JP5913151B2 - Air conditioning and ventilation system - Google Patents

Air conditioning and ventilation system Download PDF

Info

Publication number
JP5913151B2
JP5913151B2 JP2013032074A JP2013032074A JP5913151B2 JP 5913151 B2 JP5913151 B2 JP 5913151B2 JP 2013032074 A JP2013032074 A JP 2013032074A JP 2013032074 A JP2013032074 A JP 2013032074A JP 5913151 B2 JP5913151 B2 JP 5913151B2
Authority
JP
Japan
Prior art keywords
air
heat exchanger
floor
gas
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013032074A
Other languages
Japanese (ja)
Other versions
JP2014163528A (en
Inventor
櫻庭 高光
高光 櫻庭
奉昭 井浦
奉昭 井浦
和彦 富田
和彦 富田
博康 白土
博康 白土
秀夫 保科
秀夫 保科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido Research Organization
Original Assignee
Hokkaido Research Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido Research Organization filed Critical Hokkaido Research Organization
Priority to JP2013032074A priority Critical patent/JP5913151B2/en
Publication of JP2014163528A publication Critical patent/JP2014163528A/en
Application granted granted Critical
Publication of JP5913151B2 publication Critical patent/JP5913151B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Steam Or Hot-Water Central Heating Systems (AREA)

Description

本発明は、ヒートポンプやボイラー等の冷温水作成手段で作成した冷温水を輻射式の放熱体に循環させる室内輻射冷暖房システムに、居室内空気を除湿する空気熱交換システムを付加したものであり、詳しくは、熱源機で作成した冷温水を輻射式放熱体に循環させる輻射式の冷暖房システムに、住宅や事務所等での給気の、機械式換気システムを組み合わせて、居室内の冷暖房に除湿機能を付与して冷暖房の効率を向上させ、室内の快適性を向上させる冷暖房換気システムであって、エアーコンディショニングの技術分野に属するものである。   The present invention is the addition of an air heat exchange system that dehumidifies indoor air to an indoor radiant cooling / heating system that circulates cold / hot water created by cold / hot water creating means such as a heat pump or boiler to a radiant heat radiator, Specifically, a combination of a radiant air-conditioning system that circulates cold / hot water created by a heat source unit to a radiant radiator and a mechanical ventilation system that supplies air in a house or office, etc., to dehumidify the air-conditioning in the room. An air-conditioning / ventilation system that imparts functions to improve air-conditioning efficiency and improve indoor comfort, and belongs to the technical field of air conditioning.

輻射式の冷暖房システムは、輻射熱伝達により、居室内では、冷房温度が高くても、室温より低い冷涼感が得られ、暖房温度が低くても、室温より高い温和感が得られるため、熱源機器の稼動エネルギーが低減出来て、省エネルギーな冷暖房として知られている。
また、輻射冷暖房は、対流による熱移動が少ないため、エアーコンディショナーのような、気流による不快感は無く、居室内の空気温度斑が少ないので、冷暖房の快適性に優れている。
Radiant air-conditioning systems have a cool feeling that is lower than room temperature in the living room, even if the cooling temperature is high, and a warm feeling that is higher than room temperature even if the heating temperature is low. This is known as energy-saving air conditioning.
In addition, since radiant cooling and heating has less heat transfer due to convection, there is no discomfort due to airflow, unlike air conditioners, and there are few air temperature spots in the room, so the comfort of cooling and heating is excellent.

しかし、夏季等の高温多湿環境にあっては、冷水を輻射放熱体内に、熱源として供給すると、低温化した放熱体近傍の空気が露点以下となり、放熱体の表面には結露が発生して、発生した結露水が近傍の壁や床等に付着し、不快感を与えると共に、カビやダニの発生の原因ともなる問題がある。
このような、輻射式冷暖房システムにおける問題点を解決するために、従来、各種の結露対策技術が提案され、実施されている。
However, in high-temperature and high-humidity environments such as summer, when cold water is supplied as a heat source to the radiant radiator, the air near the radiated radiator becomes below the dew point, and condensation occurs on the surface of the radiator. The generated condensed water adheres to nearby walls and floors, causing discomfort and also causing mold and mites.
In order to solve such problems in the radiation type air conditioning system, various types of dew condensation countermeasure techniques have been proposed and implemented.

図11(A)は従来例1の結露対策手段であって、特許文献1で開示されている発明の概略説明図である。
即ち、従来例1(図11(A))は、図示の如く、圧縮機、室外側熱交換器、減圧装置及び室内側熱交換器を有する冷房回路を備えた空気調和機に於いて、冷媒回路に組み込まれた輻射パネルと、この輻射パネルに取付けた結露センサの出方に応じて、冷媒を室内側熱交換器と輻射パネルとに切り換え供給する制御手段を備えており、輻射パネルの結露状態を結露センサで検出し、その信号に応じて、除湿と輻射空調とを切り換えることにより、冷房時の輻射パネル表面への結露を防止し、水滴の落下による室内の汚染や腐食及びカビの発生を防止するものである。
FIG. 11A is a schematic illustration of the invention disclosed in Patent Document 1 as a countermeasure against condensation in Conventional Example 1. FIG.
That is, Conventional Example 1 (FIG. 11A) is a refrigerant in an air conditioner having a cooling circuit having a compressor, an outdoor heat exchanger, a pressure reducing device, and an indoor heat exchanger, as shown in the figure. The control panel is equipped with a radiant panel built into the circuit and a switch that supplies the refrigerant to the indoor heat exchanger and radiant panel according to the way the dew condensation sensor attached to the radiant panel comes out. Condensation sensor detects the condition and switches between dehumidification and radiant air conditioning according to the signal to prevent condensation on the radiant panel surface during cooling. Is to prevent.

また、図11(B)は、従来例2の除湿機であって、特許文献2で開示された発明の概略説明図である。
即ち、従来例2(図11(B))の除湿機は、吸着材である除湿ロータと、室内からの空気を、該除湿ロータの吸着領域を介して室内に戻すための除湿通路と、室内からの空気を、該除湿ロータの再生領域を介して室外に排出するための排気通路と、該排気通路の、上記除湿ロータの上流側に配置して除湿ロータの再生領域に流入する空気を加熱する加熱手段と、上記除湿通路及び排気通路に風を送るファンとを備えている。
FIG. 11B is a schematic illustration of the invention disclosed in Patent Document 2, which is a dehumidifier of Conventional Example 2.
That is, the dehumidifier of Conventional Example 2 (FIG. 11B) includes a dehumidification rotor that is an adsorbent, a dehumidification passage for returning air from the room to the room through the adsorption region of the dehumidification rotor, An exhaust passage for discharging the air from the dehumidification rotor to the outside through the regeneration region of the dehumidification rotor, and heating the air flowing into the regeneration region of the dehumidification rotor by disposing the exhaust passage upstream of the dehumidification rotor And a fan for sending air to the dehumidifying passage and the exhaust passage.

この除湿機は、ターボファンによって除湿通路に風を送り、室内からの空気を、吸着材である除湿ロータの吸着領域に通して、室内空気の水分を除湿ロータに吸着させて、除湿された空気を室内に戻す。
また、ターボファンにより排気通路に風を送り、排気通路の除湿ロータの上流側に配置したヒータにより、排気通路を通る空気を加熱した後、加熱空気を除湿ロータの再生領域に通し、吸着材に含まれた水分を脱着して、加湿された空気を室外に排出するものであり、排水作業の必要が無く、水漏れの発生を除き、ヒータ入力の低減出来るものである。
This dehumidifier sends air to the dehumidification passage by a turbo fan, passes the air from the room through the adsorption area of the dehumidification rotor that is an adsorbent, and adsorbs the moisture of the room air to the dehumidification rotor, thereby dehumidified air Return to the room.
In addition, wind is sent to the exhaust passage by a turbo fan, and the air passing through the exhaust passage is heated by a heater arranged on the upstream side of the dehumidification rotor in the exhaust passage, and then the heated air is passed through the regeneration region of the dehumidification rotor to The moisture contained is desorbed, and the humidified air is discharged to the outside of the room. There is no need for drainage work, and the heater input can be reduced except for the occurrence of water leakage.

また、図12(A)は、従来例3のヒートポンプ式輻射パネル用空調機の概略説明図であって、特許文献3として挙げたものであり、冷媒回路は、圧縮機、四方弁、第1水熱交換器、減圧弁、第2水熱交換器、除湿用空気熱交換器、更に四方弁、アキュムレーター及び圧縮機の順に、冷媒が循環する。
また、第1水循環回路が、第1水熱交換器、温水ボイラー、クーリングタワー及び第1循環ポンプから成り、第2水循環回路(冷温水循環回路)が、第2水熱交換器、輻射冷暖房用パネル、及び第2循環ポンプから形成されたものである。
FIG. 12A is a schematic explanatory diagram of a heat pump type radiation panel air conditioner according to Conventional Example 3 and is cited as Patent Document 3. The refrigerant circuit includes a compressor, a four-way valve, and a first one. The refrigerant circulates in the order of the water heat exchanger, the pressure reducing valve, the second water heat exchanger, the dehumidifying air heat exchanger, the four-way valve, the accumulator, and the compressor.
The first water circulation circuit is composed of a first water heat exchanger, a hot water boiler, a cooling tower, and a first circulation pump, and the second water circulation circuit (cold and hot water circulation circuit) is a second water heat exchanger, a panel for radiation cooling and heating, And a second circulation pump.

そして、空調機の運転時には、冷媒は、圧縮機で圧縮された後、四方弁を通り、第1水熱交換器で凝縮し、減圧弁を経て減圧され、第2水熱交換器及び除湿用空気熱交換器で蒸発し、四方弁及びアキュムレーターを経由して圧縮機に戻る冷媒回路を循環する。
この間、第2循環ポンプを駆動すると、冷媒は、第2水熱交換器内部で循環水と熱交換し、冷水が第2循環回路の輻射パネルに送水されて輻射冷房に供される。
更に、冷媒は、空気熱交換器で、除湿用ファンによって送風される室内空気と熱交換し、冷却された空気は、強制対流によって冷房に供され、このとき、室内空気の露点温度が空気熱交換器内の冷媒の蒸発温度以上の時は除湿される。
During the operation of the air conditioner, the refrigerant is compressed by the compressor, passes through the four-way valve, condenses in the first water heat exchanger, is reduced in pressure through the pressure reducing valve, and is used for the second water heat exchanger and the dehumidifier. It evaporates in the air heat exchanger and circulates in the refrigerant circuit that returns to the compressor via the four-way valve and accumulator.
In the meantime, when the second circulation pump is driven, the refrigerant exchanges heat with the circulating water inside the second water heat exchanger, and the cold water is supplied to the radiation panel of the second circulation circuit and used for radiation cooling.
Further, the refrigerant exchanges heat with indoor air blown by a dehumidifying fan in an air heat exchanger, and the cooled air is supplied to cooling by forced convection. At this time, the dew point temperature of the indoor air is the air heat. When the temperature is higher than the evaporation temperature of the refrigerant in the exchanger, it is dehumidified.

そして、除湿用空気熱交換器での冷媒の蒸発温度を調整して、空気熱交換器で除湿される室内空気の露点温度より、輻射パネルの表面温度は高く設定されるので、輻射パネル表面に結露が発生することはない。
しかし、該輻射パネルと除湿用空気熱交換器とを備えた該空調機にあっては、冷房開始時に、室内空気が所定の温度に低下するまで、強制対流により室内を冷房し、その後、空気熱交換器による弱冷房と、輻射パネルによる輻射冷房とを組み合わせることとなる。
また、暖房運転時には、除湿用ファンの駆動を停止して、空気熱交換器での室内空気との熱交換は実施しない。
Then, the surface temperature of the radiant panel is set higher than the dew point temperature of the room air dehumidified by the air heat exchanger by adjusting the evaporation temperature of the refrigerant in the air heat exchanger for dehumidification. Condensation does not occur.
However, in the air conditioner provided with the radiation panel and the dehumidifying air heat exchanger, at the start of cooling, the room is cooled by forced convection until the room air falls to a predetermined temperature, and then the air The weak cooling by the heat exchanger and the radiant cooling by the radiant panel are combined.
Further, during the heating operation, the driving of the dehumidifying fan is stopped and heat exchange with room air in the air heat exchanger is not performed.

