたエアーコンディショニングシステムが、低コスト、且つ省エネルギーで、合理的に実施出来る。
そして、空気熱交換器用の循環回路6は、冷暖房用の放熱回路7の上流で分岐するため、空気熱交換器1への送水は、冷暖房用パネルヒーターへの送水温度の制約を受けること無く、温度が適宜自由に選択出来、且つ優先的に送水可能となり、居室内の空気の、放熱回路7による冷暖房と、循環回路6による空気熱交換器1での除湿とが、別個独立的に制御出来るため、居住者の好みに応じた温度と湿度でのエアーコンディショニングの提供を可能とする。
The air heat exchanging system of the present invention is a cold / hot water circulation system for a radiant panel heater for cooling / heating as circulating water to a chilled / hot water coil 2 built in the air heat exchanger 1, that is, the equipment of the heat radiation circuit 7 for the radiant panel heater 7A. Therefore, a dehumidification and humidification system can be easily added to one cooling / heating water circulation type heating / cooling system, and an air conditioning system equipped with an air conditioning / dehumidification function is rationally implemented at low cost and energy saving. I can do it.
And since the circulation circuit 6 for an air heat exchanger branches in the upstream of the heat radiating circuit 7 for air conditioning, the water supply to the air heat exchanger 1 does not receive restrictions of the water supply temperature to the panel heater for air conditioning, The temperature can be freely selected as appropriate and water can be preferentially sent, and the air conditioning in the living room can be controlled independently and independently by the heat dissipation circuit 7 and by the circulation circuit 6 in the air heat exchanger 1. Therefore, it is possible to provide air conditioning at a temperature and humidity according to the resident's preference.

また、除湿機能を発揮する空気熱交換器1は、冷暖房用の放熱回路から分岐配管手段で配置出来るため、配置の自由度があり、小規模住宅にも自在に施工出来て、設備施工面からも、外観上からも、需要者の要望に応えられる。
そして、本発明にあっては、室内空気を空気熱交換器が吸気して除湿して、該空気を居室内に冷却空気として送風再還元するため、直接、屋外の高温高湿空気の影響を受けることがなく、居室内の温湿度コントロールが省エネルギーで達成出来る。
Moreover, since the air heat exchanger 1 that exhibits the dehumidifying function can be arranged by a branch piping means from the heat radiation circuit for cooling and heating, there is a degree of freedom of arrangement, and it can be freely constructed even in a small house, from the facility construction side. However, it can meet the demands of consumers from the viewpoint of appearance.
In the present invention, the air heat exchanger sucks the indoor air and dehumidifies it, and the air is blown back into the room as cooling air, so that the influence of the outdoor high-temperature and high-humidity air is directly affected. The temperature and humidity control in the room can be achieved with energy saving.

また、本発明にあっては、顕熱は輻射用パネルヒーター7Aによる冷暖房で、潜熱は空気熱交換器でおのおの対応制御出来るため、従来例3の如く、設備が過大とならず、有効な空調(エアーコンディショニング)、即ち湿度コントロールを伴った冷暖房、が安価、且つ合理的に実施出来る。
また、空気熱交換器1への吸気回路3、及び供給回路4がダクト方式で適用出来るため、消費電力が少なく、空気熱交換システムは、ランニングコストの低減したシステムとなる。
また、居室内の任意位置に対する供給グリル4Gからの冷暖房送風が、天井内ダクトからの分岐配管で簡便、且つ自在となる
そして、空気熱交換システムの冷房運転中には、輻射用パネルヒーター7A表面に送風空気の一部を、天井Cの吹出口4Kから吹き下ろすため、パネルヒーター7A表面に当接する静止空気層と、静止空気層の外側の上下層流とを吹き飛ばして、ヒーター7A表面での空気熱伝達作用を高めて冷房効果を上げると共に、輻射用パネルヒーター7A表面の結露の発生も抑制出来る
In the present invention, the sensible heat is air-conditioning / heating by the radiation panel heater 7A, and the latent heat can be controlled by the air heat exchanger. Therefore, unlike the conventional example 3, the equipment is not excessive and effective air conditioning. (Air conditioning), that is, air conditioning with humidity control, can be implemented inexpensively and reasonably.
Further, since the intake circuit 3 and the supply circuit 4 to the air heat exchanger 1 can be applied in a duct system, the power consumption is low, and the air heat exchange system is a system with reduced running cost.
In addition, the cooling and heating air blowing from the supply grille 4G to an arbitrary position in the living room can be easily and freely performed by a branch pipe from the duct in the ceiling .
During cooling operation of the air heat exchange system, in order to blow a part of the blown air on the surface of the radiation panel heater 7A from the outlet 4K of the ceiling C, a still air layer in contact with the surface of the panel heater 7A, By blowing off the upper and lower layer flow outside the still air layer, the air heat transfer action on the surface of the heater 7A is enhanced to increase the cooling effect, and the occurrence of condensation on the surface of the radiation panel heater 7A can also be suppressed .

また、空気熱交換器1の発明は、前端に吸気側ダクト管3Dを、後端に供給側ダクト管4Dを接続出来る場所であれば設置可能であり、空気熱交換器1内を貫流する空気に対し、冷温水コイル2の作用で、夏季には冷却作用による除湿が、冬季の暖房時には噴霧ノズル10Aでの加湿が出来、空気熱交換器1によって、居室内への供給空気流に、所望の除湿、加湿が、冷暖房システムから独立的に、自在に実施出来る。   Further, the invention of the air heat exchanger 1 can be installed in any place where the intake side duct pipe 3D can be connected to the front end and the supply side duct pipe 4D can be connected to the rear end, and the air flowing through the air heat exchanger 1 can be installed. On the other hand, due to the action of the cold / hot water coil 2, dehumidification by the cooling action can be performed in the summer, and humidification can be performed by the spray nozzle 10 </ b> A during the heating in the winter. Dehumidification and humidification can be performed freely and independently from the air conditioning system.

そして、除湿によって生ずる結露水も、加温時に生ずる水滴溜りも、ドレンパイプ8Aから支障無く排除出来る。
また、冷温水コイル2の周面、即ちフィン2F群の周面に付着した埃やゴミも、冷温水コイル2上の長手方向に間隔配置した洗浄ノズル9A群での定期的洗浄作用によって洗い流すことが出来、冷温水コイル2のゴミ付着による熱交換効率低下は阻止出来、洗浄水もドレンパイプ8Aで排除出来る。
And the dew condensation water produced by dehumidification and the water droplet accumulation produced at the time of heating can be eliminated from the drain pipe 8A without any trouble.
Also, dust and debris adhering to the peripheral surface of the cold / hot water coil 2, that is, the peripheral surface of the fin 2F group, are washed away by a periodic cleaning action in the cleaning nozzle 9A group arranged in the longitudinal direction on the cold / hot water coil 2. Therefore, it is possible to prevent the heat exchange efficiency from being lowered due to the dust adhering to the cold / hot water coil 2, and the washing water can be removed by the drain pipe 8A.

そのため、本発明の空気熱交換器1は、居室内空気に対する必要な除湿作用、加湿作用及び機能維持のための洗浄作用が、水漏れの心配無く実施出来て、天井内等、狭い空間への設置も可能となり、輻射用パネルヒーター7Aによる配置位置の制約を受けることなく、空気熱交換器1の配置が自在となり、請求項1に記載の空気熱交換システムの発明の好適実施を可能とする。   Therefore, the air heat exchanger 1 of the present invention can perform the necessary dehumidifying action, humidifying action and cleaning action for maintaining the function on the air in the room without worrying about water leakage, and can be applied to a narrow space such as in the ceiling. The air heat exchanger 1 can be arranged freely without being restricted by the arrangement position by the radiation panel heater 7A, and the air heat exchange system according to claim 1 can be suitably implemented. .

本発明の空気熱交換システムの全体説明図であって、(A)は居室内の横断上面図、(B)は縦断側面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a whole explanatory drawing of the air heat exchange system of this invention, Comprising: (A) is a cross-sectional top view inside a living room, (B) is a vertical side view. 本発明システムの流水回路説明図であって、(A)は全体回路図、(B)は要部拡大図である。It is flowing water circuit explanatory drawing of this invention system, Comprising: (A) is a whole circuit diagram, (B) is a principal part enlarged view. 本発明システムの空気流説明図であって、(A)は全体説明線図、(B)は空気熱交換器内の説明図、(C)は供給部位の説明図、(D)はラッパ管の斜視図である。It is airflow explanatory drawing of this invention system, Comprising: (A) is a whole explanatory diagram, (B) is explanatory drawing in an air heat exchanger, (C) is explanatory drawing of a supply part, (D) is a trumpet pipe FIG. 空気熱交換器の説明図であって、(A)は配置状態側面図、(B)は透視斜視図、(C)は(B)の矢印C視図、(D)は(B)の矢印D視図、(E)は(B)の矢印E視図である。It is explanatory drawing of an air heat exchanger, Comprising: (A) is an arrangement | positioning side view, (B) is a perspective view, (C) is the arrow C view of (B), (D) is the arrow of (B). D view, (E) is an arrow E view of (B). 空気熱交換器の説明図であって、(A)は縦断側面図、(B)は(A)のB−B断面図、(C)は上側風偏向板群の正面図、(D)は上側風偏向板の側面図、(E)は下側風偏向板の正面図、(F)は下側風偏向板の側面図、(G)は止水板の正面図、(H)は止水板の側面図である。It is explanatory drawing of an air heat exchanger, (A) is a vertical side view, (B) is BB sectional drawing of (A), (C) is a front view of an upper wind deflection plate group, (D) is (E) is a front view of the lower wind deflection plate, (F) is a side view of the lower wind deflection plate, (G) is a front view of the water stop plate, and (H) is a stop view. It is a side view of a water plate. 冷温水コイルの全体説明図であって、(A)は上面図、(B)は(A)の矢印B視図、(C)は(A)の矢印C視図、(D)は(A)の矢印D視図である。It is whole explanatory drawing of a cold / hot water coil, Comprising: (A) is a top view, (B) is the arrow B view of (A), (C) is the arrow C view of (A), (D) is (A) FIG. 冷温水コイルの部分説明図であって、(A)は循環パイプの流水図、(B)は(A)のB−B線縦断面図、(C)はフィン2Fの斜視図である。It is a partial explanatory view of a cold / hot water coil, (A) is a flow chart of a circulation pipe, (B) is a longitudinal cross-sectional view of the BB line of (A), (C) is a perspective view of fin 2F. 従来例図であって、(A)は従来例1の除湿機の縦断側面図、(B)は従来例2の除湿機の縦断側面図である。It is a prior art example, Comprising: (A) is a vertical side view of the dehumidifier of the prior art example 1, (B) is a vertical side view of the dehumidifier of the prior art example 2. 従来例図であって、(A)は従来例3の除湿用空気熱交換器の回路図、(B)は従来例4のルームエアコンの縦断側面図である。It is a prior art figure, Comprising: (A) is a circuit diagram of the air heat exchanger for dehumidification of the prior art example 3, (B) is a vertical side view of the room air conditioner of the prior art example 4.