また、図12(B)は従来例4であって、非特許文献1として挙げた技術手段の概略説明図であり、ルームエアコンとして普及しているものであって、室内の空気をルームエアコン内に吸込み、フィルターやコイルの中を通過させて、吹出口から再び室内に送風するための送風機と、送風機によって導かれた室内空気から熱を奪って冷却し、更に空気中の水分を取除く冷却コイルと、室内空気に熱を加えて暖める電気ヒーターと、空気中のゴミを濾過するエアフィルターと、冷却コイルからの低圧高温の冷媒ガスを圧縮し、高温高圧ガスとしてコンデンサに送る圧縮機と、コンデンサファンによって冷やしてガスを液体に戻す空冷コンデンサと、空冷コンデンサからの冷媒をガス状冷媒にする膨張弁とから成り、膨張弁によって低温低圧となった冷媒は冷媒コイルに送られるもので、該作動サイクルを順次繰返すものである。   FIG. 12 (B) is a conventional example 4 and is a schematic explanatory view of the technical means cited as Non-Patent Document 1, which is widely used as a room air conditioner. The air is sucked into the air, passed through the filter or coil, and blower is blown into the room again from the air outlet, and cooling is performed by removing heat from the indoor air guided by the air blower and further removing moisture in the air. A coil, an electric heater that heats indoor air by heating, an air filter that filters dust in the air, a compressor that compresses low-pressure and high-temperature refrigerant gas from the cooling coil, and sends it to the condenser as high-temperature and high-pressure gas; It consists of an air-cooled condenser that cools the gas by a condenser fan and returns the gas to a liquid, and an expansion valve that uses the refrigerant from the air-cooled condenser as a gaseous refrigerant. Refrigerant intended to be sent to the refrigerant coil, in which sequentially repeating the operating cycle.

また、ケーシング内に収納するサーモスタッドは、室内温度を一定にするもので、夏季は、室内が暑ければ冷凍機(圧縮機、コンデンサ、膨張弁等)を稼動し、寒ければ停止させるもので、冬季は、寒ければ電気ヒーターを稼動し、暑くなれば停止させるものである。   In addition, the thermostat stored in the casing is to keep the room temperature constant. In the summer, the refrigerator (compressor, condenser, expansion valve, etc.) is operated if the room is hot, and stopped if it is cold. In winter, the electric heater is turned on when it is cold and stopped when it gets hot.

特開平06−257835号公報Japanese Patent Laid-Open No. 06-257835 特開2002−102642号公報JP 2002-102642 A 特開2006−349270号公報JP 2006-349270 A

(株)オーム社、平成22年3月20日、第1版第42刷発行、小原淳平編「100万人の空気調和」第140頁、第6章「空調方法さまざま」、6.1項、「いちばん簡単な空調方法、図6.1、ルームクーラー」OHM Co., Ltd., March 20, 2010, first edition, 42nd edition, Kohei Kohara, “Air conditioning for 1 million people”, page 140, Chapter 6, “Various air conditioning methods”, Section 6.1 , "The easiest air conditioning method, Fig. 6.1, room cooler"

従来例1(図11(A))の空気調和機にあっては、輻射パネルに設置されたセンサにより、冷媒回路に組み込まれた輻射パネルと、室内側熱交換器とを切り換え運転する方法であるが、輻射パイプ表面の結露を検知してから室内側熱交換器に冷媒循環を切り換えても、輻射パネルの表面温度は、直ちに結露を回避する温度まで回復するわけではなく、水滴の落下による室内の汚染や、腐食及びカビの発生を必ずしも回避出来るわけではない。
そして、除湿量を優先するため、冷媒を室内側熱交換器に投入する時間が長くなると、輻射パネルの温度が上昇して輻射効果が低下する問題がある。
In the air conditioner of Conventional Example 1 (FIG. 11 (A)), a sensor installed on the radiation panel is used to switch between the radiation panel built in the refrigerant circuit and the indoor heat exchanger. However, even if condensation is detected on the surface of the radiant pipe and the refrigerant circulation is switched to the indoor heat exchanger, the surface temperature of the radiant panel does not immediately recover to a temperature at which condensation is avoided, It is not always possible to avoid indoor contamination, corrosion and mold.
And since priority is given to the amount of dehumidification, when the time which a refrigerant | coolant is thrown into an indoor side heat exchanger becomes long, there exists a problem that the temperature of a radiation panel rises and a radiation effect falls.

また、従来例2(図11(B))の除湿換気システムにあっては、ターボファンにより除湿通路に風を送り、室内からの空気を吸着材である除湿ロータの吸着領域に通して、室内空気の水分を除湿ロータに吸着させて除湿された空気を室に戻す一方、ターボファンにより排気通路に風を送り、排気通路の除湿ロータの上流側に配置されたヒータにより、排気通路を通る空気を加熱した後、加熱された空気を除湿ロータの再生領域に通し、吸着材に含まれる水分を脱着して加湿された空気を室外に排出するため、空気を加熱するヒータは消費電力が大となり、除湿器は室外側の外壁面配置となって送風対応の必要もあり、ターボファンの能力が大となるので運転時の騒音も大となる問題を有し、室内への給気温度が除湿時の反応熱で上昇する問題がある。   Moreover, in the dehumidification ventilation system of the prior art example 2 (FIG. 11 (B)), wind is sent to the dehumidification passage by the turbo fan, and the air from the room is passed through the adsorption region of the dehumidification rotor as the adsorbent, Air is adsorbed by the dehumidifying rotor to return the dehumidified air to the chamber, while air is sent to the exhaust passage by the turbofan, and the air passing through the exhaust passage by the heater disposed upstream of the dehumidifying rotor in the exhaust passage. After the heater is heated, the heated air is passed through the regeneration area of the dehumidifying rotor, and moisture contained in the adsorbent is desorbed and the humidified air is discharged outside the room. The dehumidifier needs to be arranged on the outside wall surface on the outside of the room and must be able to handle air flow. The capacity of the turbo fan increases, so there is a problem that the noise during operation increases, and the air supply temperature in the room is dehumidified. Question that rises by reaction heat of time There is.

また、従来例3(図12(A))のヒートポンプ式輻射パネル用空調機は、冷媒回路の四方弁及び第2水熱交換器間に、除湿用空気熱交換器、除湿用ファンを配置して、除湿用ファンで送風する室内空気を、除湿用空気熱交換器で熱交換冷却するものであり、室内空気の露点温度が空気熱交換器内の冷媒の蒸発温度以上の時、除湿されるものである。
そして、冷房開始時には、室内空気が所定の温度に低下するまで、強制対流により室内を冷房し、その後、空気熱交換器による弱冷房と、輻射パネルによる輻射冷房との協仂冷房となり、空気用及び水用の2回路の設置が必要でコスト面の問題がある。
Further, in the heat pump radiant panel air conditioner of Conventional Example 3 (FIG. 12A), a dehumidifying air heat exchanger and a dehumidifying fan are arranged between the four-way valve of the refrigerant circuit and the second water heat exchanger. The indoor air blown by the dehumidifying fan is heat exchange cooled by the dehumidifying air heat exchanger, and is dehumidified when the dew point temperature of the indoor air is equal to or higher than the evaporation temperature of the refrigerant in the air heat exchanger. Is.
At the start of cooling, the room is cooled by forced convection until the room air drops to a predetermined temperature, after which it becomes a cooperative cooling of weak cooling by an air heat exchanger and radiant cooling by a radiant panel. In addition, it is necessary to install two circuits for water and there is a problem of cost.

また、熟練の技術者での作業となり、且つ空調機械室を設置しての維持保守管理技術者も必要となる。
従って、従来例3の空調材は、冷暖房時に、室内が設定温度に達するまでは強制対流が必須で、居室者は床面及び浮遊するゴミ、埃を巻き上げる風を受けることとなり、人身に不快であると共に、ダクトを介しての空気伝播音や固体伝播音による騒音、及び気流や空気分布による温度斑が発生する。
そして、不良導体の空気を熱媒体とするため、熱ロスや経済性の問題がある。
Moreover, it becomes a work by a skilled engineer, and the maintenance engineer who installs an air-conditioning machine room is also needed.
Therefore, in the air conditioning material of Conventional Example 3, forced convection is indispensable until the room reaches the set temperature at the time of cooling and heating, and the occupant receives the wind that winds up the floor surface, floating dust and dust, and is uncomfortable to the human body. In addition, noise due to air propagation sound and solid propagation sound through the duct, and temperature spots due to airflow and air distribution are generated.
And since the air of a defective conductor is used as a heat medium, there are problems of heat loss and economy.

また、従来例4(図12(B))のルームエアコンは、手軽に使用出来て、省エネルギー効果も高いが、寒冷地での暖房熱不足、立上りの遅さの問題を有し、強制対流方式であるため、吹付け風による不快感、チリ、埃を巻き上げる衛生上の問題、居室内の温度分布に斑を生ずる問題がある。
そして、該ルームエアコンは、外気を取り入れて室内空気と共に、夏季は、低温低湿にして室内に給気し、冬季は、高温低湿にして室内に給気するため、熱的に非効率である。
しかも、冬季は屋外の乾燥空気を室内に取り入れるため、居室内の湿度に影響を与え、バクテリア、ウィルスの活動を活発にし、居住者に呼吸疾患を招く問題すらある。
本発明は、これら従来の空調システムの各問題を、画期的に解決又は改善し、小規模の戸建住宅から大中規模の共同住宅まで、居室内に、夏季、冬季から中間期まで、居室内を快適な温湿度環境と出来る、新規、且つ実用性の高い、冷暖房換気システムを提供するものである。
The room air conditioner of Conventional Example 4 (FIG. 12 (B)) can be used easily and has a high energy saving effect, but has a problem of heating heat shortage in a cold region and a slow start-up. Therefore, there are problems such as discomfort due to the blowing wind, dust, hygiene problems of raising dust, and spots in the temperature distribution in the room.
The room air conditioner is thermally inefficient because it takes in outside air and supplies indoor air together with indoor air at low temperature and low humidity in summer, and supplies air indoors at high temperature and low humidity in winter.
Moreover, since outdoor dry air is taken into the room in the winter, it affects the humidity in the room, activates the activities of bacteria and viruses, and even causes a respiratory disease to the residents.
The present invention epoch-makingly solves or improves each of the problems of these conventional air conditioning systems, from small detached houses to large to medium-sized apartments, in the living room, from summer, winter to intermediate period, The present invention provides a new and highly practical air-conditioning and ventilation system capable of creating a comfortable temperature and humidity environment in a living room.

本発明の、冷暖房換気システム1は、例えば図1に示す如く、冷温水を作成する熱源機2から、循環ポンプ3により、往き側ヘッダー6aを経て放熱体4a、戻り側ヘッダー6b、熱源機2へと循環する放熱回路4に対し、放熱回路4の往き側配管6s´の循環ポンプ3下流の第1分岐点P1から分流して、気液熱交換器5を経て、放熱回路4の往き側配管6s´に還流復帰する冷温水循環回路6を付設し、気液熱交換器5を機械式換気システムの給気経路中に配置して、放熱体4a及び気液熱交換器5を、居室内の温湿度、放熱回路4及び冷温水循環回路6の温度、流量を調整して運転するものである。   The cooling / heating / ventilation system 1 of the present invention includes, for example, as shown in FIG. 1, a heat pump 2 that creates cold / hot water, a circulating pump 3, a radiator 4 a, a return header 6 b, The heat radiating circuit 4 that circulates to the heat radiating circuit 4 is diverted from the first branch point P1 downstream of the circulation pump 3 of the outgoing side piping 6s ′ of the heat radiating circuit 4 and passes through the gas-liquid heat exchanger 5 to the outgoing side of the radiating circuit 4 A cold / hot water circulation circuit 6 that returns to the pipe 6s' is attached, the gas-liquid heat exchanger 5 is disposed in the air supply path of the mechanical ventilation system, and the radiator 4a and the gas-liquid heat exchanger 5 are installed in the room. Are operated by adjusting the temperature and humidity, the temperature of the heat radiation circuit 4 and the temperature and flow rate of the cold / hot water circulation circuit 6.

この場合、放熱体4aは、慣用の、鋼製、アルミニウム製、銅製などの金属製や、プラスチック樹脂製の、パネル状、柵状、パイプ状のものを採用すれば良い。
また、機械式換気システムは、気液熱交換器5内に空気流を強制貫流出来るものであれば良く、慣用の、給気及び排気にそれぞれ送風機と排風機を採用する第一種換気法や、給気のみに送風機を用い排気は換気口などの開口部から押出す第二種換気法や、排気のみに排風機を用い給気は換気口などの開口部から取込む第三種換気法の採用が可能である。
In this case, the heat radiating body 4a may be a conventional metal, such as steel, aluminum, or copper, or a plastic resin panel, fence, or pipe.
The mechanical ventilation system only needs to be able to forcibly pass the air flow into the gas-liquid heat exchanger 5, and a conventional first-class ventilation method that employs a blower and an exhaust fan for supply and exhaust, respectively. Second type ventilation method that uses a blower for air supply only and extrudes exhaust through openings such as vents, and third type ventilation method that uses a ventilator only for exhaust and intakes through openings such as vents Can be adopted.

また、気液熱交換器5は、機械式換気システムの給気を貫流させて、貫流空気を、熱交換で冷却除湿又は加熱出来れば良く、慣用の冷温水コイルを内蔵した除湿器でも良いが、典型的には、図3に示す如く、細長円筒本体5a内に、冷温水コイル5bを長手方向に配置した、新規な気液熱交換器5を採用するのが好ましい。
そして、細長円筒形の気液熱交換器は、前端と後端にレジューサー管5Jを介在するだけでダクト管11aとの直列接続も可能となり、天井内や床下への配置も可能となり、狭いスペース内での施工も容易となる。
Further, the gas-liquid heat exchanger 5 may be a dehumidifier with a built-in conventional cold / hot water coil, as long as the supply air of the mechanical ventilation system is allowed to flow through and the flow-through air can be cooled and dehumidified or heated by heat exchange. Typically, as shown in FIG. 3, it is preferable to employ a novel gas-liquid heat exchanger 5 in which a cold / hot water coil 5b is disposed in the longitudinal direction in an elongated cylindrical body 5a.
The elongated cylindrical gas-liquid heat exchanger can be connected in series with the duct pipe 11a only by interposing the reducer pipe 5J at the front end and the rear end, and can be arranged in the ceiling or under the floor, and is narrow. Construction in the space is also easy.

また、放熱回路4への冷温水循環回路6の付設は、例えば図2(A)の流水回路図に示す如く、熱源機2から大径(標準:内径20.5mm、肉厚3.25mm)のプラスチック樹脂パイプ(架橋ポリエチレン管:JISK6769)を引出して往き側ヘッダー6aに接続した往き側配管6s´に於いて、循環ポンプ3の下流の第1分岐点P1に、T型ソケット6mを配置して、該ソケット6mから、小径(標準:内径9.8mm、肉厚1.6mm)のプラスチック樹脂パイプ(架橋ポリエチレン管)を冷温水循環回路6の往き側配管6s”として延出し、気液熱交換器5内を循環させて、冷温水循環回路6の戻り側配管6r”を、放熱回路4の第1分岐点P1の下流に配置した第2分岐点P2で、流量調整ソケット10cを介して往き側配管6s´と合流させれば良い。   Further, the cold / hot water circulation circuit 6 is attached to the heat radiation circuit 4 with a large diameter (standard: inner diameter 20.5 mm, wall thickness 3.25 mm) from the heat source unit 2 as shown in the flow circuit diagram of FIG. A T-type socket 6m is arranged at the first branch point P1 downstream of the circulation pump 3 in the outgoing side pipe 6s' drawn out of a plastic resin pipe (cross-linked polyethylene pipe: JISK6769) and connected to the outgoing side header 6a. From the socket 6m, a plastic resin pipe (cross-linked polyethylene pipe) having a small diameter (standard: inner diameter 9.8 mm, wall thickness 1.6 mm) is extended as the outgoing side pipe 6s "of the cold / hot water circulation circuit 6, and a gas-liquid heat exchanger The return side pipe 6r ″ of the cold / hot water circulation circuit 6 is circulated in the flow path 5 at the second branch point P2 arranged downstream of the first branch point P1 of the heat radiation circuit 4, and the forward side pipe is connected via the flow rate adjusting socket 10c. Together with 6s' It is sufficient to.

また、気液熱交換器5に流入する冷温水循環回路6の流量調節は、図2(A)に示す如く、流水計10aを目視して放熱回路4上の仕切弁10bの絞り調整で実施すれば良く、気液熱交換器5自体の稼動、停止は、湿度センサー9bを備えたヒューミデイスタット9aの指令で、冷温水循環回路6の流水計10aの下流に配置した電磁弁6C1の開閉作動で実施すれば良い。   Further, the flow rate adjustment of the cold / hot water circulation circuit 6 flowing into the gas-liquid heat exchanger 5 is performed by adjusting the throttle of the gate valve 10b on the heat radiation circuit 4 by visually observing the flow meter 10a as shown in FIG. The operation and stop of the gas-liquid heat exchanger 5 itself are controlled by the opening and closing operation of the electromagnetic valve 6C1 disposed downstream of the flow meter 10a of the cold / hot water circulation circuit 6 according to a command of the Humidaystat 9a provided with the humidity sensor 9b. Just do it.

従って、本発明は、熱源機2で得られた冷温水を循環ポンプによって循環させて、居室に配置した輻射式の放熱体で、循環冷温水と居室内空気との熱交換により、居室の冷房又は暖房を実施すると共に、同時に、放熱回路4から分岐循環させる冷温水を機械式換気装置(標準:第一種換気装置7)の給気経路中に配置した気液熱交換器5によって、給気空気の除湿又は補助暖房が出来る。   Therefore, the present invention is a radiant heat radiator disposed in a room by circulating the cold / hot water obtained by the heat source device 2 with a circulation pump, and cooling the room by heat exchange between the circulating cold / hot water and the room air. Alternatively, at the same time as heating is performed, the cold / hot water branched and circulated from the heat dissipation circuit 4 is supplied by the gas-liquid heat exchanger 5 disposed in the supply path of the mechanical ventilator (standard: first type ventilator 7). Air dehumidification or auxiliary heating is possible.

そして、気液熱交換器5の冷温水循環回路6を循環する冷温水は、放熱体4aへの放熱回路4から分岐して、放熱回路4と同時循環可能であって、水温、流水量は、別個独立的に制御可能であるため、冷房時には、気液熱交換器5は、放熱体4aよりも、居室内空気の水分除去能力を高く出来て、十分な除湿能力を発揮し、気液熱交換器5を経由して居室内に供給される低温低湿空気は、放熱体4aの表面結露発生を抑制する。
また、気液熱交換器5は機械式換気システムのダクト内に配置出来るため、換気システムのダクトは従来の方式をそのまま使用出来て、施工が容易な輻射冷暖房換気システムを提供する。
And the cold / warm water circulating through the cold / hot water circulation circuit 6 of the gas-liquid heat exchanger 5 is branched from the heat radiation circuit 4 to the radiator 4a and can be circulated simultaneously with the heat radiation circuit 4. Since it can be controlled independently, during cooling, the gas-liquid heat exchanger 5 can increase the moisture removal capability of the indoor air than the radiator 4a, exhibit a sufficient dehumidification capability, and gas-liquid heat The low-temperature and low-humidity air supplied to the living room via the exchanger 5 suppresses the occurrence of surface condensation on the radiator 4a.
In addition, since the gas-liquid heat exchanger 5 can be disposed in the duct of the mechanical ventilation system, the ventilation system duct can use the conventional method as it is, and provides a radiation cooling / heating / ventilation system that is easy to construct.

また、本発明の冷暖房換気システム1にあっては、例えば図1に示す如く、給気経路中の気液熱交換器5の下流に加湿装置16を配置し、冷温水循環回路6から電磁弁6C2を介して分岐した加湿回路60で加湿装置16を作動させるのが好ましい。
この場合、電磁弁6C2は、慣用の、湿度センサー9bを備えたヒューミデイスタット9aで制御作動させれば良い。
また、加湿装置16は、慣用の水噴霧ノズルを備えたものであれば良い。
In the cooling / heating / ventilation system 1 according to the present invention, for example, as shown in FIG. 1, a humidifier 16 is disposed downstream of the gas-liquid heat exchanger 5 in the air supply path, and the solenoid valve 6C2 is connected from the cold / hot water circulation circuit 6. It is preferable to operate the humidifier 16 with the humidification circuit 60 branched via the.
In this case, the solenoid valve 6C2 may be controlled by a conventional Humidaystat 9a provided with a humidity sensor 9b.
Moreover, the humidifier 16 should just be provided with the usual water spray nozzle.

従って、冬季の暖房にあっては、屋外の低温低湿度の空気が暖房によって、更に湿度低下を生ずるが、加湿装置16は、湿度センサー9bで居室内空気の加湿の必要指令を受ければ、電磁弁6C2を開放して冷温水循環回路6は、加湿用水を加湿回路60に供給して加湿装置16を作動させ、気液熱交換器5を通過した加熱空気に、温水を噴霧して加湿するため、居室内の暖房状態の空気に必要な湿度が供給出来、居室内を適切な温湿度と出来る。   Accordingly, in winter heating, outdoor low-temperature and low-humidity air further reduces humidity due to heating. However, if the humidity sensor 9b receives a command to humidify indoor air by the humidity sensor 9b, The valve 6C2 is opened, and the cold / hot water circulation circuit 6 supplies humidification water to the humidification circuit 60 to operate the humidifier 16 and sprays warm water on the heated air that has passed through the gas-liquid heat exchanger 5 to humidify it. The required humidity can be supplied to the heated air in the living room, and the appropriate temperature and humidity can be set in the living room.

また、本発明の加湿装置16は、図5に示す如く、全体形状が長方形の角筒形態で、船底面16d´を備えた下部ケーシング16dと、蓋形態の上部ケーシング16uとから成り、上部ケーシング16uは、加湿回路60と連通する上部の直管16aから先端に噴霧ノズル16bを備えた複数の枝管16cが貫入し、下部ケーシング16dは、前端の給気側接続口16sと後端の供給側接続口16rとを備え、船底面16d´の過半に亘る切欠16mに底蓋16eを着脱自在に装着すると共に、供給側接続口16rの前面には、水滴放出防止用のエリミネーター板16pを、エリミネーター板16pの下方にはドレンパイプ16gを備えたものが好ましい。   Further, as shown in FIG. 5, the humidifying device 16 of the present invention is in the form of a rectangular tube having a rectangular overall shape, and includes a lower casing 16d having a ship bottom surface 16d 'and an upper casing 16u having a lid shape. In 16u, a plurality of branch pipes 16c provided with spray nozzles 16b penetrate from the upper straight pipe 16a communicating with the humidification circuit 60, and the lower casing 16d is provided with the supply port 16s at the front end and the supply at the rear end. Side connection port 16r, and a bottom cover 16e is detachably attached to a notch 16m over the majority of the bottom surface 16d ', and an eliminator plate 16p for preventing water droplet discharge is provided on the front surface of the supply side connection port 16r. It is preferable that a drain pipe 16g is provided below the eliminator plate 16p.

この場合、上部ケーシング16uと下部ケーシング16d、下部ケーシング16dと底蓋16e相互は、ねじ手段で着脱自在とすれば良い。
従って、加湿装置16は、前端及び後端の接続口16s,16rのダクト管11aへの嵌合接続により、長手角筒形態と相俟って、機械式換気装置の給気経路内への配置が自在であり、底蓋16eを開けてノズル16bの調整又は取替え、及びケーシング内の清掃が可能となり、噴霧ノズル16bからの飛散水滴の供給側からの給気空気流への混入も、エリミネーター板16pで好適に抑制出来、気液熱交換器5から流入する高温低湿空気を必要湿度に加湿出来る。
In this case, the upper casing 16u and the lower casing 16d, and the lower casing 16d and the bottom cover 16e may be detachable with screw means.
Therefore, the humidifier 16 is arranged in the air supply path of the mechanical ventilator in combination with the longitudinal rectangular tube shape by fitting and connecting the front and rear connection ports 16s and 16r to the duct pipe 11a. The nozzle 16b can be adjusted or replaced by opening the bottom lid 16e, and the inside of the casing can be cleaned. The eliminator plate can also mix the splashed water droplets from the spray nozzle 16b into the supply air flow. It can be suitably suppressed at 16p, and high-temperature and low-humidity air flowing from the gas-liquid heat exchanger 5 can be humidified to the required humidity.

また、本発明の冷暖房換気システムにあっては、気液熱交換器5で熱交換された給気空気a10を放熱体4aに吹き付けるのが好ましい。
この場合、給気空気a10の吹出口は、放熱体4aに対して、自在に位置選択すれば良いが、給気空気a10は、放熱体4aの全表面に亘って吹き付けるのが、特に好ましい。
Moreover, in the air conditioning / ventilation system of this invention, it is preferable to spray the supply air a10 heat-exchanged with the gas-liquid heat exchanger 5 to the heat radiator 4a.
In this case, the outlet of the supply air a10 may be freely selected with respect to the radiator 4a. However, it is particularly preferable that the supply air a10 be blown over the entire surface of the radiator 4a.

従って、給気空気a10の放熱体4aへの吹き付けは、夏季の冷房時にあっては、除湿した空気が放熱体4aの表面を流れることにより、放熱体表面近傍の空気の絶対湿度を下げて結露防止となると共に、放熱体4a周面に滞留する空気層に撹拌作用を加えて、対流熱伝達を促進し、冬季にあっても、補助暖房としての空気流a10が、放熱体4aの表面の対流空気層を撹拌して対流熱伝達を促進する。   Therefore, the air supply air a10 is blown onto the heat radiating body 4a when the air is dehumidified during the cooling in summer, because dehumidified air flows on the surface of the heat radiating body 4a, thereby reducing the absolute humidity of the air near the surface of the heat radiating body. In addition to preventing the air layer stagnating on the peripheral surface of the radiator 4a, the convection heat transfer is promoted, and even in winter, the air flow a10 as auxiliary heating is applied to the surface of the radiator 4a. Stir the convection air layer to promote convective heat transfer.

また、本発明の冷暖房換気システム1にあっては、例えば図7に示す如く、放熱体4aの上部にダクト管11aと接続した接続ボックス11Jを配置し、気液熱交換器5を経由した給気空気a10を、接続ボックス11Jの調節羽根14fを備えた放熱体吹出口14cから放熱体4aに吹き付けるのが好ましい。   In the cooling / heating / ventilation system 1 according to the present invention, for example, as shown in FIG. 7, a connection box 11J connected to the duct pipe 11a is arranged on the upper portion of the radiator 4a, and the supply through the gas-liquid heat exchanger 5 is performed. It is preferable that the air air a10 is blown to the heat radiating body 4a from the heat radiating body outlet 14c provided with the adjusting blade 14f of the connection box 11J.