〔空気熱交換システムの全体構成〕
本発明の空気熱交換システムは、図1(A),(B)に示す如く、屋外に配置した室外ユニット6Aと冷媒管6Bで接続した水熱交換ユニット6Cから循環冷温水を往き側ヘッダー6Sに循環ポンプ6Nを介して送水し、往き側ヘッダー6Sから戻り側ヘッダー6Rまで、各居室の輻射用パネルヒーター7Aを経由した循環水用の放熱回路7を配置し、戻り側ヘッダー6Rから水熱交換ユニット6Cへ放熱水を戻す、従来の冷温水循環冷暖房システムに、新規な空気熱交換器1を用いた冷温水循環型の空気熱交換システムを付加結合したシステムである。
[Overall configuration of air heat exchange system]
As shown in FIGS. 1 (A) and 1 (B), the air heat exchange system of the present invention supplies circulating cold / hot water from a water heat exchange unit 6C connected by an outdoor unit 6A arranged outdoors and a refrigerant pipe 6B to a forward header 6S. Water is sent through the circulation pump 6N, and a circulation circuit 7 for circulating water is arranged from the outgoing header 6S to the return header 6R via the radiation panel heater 7A in each room. This is a system in which a cold / hot water circulation type air heat exchange system using a novel air heat exchanger 1 is additionally coupled to a conventional cold / hot water circulation air conditioning system that returns the facility water to the exchange unit 6C.

即ち、空気熱交換器1は、図1(B)に示す如く、天井C内に配置し、天井内の空気熱交換器1へは天井面に配置した吸気グリル3Gからダクトファン3Fによってダクト管3Dで居室内空気を吸気し、空気熱交換器で除湿又は加湿した空気流を、居室内の適所に配置した供給グリル4Gから居室内に供給するものであり、空気熱交換器1内には、図5(A)に示す如く、冷温水を循環させて周囲を貫流する空気に熱伝達する冷温水コイル2を配置し、空気熱交換器1の上面からは、洗浄ノズル9A群と加湿用の噴霧ノズル10Aを垂下し、底面では、後端に止水板8Rを配置して、止水板8Rに近接してドレンパイプ8Aを突出垂下したものである。   That is, as shown in FIG. 1B, the air heat exchanger 1 is disposed in the ceiling C, and the air heat exchanger 1 in the ceiling is connected to the duct pipe by the duct fan 3F from the intake grill 3G disposed on the ceiling surface. The air in the room is sucked in 3D, and the air flow dehumidified or humidified by the air heat exchanger is supplied to the room from the supply grille 4G arranged in a suitable place in the room. As shown in FIG. 5 (A), a cold / hot water coil 2 that circulates cold / hot water and transfers heat to the air that flows through the surroundings is arranged. The spray nozzle 10A is suspended and a water stop plate 8R is disposed at the rear end on the bottom surface, and the drain pipe 8A is projected and suspended close to the water stop plate 8R.

また、冷温水コイル2は空気熱交換器1の上下中間層に配置して、冷温水コイル2の上面空間Suには、風偏向板bt群を、冷温水コイル2の、最後端の上面空間Suは閉止し、前端から後端へ、空間Suの空気通過流量が順次、減少する形態に配置し、冷温水コイル2の下面空間Sdには、前端に閉止用の風偏向板bbを配置して、吸気空気流a3は、すべて上面空間Suから分流偏向して冷温水コイル2のフィン2F間の隙間を下方に貫流して熱交換した後、冷温水コイル2の下面空間Sdから供給ダクト管4D→居室内へと流すものである。   Moreover, the cold / hot water coil 2 is arrange | positioned in the upper-lower intermediate layer of the air heat exchanger 1, and the upper surface space Su of the cold / hot water coil 2 is provided with the wind deflection plate bt group and the uppermost space of the end of the cold / hot water coil 2. Su is closed, and the air passage flow rate of the space Su is sequentially decreased from the front end to the rear end, and the wind deflector bb for closing is disposed at the front end in the lower surface space Sd of the cold / hot water coil 2. The intake air flow a3 is all deflected from the upper surface space Su to flow downward through the gaps between the fins 2F of the cold / hot water coil 2 to exchange heat, and then supplied from the lower surface space Sd of the cold / hot water coil 2 4D → flows into the living room.

また、従来の冷温水循環冷暖房システムに、新規な空気熱交換器を採用した空気熱交換システムを付加するために、図2の流水回路に示す如く、冷暖房システムの水熱交換ユニットから往き側ヘッダー6Sまでに分岐点P1を配置し、分岐点P1→冷温水コイル2→戻り側ヘッダー6R、の空気熱交換器1用の冷温水循環回路6を放熱回路7に付設したものである。   Further, in order to add an air heat exchange system adopting a novel air heat exchanger to the conventional cold / hot water circulation air conditioning system, as shown in the flowing water circuit of FIG. 2, the forward header 6S from the water heat exchange unit of the air conditioning system. A branch point P1 is arranged up to this point, and a cold / hot water circulation circuit 6 for the air heat exchanger 1 of the branch point P1 → the cold / hot water coil 2 → the return side header 6R is attached to the heat radiation circuit 7.

即ち、空気熱交換器1の冷温水コイル2用の冷温水循環回路6は、図2(B)に示す如く、水熱交換ユニット6Cから往き側ヘッダー6Sまでの大径のパイプ経路中に、T型ソケット6Dを介して小径のパイプ6P´を冷温水コイル2の往き側接続口2Sに連通し、冷温水コイルの戻り側接続口2Rから小径のパイプ6P´で戻り側ヘッダー6Rと連通して、戻り側ヘッダー6Rで、冷温水コイル2の循環水を輻射用パネルヒーター7Aを循環した放熱回路の循環水と合流させて、水熱交換ユニット6Cに還流させるものである。   That is, the chilled / hot water circulation circuit 6 for the chilled / hot water coil 2 of the air heat exchanger 1 includes T in the large-diameter pipe path from the water / heat exchange unit 6C to the outgoing header 6S as shown in FIG. A small-diameter pipe 6P 'communicates with the forward connection port 2S of the cold / hot water coil 2 via the mold socket 6D, and communicates with the return-side header 6R through the small-diameter pipe 6P' from the return-side connection port 2R of the cold / hot water coil. The return side header 6R joins the circulating water in the cold / hot water coil 2 with the circulating water in the heat dissipation circuit that circulates through the radiation panel heater 7A, and recirculates it to the water heat exchange unit 6C.

そして、水熱交換ユニット6Cから往き側ヘッダー6Sまでの大径パイプ6P”経路にあっては、図2(B)に示す如く、分岐点P1から下流へ、仕切弁6F、電動三方弁6T、循環ポンプ6Nを配置し、戻り側ヘッダー6Rから水熱交換ユニット6Cまでの大径パイプ6P”経路にあっては、第2分岐点P2でT型ソケット6Dを配置し、往き側経路中の電動三方弁6Tとの間に大径パイプ6P”によるバイパス流路b7を配置して、バイパス流路b7に仕切弁6Fを配置し、第2分岐点P2の上流にサーモセンサー5Tを配置し、電動三方弁6Tには温度設定ダイヤル6gを配置し、サーモセンサー5Tと室内に配置した温度検知器5Sとを電動三方弁6Tと接続したものである。
また、図1(A)に示す如く、空気熱交換器1には、空気熱交換器内の、洗浄ノズル9A群と連通する洗浄回路9、及び噴霧ノズル10Aと接続する加湿回路10、及びドレン回路8を付設したものである。
In the large-diameter pipe 6P "path from the water heat exchange unit 6C to the outgoing header 6S, as shown in FIG. 2B, downstream from the branch point P1, the gate valve 6F, the electric three-way valve 6T, In the large-diameter pipe 6P "route from the return side header 6R to the water heat exchange unit 6C, the T-type socket 6D is arranged at the second branch point P2, and the electric motor in the forward side route is arranged. A bypass passage b7 by a large-diameter pipe 6P ″ is disposed between the three-way valve 6T, a gate valve 6F is disposed in the bypass passage b7, a thermo sensor 5T is disposed upstream of the second branch point P2, and electric A temperature setting dial 6g is disposed on the three-way valve 6T, and a thermo sensor 5T and a temperature detector 5S disposed indoors are connected to the electric three-way valve 6T.
As shown in FIG. 1A, the air heat exchanger 1 includes a cleaning circuit 9 in the air heat exchanger that communicates with the cleaning nozzle 9A group, a humidifying circuit 10 that is connected to the spray nozzle 10A, and a drain. A circuit 8 is provided.

〔冷温水コイル2(図6、図7)〕
冷温水コイル2は、筒形態の空気熱交換器1内に収納して冷温水コイル2内に冷温水を循環させ、空気熱交換器内を貫流する空気流に熱交換作用を行うものであって、冷温水循環パイプの外周に伝熱用のフィン群を突出させたもので、冷温水コイル自体は慣用されている。
本発明に用いる冷温水コイル2は、新規な筒形状の空気熱交換器1内に好適に収納出来るようにしたものであって、長尺の長手方向の複数並列配置の循環パイプ2A群に、伝熱用のフィン2F群を幅方向に密集並列配置し、フィン2F群上を長手方向に貫流する空気流にフィン2F群が熱交換するものである。
[Cold / hot water coil 2 (FIGS. 6 and 7)]
The cold / hot water coil 2 is housed in a cylindrical air heat exchanger 1 and circulates cold / hot water in the cold / hot water coil 2 to perform a heat exchange action on an air flow flowing through the air heat exchanger. The heat / heat transfer fins protrude from the outer periphery of the cold / hot water circulation pipe, and the cold / hot water coil itself is commonly used.
The cold / hot water coil 2 used in the present invention can be suitably accommodated in a novel cylindrical air heat exchanger 1, and is provided in a plurality of long and longitudinally arranged circulation pipes 2A. The fins 2F group for heat transfer are densely arranged in parallel in the width direction, and the fins 2F group exchange heat with an air flow that flows through the fins 2F group in the longitudinal direction.

冷温水コイルの全体構造は、図6に示す如く、フィン2F群の配置長さL2が650mm、フィン2Fの上下厚さ(高さ)h2が42.3mm、フィン2Fの幅W2が106.5mmの断面長方形であって、フィン2F群は、並行配置の長尺循環パイプ2A上に間隔0.39mmで密集並列して、その両端には、フィン2Fと同一面形状のエンドプレート2E,2E´を循環パイプ2Aを挿通した形態で循環パイプ2Aに固定して、フィン2F群の姿勢保持と脱落を防止しておく。   As shown in FIG. 6, the overall structure of the cold / hot water coil is as follows: the arrangement length L2 of the fins 2F group is 650 mm, the vertical thickness (height) h2 of the fins 2F is 42.3 mm, and the width W2 of the fins 2F is 106.5 mm. The fins 2F are densely arranged in parallel at intervals of 0.39 mm on the parallel circulation pipes 2A, and end plates 2E, 2E ′ having the same surface shape as the fins 2F are arranged at both ends thereof. Is fixed to the circulation pipe 2A in a form inserted through the circulation pipe 2A to prevent the fin 2F group from being held and dropped.

フィン2Fは、図7(C)に示す如く、幅W2が106.5mm、高さh2が42.3mmで肉厚0.12mmのアルミ板であり、上列に4個、下列に4個の上下2列の循環パイプ2A貫入用孔H2を千鳥状に備え、上下貫入用孔H2間の中心間寸法haが22.3mm、上下孔列の孔中心とフィン端縁間寸法hbが10mm、各孔H2の中心間寸法waが25.4mm、孔H2とフィン側端縁間の寸法、wbが23.9mm、wcが6.4mmであり、各フィン2Fに対する貫入用孔H2の穿孔時に、丸開け用冶具の穿孔時の、裏面側に生ずる孔H2周囲の盛り上りを0.39mmとして、各フィン2F間隔は、循環パイプ2Aの貫入用孔H2への挿通時に貫入用孔H2部で密接させて、0.54mm間隔配置しておく。   As shown in FIG. 7C, the fin 2F is an aluminum plate having a width W2 of 106.5 mm, a height h2 of 42.3 mm, and a wall thickness of 0.12 mm. The fin 2F has four in the upper row and four in the lower row. Two upper and lower rows of circulation pipes 2A penetrating holes H2 are provided in a staggered manner, the center-to-center dimension ha between the upper and lower penetrating holes H2 is 22.3 mm, and the dimension between the center of the upper and lower hole rows and the fin edge is 10 mm The center-to-center dimension wa of the hole H2 is 25.4 mm, the dimension between the hole H2 and the fin side edge, wb is 23.9 mm, and wc is 6.4 mm. When the penetration hole H2 is drilled for each fin 2F, When the opening jig is drilled, the bulge around the hole H2 generated on the back surface side is set to 0.39 mm, and the interval between the fins 2F is brought into close contact with the penetration hole H2 when the circulation pipe 2A is inserted into the penetration hole H2. Then, they are arranged at intervals of 0.54 mm.

循環パイプ2A群の配置は、図6に示す如く、フィン2F群及び両端のエンドプレート2E,2E´に貫入した上4本と下4本の上下千鳥状配置の平行循環パイプ2A群に対し、後端(図6(A)の左端)側で、図6(C)に示す如く、ヘアピンチューブ2Bで2本ずつを連結し、前端(図6(A)の右端)側でUベント2Cで図6(D)の如く連結して、上列左端及び下列右端の循環パイプ2Aに出入口管2Dを接続し、出入口管2Dは、一方を往き側接続口2S、他方を戻り側接続口2Rとして、図6(B)の如く、フィン2F下端からLd(標準:80mm)前方に突出し、図6(D)の如く、フィン上縁からLh(標準:80mm)上方に突出し、且つ2S,2Rの中心間寸法Wd(標準:30mm)を保つ形態に作成する。   As shown in FIG. 6, the circulation pipe 2A group is arranged with respect to the parallel circulation pipe 2A group of the upper and lower four staggered arrangement of the upper four and the lower end plates 2E and 2E ′, as shown in FIG. At the rear end (left end of FIG. 6 (A)), as shown in FIG. 6 (C), two hairpin tubes 2B are connected to each other, and at the front end (right end of FIG. 6 (A)), U vent 2C is connected. As shown in FIG. 6 (D), the inlet / outlet pipe 2D is connected to the circulation pipe 2A at the upper left end and the lower right end, and one of the inlet / outlet pipes 2D serves as an outgoing connection port 2S and the other as a return connection port 2R. As shown in FIG. 6B, it protrudes forward from the lower end of the fin 2F by Ld (standard: 80 mm), as shown in FIG. 6D, protrudes upward from the fin upper edge by Lh (standard: 80 mm), and 2S and 2R It is created in a form that maintains the center-to-center dimension Wd (standard: 30 mm).

従って、図7(A),(B)に示す如く、冷温水コイル2は、冷温水コイル2の前端側、即ち図7(A)の右側から見て、往き側接続口2Sからの流入水は、図7(B)に示す如く、フィン2Fの上列端位置の循環パイプ2Aへf1として流入し、f2→f3→f4→f5→f6→f7→f8→f9と千鳥形態でフィン2Fと熱交換しながら下列右端のフィン貫入用孔H2を貫通する循環パイプ2Aの流れf9から戻り側接続口2Rへと還流してフィン2Fと熱交換可能なものとなる。   Accordingly, as shown in FIGS. 7A and 7B, the cold / hot water coil 2 has an inflow water from the forward connection port 2S when viewed from the front end side of the cold / hot water coil 2, that is, the right side of FIG. 7A. 7B flows into the circulation pipe 2A at the upper row end position of the fin 2F as f1, and f2 → f3 → f4 → f5 → f6 → f7 → f8 → f9 and staggered fins 2F It returns to the return side connection port 2R from the flow f9 of the circulation pipe 2A that penetrates the fin penetration hole H2 at the right end of the lower row while exchanging heat, and can exchange heat with the fin 2F.

〔空気熱交換器1(図4、図5)〕
本発明の空気熱交換器1は、冷温水コイルを筒本体1A内に収納して、吸気側1Sから流入する居室内の夏季の高温多湿空気を冷却して、結露水を発生させて減湿した低温低湿空気として居室内に還流供給したり、冬季の低温乾燥空気を加熱、加湿して、高温多湿空気として居室内に還流供給するものであり、定期的に、冷温水コイルに付着したゴミの洗浄排除も出来、空気熱交換器1内に溜まる結露水や洗浄水も、支障無くドレンパイプ8Aから排除出来るものである。
[Air heat exchanger 1 (FIGS. 4 and 5)]
The air heat exchanger 1 of the present invention accommodates a cold / hot water coil in the cylinder body 1A, cools hot and humid air in the summer in the room flowing in from the intake side 1S, generates condensed water, and reduces moisture. Waste that adheres to the cold / hot water coil is supplied to the living room as low-temperature, low-humidity air, or supplied to the room as high-temperature, high-humidity air by heating and humidifying the low-temperature dry air in winter. Therefore, the dew condensation water and cleaning water accumulated in the air heat exchanger 1 can be removed from the drain pipe 8A without any trouble.

空気熱交換器1の全体構成は、図5(A)に示す如く、長尺の筒本体1Aの略全長に亘って上下中間層に冷温水コイル2を延展配置し、冷温水コイル2の前端の出入口管2Dを起立して筒本体1Aから往き側接続口2S及び戻り側接続口2Rとして上方に突出させ、冷温水コイル2の下面空間Sdはコイル2の前端下面に風偏向板bbを配置し、コイル2の上面空間Suには、前部から後部に亘って順次、通過風量が減少するように、風偏向板bt群を配置して、吸気側1Sからの流入空気を、全て、コイル2の上面空間Suに案内して、上面空間Suから下面空間Sdへフィン2F群の隙間を貫流させて、供給側1Rでは、すべて空気流をコイル2の下面空間Sdから居室内に供給させるものである。   As shown in FIG. 5 (A), the entire structure of the air heat exchanger 1 is configured such that the cold / hot water coil 2 is extended and arranged in the upper and lower intermediate layers over substantially the entire length of the long cylinder body 1A, and the front end of the cold / hot water coil 2 is arranged. The inlet / outlet pipe 2D is erected and protrudes upward from the cylinder body 1A as the forward connection port 2S and the return connection port 2R, and the lower surface space Sd of the cold / hot water coil 2 is provided with a wind deflection plate bb on the lower surface of the front end of the coil 2 In the upper surface space Su of the coil 2, the wind deflector bt group is arranged so that the passing air volume decreases sequentially from the front part to the rear part, and all the inflow air from the intake side 1 S 2 is guided to the upper surface space Su and flows through the gaps of the fins 2F from the upper surface space Su to the lower surface space Sd, and on the supply side 1R, all airflow is supplied from the lower surface space Sd of the coil 2 to the living room. It is.

そして、冷温水コイル2の前後方向全長に亘って、洗浄ノズル9A群を冷温水コイル2の上方に、間隔配置すると共に、コイル2の前端部の上方から噴霧ノズル10Aを垂下し、必要に応じて、冷温水コイル2のゴミを洗い流すことも、空気熱交換器1内を貫流する空気に噴霧ノズル10Aで加湿することも可能とし、空気熱交換器1内に溜まる結露水や洗浄水は、ドレンパイプ8Aからのドレン回路8で支障無く除去可能としたものである。   Then, over the entire length of the cold / hot water coil 2 in the front-rear direction, the group of cleaning nozzles 9A is spaced above the cold / hot water coil 2, and the spray nozzle 10A is suspended from above the front end of the coil 2 as necessary. Thus, it is possible to wash away the dust in the cold / hot water coil 2 or to humidify the air flowing through the air heat exchanger 1 with the spray nozzle 10A, and the dew condensation water and washing water accumulated in the air heat exchanger 1 The drain circuit 8 from the drain pipe 8A can be removed without any trouble.

〔空気熱交換器1の組立て(図2、図3)〕
空気熱交換器1の外形を規定する筒本体1Aとして、図4(B)に示す如く、内径r1が131mm、肉厚4.5mm、長さL1が890mmの硬質塩化ビニル管を準備し、筒本体1Aの上面には、適宜間隔で、洗浄ノズル9A挿入用孔H1群と、前端部の噴霧ノズル10A挿入用孔H1´を穿孔し、上面の前端から、図4(C)に示す如く、幅10mm、長さ70mmのスリット状の切欠1Gを間隔wd(30mm)で配置し、後端から所望寸法(標準:75mm)位置で、ドレンパイプ用の孔を開けて、外径32mm、肉厚3.5mm、長さ40mmの硬質塩化ビニル管のドレンパイプ8Aを垂下固定しておく。
[Assembly of the air heat exchanger 1 (FIGS. 2 and 3)]
As a cylinder body 1A that defines the outer shape of the air heat exchanger 1, as shown in FIG. 4 (B), a rigid polyvinyl chloride pipe having an inner diameter r1 of 131 mm, a wall thickness of 4.5 mm, and a length L1 of 890 mm is prepared. On the upper surface of the main body 1A, the cleaning nozzle 9A insertion hole H1 group and the spray nozzle 10A insertion hole H1 ′ at the front end are perforated at appropriate intervals, and from the front end of the upper surface, as shown in FIG. A slit-shaped notch 1G with a width of 10 mm and a length of 70 mm is arranged at an interval wd (30 mm), and a hole for a drain pipe is opened at a desired dimension (standard: 75 mm) from the rear end. A drain pipe 8A made of a hard vinyl chloride pipe having a length of 3.5 mm and a length of 40 mm is fixed in a suspended manner.

次いで、図4(B)、図5(B)に示す如く、筒本体1Aの内周の長さ方向適所に、両端が筒本体1A当接用のアンカー片2K´を備えた1.3mm厚で幅25mmのアルミ製受金具2Kを、下側受金具として径方向に差し渡し状にねじ2Nで固定しておく。
また、図6の如く、予め準備した冷温水コイル2には、図5(C)〜(F)に示す如く、0.4mm厚のアルミ製の円弧形状板の弦辺から複数のアンカー片anを突設し、円弧形状板を45°屈曲した、下側用風偏向板bbと上側用風偏向板btとを配置する。
Next, as shown in FIGS. 4 (B) and 5 (B), a 1.3 mm thickness in which both ends are provided with anchor pieces 2K ′ for contacting the cylinder body 1A at appropriate positions in the longitudinal direction of the inner periphery of the cylinder body 1A. Then, the 25 mm wide aluminum receiving bracket 2K is fixed with screws 2N in the radial direction as a lower receiving bracket.
Further, as shown in FIG. 6, the cold / hot water coil 2 prepared in advance includes a plurality of anchor pieces an from the chord side of a 0.4 mm thick aluminum arc-shaped plate as shown in FIGS. The lower wind deflector bb and the upper wind deflector bt are arranged by bending the arc-shaped plate by 45 °.