この場合、接続ボックス11Jは、給気ダクト管11aと接続し、且つ吹出口には、慣用の風向き調節用の調節羽根14fを備えたものであれば良く、典型的には、図7に示す如く、可動式の調節羽根14fを備えた放熱体吹出口14cの底板14dに上箱14uを嵌着し、上箱14uに天井配管のダクト管11aを接続するものである。   In this case, the connection box 11J may be connected to the air supply duct pipe 11a, and the outlet may be provided with a conventional adjustment blade 14f for adjusting the wind direction, and is typically shown in FIG. As described above, the upper box 14u is fitted to the bottom plate 14d of the heat radiator outlet 14c provided with the movable adjusting blade 14f, and the duct pipe 11a of the ceiling pipe is connected to the upper box 14u.

従って、気液熱交換器5を経由した給気空気a10は、調節羽根14fの可動調節で、放熱体4aの前後面等の表面に対する吹き付けが出来、放熱体4a周辺の空気を給気空気a10が撹拌することにより、放熱体4aに対する冷房時での、結露抑制及び対流熱伝達向上が、暖房時での、補助暖房付与及び対流熱伝達向上が、好適に実施出来る。   Therefore, the supply air a10 that has passed through the gas-liquid heat exchanger 5 can be sprayed onto the front and rear surfaces of the radiator 4a by the movable adjustment of the adjusting blade 14f, and the air around the radiator 4a is supplied to the supply air a10. As a result of stirring, it is possible to suitably perform dew condensation suppression and convective heat transfer improvement during cooling of the radiator 4a, and supplementary heating and convective heat transfer improvement during heating.

また、本発明の冷暖房換気システム1にあっては、気液熱交換器5は、例えば図3に示す如く、長手の筒本体5aの前後をダクト管11aに接続し、筒本体5a内には、冷温水循環回路6に接続した冷温水コイル5bを上下中間層の長手方向に配置して後部下面にはドレンパイプ5gを垂下し、冷温水コイル5bの前端下面は下側風偏向板5dで閉止し、冷温水コイル5bの上面は、後端を上側風偏向板5uで閉止すると共に、後方から前方へ、順次通過風量を増大させる上側風偏向板群5u〜5uを間隔配置して、供給空気流a4を冷温水コイル5bの前端上部に導入して冷温水コイル5bの下面後端から放出するのが好ましい。 In the cooling / heating / ventilation system 1 of the present invention, the gas-liquid heat exchanger 5 is connected to the duct pipe 11a at the front and back of the long cylindrical body 5a, for example, as shown in FIG. The cold / hot water coil 5b connected to the cold / hot water circulation circuit 6 is arranged in the longitudinal direction of the upper and lower intermediate layers, and a drain pipe 5g is suspended on the lower surface of the rear, and the lower surface of the front end of the cold / hot water coil 5b is closed by the lower wind deflector 5d. and, the upper surface of the hot and cold water coil 5b is configured to close the rear end in the upper air deflector 5u 1, from the rear to the front, the upper air deflector plate group 5u 2 ~5u 6 to increase sequentially passing air volume by spacing arrangement The supply air flow a4 is preferably introduced into the upper part of the front end of the cold / hot water coil 5b and discharged from the rear end of the lower surface of the cold / hot water coil 5b.

この場合、各偏向板は、典型的には、図3(C)の如く、供給空気流a4に対して45°で前方傾斜したものである。
従って、該気液熱交換器5を採用すれば、筒本体5aに慣用のレジューサー管を介在させるだけでダクト管11aとの連結が出来るため、気液熱交換器5の配置の自由度が向上し、本発明の冷暖房換気システムの天井空間内や床下等への配置が、簡便且つ容易となる。
In this case, each deflection plate is typically inclined forward by 45 ° with respect to the supply air flow a4 as shown in FIG.
Therefore, if the gas-liquid heat exchanger 5 is adopted, the duct body 11a can be connected only by interposing a conventional reducer pipe in the cylinder body 5a. It improves and arrangement | positioning in the ceiling space of a cooling / heating ventilation system of this invention, under a floor, etc. becomes simple and easy.

そして、熱交換機能も、筒本体5aの大径化を抑えて、筒本体5a及び冷温水コイル5bの前後長の選択設定で所望能力が得られる。
しかも、気液熱交換器5は、換気システムの給気ダクト管11aと接続配置出来るため、従来のダクト換気システムをそのまま使用することが出来、冷暖房換気システムの施工が容易である。
And a heat exchange function also suppresses the enlargement of the cylinder main body 5a, and a desired capability is obtained by selecting and setting the longitudinal length of the cylinder main body 5a and the cold / hot water coil 5b.
Moreover, since the gas-liquid heat exchanger 5 can be connected to the air supply duct pipe 11a of the ventilation system, the conventional duct ventilation system can be used as it is, and the construction of the cooling / heating ventilation system is easy.

また、本発明の冷暖房換気システム1にあっては、例えば図1に示す如く、機械式換気システムに全熱交換型第一種換気装置7を配置し、給気経路中の第一種換気装置7の出口側若しくは入口側に気液熱交換器5を配置し、気液熱交換器5からは、ドレンパイプ5gを介してドレン配管17sで勝手口等の土間17bに冷暖房放熱して、排水枡17aに排水するのが好ましい。   In the air conditioning / ventilation system 1 of the present invention, for example, as shown in FIG. 1, a total heat exchange type first type ventilator 7 is arranged in a mechanical ventilation system, and the first type ventilator in the air supply path. The gas-liquid heat exchanger 5 is disposed on the outlet side or the inlet side of the air-cooling unit 7, and from the gas-liquid heat exchanger 5, heat is discharged from the gas pipe 17 through the drain pipe 5 g to the soil 17 b such as a self-contained outlet. It is preferable to drain to the trough 17a.

この場合、第一種換気装置7のドレン処理は、慣用の手段で実施すれば良い。
また、ドレン配管17sは小径のパイプを勝手口の土間17b内に蛇行配管すれば良い。
また、全熱交換型第一種換気装置7は、例えば図6(B)に示す如く、屋外空気を吸込んで居室内に供給する送風機7b及び居室内の空気を吸込んで屋外に排気する送風機7b´が各1台、吸気用及び排気用に配設するエアフィルター7dが各1枚、熱交換用エレメント7cが1個、及び換気装置7内での空気流を誘導するダクトが、おのおの鋼板製のケーシング7a内に収納された慣用の第一種換気装置、例えば、協立エアテック(株)製の全熱交換器(商品番号:24HFC12N3)を採用すれば良い。
In this case, the drain treatment of the first type ventilation device 7 may be performed by conventional means.
In addition, the drain pipe 17s may be a meandering pipe having a small diameter in the soil gap 17b.
Moreover, the total heat exchange type 1 type ventilator 7 includes, for example, a blower 7b that sucks outdoor air and supplies it to the living room, and a blower 7b that sucks air inside the living room and exhausts it to the outside, as shown in FIG. 6B, for example. 'Is one each, one air filter 7d arranged for intake and exhaust, one heat exchange element 7c, and a duct for guiding the air flow in the ventilation device 7 are each made of steel plate What is necessary is just to employ | adopt the conventional 1st type ventilation apparatus accommodated in the casing 7a, for example, the total heat exchanger (product number: 24HFC12N3) by Kyoritsu Airtech Co., Ltd.

従って、本発明にあっては、外部から取り入れる換気用の空気の、水分及び潜熱除去が、第1段階の全熱交換型換気装置7と、第2段階の気液熱交換器5の作用との2段階の協仂作用で高効率に一括処理出来て、放熱体4aの輻射放熱作用と相俟って、居室内を適湿、適温の住環境と出来る。
そして、気液熱交換器5で、冷房時に除湿作用で生じる冷温排水は、勝手口や玄関の土間17bに冷房機能を付与し、除湿のための冷却エネルギーの有効活用で、土間17bの温度環境も向上する。
Accordingly, in the present invention, moisture and latent heat removal of the ventilation air taken in from the outside is performed by the first stage total heat exchange type ventilator 7 and the action of the second stage gas-liquid heat exchanger 5. The two-stage cooperative action enables high-efficiency batch processing, and in combination with the radiation heat radiation action of the heat radiating body 4a, the living room can be made into a living environment with appropriate humidity and temperature.
In the gas-liquid heat exchanger 5, the cold / warm water generated by the dehumidifying action at the time of cooling gives a cooling function to the soil 17 b at the entrance and the entrance, and the effective use of the cooling energy for dehumidification makes the temperature environment of the soil 17 b Will also improve.

また、本発明にあっては、ダクト管11aで、床下換気口15cからエアーフィルター12d、ダクトファン12c、気液熱交換器5を経て吹出口14に亘る換気システムを1階床下に配置し、床下換気口15cから取り入れる給気空気流を、気液熱交換器5で処理して床下の各区画空間E1〜E8に送風して、床下空間を換気すると共に、床下空間から各床換気口Vを介して居室内も換気するのが好ましい。   In the present invention, the duct system 11a has a ventilation system extending from the underfloor ventilation port 15c through the air filter 12d, the duct fan 12c, the gas-liquid heat exchanger 5 to the outlet 14 under the first floor, The supply air flow taken in from the underfloor ventilation port 15c is processed by the gas-liquid heat exchanger 5 and blown to the partition spaces E1 to E8 below the floor to ventilate the underfloor space and from the underfloor space to each floor vent V It is preferable to ventilate the living room through the door.

この場合、床下換気構造は、例えば図9(A)に示す如く、屋外から床下への空気流入路は、ダクト管11aの空気取入れ用の床下換気口15cのみとし、基礎18fの各区画仕切壁間には床下通気口15dを配置し、基礎18fで仕切られた各区画E1〜E8へは、特定の1区画(E6区画)にダクト管11aで換気流を吹出せば、全区画E1〜E8に送気出来る形態とすれば良い。
また、床換気口Vの少なくとも1個は放熱体4aの近傍に配置すれば、放熱体4aの外表面の結露抑制、及び放熱体4a近傍の対流熱伝達が促進出来る。
In this case, in the underfloor ventilation structure, for example, as shown in FIG. 9A, the air inflow path from the outside to the underfloor is only the underfloor ventilation port 15c for air intake of the duct pipe 11a, and each partition wall of the foundation 18f If a ventilation flow is blown out to a specific one section (E6 section) by a duct pipe 11a, an underfloor vent 15d is arranged between them and the sections E1 to E8 partitioned by the foundation 18f are all sections E1 to E8. It may be in a form that can be fed into the air.
In addition, if at least one of the floor ventilation ports V is disposed in the vicinity of the heat radiating body 4a, it is possible to suppress dew condensation on the outer surface of the heat radiating body 4a and convective heat transfer in the vicinity of the heat radiating body 4a.

従って、本発明は、電気配管、非常設備配線、冷暖房設備配管、換気設備配管、給排水衛生設備配管などが集中する天井C内から、大径の換気設備配管が床下に移せるため、天井C内及び床下の配管作業が容易となり、床下の作業は他作業の影響を受けず、工事期間の短縮化が可能となる。
しかも、床下は、換気によって湿気が少なくなることで、(イ).構造用木材及び鉄骨材の腐食が防止出来る。(ロ).除湿空気環境となるため白蟻の発生が阻止出来る。(ハ).床下を収納スペースと出来る、等の特有の実用効果が期待出来る。
Therefore, the present invention allows the large-diameter ventilation equipment piping to be moved under the floor from the ceiling C where electrical piping, emergency equipment wiring, air conditioning equipment piping, ventilation equipment piping, water supply / drainage sanitary equipment piping, etc. are concentrated. Piping work under the floor becomes easy, the work under the floor is not affected by other work, and the construction period can be shortened.
Moreover, under the floor, the humidity is reduced by ventilation. Corrosion of structural wood and steel frames can be prevented. (B). Since it becomes dehumidified air environment, generation of white ants can be prevented. (C). It can be expected to have a specific practical effect, such as the storage space under the floor.

また、換気システムを1階床下に配置して、床下と1階居間とを換気する床下換気システムにあっては、例えば、図9(B)に示す如く、床下配置のダクト管11aから給気用の上り縦ダクト管11a”を上階の床Fに導き、上階の床換気口Vから上階居室を換気するのが好ましい。   Further, in the underfloor ventilation system in which the ventilation system is arranged under the first floor and ventilates between the underfloor and the first floor, the air is supplied from a duct pipe 11a arranged under the floor as shown in FIG. 9B, for example. It is preferable to guide the upward vertical duct pipe 11a "to the floor F of the upper floor and to ventilate the upper-floor room from the floor ventilation port V of the upper floor.