この場合、上側用風偏向板btとしては、図5(C)に示す如く、円弧形状板が、同一曲率で、径が大から小へ変化させた複数枚bt1,bt2,bt3,bt4,bt5,bt6を準備し、図5(A)に示す如く、下側風偏向板bbを、アンカー片anをエンドプレート2Eとフィン2F間に挿入配置し、同様に、上側風偏向板btも、後端の最大径のbt1は、アンカー片anをエンドプレート2E´とフィン2F間に挿入し、円弧形状板が、順次後部から前部へ大径→小径となるように、bt2,bt3,bt4,bt5,bt6と間隔110mmで、肉厚0.4mmのアンカー片anをフィン2F間隙間(標準:0.54mm)へ挿入して、上下の風偏向板bt,bbをコイル2の上面及び下面に配置する。   In this case, as the upper wind deflector bt, as shown in FIG. 5 (C), a plurality of arc-shaped plates having the same curvature and the diameter changed from large to small bt1, bt2, bt3, bt4, bt5 , Bt6, and as shown in FIG. 5 (A), the lower wind deflector bb is inserted and the anchor piece an is inserted between the end plate 2E and the fin 2F. Similarly, the upper wind deflector bt Bt1, which has the maximum diameter at the end, is inserted into the end plate 2E ′ and the fin 2F by inserting the anchor piece an, and the arc-shaped plate is sequentially changed from the rear part to the front part so that the diameter changes from large to small. An anchor piece an having a thickness of 0.4 mm and a spacing of 110 mm between bt5 and bt6 is inserted into the gap between the fins 2F (standard: 0.54 mm), and the upper and lower wind deflection plates bt and bb are placed on the upper and lower surfaces of the coil 2. Deploy.

次いで、図4(B),(C)に示す如く、冷温水コイル2を筒本体1Aの吸気側から筒本体1A内に挿入して往き側接続口2S及び戻り側接続口2Rを、筒本体1Aの上面のスリット状切欠1Gに挿入すると共に、冷温水コイル2を受金具2K上に載置し、図4(E)に示す如く、冷温水コイル2の上面にも、適宜位置に、受金具2Kを当接して、受金具2Kのアンカー片2K´を、外側からねじ2Nで固定する。
そして、筒本体1Aの後端下面には、図5(G),(H)に示す如く、筒本体1Aと同一曲率の円弧形状の、円弧縁に円弧辺8Tを、弦縁に水平上辺8Fを付設した止水板8Rを、図4(B),(E)に示す如く、筒本体1Aの下半を閉止するように、ねじ8Nで固定すれば、取付用の空気熱交換器1となる。
Next, as shown in FIGS. 4B and 4C, the cold / hot water coil 2 is inserted into the cylinder body 1A from the intake side of the cylinder body 1A, and the forward connection port 2S and the return connection port 2R are connected to the cylinder body. 1A is inserted into the slit-shaped notch 1G on the upper surface, and the cold / hot water coil 2 is placed on the metal fitting 2K, and the upper surface of the cold / hot water coil 2 is also received at an appropriate position as shown in FIG. The metal fitting 2K is brought into contact, and the anchor piece 2K ′ of the metal fitting 2K is fixed with a screw 2N from the outside.
Further, as shown in FIGS. 5G and 5H, on the lower surface of the rear end of the cylinder main body 1A, an arc side having the same curvature as the cylinder main body 1A has an arc side 8T at the arc edge and a horizontal upper side 8F at the chord edge. 4B and (E), the fixing plate 8R is fixed with screws 8N so as to close the lower half of the cylinder main body 1A, and the mounting air heat exchanger 1 and Become.

〔空気熱交換システムの構築〕
(空気熱交換器1の取付け)
建物の構造体及び外壁を構築後、各居室内の天井野縁組みを実施し、天井仕上材の張着前に、取付用の空気熱交換器1及びダクトファン3Fを慣用の手段で、例えば吊ボルトを2階の根太材に取付けて吊込み、図4(A)に示す如く、空気熱交換器1の吸気側1Sには、吸気回路3としてレジューサー管3Eを介してダクト管3Dでダクトファン3Fと配管接続し、ダクトファン3Fを天井面の吸気グリル3Gとフィルター3Cを介在して接続し、空気熱交換器1の供給側1Rにも、供給回路4として、レジューサー管3Eを介してダクト管4Dを配管し、ダクト管4Dを輻射用パネルヒーター7Aの幅中央の上部天井面の吹出口4K、及び天井Cの適所の供給グリル4Gに接続する。
そして、ダクトファン3Fは、図1(A)に示す如く、居室内配置の湿度検知器5Eと電線5Rで接続しておく。
[Building an air heat exchange system]
(Installation of air heat exchanger 1)
After constructing the building structure and the outer wall, the ceiling frame is assembled in each room, and the air heat exchanger 1 for mounting and the duct fan 3F are suspended by conventional means, for example, before the ceiling finishing material is attached. As shown in FIG. 4 (A), a bolt is attached to the floor joist on the second floor and suspended, and the intake side 1S of the air heat exchanger 1 is ducted by a duct pipe 3D as an intake circuit 3 through a reducer pipe 3E. The fan 3F is connected to the pipe, the duct fan 3F is connected via the air intake grille 3G on the ceiling surface and the filter 3C, and the supply side 1R of the air heat exchanger 1 is also connected to the supply circuit 4 via the reducer pipe 3E. Then, the duct pipe 4D is piped, and the duct pipe 4D is connected to the outlet 4K on the upper ceiling surface at the center of the width of the radiation panel heater 7A and the supply grill 4G at the appropriate place on the ceiling C.
And the duct fan 3F is connected with the humidity detector 5E of the indoor arrangement | positioning with the electric wire 5R, as shown to FIG. 1 (A).

この場合、供給回路4のダクト管4Dの先端は、図3(C)の如く、天井面に配置した供給グリル4Gの接続円筒4Fに、ラッパ管4Rの基端の円筒管4Bを嵌合して、ラッパ管4Rを供給グリル4Gにねじn4で固定し、ダクト管4Dは、先端を、慣用のガラス繊維での被覆保温層4Aから標準20mm露出させて、被覆保温層4Aの先端をラッパ管4Rの拡開円錐管4Uの端縁と揃えて配置し、ラッパ管4Rの前端内周とダクト管被覆保温層4Aとの間に空気誘引用の小寸(標準:15mm)のスペースSが存在する形態で、ラッパ管4Rを介して供給グリル4Gと連通させる。   In this case, the end of the duct tube 4D of the supply circuit 4 is fitted with the cylindrical tube 4B at the base end of the trumpet tube 4R in the connecting cylinder 4F of the supply grille 4G arranged on the ceiling surface as shown in FIG. Then, the trumpet tube 4R is fixed to the supply grille 4G with the screw n4, and the duct tube 4D has a tip exposed to a standard 20 mm from the coated heat insulating layer 4A made of conventional glass fiber, and the tip of the coated heat insulating layer 4A is exposed to the trumpet tube. 4R expanded conical pipe 4U is aligned with the edge of the pipe, and there is a small space (standard: 15mm) space S for air induction between the inner periphery of the front end of the trumpet pipe 4R and the duct pipe insulation layer 4A. In this manner, the supply grille 4G communicates with the trumpet pipe 4R.

(洗浄回路9の配置)
そして、図5(A)に示す如く、空気熱交換器1の筒本体1Aの上面に間隔(標準:110mm)配置した挿入用孔H1群に、ストレーナーを一体とした慣用の扇形噴霧タイプの洗浄ノズル9A群を、筒本体1A上面に配置した鋼管の給水管9Bに嵌合して、給水管9Bを筒本体1Aに止着し、図1(A)に示す如く、建物内に延展配置した給水主管9Cと給水管9Bとを電磁弁6M及びタイマースイッチ9Dを介在して接続することにより、洗浄回路9を形成する。
この場合、各洗浄ノズル9Aは冷温水コイル2の上面に配置した各風偏向板bt間の中央に配置する。
(Arrangement of cleaning circuit 9)
Then, as shown in FIG. 5 (A), a conventional fan spray type cleaning in which a strainer is integrated in a group of insertion holes H1 arranged at intervals (standard: 110 mm) on the upper surface of the cylinder body 1A of the air heat exchanger 1. The nozzle 9A group is fitted into a steel pipe water supply pipe 9B arranged on the upper surface of the cylinder main body 1A, and the water supply pipe 9B is fixed to the cylinder main body 1A, and is extended and arranged in the building as shown in FIG. The cleaning circuit 9 is formed by connecting the water supply main pipe 9C and the water supply pipe 9B via the solenoid valve 6M and the timer switch 9D.
In this case, each cleaning nozzle 9 </ b> A is disposed at the center between the respective wind deflection plates bt disposed on the upper surface of the cold / hot water coil 2.

(加湿回路10の配置)
図5(A),(B)に示す如く、筒本体1Aの上面に延出した鋼管製の枝管10Bの先端から、筒本体1Aの挿入用孔H1´を介して、ストレーナーを一体とし、自体に加圧機能を備え、スプレーパターンが円錐で、均等な流量分布する、慣用の噴霧ノズル10Aを、冷温水コイル2の前端上方に垂下配置し、枝管10Bは、図1(A)に示す如く、電磁弁6Mを介して、建物内に延展した給湯管10Cと連通させ、電磁弁6Mは、居室内配置の湿度検知器5Eと電線5Rで接続して、湿度検知器5Eの指令によって制御操作されるように配置しておく。
(Arrangement of humidification circuit 10)
As shown in FIGS. 5 (A) and 5 (B), the strainer is integrated from the distal end of the steel pipe branch pipe 10B extending to the upper surface of the cylinder body 1A through the insertion hole H1 ′ of the cylinder body 1A. A conventional spray nozzle 10A having a pressurizing function in itself, a spray pattern having a conical shape, and an even flow distribution is suspended above the front end of the cold / hot water coil 2, and the branch pipe 10B is shown in FIG. As shown in the figure, the electromagnetic valve 6M is connected to the hot water supply pipe 10C extended in the building, and the electromagnetic valve 6M is connected to the humidity detector 5E disposed in the room by the electric wire 5R, and is controlled by the instruction of the humidity detector 5E. Arrange them so that they can be controlled.

(ドレン回路の配置)
空気熱交換器1の筒本体1Aの下面の後端から75mmの位置で垂下突出したドレンパイプ8Aに、慣用のエルボ継手、ソケット継手、ニップル継手を介して、ドレンパイプ8Aと同質、同形の排水パイプ8Bを連続して配管してドレン回路8を配置しておく。
尚、ドレンパイプ8A及び排水パイプ8Bには、結露防止のために、慣用の保温材を被覆しておく。
(Drain circuit layout)
Drainage pipe of the same quality and shape as the drain pipe 8A through a conventional elbow joint, socket joint, and nipple joint to a drain pipe 8A projecting from the rear end of the bottom surface of the cylinder body 1A of the air heat exchanger 1 at a position of 75 mm. The drain circuit 8 is arranged by continuously piping the pipe 8B.
The drain pipe 8A and the drain pipe 8B are covered with a conventional heat insulating material to prevent condensation.