この場合、上階は2階のみに限定されるものでなく、給気縦ダクト管11a”を床Fに導いた床上階、例えば2階、3階等の意である。
また、上階の居室への換気吹出しは、図9(B)に示す如く、縦ダクト管11a”から上階床(例えば2階床)Fと下階(例えば1階)天井Cとのスペースに給気し、上階床に配置した慣用の床換気口Vから給気すれば良い。
従って、ダクトファン12c及び気液熱交換器5のパワーを適切に設定することにより、床下スペースを有効利用した、施工性に優れた床下換気システムで、床下はもとより、上層各階の適温、適湿換気が可能となり、床下は、換気乾燥状態が維持出来て、白蟻の発生繁殖や、建材の吸湿腐朽も抑制出来る。
In this case, the upper floor is not limited to the second floor, but means the upper floor, for example, the second floor, the third floor, etc., in which the air supply vertical duct pipe 11a ″ is led to the floor F.
Further, as shown in FIG. 9B, the ventilation blowout to the upper floor room is a space between the vertical duct pipe 11a ″ and the upper floor (for example, the second floor) F and the lower floor (for example, the first floor) ceiling C. The air may be supplied from a conventional floor ventilation port V arranged on the upper floor.
Therefore, by appropriately setting the power of the duct fan 12c and the gas-liquid heat exchanger 5, it is an underfloor ventilation system that makes effective use of the underfloor space and is excellent in workability. Ventilation is possible, and under the floor, ventilation and drying can be maintained, and the occurrence of white ants and the hygroscopic decay of building materials can be suppressed.

また、本発明の冷暖房換気システム1は、例えば図10に示す如く、自然給気口13bから屋外空気を室内に取り入れ、室内吸気口15bからダクトファン12cを介して屋外排気口14aで排気する、いわゆる第三種換気システムに於いて、天井の室内吸気口15bから下り縦ダクト管11a´を経由して1階床下の給気ダクト管11aに至り、床下の給気ダクト管11aは、エアーフィルター12d、ダクトファン12c、気液熱交換器5を経て吹出口14から1階床下の各区画空間E1〜E8を換気して、床換気口Vから居室内も換気するのが好ましい。   In addition, as shown in FIG. 10, for example, the air conditioning / ventilation system 1 of the present invention takes outdoor air into the room through a natural air inlet 13b and exhausts the air from the indoor air inlet 15b through the duct fan 12c through the outdoor air outlet 14a. In the so-called third type ventilation system, the air intake duct pipe 11a under the first floor reaches the air supply duct pipe 11a below the first floor via the descending vertical duct pipe 11a 'from the indoor air inlet 15b on the ceiling. It is preferable to ventilate each compartment space E1 to E8 below the first floor from the outlet 14 through the air outlet 12d, the duct fan 12c, and the gas-liquid heat exchanger 5 and to ventilate the room from the floor ventilation port V.

この場合、床下への空気流入は、下り縦ダクト管11a´での空気流入のみとすれば良く、床下の各区画空間E1〜E8を仕切る各基礎18fには、換気空気用の床下通気口15d(標準:100mm径の円孔)を配置すれば良い。
従って、本発明にあっては、換気システムの床下配置の特有の効果、即ち大径の換気設備配管が床下に移せるため、天井内及び床下の配管作業が容易となり、床下の作業は他作業の影響を受けず、工期の短縮化が可能である、床下空間が除湿環境となるため、構造用木材及び鉄骨材の腐食が抑制出来る、白蟻の発生、繁殖が抑制出来る、等の効果に、更に、気液熱交換器5の作用は、居室内空気を循環させながらの稼動作用となるため、冷却温度差の少ない環境での熱交換作用となって省エネルギー化出来る。
In this case, the inflow of air under the floor may be limited to the inflow of the descending vertical duct pipe 11a ', and the underfloor vent 15d for ventilation air is provided in each base 18f that partitions the partition spaces E1 to E8 under the floor. (Standard: 100 mm diameter circular hole) may be arranged.
Therefore, in the present invention, the peculiar effect of the arrangement of the ventilation system under the floor, that is, the large-diameter ventilation equipment piping can be moved under the floor. It is not affected and the construction period can be shortened. The underfloor space becomes a dehumidifying environment, so that the corrosion of structural wood and steel frames can be suppressed, the occurrence of white ants, and the reproduction can be suppressed. Since the operation of the gas-liquid heat exchanger 5 is an operation operation while circulating the air in the room, the heat exchange operation is performed in an environment with a small difference in cooling temperature, and energy can be saved.

また、換気システムを床下配置して、気液熱交換器5への給気を、居室内空気の循環作用とする冷暖房換気システムにあっては、例えば図10(B)に示す如く、床下の給気ダクト管11aから上り縦ダクト管11a”を経由して天井内給気ダクト管11aに至り、天井内給気ダクト管11aから床換気口Vを介して居室内を換気するのが好ましい。   Further, in a cooling / heating ventilation system in which a ventilation system is arranged under the floor and the air supply to the gas-liquid heat exchanger 5 is circulated through the air in the room, for example, as shown in FIG. It is preferable to ventilate the living room from the air supply duct pipe 11a to the ceiling air supply duct pipe 11a via the ascending vertical duct pipe 11a "and from the ceiling air supply duct pipe 11a through the floor ventilation port V.

この場合、縦ダクト管11a”は、必要に応じて、上層各階の天井内給気ダクト管11aと接続すれば良い。
従って、本発明にあっては、換気システムの床下配置特有の効果を発揮すると共に、気液熱交換器5の居室内循環空気流での省エネルギー冷暖房作用であるため、例えば中層マンション等の、床下から上層階までの、建物の全体冷暖房換気の実施も可能となる。
In this case, the vertical duct pipe 11a ″ may be connected to the in-ceiling air supply duct pipe 11a on each upper floor as necessary.
Therefore, in the present invention, an effect peculiar to the underfloor arrangement of the ventilation system is exhibited, and since it is an energy saving air conditioning operation in the circulating air flow of the gas-liquid heat exchanger 5, for example, under the floor of a middle-rise apartment or the like. It is also possible to carry out overall cooling and heating ventilation of the building from the upper floor to the upper floor.

本発明の冷暖房換気システム1は、輻射冷暖房用の放熱回路4の往き側配管6s´から、冷温水循環回路6が分流して気液熱交換器5内を循環し、再度放熱回路4に還流復帰し、放熱回路4と冷温水循環回路6とを、別々に制御運転し、同時運転出来るため、気液熱交換器5の循環水温を放熱体4aの循環水温より低温として、気液熱交換器5の除湿能力を放熱体4aのそれより高く出来、居室内の水分を効率的に除湿することが出来、放熱体4aの表面での結露発生の抑制出来る冷暖房システムとなる。   In the cooling / heating / ventilation system 1 of the present invention, the cold / hot water circulation circuit 6 divides from the outgoing piping 6 s ′ of the radiation circuit 4 for radiant heating / cooling, circulates in the gas-liquid heat exchanger 5, and returns to the heat dissipation circuit 4 again. Since the heat radiation circuit 4 and the cold / hot water circulation circuit 6 can be separately controlled and operated simultaneously, the circulation water temperature of the gas-liquid heat exchanger 5 is set to be lower than the circulation water temperature of the radiator 4a. The dehumidifying capacity of the radiator 4a can be made higher than that of the radiator 4a, moisture in the living room can be efficiently dehumidified, and the air conditioning system can suppress the occurrence of condensation on the surface of the radiator 4a.

また、本発明は、気液熱交換器5を機械式換気装置の給気経路中に配置するため、換気システムのダクトは、従来の方式をそのまま使用出来、施工が容易な輻射式の冷暖房換気システムとなる。
また、気液熱交換器5は、換気によって外気から供給される空気中の水分を一括して処理出来、住宅などの潜熱負荷は、換気によって外気からの供給が大部分であるため、換気システム設計も容易となる。
そして、本発明の冷暖房換気システムは、建築基準法で定められている換気システムに気液熱交換器を付設するのみであるため、高性能な冷暖房換気システムが、低コストで、容易に構築出来る。
Further, according to the present invention, the gas-liquid heat exchanger 5 is arranged in the air supply path of the mechanical ventilation device, so that the duct of the ventilation system can use the conventional system as it is, and is a radiation type air conditioning ventilation that is easy to construct. System.
Further, the gas-liquid heat exchanger 5 can collectively process moisture in the air supplied from the outside air by ventilation, and the latent heat load of a house or the like is mostly supplied from the outside air by the ventilation. Design is also easy.
And since the air conditioning ventilation system of this invention only attaches a gas-liquid heat exchanger to the ventilation system prescribed | regulated by the Building Standard Law, a high-performance air conditioning ventilation system can be easily constructed at low cost. .

本発明の冷暖房換気システム1の全体説明線図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a whole explanatory diagram of the air conditioning ventilation system 1 of this invention. 本発明の流水回路説明図であって、(A)は回路図、(B)は流量調整ソケットの分解斜視図である。It is flowing water circuit explanatory drawing of this invention, Comprising: (A) is a circuit diagram, (B) is a disassembled perspective view of a flow volume adjustment socket. 気液熱交換器の説明図であって、(A)は使用状態の縦断側面図、(B)は透視斜視図、(C)は縦断側面図、(D)は(B)の矢印D視図、(E)は(B)の矢印E視図である。It is explanatory drawing of a gas-liquid heat exchanger, (A) is a vertical side view of a use state, (B) is a perspective view, (C) is a vertical side view, (D) is an arrow D view of (B). The figure (E) is the arrow E view figure of (B). 冷温水コイルの説明図であって、(A)は循環コイル5cの流水図、(B)は(A)のB−B線縦断面図、(C)はフィンの斜視図である。It is explanatory drawing of a cold / hot water coil, Comprising: (A) is a flow diagram of the circulation coil 5c, (B) is a BB line longitudinal cross-sectional view of (A), (C) is a perspective view of a fin. 加湿装置の説明図であって、(A)は全体斜視図、(B)は縦断側面図、(C)は縦断正面図、(D)は分解斜視図である。It is explanatory drawing of a humidifier, Comprising: (A) is a whole perspective view, (B) is a vertical side view, (C) is a vertical front view, (D) is an exploded perspective view. 本発明の換気説明図であって、(A)は全体の空気流回路図、(B)は第一種換気装置7の構成概略図、(C)は換気装置7とダクト管11aの接続縦断面図、(D)は気液熱交換器5と換気装置7との接続縦断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is ventilation explanatory drawing of this invention, Comprising: (A) is the whole airflow circuit diagram, (B) is the structure schematic diagram of the 1st type ventilation apparatus 7, (C) is the connection longitudinal section of the ventilation apparatus 7 and the duct pipe 11a. FIG. 4D is a connection longitudinal sectional view of the gas-liquid heat exchanger 5 and the ventilation device 7. 接続ボックス11Jの説明図であって、(A)は使用状態正面図、(B)は使用状態側面図、(C)は接続ボックスの分解斜視図である。It is explanatory drawing of the connection box 11J, (A) is a use condition front view, (B) is a use condition side view, (C) is an exploded perspective view of a connection box. 本発明の変形例図であって、(A)は変形例1の概略上視図、(B)は変形例2の概略上視図、(C)は変形例3の概略上視図である。It is a modification example of the present invention, (A) is a schematic top view of modification 1, (B) is a schematic top view of modification 2, (C) is a schematic top view of modification 3. . 本発明の変形例4の説明図であって、(A)は床下上視図、(B)は空気流回路の略示側面図である。It is explanatory drawing of the modification 4 of this invention, Comprising: (A) is an underfloor top view, (B) is a schematic side view of an airflow circuit. 本発明の変形例5の説明図であって、(A)は床下上視図、(B)は空気流回路の略示側面図である。It is explanatory drawing of the modification 5 of this invention, Comprising: (A) is an underfloor top view, (B) is the schematic side view of an airflow circuit. 従来例図であって、(A)は従来例1の概要説明図、(B)は従来例2の概要説明図である。It is a prior art example, Comprising: (A) is a schematic explanatory drawing of the prior art example 1, (B) is a schematic explanatory drawing of the prior art example 2. 従来例図であって、(A)は従来例3の除湿用空気熱交換器の概略説明図、(B)は従来例4のルームエアコンの縦断側面図である。It is a prior art example, (A) is a schematic explanatory drawing of the air heat exchanger for dehumidification of the prior art example 3, (B) is a vertical side view of the room air conditioner of the prior art example 4.

〔冷暖房換気システムの全体構成〕
本発明を実施する冷暖房換気システム1は、図1に示す如く、屋外に配置した熱源機2から往き側ヘッダー6aに循環ポンプ3を介して冷温水を送水し、往き側ヘッダー6aから戻り側ヘッダー6bまで、各居室の輻射用放熱体4aを経由し、戻り側ヘッダー6bから熱源機2に復流する放熱回路4を備えた、従来の冷温水循環型の輻射冷暖房システムに、新規な、気液熱交換器5による除湿、加熱機能と、加湿装置16による乾燥空気への加湿機能とを備えた換気システムを、放熱回路4から分岐合流する冷温水循環回路6で作動させるようにした。
[Overall configuration of air conditioning / heating system]
As shown in FIG. 1, an air-conditioning / ventilation system 1 embodying the present invention supplies cold / hot water from a heat source device 2 arranged outdoors to a forward header 6a through a circulation pump 3, and returns from a forward header 6a to a return header. Up to 6b, a conventional chilled / hot water circulation type radiant cooling / heating system equipped with a heat radiating circuit 4 returning to the heat source unit 2 from the return side header 6b via the radiant heat radiator 4a of each living room A ventilation system having a dehumidifying and heating function by the heat exchanger 5 and a humidifying function to the dry air by the humidifying device 16 is operated by the cold / hot water circulation circuit 6 branching and joining from the heat radiation circuit 4.

そして、気液熱交換器5は、図3に示す如く、短径で長尺の円筒形態とし、天井内に配置した慣用の、全熱交換型の第一種換気装置7の接続口7eにレジューサー管5Jを介して接続し、換気装置7から給気ダクト管11aへ流れる通過空気を、冷房時には冷却して除湿し、暖房時には加熱するものであり、加湿装置16は、図5に示す如く、噴霧ノズル16b群を長手方向に備えて、図1に示す如く、給気ダクト管11a中の気液熱交換器5の下流に配置し、暖房時に、気液熱交換器5で加熱された乾燥空気に加湿するものであり、加湿用の噴霧水は、気液熱交換器5を作動させる冷温水循環回路6から分岐した加湿回路60で湿度センサーでの制御の下に供給するものである。   As shown in FIG. 3, the gas-liquid heat exchanger 5 is in the form of a long cylinder with a short diameter, and is connected to a connection port 7e of a conventional total heat exchange type first-class ventilation device 7 arranged in the ceiling. The passing air connected to the reducer pipe 5J and flowing from the ventilator 7 to the air supply duct pipe 11a is cooled and dehumidified during cooling, and heated during heating. The humidifier 16 is shown in FIG. As shown in FIG. 1, the spray nozzle 16b group is provided in the longitudinal direction and arranged downstream of the gas-liquid heat exchanger 5 in the air supply duct 11a, and is heated by the gas-liquid heat exchanger 5 during heating. The humidified spray water is supplied under the control of the humidity sensor in the humidification circuit 60 branched from the cold / hot water circulation circuit 6 for operating the gas-liquid heat exchanger 5. .

また、気液熱交換器5及び加湿装置を作動させるための冷温水循環回路6は、図2(A)に示す如く、放熱回路4の熱源機2から往き側ヘッダー6aまでの大径往き側配管6s´に於いて、循環ポンプ3の下流にT型ソケット6mで第1分岐点P1を配置し、第1分岐点P1で分流し、分岐点P1から気液熱交換器5の往き側接続口5sまでの小径往き側配管6s”に、流量計10a、電磁弁6C1、T型ソケット6mの第5分岐点P5を配置し、第5分岐点P5から気液熱交換器5の往き側接続口5sに入り、気液熱交換器5の戻り側接続口5rから放熱回路4の往き側配管の第2分岐点P2で、流量調整ソケット10cを介して合流し、加湿装置16へは、第5分岐点P5から電磁弁6C2を介して加湿回路60を分流するものである。   Further, the cold / hot water circulation circuit 6 for operating the gas-liquid heat exchanger 5 and the humidifier is, as shown in FIG. 2 (A), a large-diameter forward piping from the heat source device 2 of the heat radiation circuit 4 to the forward header 6a. In 6s', the 1st branch point P1 is arrange | positioned by the T-type socket 6m downstream from the circulation pump 3, and it branches off at the 1st branch point P1, and the outgoing side connection port of the gas-liquid heat exchanger 5 from the branch point P1 The fifth branch point P5 of the flow meter 10a, the solenoid valve 6C1, and the T-type socket 6m is arranged in the small diameter forward side pipe 6s "up to 5s, and the forward connection port of the gas-liquid heat exchanger 5 from the fifth branch point P5 5s, and joins via the flow rate adjusting socket 10c from the return side connection port 5r of the gas-liquid heat exchanger 5 to the second branch point P2 of the outgoing side piping of the heat radiation circuit 4, and the humidifying device 16 The humidification circuit 60 is diverted from the branch point P5 via the electromagnetic valve 6C2.

また、放熱回路4の往き側配管6s´では、第1分岐点P1と第2分岐点P2の間に手動操作の仕切弁10bを配し、第2分岐点P2の下流に、順次、水温計10f、T型ソケット6mの第3分岐点P3、電磁弁6C3を経て往き側ヘッダー6aに至り、戻り側ヘッダー6bから熱源機2への大径戻り側配管6r´には、手動操作の仕切弁10b´及び第4分岐点P4としてのT型ソケット6mを配置し、放熱回路4の、往き側配管6s´の第3分岐点P3と戻り側配管6r´の第4分岐点P4間を、手動仕切弁10b”を介して接続し、放熱回路4の往き側ヘッダー6aと各放熱体4aとの間にも、各放熱体4aを個別に制御する電磁弁6C4を配置し、図1に示す如く、電磁弁6C1,6C2は電線9eでヒューミデイスタット9aと接続し、電磁弁6C3,6C4は電線8eでサーモスタット8aと接続した。   Further, in the forward piping 6s ′ of the heat radiation circuit 4, a manually operated gate valve 10b is disposed between the first branch point P1 and the second branch point P2, and the water thermometer is sequentially provided downstream of the second branch point P2. 10f, the third branch point P3 of the T-shaped socket 6m, and the electromagnetic valve 6C3 to the forward header 6a. The large-diameter return-side pipe 6r 'from the return-side header 6b to the heat source unit 2 has a manually operated gate valve. 10b ′ and a T-type socket 6m as the fourth branch point P4 are disposed, and the manual connection between the third branch point P3 of the forward side pipe 6s ′ and the fourth branch point P4 of the return side pipe 6r ′ of the heat radiation circuit 4 is manually performed. An electromagnetic valve 6C4 that is connected via a gate valve 10b "and individually controls each radiator 4a is disposed between the forward header 6a of the radiator circuit 4 and each radiator 4a, as shown in FIG. The solenoid valves 6C1 and 6C2 are connected to the Humidaystat 9a by the electric wire 9e. The solenoid valves 6C3 and 6C4 were connected to the thermostat 8a by the electric wire 8e.

そして、熱源機2で作成されて所定温度で放熱回路4に送水される冷温流水w1は、第2分岐点P2まで至り、第1分岐点P1で分流した流水w2は第5分岐点で分流水w3として気液熱交換器5内に入り、気液熱交換器5内を循環放熱して戻り流水w4として第2分岐点P2に流入し、第2分岐点P2では熱源機2からの所定温度の流水w1に気液熱交換器5で、放熱して冷房時には温度上昇、暖房時には温度低下した戻り流水w4が合流して、若干温度変化した往き側流水w5が往き側ヘッダー6aに流入して、分配流水w6として各放熱体4aを冷暖房作動させ、放熱体4aで放熱した戻り流水w7が戻り側ヘッダー6bに入り、戻り側ヘッダー6bから熱源機2に還流し、放熱体4aの休止時(中間期)では、放熱回路4用の冷温水循環回路6のみを循環作動するものである。   And the cold / warm running water w1 created by the heat source device 2 and sent to the heat radiation circuit 4 at a predetermined temperature reaches the second branch point P2, and the running water w2 branched at the first branch point P1 is separated at the fifth branch point. It enters into the gas-liquid heat exchanger 5 as w3, circulates and radiates heat in the gas-liquid heat exchanger 5, and flows into the second branch point P2 as the return flowing water w4. At the second branch point P2, a predetermined temperature from the heat source unit 2 is reached. In the gas-liquid heat exchanger 5, the return flow water w4 whose temperature has increased during cooling and the temperature decreased during heating merged with the flowing water w1 of the water, and the outgoing flow w5 whose temperature has changed slightly flows into the outgoing header 6a. Then, each radiator 4a is cooled and heated as the distribution flowing water w6, the return flowing water w7 radiated by the radiator 4a enters the return header 6b, returns to the heat source device 2 from the return header 6b, and the radiator 4a is stopped ( In the interim period, cold and hot water for the heat dissipation circuit 4 Only ring circuit 6 is for circulating operation.

〔気液熱交換器(図3、図4)〕
本発明に使用する新規な気液熱交換器5は、図3(B),(C)に示す如く、長さL1が890mm、肉厚4.5mmで内径r1が131mmの硬質塩化ビニル筒本体5a内の上下中間層に、長手方向に長さL2が650mmの冷温水コイル5bを、間隔配置した受金具5nで上下から挟着して、受金具5nをねじN5で筒本体5aに固定保持し、筒本体5aの、排気側Sb下面からドレンパイプ5gを垂下し、筒本体5aの給気側Sf上面の長手方向スリット切欠5mから、内蔵した冷温水コイル5bの、往き側接続口5s及び戻り側接続口5rを、上方へ突出したものである。
[Gas-liquid heat exchanger (Figs. 3 and 4)]
As shown in FIGS. 3B and 3C, the novel gas-liquid heat exchanger 5 used in the present invention is a rigid polyvinyl chloride cylinder body having a length L1 of 890 mm, a wall thickness of 4.5 mm, and an inner diameter r1 of 131 mm. A cold / hot water coil 5b having a length L2 of 650 mm in the longitudinal direction is sandwiched between upper and lower intermediate layers in 5a by upper and lower receiving brackets 5n, and the receiving bracket 5n is fixedly held on the cylinder body 5a with a screw N5. Then, the drain pipe 5g is suspended from the lower surface of the exhaust side Sb of the cylinder body 5a, and the forward side connection port 5s of the built-in cold / hot water coil 5b is inserted from the longitudinal slit notch 5m on the upper surface of the supply side Sf of the cylinder body 5a. The return side connection port 5r protrudes upward.

〔冷温水コイル(図4)〕
冷温水コイル5bは、冷温水を循環させて、気液熱交換器5内を貫流する空気流に熱交換するものであって、冷温水コイル自体は慣用されているものである。
冷温水コイル5bは、本発明の新規な、短径、長尺筒形態の気液熱交換器5に適用出来るようにしたもので、全体構造は、図3に示す如く、フィン5f群の配置長さL2が650mm、各フィン5fは、図4(C)に示す如く、上下高さh2が42.3mm、フィン幅w2が106.5mm、肉厚0.12mmの長方形アルミ板であって、フィン5f群は、図4に示す如く、断面千鳥状に並行配置の長尺循環コイル5cが貫通した形態で、間隔0.5mmで密集並列配置し、フィン5f群の両端には、フィン5fと同形状のエンドプレート5e,5e´を循環冷温水コイルに固定してフィン5f群の姿勢保持と脱落を防止した。
[Cold / hot water coil (Fig. 4)]
The cold / hot water coil 5b circulates cold / hot water and exchanges heat with an air flow that flows through the gas-liquid heat exchanger 5, and the cold / hot water coil itself is commonly used.
The cold / hot water coil 5b is adapted to be applied to the novel gas-liquid heat exchanger 5 having a short diameter and long cylinder shape according to the present invention. The overall structure is an arrangement of a group of fins 5f as shown in FIG. As shown in FIG. 4C, the length L2 is 650 mm, and each fin 5f is a rectangular aluminum plate having a vertical height h2 of 42.3 mm, a fin width w2 of 106.5 mm, and a wall thickness of 0.12 mm. As shown in FIG. 4, the fins 5f group are arranged in parallel with long circulation coils 5c arranged in parallel in a zigzag cross section with an interval of 0.5 mm, and fins 5f are arranged at both ends of the fins 5f group. The end plates 5e and 5e 'having the same shape were fixed to the circulating cold / hot water coil to prevent the fin 5f group from being held and dropped.

そして、循環コイル5cは、図4(A),(B)に示す如く、フィン5f群及び両端のエンドプレート5e,5e´に貫入した上側4本と下側4本とを上下千鳥状配置とし、給気側Sfで、往き側接続口5sと戻り側接続口5rとを立設した。
そして、筒本体5a内に装着した該コイル5cに対して、図3(C)に示す如く、給気側Sfに45°角で傾斜する風偏向板群5u〜5uを、後端の風偏向板5uは、上側空間Suを閉止し、順次5u,5uと、筒本体5aの上側内面との風通間隙を拡大する形態に、風偏向板の直立アンカー片anをフィン5f間に圧入して配置し、コイル5cの前端下面には、下側空間Sdを閉止する風偏向板5dを配置した。
As shown in FIGS. 4A and 4B, the circulation coil 5c is arranged in an upper and lower zigzag arrangement with the upper four and the lower four penetrating into the fin 5f group and the end plates 5e and 5e 'at both ends. On the supply side Sf, the forward connection port 5s and the return connection port 5r are erected.
Then, with respect to the coil 5c mounted in the cylinder main body 5a, as shown in FIG. 3C, wind deflector plate groups 5u 1 to 5u 6 inclined at a 45 ° angle to the air supply side Sf are provided at the rear end. The wind deflection plate 5u 1 closes the upper space Su, and in order to expand the ventilation gap between the 5u 2 , 5u 3 and the upper inner surface of the cylinder body 5a, the upright anchor piece an of the wind deflection plate is fixed to the fin 5f. A wind deflection plate 5d for closing the lower space Sd was disposed on the lower surface of the front end of the coil 5c.