(放熱回路7及び冷温水循環回路6の配置)
図2(B)の流水回路図に示す如く、冷暖房用の放熱回路7は、室外に配置した、慣用のコンデンサ6a、コンデンサファン6b、圧縮機6dから成る室外ユニット6Aと、冷媒管6Bを介して接続した、膨張弁6e、冷温水コイル6mを内蔵する水熱交換器6f、タンク6i、循環ポンプ6nから成る水熱交換ユニット6Cとで構成するヒートポンプ式の熱源機の、水熱交換ユニット6Cから大径(内径:21.2mm、肉厚2.9mm)のプラスチック樹脂パイプ(架橋ポリエチレン管(JISK6769))6P”を引出して往き側ヘッダー6Sに接続する。
(Arrangement of heat dissipation circuit 7 and cold / hot water circulation circuit 6)
As shown in the flowing water circuit diagram of FIG. 2 (B), the air-conditioning / heat-dissipating circuit 7 includes an outdoor unit 6A including a conventional condenser 6a, a condenser fan 6b, and a compressor 6d, and a refrigerant pipe 6B. The water heat exchange unit 6C of the heat pump type heat source unit composed of the expansion valve 6e, the water heat exchanger 6f incorporating the cold / hot water coil 6m, the tank 6i, and the water heat exchange unit 6C composed of the circulation pump 6n. Then, a plastic resin pipe (cross-linked polyethylene pipe (JISK6769)) 6P ″ having a large diameter (inner diameter: 21.2 mm, wall thickness 2.9 mm) is pulled out and connected to the forward header 6S.

そして、図2(B)に示す如く、水熱交換ユニット6Cと往き側ヘッダー6S間の大径パイプ6P”には、上流から下流に亘って、分岐点P1用のT型ソケット6D、仕切弁6F、電動三方弁((株)ベン製、ML−1T型電動弁)6T、循環ポンプ6Nを順次配置する。
また、戻り側ヘッダー6Rから水熱交換ユニット6Cへの大径パイプ6P”の戻り側経路内には、分岐点P2用のT型ソケット6Dを配置し、戻り側経路のT型ソケット6Dと往き側経路内の電動三方弁6Tとを大径パイプ6P”のバイパス流路b7で連通し、バイパス経路b7にも仕切弁6Fを配置し、T型ソケット6Dの上流位置にはサーモセンサー((株)山武製のTA温度センサ)5Tを配置する。
そして、電動三方弁6Tは、居室内温度検知器5S及びサーモセンサー5Tと電線5Rで接続し、温度設定ダイヤル6gを備えている。
As shown in FIG. 2B, the large-diameter pipe 6P ″ between the water heat exchange unit 6C and the forward header 6S includes a T-type socket 6D for the branch point P1 and a gate valve from upstream to downstream. 6F, electric three-way valve (manufactured by Ben Co., Ltd., ML-1T type electric valve) 6T, and circulation pump 6N are sequentially arranged.
Further, a T-type socket 6D for the branch point P2 is arranged in the return side path of the large-diameter pipe 6P ″ from the return side header 6R to the water heat exchange unit 6C, and goes back to the T type socket 6D of the return side path. The electric three-way valve 6T in the side path is communicated with the bypass passage b7 of the large-diameter pipe 6P ″, and the gate valve 6F is also disposed in the bypass path b7. ) TA temperature sensor manufactured by Yamatake) 5T is placed.
The electric three-way valve 6T is connected to the indoor temperature detector 5S and the thermosensor 5T with an electric wire 5R, and includes a temperature setting dial 6g.

そして、往き側ヘッダー6Sから小径(内径:9.8mm、肉厚:1.6mm)のプラスチック樹脂パイプ(架橋ポリエチレン管)6Pを延出して輻射用パネルヒーター7A供給口7Sと接続し、排出口7Rから小径パイプ6Pで戻り側ヘッダー6Rと連通して放熱回路7を形成する。
また、往き側経路の分岐点P1の、T型ソケット6Dからは、放熱回路7用の小径パイプ6Pと同一の、小径パイプ6P´を延出して空気熱交換器1内の冷温水コイル2の往き側接続口2Sと接続し、該冷温水コイル2の戻り側接続口2Rからは、小径パイプ6P´で戻り側ヘッダー6Rと連通し、空気熱交換器1用の冷温水循環回路6の流水は、放熱回路7の分岐点P1→空気熱交換器1→放熱回路7の戻り側ヘッダー6Rの経路で還流し、戻り側ヘッダー6Rで放熱回路7の循環水と合流させる。
Then, a plastic resin pipe (cross-linked polyethylene pipe) 6P having a small diameter (inner diameter: 9.8 mm, wall thickness: 1.6 mm) is extended from the forward header 6S and connected to the radiation panel heater 7A supply port 7S, and the discharge port A heat radiating circuit 7 is formed by communicating with the return side header 6R through a small diameter pipe 6P from 7R.
Further, from the T-type socket 6D at the branch point P1 of the forward path, a small-diameter pipe 6P ′, which is the same as the small-diameter pipe 6P for the heat radiating circuit 7, is extended to the cold / hot water coil 2 in the air heat exchanger 1. Connected to the forward connection port 2S, the return side connection port 2R of the cold / hot water coil 2 communicates with the return side header 6R through a small diameter pipe 6P ′, and the flowing water of the cold / hot water circulation circuit 6 for the air heat exchanger 1 is Then, the refrigerant flows back through the path P1 → the air heat exchanger 1 → the return side header 6R of the heat dissipation circuit 7 and joins the circulating water of the heat dissipation circuit 7 with the return side header 6R.

〔空気熱交換システムの運転〕
1.夏季の冷房運転:
冷房運転は、水熱交換ユニット6Cから往き側大径パイプ6P”への送水温度を7℃、電動三方弁6Tの温度設定ダイヤル6gを15℃、即ち放熱回路7への送水温度を15℃と設定し、ダクトファン3Fを駆動させて、空気熱交換器1への吸気回路3、供給回路4による居室内空気を循環させながら、放熱回路7及び冷温水循環回路6を運転した。
[Operation of air heat exchange system]
1. Cooling operation in summer:
In the cooling operation, the water supply temperature from the water heat exchange unit 6C to the outgoing large diameter pipe 6P ″ is 7 ° C., the temperature setting dial 6g of the electric three-way valve 6T is 15 ° C., that is, the water supply temperature to the heat radiation circuit 7 is 15 ° C. The heat radiation circuit 7 and the cold / hot water circulation circuit 6 were operated while the duct fan 3F was driven and the air in the room by the intake circuit 3 and the supply circuit 4 to the air heat exchanger 1 was circulated.

そして、運転初期の空気熱交換器1にあっては、図2に示す如く、7℃の循環水が分岐点P1から矢印w1の水流で空気熱交換器内の冷温水コイル2に、往き側接続口2Sから流入し、該コイル2内では循環パイプ2A内を流水して、空気熱交換器1内で吸気回路3から吸込んだ空気流a3を冷却して除湿し、該コイル2内で放熱して、標準水温13℃となった水流w2が、コイル2の戻り側接続口2Rから戻り側ヘッダー6Rの弁6E´を介して戻り側ヘッダー6Rに流入した。   Then, in the air heat exchanger 1 at the initial stage of operation, as shown in FIG. 2, the circulating water at 7 ° C. flows from the branch point P1 to the cold / hot water coil 2 in the air heat exchanger by the water flow indicated by the arrow w1. The air flows in from the connection port 2S, flows in the circulation pipe 2A in the coil 2, cools and dehumidifies the air flow a3 sucked from the intake circuit 3 in the air heat exchanger 1, and dissipates heat in the coil 2. Then, the water flow w2 having a standard water temperature of 13 ° C. flowed from the return side connection port 2R of the coil 2 into the return side header 6R through the valve 6E ′ of the return side header 6R.

また、運転初期の放熱回路7にあっては、図2に示す如く、往き側経路の分岐点P1から大径プラスチック樹脂パイプ6P”内を、7℃で放熱回路7に流入する水流w3は、仕切弁6Fを経て、電動三方弁6Tの流入口6Xから流出口6Zに流出し、循環ポンプ6Nを経て、水流w4で、往き側ヘッダー6Sの各弁6Eから小径のプラスチック樹脂パイプ6P内水流w5で、輻射用パネルヒーター7Aへ供給口7Sから流入し、パネルヒーター7A内を循環放熱して17℃となって、排出口7Rから小径のプラスチック樹脂パイプ6P内の水流w6で、戻り側ヘッダー6Rに弁6Eから流入し、空気熱交換器1からの13℃の還流水と合流混合して16.2℃の合流冷水として、戻り側ヘッダー6Rから大径のプラスチック樹脂パイプ6P”内の水流w7で、戻り側経路を水熱交換ユニット6Cへと流水した。   Further, in the heat radiation circuit 7 in the initial stage of operation, as shown in FIG. 2, the water flow w3 flowing into the heat radiation circuit 7 at 7 ° C. from the branch point P1 of the forward side path into the large-diameter plastic resin pipe 6P ″ It flows out from the inflow port 6X of the electric three-way valve 6T to the outflow port 6Z through the gate valve 6F, passes through the circulation pump 6N, and flows into the water flow w4, and the water flow w5 in the small diameter plastic resin pipe 6P from each valve 6E of the forward side header 6S. Then, it flows into the radiation panel heater 7A from the supply port 7S, circulates and dissipates heat in the panel heater 7A, reaches 17 ° C., and returns to the header 6R by the water flow w6 in the small-sized plastic resin pipe 6P from the discharge port 7R. From the air heat exchanger 1 and merged and mixed with 13 ° C. reflux water from the air heat exchanger 1 to form 16.2 ° C. merged cold water from the return side header 6R to a large-diameter plastic resin pipe 6P ”. In water flow w7, and the return-side path running water to water heat exchanger unit 6C.

この場合、電動三方弁6Tは、温度設定ダイヤル6gで、流出口6Zの流出温度、即ち往き側ヘッダー6Sへの送水温度、を設定すれば、流入口6Xからの流入温度を感知し、サーモセンサー5Tで戻り側ヘッダー6Rからの流水温度を感知することで、水熱交換ユニットからの流入口6X、及びバイパス流路b7からの流入口6Yを比例配分方式で算定開放するものである。   In this case, the electric three-way valve 6T senses the inflow temperature from the inflow port 6X by setting the outflow temperature of the outflow port 6Z, that is, the water supply temperature to the forward side header 6S, with the temperature setting dial 6g, and the thermo sensor By detecting the temperature of the flowing water from the return side header 6R at 5T, the inlet 6X from the water heat exchange unit and the inlet 6Y from the bypass flow path b7 are calculated and released by a proportional distribution method.

そして、運転初期では、戻り側ヘッダー6Rからの流水、即ち輻射用パネルヒーター7Aからの17℃の還流と空気熱交換器1からの13℃の還流の混合水流が16.2℃であるため、電動三方弁6Tは、流入口6Xは12%開放、バイパス流路b7からの流入口6Yは88%開放して、流出口6Zからは、流量の88%が戻り側ヘッダー6Rからのバイパス流路水と、12%が水熱交換ユニット6Cからの流入水との、水温15℃の合流水を往き側ヘッダー6Sへ送水した。   In the initial stage of operation, since the flowing water from the return side header 6R, that is, the mixed water flow of 17 ° C. reflux from the radiation panel heater 7A and 13 ° C. reflux from the air heat exchanger 1 is 16.2 ° C. In the electric three-way valve 6T, the inlet 6X is opened 12%, the inlet 6Y from the bypass passage b7 is opened 88%, and 88% of the flow rate from the outlet 6Z is a bypass passage from the return side header 6R. The combined water of water and 12% of the inflow water from the water heat exchange unit 6C at a water temperature of 15 ° C. was sent to the outgoing header 6S.

また、冷房の平常運転中は、空気熱交換器1では、運転初期同様に、7℃の冷水がコイル2内で6℃吸熱して13℃の冷水となって戻り側ヘッダー6Rに戻り、放熱回路7では、電動三方弁6Tの流出口6Zから15℃の冷水を、各パネルヒーター7Aに、往き側ヘッダー6Sを介して送水し、パネルヒーター7A内での冷房放熱によって25℃となって戻り側ヘッダー6Rに還流した。   During normal cooling operation, in the air heat exchanger 1, as in the initial operation, 7 ° C. cold water absorbs 6 ° C. in the coil 2 and becomes 13 ° C. cold water and returns to the return side header 6R to dissipate heat. In the circuit 7, cold water of 15 ° C. is sent from the outlet 6Z of the electric three-way valve 6T to each panel heater 7A via the forward header 6S, and returned to 25 ° C. by cooling heat radiation in the panel heater 7A. Refluxed to side header 6R.

この場合、戻り側ヘッダー6Rでは、空気熱交換器1から13℃の還水と、パネルヒーター7Aからの25℃の還水とが合流して、22.6℃の冷水と成って戻り側経路をw7→w8と水熱交換ユニット6Cへ戻るが、電動三方弁6Tの作用によって、バイパス経路b7からの流入口6Yが50%開放、水熱交換ユニット6Cからの流入口6Xが50%開放されて、往き側ヘッダー6Sへ流出口6Zから15℃で送水されたため、戻り側ヘッダー6Rから水熱交換ユニット6Cへの帰還流量は半分となり、水熱交換ユニット6Cでの熱交換エネルギーが省力化出来る。   In this case, in the return side header 6R, the return water of 13 ° C. from the air heat exchanger 1 and the return water of 25 ° C. from the panel heater 7A merge to form cold water of 22.6 ° C. Is returned to w7 → w8 and the water heat exchange unit 6C, but by the action of the electric three-way valve 6T, the inlet 6Y from the bypass path b7 is opened 50%, and the inlet 6X from the water heat exchange unit 6C is opened 50%. Since the water is fed from the outlet 6Z to the outgoing header 6S at 15 ° C., the return flow rate from the return header 6R to the water heat exchange unit 6C is halved, and the heat exchange energy in the water heat exchange unit 6C can be saved. .

そして、冷房運転によって、輻射用パネルヒーター7Aからは、設定温度への冷房が輻射熱放熱で実施出来て、居室内空気が除湿されたため、人体には、冷房設定温度よりも低温に感じられ、さわやかな冷房環境が得られた。
しかも、空気熱交換器1で除湿した供給空気流の一部は、天井の吹出口4Kより輻射用パネルヒーター7Aに沿って吹き下ろすため、輻射用パネルヒーター7Aの表面結露が抑制出来た。
そして、供給ダクト管4Dから吹出す除湿空気は、コイル2での除湿用の熱交換によって冷却されるため、寒気を感ずる空気流となるが、ダクト先端に配置したラッパ管4Rによって、吹出し空気流a6は天井内の非冷房の空気acを合流して吹出すため、供給グリル4Gの下方での過激な寒気流が和らげられた。
And by the cooling operation, the radiation panel heater 7A can be cooled to the set temperature by radiant heat radiation, and the air in the room is dehumidified, so that the human body feels lower than the set temperature for cooling, and is refreshing. A good cooling environment was obtained.
Moreover, since a part of the supply air flow dehumidified by the air heat exchanger 1 is blown down along the radiation panel heater 7A from the ceiling outlet 4K, surface condensation on the radiation panel heater 7A can be suppressed.
The dehumidified air blown out from the supply duct pipe 4D is cooled by the heat exchange for dehumidification in the coil 2, so that it becomes an air flow that feels cold, but the blower air flow is caused by the trumpet pipe 4R arranged at the end of the duct. Since a6 joins and blows off the non-cooling air ac in the ceiling, the extreme cold air current below the supply grille 4G was eased.

そして、空気熱交換器1の除湿作用は、図3(B)に示す如く、吸気側1Sからの吸気空気流a3が、コイル2の下側の風偏向板bb及び上側の風偏向板bt1・・・bt6によって、コイル2の、高圧の上面空間Suから低圧の下面空間Sdへと、フィン2Fの隙間を貫流し、下側の空間Sdから供給側1R、即ち供給側ダクト管4Dに送風出来たため、吸気空気流a3をフィン2Fの幅方向に対して直交方向に流すにもかかわらず、フィン2F群は、高い熱交換率を発揮し、空気熱交換器1が高い除湿効率を発揮した。   As shown in FIG. 3B, the dehumidifying action of the air heat exchanger 1 is such that the intake air flow a3 from the intake side 1S is converted into a lower wind deflection plate bb and an upper wind deflection plate bt1. .. bt6 allows the coil 2 to flow through the gap of the fin 2F from the high pressure upper surface space Su to the low pressure lower surface space Sd, and to blow air from the lower space Sd to the supply side 1R, that is, the supply side duct pipe 4D. Therefore, despite the intake air flow a3 flowing in the direction orthogonal to the width direction of the fins 2F, the fins 2F group exhibited a high heat exchange rate, and the air heat exchanger 1 exhibited high dehumidification efficiency.

そして、空気熱交換器1は、除湿作用で生じたフィン2Fの結露水が、フィン2F間を貫流する下降空気流a4で筒本体1Aの下面に溜まり、ドレンパイプ8Aからのドレン回路8によって支障無く排除出来た。
尚、居室内空気が設定湿度に達すると、湿度検知器5Eでの制御で、ダクトファン3Fが停止するが、冷温水循環回路6は常時運転状態であるため、ダクトファン3F、即ち除湿作用は、湿度検知器5Eの指令があれば、直ちに応答作動出来る。
In the air heat exchanger 1, the condensed water of the fins 2F generated by the dehumidifying action is accumulated on the lower surface of the cylinder main body 1A by the descending air flow a4 flowing between the fins 2F, and is hindered by the drain circuit 8 from the drain pipe 8A. I was able to eliminate it.
When the indoor air reaches the set humidity, the duct fan 3F is stopped by the control of the humidity detector 5E. However, since the cold / hot water circulation circuit 6 is always in operation, the duct fan 3F, that is, the dehumidifying action is If there is a command from the humidity detector 5E, a response operation can be performed immediately.

2.暖房運転:
冬季の暖房運転は、水熱交換ユニット6Cから放熱回路7、即ち往き側大径パイプ6P”に45℃の温水を供給し、往き側ヘッダー6Sを経て、輻射用パネルヒーター7Aで10℃放熱して、戻り側ヘッダー6Rへ還水し、分岐点P1からの小径パイプ6P´で分岐した循環回路6では、45℃の温水をコイル2が6℃放熱し、戻り側ヘッダー6Rに39℃で還水した。
2. Heating operation:
In the winter heating operation, 45 ° C. hot water is supplied from the water heat exchange unit 6C to the heat radiating circuit 7, that is, the outgoing large-diameter pipe 6P ″, and radiated by 10 ° C. from the radiating panel heater 7A via the outgoing header 6S. Then, in the circulation circuit 6 returned to the return side header 6R and branched by the small-diameter pipe 6P 'from the branch point P1, the coil 2 dissipates 6 ° C of hot water of 45 ° C and returns to the return side header 6R at 39 ° C. Watered.

そのため、電動三方弁6Tは、図2(B)に示す如く、往き側ヘッダー6Sへの送水温度、即ち流出口6Z温度を、温度設定ダイヤル6gで40℃にしておき、戻り側ヘッダー6Rで、放熱回路7の35℃の水流w6と、空気熱交換器1からの39℃の水流w2が混合されて、戻り側ヘッダー6Rからは35.8℃となった水流w7を、バイパス流路b7の分岐点P2の上流で、サーモセンサー5Tが測定して電動三方弁6Tに通知することにより、電動三方弁6Tは、流入口6Xの入水温度(標準:45℃)、流出口6Zからの送水温度(標準:40℃)及びサーモセンサー5Tからの通知温度、即ちバイパス流路b7から流入口6Yへの水流w9の入水温度(35.8℃)によって、流入口6Xからの水流w3及び6Yからの水流w9を比例配分方式で算出して、流入口6Xを45%開放、流入口6Yを55%開放し、流出口6Zから設定温度(標準:40℃)の水流w4を往き側ヘッダー6Sに送水した。   Therefore, as shown in FIG. 2 (B), the electric three-way valve 6T sets the water supply temperature to the forward header 6S, that is, the outlet 6Z temperature to 40 ° C. with the temperature setting dial 6g, and the return header 6R. The water flow w6 at 35 ° C. from the heat radiating circuit 7 and the water flow w2 from 39 ° C. from the air heat exchanger 1 are mixed, and the water flow w7 that has reached 35.8 ° C. from the return side header 6R is passed through the bypass flow path b7. The thermosensor 5T measures and notifies the electric three-way valve 6T upstream of the branch point P2, so that the electric three-way valve 6T has an inlet temperature of the inlet 6X (standard: 45 ° C.) and a water supply temperature of the outlet 6Z. (Standard: 40 ° C.) and the notification temperature from the thermosensor 5T, that is, the incoming temperature (35.8 ° C.) of the water flow w9 from the bypass channel b7 to the inlet 6Y, the water flows w3 and 6Y from the inlet 6X. Water flow w9 Calculated in the example allocation scheme, opening the inlet 6X 45% inlets 6Y opened 55%, setting the outlet 6Z temperature (standard: 40 ° C.) was water in the water flow w4 forward side header 6S of.

この場合、戻り側ヘッダー6Rから大径パイプ6P”を経由する還水流w7は、分岐点P2からバイパス流路b7によって流量の55%が水流w9で電動三方弁6Tへ、残余の45%流量が水流w8で水熱交換ユニット6Cに還水して再加熱することとなり、バイパス流路b7を配置したために、水熱交換ユニット6Cでの熱交換負荷が軽減出来る。
そして、空気熱交換器1は、湿度検知器5Eによる制御作用によって、加湿回路での必要給湿が実施出来、放熱回路7による輻射用パネルヒーター7Aでの輻射熱暖房と、空気熱交換器での居室内空気に対する加熱、加湿により快適な暖房が実施出来る。
In this case, the return water flow w7 passing from the return side header 6R through the large diameter pipe 6P ″ has a flow rate of 55% from the branch point P2 to the electric three-way valve 6T by the bypass flow path b7 and the remaining 45% flow rate to the electric three-way valve 6T. Water is returned to the water heat exchange unit 6C with the water flow w8 and reheated, and the bypass flow path b7 is arranged, so that the heat exchange load in the water heat exchange unit 6C can be reduced.
The air heat exchanger 1 can perform the necessary humidification in the humidifying circuit by the control action of the humidity detector 5E, and the radiant heat heating by the radiation panel heater 7A by the heat radiating circuit 7 and the air heat exchanger Comfortable heating can be performed by heating and humidifying the air in the room.