従って、気液熱交換器5は、図2(A)に示す如く、冷温水循環回路6から、冷水又は温水が往き側接続口5sから流入して戻り側接続口5rから流出する循環をすることにより、コイル5c内では、図4(A)に示す如く、矢印f1→f2→f3→f4・・・f10と流れて、筒本体5aの径方向に密集配置のフィン5f群を冷却又は加熱し、筒本体5a内を貫流する給気空気流a4は、図3(C)に示す如く、給気側Sfでは全量が冷温水コイル5bの上側空間Suに流入して、各風偏向板5u〜5uの偏向作用で、給気空気流a4は、全て、フィン5f群相互の微小空間(標準:0.5mm)を上方から下方に貫流して熱交換作用を受け、冷温水コイル5bの下側空間Sdから供給空気流a6として流出するものである。 Accordingly, as shown in FIG. 2A, the gas-liquid heat exchanger 5 circulates cold water or hot water from the cold / hot water circulation circuit 6 through the outgoing connection port 5s and out of the return connection port 5r. As a result, in the coil 5c, as shown in FIG. 4A, the flow flows in the direction of arrows f1, f2, f3, f4,... F10, and the fins 5f group densely arranged in the radial direction of the cylinder body 5a is cooled or heated. As shown in FIG. 3C, the air supply air flow a4 flowing through the cylinder body 5a flows entirely into the upper space Su of the cold / hot water coil 5b on the air supply side Sf, and the air deflecting plates 5u 1 With the deflection action of ˜5u 6 , all the supply air flow a4 flows through the minute space (standard: 0.5 mm) between the fins 5f group from the upper side to the lower side to receive the heat exchange action, and the cold / hot water coil 5b The air flows out from the lower space Sd as the supply air flow a6.

〔加湿装置16(図5)〕
加湿装置16は、温水を噴霧する噴霧ノズル16b群を、上部ケーシング16uの長手方向に配置し、給気側接続口16sを介して、気液熱交換器5からの暖房季の高温低湿空気に、噴霧ノズル16bから温水を噴霧して、加湿装置16を通過する給気を、高温高湿空気として居室内に供給するものであり、下部ケーシング16dの底面は底蓋16eでの開放によって、噴霧ノズル16bの調整や取替え、及びケーシング内の清掃を可能としたものである。
[Humidifying device 16 (FIG. 5)]
The humidifier 16 arranges a group of spray nozzles 16b for spraying hot water in the longitudinal direction of the upper casing 16u, and converts it into high-temperature and low-humidity air during the heating season from the gas-liquid heat exchanger 5 through the supply side connection port 16s. The hot water is sprayed from the spray nozzle 16b, and the supply air passing through the humidifier 16 is supplied to the living room as high-temperature and high-humidity air, and the bottom surface of the lower casing 16d is sprayed by opening the bottom lid 16e. The nozzle 16b can be adjusted and replaced, and the casing can be cleaned.

加湿装置の全体構成は、図5に示す如く、幅w16が150mm、高さh16が150mm、長さL16が570mmの、長寸の方形箱形状で、前端及び後端辺には、ダクト管11aとの接続口16s,16rを備えたもので、図5(D)に示す如く、上部ケーシング16uと、下部ケーシング16dとを、ねじ締着で一体化するものであり、下部ケーシング16dは、船底面16d´の給気側接続口16sの近傍から、長さ440mmで全幅に亘る切欠16mを備え、船底形態の底蓋16eの両側の起立縁のねじ孔H16´と下部ケーシング16dの両側辺下端のねじ孔H16´とを介して、底蓋16eが下部ケーシング16dの切欠16mを着脱自在に閉止するものである。   As shown in FIG. 5, the entire configuration of the humidifier is a long rectangular box shape having a width w16 of 150 mm, a height h16 of 150 mm, and a length L16 of 570 mm. The front end and the rear end have duct pipes 11a. As shown in FIG. 5D, the upper casing 16u and the lower casing 16d are integrated by screw fastening, and the lower casing 16d From the vicinity of the air supply side connection port 16s of the surface 16d ', a notch 16m having a length of 440mm and extending over the entire width is provided, and the screw holes H16' on the rising edges on both sides of the bottom cover 16e of the ship bottom form and the lower ends on both sides of the lower casing 16d The bottom cover 16e detachably closes the notch 16m of the lower casing 16d through the screw hole H16 '.

そして、下部ケーシング16dの供給側接続口16rの内側端辺には、両側辺と30mmの隙間を保った、径100mmのエリミネーター板16pを、支持片16P´を介して、接続口16rから下部ケーシング16d内への突出形態で配置し、エリミネーター板16pの前部下面からはドレンパイプ16gを垂下したものである。
また、上部ケーシング16uは、幅w16が150mm、長さL16が570mmの上板の四周から幅25mmの立下り辺16fが垂下し、上板の幅方向中央には100mm間隔で貫通孔H16群を穿孔し、前端に締着用のねじ部16tを備え、後端の閉止した外径34mm、肉厚3mmの鋼製直管16aから100mm間隔で垂下した枝管16c群を貫通孔H16に貫入し、枝管16cの先端に、慣用の、ストレーナーを一体とし、加圧機能を備えた円錐パターンスプレーの噴霧ノズル16bを装着したものである。
Then, an eliminator plate 16p having a diameter of 100 mm and having a clearance of 30 mm from both sides is provided on the inner end side of the supply side connection port 16r of the lower casing 16d from the connection port 16r through the support piece 16P ′. The drain pipe 16g is suspended from the lower surface of the front portion of the eliminator plate 16p.
Further, the upper casing 16u has a falling edge 16f with a width w16 of 150 mm and a length L16 of 570 mm, and a falling side 16f with a width of 25 mm depending on the upper plate. A group of branch pipes 16c that are perforated and provided with a threaded portion 16t for fastening at the front end and suspended from the straight steel pipe 16a having an outer diameter of 34 mm and a wall thickness of 3 mm at the rear end at intervals of 100 mm are inserted into the through hole H16. The tip of the branch pipe 16c is provided with a conventional spray nozzle 16b of a conical pattern spray integrated with a strainer and having a pressurizing function.

従って、加湿装置16は、直管16aを、ねじ部16tを介して加湿回路60の配管6S”と接続し、直管16aに加湿用水が供給されれば、各噴霧ノズル16bが装置内を貫流する給気に水を噴霧して加湿し、噴霧水滴の混入放出はエリミネーター板16pで阻止し、加湿空気のみを供給側接続口16rから給気ダクト管11aを介して居室内に送気し、加湿装置16内の船底16d´に溜まる水はドレンパイプ16gで排除出来るもので、必要に応じて、底蓋16eを開放して、噴霧ノズル16bのメンテナンス、及び加湿装置16内の清掃が出来るものである。   Therefore, the humidifier 16 connects the straight pipe 16a to the pipe 6S "of the humidifying circuit 60 via the threaded portion 16t, and if the humidifying water is supplied to the straight pipe 16a, each spray nozzle 16b flows through the apparatus. Water is sprayed on the air supply to be humidified, mixing and discharging of sprayed water droplets is prevented by the eliminator plate 16p, and only the humidified air is supplied from the supply side connection port 16r into the living room through the air supply duct 11a. Water collected on the ship bottom 16d 'in the humidifier 16 can be removed by the drain pipe 16g. If necessary, the bottom lid 16e can be opened to maintain the spray nozzle 16b and clean the humidifier 16 It is.

〔接続ボックス(図7)〕
接続ボックス11Jは、図7(C)に示す如く、底面を開放した鋼板製で、幅120mm、高さ150mm、長さは放熱体4aの左右幅より200mm短寸の箱体UBと、接続口11e´を備えた閉止板11eと、底板の中央に切欠14mを備えて、切欠14m上には調節羽根14f群を備えた放熱体吹出口14cとから成り、箱体UBを吹出口14cの立上り辺14tとねじ止着し、箱体UB前面の切欠11mを覆う形態で閉止板11eをねじ孔H11´を介して止着したもので、図7(A),(B)に示す如く、放熱体4a上に配置すれば、給気ダクト管11aから接続口11e´を介して流入する給気を、調節羽根14f群による調整で、放熱体4aの前後面に沿って吹き下ろすものである。
[Connection box (Fig. 7)]
As shown in FIG. 7 (C), the connection box 11J is made of a steel plate with an open bottom, a width 120mm, a height 150mm, and a length 200mm shorter than the left and right width of the radiator 4a, and a connection port. 11e 'is provided with a closing plate 11e, a notch 14m at the center of the bottom plate, and a radiator outlet 14c with a group of adjusting blades 14f on the notch 14m. The box UB rises from the outlet 14c. A fastening plate 11e is fastened via a screw hole H11 'so as to cover the side 14t and cover the notch 11m on the front surface of the box UB. As shown in FIGS. 7 (A) and 7 (B), heat is dissipated. If it arrange | positions on the body 4a, the air supply which flows in through the connection port 11e 'from the air supply duct 11a will be blown down along the front-back surface of the heat radiator 4a by adjustment by the adjustment blade 14f group.

〔冷暖房換気システムの構築〕
〔換気システムの構築(図6、図7)〕
建物の構造体及び屋根、外壁を構築後、天井C内に図6(C),(D)に示す如く、協立エアテック(株)製の全熱交換型の第一種換気装置7、気液熱交換器5、加湿装置16を、慣用の吊ボルト手段で2階の根太に吊り込み、外壁Wo外側に、屋外排気口14a及び屋外吸気口15aを取付け、気液熱交換器5の給気側Sf及び供給側Sbには慣用のレジューサー管5Jを配置する。
[Construction of air conditioning heating system]
[Construction of ventilation system (Fig. 6, Fig. 7)]
After building the building structure, roof, and outer wall, as shown in FIGS. 6 (C) and 6 (D) in the ceiling C, the total heat exchange type first ventilator 7 manufactured by Kyoritsu Airtech Co., Ltd. The liquid heat exchanger 5 and the humidifying device 16 are hung on the joist on the second floor with conventional suspension bolt means, and the outdoor exhaust port 14a and the outdoor intake port 15a are attached to the outside of the outer wall Wo, and the supply of the gas-liquid heat exchanger 5 is performed. Conventional reducer tubes 5J are arranged on the air side Sf and the supply side Sb.

そして、第一種換気装置7は、屋外側の給気接続口7eと屋外吸気口15aとを、排気接続口7e´と屋外排気口14aとを、おのおの、慣用のダクト管11aを介して接続し、室内側の、給気接続口7eと気液熱交換器5の吸気側レジューサー管5Jとを、排気接続口7e´と天井面の室内吸気口15bとを、おのおのダクト管11aを介して接続連通する。   The first type ventilator 7 connects the outdoor air supply connection port 7e and the outdoor air intake port 15a, and the exhaust connection port 7e 'and the outdoor air exhaust port 14a via the conventional duct pipe 11a. The indoor air supply connection port 7e and the intake side reducer pipe 5J of the gas-liquid heat exchanger 5 are connected to the exhaust connection port 7e 'and the indoor air intake port 15b on the ceiling surface via the duct pipes 11a. To communicate.

次いで、気液熱交換器5の供給側レジューサー管5Jと加湿装置16の給気側接続口16sとをダクト管11aで連結し、各居室内の天井野縁組を実施し、天井材の張着前に、加湿装置16の供給側接続口16rから、天井面の所定箇所の室内吹出口14b、及び放熱体4a上部の、天井C上に天井野縁18を介して配置した接続ボックス11Jに、おのおのダクト管11aを接続連結する。   Next, the supply side reducer pipe 5J of the gas-liquid heat exchanger 5 and the air supply side connection port 16s of the humidifying device 16 are connected by a duct pipe 11a, and ceiling ceilings in each room are carried out, and the ceiling material is stretched. Before wearing, from the supply side connection port 16r of the humidifying device 16 to the indoor air outlet 14b at a predetermined location on the ceiling surface and the connection box 11J disposed on the ceiling C via the ceiling edge 18 on the radiator 4a. Each duct tube 11a is connected and connected.

〔流水回路(図1、図2)〕
図2(A)の流通回路図に示す如く、冷暖房用の放熱回路4は、屋外に配置した、慣用の圧縮機、膨張弁、冷温水コイル等を内臓する水熱交換器等から成るヒートポンプ式の、冷温水作成手段としての熱源機2から大径(内径:20.5mm、肉厚:3.5mm)のプラスチック樹脂パイプ(架橋ポリエチレン管(JISK6769))6s´を引出して往き側ヘッダー6aに接続する。
[Running water circuit (Fig. 1, Fig. 2)]
As shown in the distribution circuit diagram of FIG. 2 (A), the heat-dissipating circuit 4 for cooling and heating is a heat pump type comprising a water heat exchanger or the like that is installed outdoors, and includes a conventional compressor, expansion valve, cold / hot water coil, and the like. A plastic resin pipe (cross-linked polyethylene pipe (JISK6769)) 6s ′ having a large diameter (inner diameter: 20.5 mm, wall thickness: 3.5 mm) is pulled out from the heat source device 2 as the cold / hot water preparation means to the outgoing header 6a. Connecting.