3.中間期の運転:
冬から夏、夏から冬の中間期にあっては、図2(B)に示す如く、往き側経路の分岐点P1と電動三方弁6T間、及び戻り側経路の分岐点P2から電動三方弁6Tへのバイパス流路b7に配置した仕切弁6Fを閉止し、流水回路は、水熱交換ユニット6C→空気熱交換器1→戻り側ヘッダー6R→水熱交換ユニット6Cの回路のみ、即ち空気熱交換器用の冷温水循環回路6のみ作動可能とし、輻射用パネルヒーター7Aの放熱回路7は閉止しておく。
そして、居室内の温湿度環境の必要に応じて、空気熱交換器1に温水又は冷水を循環させれば、必要な、高温加湿空気又は低温低湿空気の居室内への提供が可能となり、中間期にあっては、輻射用パネルヒーター7Aによる冷暖房運転することなく、空気熱交換器の稼動運転のみで、中間期相応の冷暖房が可能となった。
3. Mid-term operation:
In the intermediate period from winter to summer and from summer to winter, as shown in FIG. 2 (B), the electric three-way valve is connected between the branch point P1 of the forward path and the electric three-way valve 6T and from the branch point P2 of the return path. The gate valve 6F arranged in the bypass flow path b7 to 6T is closed, and the flowing water circuit is only the circuit of the water heat exchange unit 6C → the air heat exchanger 1 → the return side header 6R → the water heat exchange unit 6C, that is, the air heat. Only the cold / hot water circulation circuit 6 for the exchanger is operable, and the heat radiation circuit 7 of the radiation panel heater 7A is closed.
Then, if hot water or cold water is circulated through the air heat exchanger 1 according to the necessity of the temperature and humidity environment in the living room, it becomes possible to provide the necessary high-temperature humidified air or low-temperature and low-humidity air into the living room. In the period, air conditioning corresponding to the intermediate period became possible only by operating the air heat exchanger without performing the air conditioning operation by the radiation panel heater 7A.

1 空気熱交換器
1A 筒本体
1G 切欠
1R 供給側
1S 吸気側
2 冷温水コイル(コイル)
2A 循環パイプ
2B ヘアピンチューブ
2C Uベント
2E,2E´ エンドプレート
2F フィン
2K 受金具
2R 戻り側接続口
2S 往き側接続口
3 吸気回路
3D,4D ダクト管
3E レジューサー管
3F ダクトファン
3G 吸気グリル
4 供給回路
4A 被覆保温材
4B 円筒管
4G 供給グリル
4K 吹出口
4R ラッパ管
4U 円錐管
5 検知回路
5E 湿度検知器
5R 電線
5S 温度検知器
5T サーモセンサー
6 冷温水循環回路(循環回路)
6A 室外ユニット
6B 冷媒管
6C 水熱交換ユニット
6D T型ソケット
6F 仕切弁
6M 電磁弁
6N,6n 循環ポンプ
6P,6P´,6P” プラスチック樹脂パイプ(パイプ)
6R 戻り側ヘッダー
6S 往き側ヘッダー
6T 電動三方弁
6X,6Y 流入口
6Z 流出口
7 放熱回路
7A 輻射用パネルヒーター
7R 排出口
7S 供給口
8 ドレン回路
8A ドレンパイプ
8B 排水パイプ
8R 止水板
9 洗浄回路
9A 洗浄ノズル
9B 給水管
9C 給水主管
9D タイマースイッチ
10 加湿回路
10A 噴霧ノズル
10B 枝管
10C 給湯管
a1・・・a9 空気流
an アンカー片
bb 下側風偏向板(風偏向板)
bt 上側風偏向板(風偏向板)
b7 バイパス流路
C 天井
H1 挿入用孔
H2 貫入用孔
P1,P2 分岐点
S スペース
Sd 下面空間
Su 上面空間
w1・・・w9 水流
wi 間仕切壁
WO 外壁
DESCRIPTION OF SYMBOLS 1 Air heat exchanger 1A Cylinder body 1G Notch 1R Supply side 1S Intake side 2 Cold / hot water coil (coil)
2A Circulation pipe 2B Hairpin tube 2C U vent 2E, 2E 'End plate 2F Fin 2K Fitting 2R Return side connection port 2S Outward side connection port 3 Intake circuit 3D, 4D Duct tube 3E Reducer tube 3F Duct fan 3G Intake grill 4 Supply Circuit 4A Insulation insulation material 4B Cylindrical tube 4G Supply grill 4K Outlet 4R Trumpet tube 4U Conical tube 5 Detection circuit 5E Humidity detector 5R Electric wire 5S Temperature detector 5T Thermo sensor 6 Cold / hot water circulation circuit (circulation circuit)
6A Outdoor unit 6B Refrigerant pipe 6C Hydrothermal exchange unit 6D T-type socket 6F Gate valve 6M Solenoid valve 6N, 6n Circulation pump 6P, 6P ', 6P "Plastic resin pipe (pipe)
6R Return side header 6S Outgoing side header 6T Electric three-way valve 6X, 6Y Inlet 6Z Outlet 7 Radiation circuit 7A Radiation panel heater 7R Discharge port 7S Supply port 8 Drain circuit 8A Drain pipe 8B Drain pipe 8R Water stop plate 9 Washing circuit 9A Washing nozzle 9B Water supply pipe 9C Water supply main pipe 9D Timer switch 10 Humidification circuit 10A Spray nozzle 10B Branch pipe 10C Hot water supply pipe a1... A9 Air flow an Anchor piece bb Lower wind deflection plate (wind deflection plate)
bt Upper wind deflector (wind deflector)
b7 Bypass channel C Ceiling H1 Insertion hole H2 Penetration hole P1, P2 Branch point S Space Sd Lower surface space Upper surface space w1... w9 Water flow wi Partition wall WO Outer wall

Claims (12)

室外の水熱交換ユニット(6C)から居室内の輻射用パネルヒーター(7A)に冷温水循環の放熱回路(7)を配置し、放熱回路(7)の水熱交換ユニット(6C)近傍から分岐して放熱回路(7)に還流復帰する冷温水循環回路(6)に空気熱交換器(1)を配置し、空気熱交換器(1)には、結露水を排出するドレン回路(8)と、居室内空気を吸気して空気熱交換器(1)内に送風する吸気回路(3)と、空気熱交換器(1)から空気を居室内に送風する供給回路(4)とを配置し、居室内の温湿度、及び循環水の温度を検知回路(5)で検知して制御運転するシステムであって、空気熱交換器(1)を天井内に配置して吸気回路(3)及び供給回路(4)をダクト方式とし、供給回路(4)を供給グリル(4G)で居室内と接続し、空気熱交換器(1)からの送風空気の一部を、吹出口(4K)から輻射用のパネルヒーター(7A)周面に吹き下ろす、空気熱交換システム。 A heat / radiation circuit (7) for cold / hot water circulation is placed from the outdoor water heat exchange unit (6C) to the radiant panel heater (7A) in the room, and branches off from the vicinity of the water heat exchange unit (6C) of the heat dissipation circuit (7). An air heat exchanger (1) is arranged in the cold / hot water circulation circuit (6) returning to the heat dissipation circuit (7), and the air heat exchanger (1) has a drain circuit (8) for discharging condensed water, An intake circuit (3) for sucking air in the room and blowing it into the air heat exchanger (1), and a supply circuit (4) for blowing air from the air heat exchanger (1) into the room, It is a system that detects the temperature and humidity in the room and the temperature of the circulating water by the detection circuit (5) and performs control operation , and the air heat exchanger (1) is arranged in the ceiling and the intake circuit (3) and the supply The circuit (4) is a duct system, and the supply circuit (4) is connected to the living room with the supply grille (4G). Some of the air blown from the air heat exchanger (1), down blow the panel heater (7A) peripheral surface for radiation from the air outlet (4K), air heat exchanger system. 空気熱交換器(1)には、空気熱交換器(1)内を洗浄する洗浄回路(9)及び空気熱交換器(1)内に水を噴霧して居室内に加湿空気を供給する加湿回路(10)を接続した、請求項1に記載の空気熱交換システム。   The air heat exchanger (1) includes a cleaning circuit (9) for cleaning the inside of the air heat exchanger (1) and a humidifier for spraying water into the air heat exchanger (1) and supplying humidified air into the living room. 2. The air heat exchange system according to claim 1, wherein a circuit (10) is connected. 居室内に配置した温度検知器(5S)が、放熱回路(7)の循環水を、空気熱交換器(1)への冷温水循環回路(6)の分岐点(P1)の下流で温度制御し、居室内に配置して、吸気回路(3)と、加湿回路(10)とに接続した湿度検知器(5E)が、空気熱交換器(1)の加湿回路(10)を制御する、請求項1又は2に記載の空気熱交換システム。   A temperature detector (5S) placed in the room controls the temperature of the circulating water in the heat dissipation circuit (7) downstream of the branch point (P1) of the cold / hot water circulation circuit (6) to the air heat exchanger (1). The humidity detector (5E) disposed in the room and connected to the intake circuit (3) and the humidification circuit (10) controls the humidification circuit (10) of the air heat exchanger (1). Item 3. The air heat exchange system according to Item 1 or 2. 洗浄回路(9)は、給水主管(9C)と接続した給水管(9B)から空気熱交換器(1)内に洗浄ノズル(9A)群を突設し、給水管(9B)に介在配置した電磁弁(6M)をタイマースイッチ(9D)で洗浄作用制御する、請求項2又は3に記載の空気熱交換システム。   The cleaning circuit (9) has a cleaning nozzle (9A) group protruding from the water supply pipe (9B) connected to the water supply main pipe (9C) into the air heat exchanger (1) and interposed in the water supply pipe (9B). The air heat exchange system according to claim 2 or 3, wherein the solenoid valve (6M) is controlled by a timer switch (9D) for cleaning action. 加湿回路(10)は、給湯管(10C)と接続した枝管(10B)から空気熱交換器(1)内に噴霧ノズル(10A)を突設し、枝管(10B)に介在配置した電磁弁(6M)を湿度検知器(5E)で噴霧作用制御する、請求項2又は3に記載の空気熱交換システム。   The humidification circuit (10) includes a spray nozzle (10A) protruding from the branch pipe (10B) connected to the hot water supply pipe (10C) into the air heat exchanger (1), and disposed in the branch pipe (10B). The air heat exchange system according to claim 2 or 3, wherein the valve (6M) is spray-controlled by a humidity detector (5E). 放熱回路(7)の冷温水循環は、水熱交換ユニット(6C)から電動三方弁(6T)を介在して往き側ヘッダー(6S)、輻射用パネルヒーター(7A)、戻り側ヘッダー(6R)、水熱交換ユニット(6C)へと循環し、空気熱交換器(1)の循環回路(6)の循環水は、放熱回路(7)の電動三方弁(6T)上流の分岐点(P1)から分流して、空気熱交換器(1)を経て、戻り側ヘッダー(6R)で放熱回路循環水と合流し、戻り側ヘッダー(6R)から水熱交換ユニット(6C)への戻り側循環水は、経路中の分岐点(P2)から往き側経路中の電動三方弁(6T)へのバイパス流路(b7)を介して、戻り側循環水の温度に応じて制御流量を電動三方弁(6T)から往き側経路にバイパス流入させる、請求項1乃至5のいずれか1項に記載の空気熱交換システム。   The cold / hot water circulation of the heat dissipating circuit (7) is carried out from the water heat exchange unit (6C) via the electric three-way valve (6T), the forward header (6S), the radiation panel heater (7A), the return header (6R), The circulating water in the circulation circuit (6) of the air heat exchanger (1) circulates to the water heat exchange unit (6C) from the branch point (P1) upstream of the electric three-way valve (6T) of the heat dissipation circuit (7). After diverting the air, it passes through the air heat exchanger (1), merges with the heat radiation circuit circulating water at the return header (6R), and the return circulating water from the return header (6R) to the water heat exchange unit (6C) is The control flow rate is controlled by the electric three-way valve (6T) according to the temperature of the return-side circulating water through the bypass passage (b7) from the branch point (P2) in the route to the electric three-way valve (6T) in the outgoing route. ) To the outgoing path by bypass, any one of claims 1 to 5 Air heat exchange system according to. 往き側経路中の電動三方弁(6T)には、温度検知器(5S)と温度設定ダイヤル(6g)を介在し、戻り側循環水の温度をサーモセンサー(5T)で検出して、戻り側経路の分岐点(P2)から、バイパス流路(b7)を介して戻り循環水の一部を電動三方弁(6T)にバイパス流入し、合流した電動三方弁(6T)下流の往き側循環水の温度を、常時設定温度に維持する、請求項6に記載の空気熱交換システム。   An electric three-way valve (6T) in the forward path is provided with a temperature detector (5S) and a temperature setting dial (6g), and the return side circulating water temperature is detected by a thermosensor (5T). From the branch point (P2) of the route, a part of the return circulating water is bypassed into the electric three-way valve (6T) via the bypass channel (b7), and the downstream circulating water downstream of the combined electric three-way valve (6T) is joined. The air heat exchange system according to claim 6, wherein the temperature is constantly maintained at a set temperature. 往き側経路中の分岐点(P1)と電動三方弁(6T)との間、及び戻り側経路中の分岐点(P2)と電動三方弁(6T)との間のバイパス流路(b7)に仕切弁(6F)を配置した、請求項6に記載の空気熱交換システム。   In the bypass flow path (b7) between the branch point (P1) in the forward path and the electric three-way valve (6T) and between the branch point (P2) in the return path and the electric three-way valve (6T) The air heat exchange system according to claim 6, wherein a gate valve (6F) is arranged. 供給側ダクト管(4D)と供給グリル(4G)の間にラッパ管(4R)を配置して、供給グリル(4G)からは、供給側ダクト管(4D)からの放出空気流がラッパ管から天井内空気を吸引合流して放出する、請求項1乃至8のいずれか1項に記載の空気熱交換システム。 A trumpet pipe (4R) is disposed between the supply side duct pipe (4D) and the supply grille (4G), and the discharge air flow from the supply side duct pipe (4D) is generated from the trumpet pipe from the supply grille (4G). The air heat exchange system according to any one of claims 1 to 8 , wherein the air in the ceiling is sucked and merged and discharged. 請求項1の空気熱交換システムに用いる空気熱交換器であって、筒本体(1A)の、前端には吸気側ダクト管(3D)を、後端には供給側ダクト管(4D)を接続し、筒本体(1A)内には、長手方向に冷温水コイル(2)を配置し、筒本体(1A)上面からは、冷温水コイル(2)の上面に対して洗浄ノズル(9A)群を前後間隔垂下し、筒本体(1A)の前部上面からは、噴霧ノズル(10A)を垂下し、筒本体(1A)の下面の、後部からはドレンパイプ(8A)を垂下し、筒本体(1A)の、後端内底面には止水板(8R)を配置した空気熱交換器。   It is an air heat exchanger used for the air heat exchange system of Claim 1, Comprising: An intake side duct pipe (3D) is connected to the front end of a cylinder main body (1A), and a supply side duct pipe (4D) is connected to a rear end. Then, a cold / hot water coil (2) is arranged in the longitudinal direction in the cylinder body (1A), and a cleaning nozzle (9A) group from the upper surface of the cylinder body (1A) to the upper surface of the cold / hot water coil (2). The spray nozzle (10A) is suspended from the front upper surface of the cylinder body (1A), the drain pipe (8A) is suspended from the rear surface of the cylinder body (1A), and the cylinder body (1A). (1A) An air heat exchanger in which a water stop plate (8R) is arranged on the inner bottom surface of the rear end. 冷温水コイル(2)は、筒本体(1A)の長手方向に並列連通した複数本の循環パイプ(2A)群に幅方向のフィン(2F)群を密集平行配置して、筒本体(1A)の上下方向中央部位置で長手方向に延展配置し、冷温水コイル(2)の下側では、冷温水コイル(2)の吸気側(1S)の端部に、後方に上昇傾斜する風偏向板(bb)を筒本体(1A)下面から配置して、吸引空気流(a3)の冷温水コイル(2)下面への流入を抑制し、冷温水コイル(2)の上側では、後方に下降傾斜する風偏向板(bt)群を、吸気側(1S)から供給側(1R)に亘って順次通過風量が減少するように間隔配置し、吸気側(1S)から流入する空気流(a3)を冷温水コイル(2)の上面側から下面側に順次偏向して、フィン群(2F)の隙間を貫流案内し、供給側(1R)では、冷温水コイル(2)の下面からの空気流(a4)として流出させる、請求項10に記載の空気熱交換器。 The cold / hot water coil (2) includes a plurality of circulation pipes (2A) connected in parallel in the longitudinal direction of the cylinder main body (1A), and fins (2F) in the width direction are densely arranged in parallel to form the cylinder main body (1A). A wind deflector that is extended in the longitudinal direction at the center of the vertical direction and is inclined downward and upward at the end of the intake side (1S) of the cold / hot water coil (2) below the cold / hot water coil (2) (Bb) is arranged from the lower surface of the cylinder main body (1A) to suppress the inflow of the suction air flow (a3) to the lower surface of the cold / hot water coil (2), and on the upper side of the cold / hot water coil (2), the lower inclination The wind deflector plate (bt) group is arranged so that the passing air volume decreases sequentially from the intake side (1S) to the supply side (1R), and the air flow (a3) flowing in from the intake side (1S) is arranged. It deflects sequentially from the upper surface side to the lower surface side of the cold / hot water coil (2), and flows through the gap of the fin group (2F). And inner, the supply side (1R), to flow out as the air flow (a4) from the lower surface of the cold and hot water coil (2), an air heat exchanger according to claim 10. 風偏向板(bb,bt)は、垂直のアンカー片(an)を備えた傾斜板であり、風偏向板(bb,bt)の傾斜した外周形状が筒本体(1A)の内周形状と相似形であって、各風偏向板(bb,bt)は、アンカー片(an)を、冷温水コイル(2)のフィン(2F)の隙間に挿入して配置し、冷温水コイル(2)の、前端下面に配置する風偏向板(bb)と後端上面に配置する風偏向板(bt)は、筒本体(1A)の内面を閉止する、請求項11に記載の空気熱交換器。 The wind deflector (bb, bt) is an inclined plate provided with a vertical anchor piece (an), and the inclined outer peripheral shape of the wind deflector (bb, bt) is similar to the inner peripheral shape of the cylinder body (1A). Each wind deflector plate (bb, bt) has an anchor piece (an) inserted into the gap between the fins (2F) of the cold / hot water coil (2), The air heat exchanger according to claim 11 , wherein the wind deflector (bb) disposed on the lower surface of the front end and the wind deflector (bt) disposed on the upper surface of the rear end close the inner surface of the cylinder body (1A).
JP2011236008A 2011-10-27 2011-10-27 Air heat exchange system and air heat exchanger used Active JP5369260B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011236008A JP5369260B2 (en) 2011-10-27 2011-10-27 Air heat exchange system and air heat exchanger used

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011236008A JP5369260B2 (en) 2011-10-27 2011-10-27 Air heat exchange system and air heat exchanger used

Publications (2)

Publication Number Publication Date
JP2013092330A JP2013092330A (en) 2013-05-16
JP5369260B2 true JP5369260B2 (en) 2013-12-18

Family

ID=48615588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011236008A Active JP5369260B2 (en) 2011-10-27 2011-10-27 Air heat exchange system and air heat exchanger used

Country Status (1)

Country Link
JP (1) JP5369260B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110736196A (en) * 2019-09-30 2020-01-31 青岛海尔空调器有限总公司 Control method and device for self-cleaning of air conditioner and air conditioner

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6235392B2 (en) * 2014-03-27 2017-11-22 大阪瓦斯株式会社 Air conditioner
CN111076302B (en) * 2019-12-09 2023-12-01 珠海格力电器股份有限公司 Fresh air conditioner indoor unit, fresh air conditioner and control method of fresh air conditioner

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0424449A (en) * 1990-05-17 1992-01-28 Matsushita Seiko Co Ltd Air conditioner
JPH1038324A (en) * 1996-07-23 1998-02-13 Matsushita Electric Works Ltd Cooling and heating system
JPH10132361A (en) * 1996-10-30 1998-05-22 Hitachi Ltd Air conditioning system
JP3948600B2 (en) * 2001-02-08 2007-07-25 株式会社山武 Air conditioner operation control device
JP2002340373A (en) * 2001-05-16 2002-11-27 Mitsubishi Electric Corp Water-type heating-cooling combination system
JP2004169946A (en) * 2002-11-18 2004-06-17 Mohly Jutaku Setsubi Kk Air conditioner for residence
KR101065905B1 (en) * 2007-10-03 2011-09-19 가부시키가이샤 사사꾸라 Air-conditioning equipment, radiation air-conditioning system, and method for controlling the radiation air-conditioning system
JP2010181072A (en) * 2009-02-04 2010-08-19 Osaka Gas Co Ltd Air conditioning system
JP4999941B2 (en) * 2010-01-15 2012-08-15 木村工機株式会社 Pneumatic attracting radiation unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110736196A (en) * 2019-09-30 2020-01-31 青岛海尔空调器有限总公司 Control method and device for self-cleaning of air conditioner and air conditioner

Also Published As

Publication number Publication date
JP2013092330A (en) 2013-05-16

Similar Documents

Publication Publication Date Title
JP6147537B2 (en) Air conditioner
JP4735573B2 (en) Ventilation air conditioner
US6481228B1 (en) Air conditioning module for room partition unit
JP2002081688A (en) Ventilator
KR20110105037A (en) A heat recovery ventilation system with integrated cooling and heating funtion
JP2012225517A (en) Radiation air conditioning apparatus and dehumidification and humidification air conditioning system
JP5369260B2 (en) Air heat exchange system and air heat exchanger used
JP5913151B2 (en) Air conditioning and ventilation system
JP2009250528A (en) Ventilation air-conditioning device
CN110748963A (en) Air conditioner system, air conditioner and control method of air conditioner
JPH10160198A (en) Air conditioning system
JP5228344B2 (en) Ventilation air conditioner
JP6590983B2 (en) Heat source integrated system air conditioner
CN211146701U (en) Air conditioner system and air conditioner
JP2006109869A (en) Vapor generating apparatus
JP2011112239A (en) Ventilation air-conditioning system and building
JP2011085373A (en) Outdoor installed heat pump type humidifier
JP3945301B2 (en) Air conditioning system
KR20100008106A (en) Air conditioning air circulation apparatus
JP2001116293A (en) Air-conditioning system utilizing geothermy and circulating water flow
CN205747262U (en) There is the air conditioning unit of horizontal cross stream indirect evaporation refrigerating device
JP2004177049A (en) Slimmed air-conditioner
JPH1194286A (en) Air conditioner
CN219656199U (en) Circulation system with environment adjusting function and heat pump water heater
JP2018138850A (en) Heat pump type cold and hot water generating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130722

R150 Certificate of patent or registration of utility model

Ref document number: 5369260

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250