そして、図2(A)に示す如く、熱源機2と往き側ヘッダー6a間の大径往き側配管6s´には、上流から下流に亘って、循環ポンプ3、分岐点P1用のT型ソケット6m、仕切弁10b、分岐点P2用の流量調整ソケット10c、水温計10f、分岐点P3用のT型ソケット6m、電磁弁6C3を順次配置する。
また、戻り側ヘッダー6bから熱源機2への大径戻り側配管6r´には、仕切弁10b´、分岐点P4用のT型ソケット6mを配置し、往き側経路の分岐点P3用のT型ソケット6mと戻り側経路の分岐点P4用のT型ソケット6m間は大径配管6s´でバイパス接続し、バイパス大径配管6s´上に仕切弁10b”を配置する。
As shown in FIG. 2 (A), the large-diameter forward piping 6s' between the heat source device 2 and the forward header 6a has a T-type socket for the circulation pump 3 and the branch point P1 from upstream to downstream. 6m, gate valve 10b, flow rate adjusting socket 10c for branch point P2, water temperature gauge 10f, T-type socket 6m for branch point P3, and electromagnetic valve 6C3 are sequentially arranged.
Further, a large-diameter return-side pipe 6r ′ from the return-side header 6b to the heat source unit 2 is provided with a gate valve 10b ′ and a T-type socket 6m for the branch point P4, and a T for the branch point P3 in the forward path. A large-diameter pipe 6s ′ bypasses the mold socket 6m and the T-shaped socket 6m for the return point branch point P4, and the gate valve 10b ″ is disposed on the bypass large-diameter pipe 6s ′.

流量調整ソケット10c自体は、図2(B)に示す如く、ステンレス製で、内径20mm、肉厚3mm、長さ75mmの直管片10dの中央から45°で傾斜して突出した小径の斜片10eを備え、直管片10dの前後両端には、大径の往き側配管6s´をねじ手段6t,10tで螺合嵌入し、斜片10eの先端には、小径の戻り側配管(気液熱交換器5からのパイプ)6r”を、ねじ手段6t,10tで螺合嵌入するものであり、直管片10dの内径が大径配管6s´の内径より大として、斜片10eからの流入水、即ち気液熱交換器5からの流入水の大径配管6s´中の往き側流水への混入合流をスムーズにしたものである。   As shown in FIG. 2 (B), the flow rate adjusting socket 10c itself is made of stainless steel, and is a small-diameter oblique piece protruding at an angle of 45 ° from the center of a straight pipe piece 10d having an inner diameter of 20 mm, a wall thickness of 3 mm, and a length of 75 mm. 10e, large diameter forward pipes 6s' are screwed into the front and rear ends of the straight pipe piece 10d with screw means 6t and 10t, and a small diameter return pipe (gas-liquid) is attached to the tip of the slant piece 10e. The pipe 6r ″ from the heat exchanger 5 is screwed into the screw means 6t and 10t, and the straight pipe piece 10d has an inner diameter larger than the inner diameter of the large-diameter pipe 6s ′, and the inflow from the inclined piece 10e. Water, that is, inflow water from the gas-liquid heat exchanger 5 is smoothly mixed and mixed into the outgoing water flowing in the large-diameter pipe 6s ′.

そして、往き側ヘッダー6aから小径(内径:9.8m、肉厚:1.6mm)のプラスチック樹脂パイプ(架橋ポリエチレン管)6sを各居室の放熱体4a用に引出して、電磁弁6C4を介在して、各輻射用放熱体4aの往き側接続口4sと接続し、各放熱体4aの戻り側接続口4rから小径配管6rで戻り側ヘッダー6bと連通して、冷温水が循環する各放熱体4a用の放熱回路4を形成する。   Then, a plastic resin pipe (cross-linked polyethylene pipe) 6s having a small diameter (inner diameter: 9.8 m, wall thickness: 1.6 mm) is pulled out from the forward header 6a for the radiator 4a of each room, and an electromagnetic valve 6C4 is interposed. The radiators 4a are connected to the forward connection ports 4s of the radiation radiators 4a, communicated with the return header 6b through the small diameter pipe 6r from the return side connection ports 4r of the radiators 4a, and each of the radiators in which the cold / hot water circulates. The heat radiation circuit 4 for 4a is formed.

また、放熱回路4の往き側経路の分岐点P1のT型ソケット6mからは、放熱回路4用の小径配管6s,6rと同一の小径配管6s”を延出して、流量計10a、電磁弁6C1、分岐点P5用のT型ソケット6mに至り、分岐点P5からは、気液熱交換器5の往き側接続口5sに接続して、気液熱交換器5内の、冷温水コイル5bを経て戻り側接続口5rから放熱回路4の分岐点P2の流量調整ソケット10cに接続し、気液熱交換器5用の冷温水循環回路6を形成する。
また、冷温水循環回路6の分岐点P5のT型ソケット6mからは、同形の小径パイプを電磁弁6C2を介して延出して加湿装置16の直管16aと接続した加湿回路60を形成する。
Further, from the T-shaped socket 6m at the branch point P1 of the forward path of the heat radiation circuit 4, the same small diameter pipe 6s "as the small diameter pipes 6s, 6r for the heat radiation circuit 4 is extended, and the flowmeter 10a and the electromagnetic valve 6C1. The T-shaped socket 6m for the branch point P5 is connected to the outgoing connection port 5s of the gas-liquid heat exchanger 5 from the branch point P5, and the cold / hot water coil 5b in the gas-liquid heat exchanger 5 is connected. After that, the return side connection port 5r is connected to the flow rate adjusting socket 10c at the branch point P2 of the heat radiation circuit 4, and the cold / hot water circulation circuit 6 for the gas-liquid heat exchanger 5 is formed.
Further, from the T-shaped socket 6m at the branch point P5 of the cold / hot water circulation circuit 6, a humidification circuit 60 is formed in which a small-diameter pipe of the same shape extends through the electromagnetic valve 6C2 and is connected to the straight pipe 16a of the humidification device 16.

〔ドレン回路〕
気液熱交換器5のドレンパイプ5gからは、慣用のパイプ継手を採用して、土間冷却装置17の小径のドレン配管17sに接続し、ドレン配管17sは蛇行配置して排水枡17aに接続する。
また、加湿装置16のドレンパイプ16gと第一種換気装置7のドレンパイプ7gとは、排水パイプ7kで接続して屋外排水とする。
尚、冷温水循環回路6、放熱回路4、ドレン回路の各パイプ、ヘッダー類及び換気システムの給気経路には、結露防止、熱損失防止上、慣用の保温材被覆を施す。
[Drain circuit]
From the drain pipe 5g of the gas-liquid heat exchanger 5, a conventional pipe joint is adopted and connected to the small-diameter drain pipe 17s of the soil cooling device 17, and the drain pipe 17s is meandered and connected to the drain 17a. .
Further, the drain pipe 16g of the humidifying device 16 and the drain pipe 7g of the first type ventilation device 7 are connected by a drain pipe 7k to be outdoor drainage.
The cold / hot water circulation circuit 6, the heat dissipation circuit 4, each pipe of the drain circuit, the headers, and the air supply path of the ventilation system are coated with a conventional heat insulating material to prevent condensation and heat loss.

〔空気流回路(図6(A)〕
換気システムの空気流の給気は、図6(A)の空気流回路に示す如く、屋外空気流a1が、屋外吸気口15a→空気流a2で第一種換気装置7→空気流a4で気液熱交換器5→空気流a6で加湿装置16→空気流a7で室内吹出口14bに入り、空気流a8として居室内へ吹き出すと共に、分流した空気流a9が空気流a10として放熱体4aへ吹出す。
また、空気流の排気系統は、室内空気が空気流a11として室内吸気口15bに入り、空気流a12で第一種換気装置7に入り、空気流a13→空気流a14で屋外排気口14aに入り、空気流a15として屋外に放出するものである。
[Air flow circuit (Fig. 6 (A)])
As shown in the air flow circuit of FIG. 6 (A), the air supply of the ventilation system is such that the outdoor air flow a1 is the outdoor intake port 15a → air flow a2 and the first type ventilation device 7 → air flow a4. The liquid heat exchanger 5 → the air flow a6 humidifies the device 16 → the air flow a7 enters the indoor outlet 14b, blows out into the room as the air flow a8, and the diverted air flow a9 blows to the radiator 4a as the air flow a10. put out.
Further, in the air flow exhaust system, room air enters the indoor intake port 15b as the air flow a11, enters the first type ventilator 7 with the air flow a12, and enters the outdoor exhaust port 14a with the air flow a13 → air flow a14. The air flow a15 is discharged outdoors.

〔制御系統(図1)〕
室内温度、及び循環水温度の制御は、図1に示す如く、温度センサー8b及びサーモスタット8aから電線8eで放熱体4a上流の電磁弁6C4、及び往き側ヘッダー6a上流の電磁弁6C3と接続する。
また、室内湿度は、ヒューミデイスタット9a及び湿度センサー9bから電線9eで、加湿回路60の電磁弁6C2及び分岐点P5上流の電磁弁6C1と接続する。
[Control system (Fig. 1)]
As shown in FIG. 1, the indoor temperature and the circulating water temperature are controlled by connecting the temperature sensor 8b and the thermostat 8a to the electromagnetic valve 6C4 upstream of the radiator 4a and the electromagnetic valve 6C3 upstream of the forward header 6a through the electric wire 8e.
The indoor humidity is connected to the electromagnetic valve 6C2 of the humidification circuit 60 and the electromagnetic valve 6C1 upstream of the branch point P5 by the electric wire 9e from the Humidaystat 9a and the humidity sensor 9b.

各電磁弁の役割は、次表のとおりである。
電磁弁 温度 湿度 夏季 冬季 その他
6C1 対応 開・湿度低下で閉 開・加湿用
6C2 対応 閉 開・湿度上昇で閉
6C3 対応 開・温度低下で閉 開・温度上昇で閉 全室対応
6C4 対応 開・温度低下で閉 開・温度上昇で閉 個別居室対応
尚、冬季に、加湿装置16が湿度上昇で閉止しても、気液熱交換器は稼動しているので、居室内温度低下は避けられる。
The role of each solenoid valve is shown in the following table.
Solenoid valve Temperature Humidity Summer Winter Other
6C1 compatible Open / humidified, closed / humidified
Closed for 6C2
Corresponding to 6C3 Opening and closing when the temperature drops Opening and closing when the temperature rises All rooms
Corresponding to 6C4 Opening and closing due to temperature drop Opening and closing due to temperature rise Individual room correspondence Note that even if the humidifier 16 is closed due to increased humidity in the winter, the gas-liquid heat exchanger is still in operation, so the room temperature drops. Can be avoided.

また、手動仕切弁の役割は、次表のとおりである。
仕切弁 役割
10b 流量調整用
10b´ 冷暖房時開、中間期閉
10b” 冷暖房時閉、中間期開
また、熱源機2の、慣用のリモートコントロールには、運転スイッチ、タイマー運転スイッチ、停止スイッチ、ハイパワー運転スイッチ、控え目モードスイッチ、冷暖房モード切換スイッチ、水温調整スイッチ、時刻合せスイッチ、点検スイッチ、タイマー設定スイッチが付設している。
The role of the manual gate valve is as shown in the following table.
Gate valve Role
10b For flow rate adjustment
10b 'Opened during air conditioning, closed during interim period
10b "Air-conditioning closed, mid-term open
In addition, the conventional remote control of the heat source unit 2 includes an operation switch, a timer operation switch, a stop switch, a high power operation switch, a modest mode switch, an air conditioning mode switch, a water temperature adjustment switch, a time adjustment switch, a check switch, a timer. A setting switch is attached.

〔冷暖房換気システムの運転(図1、図2)〕
1.夏季の冷房運転
冷房運転は、居室内仕切壁表面に配置するサーモスタット8a及びヒューミデイスタット9aで居室内空気を適温(標準:28℃)、適湿(標準:50%)に設定し、熱源機2から大径配管6s´への送水温度を熱源機2のリモートコントロールで13℃に設定し、分岐点P3と分岐点P4との間の往き側配管6s´上の仕切弁10b”は閉止し、第一種換気装置7を駆動して屋外の高温高湿空気を吸収し、第一種換気装置7で居室内の低温低湿空気と熱交換及び水分交換(水蒸気交換)を行い、居室内の空気を中温中湿として屋外に排出し、屋外空気は中温中湿として気液熱交換器5に送風し、更に冷却除湿して居室内に冷却減湿空気を供給し、居室内空気を第一種換気装置7で吸気し、熱及び水分交換して屋外に排出させながら、放熱回路4及び冷温水循環回路6を運転した。
[Operation of air-conditioning and ventilation system (Figs. 1 and 2)]
1. Cooling operation in summer Cooling operation is performed by setting the room air to a suitable temperature (standard: 28 ° C) and suitable humidity (standard: 50%) with the thermostat 8a and the Humidaystat 9a arranged on the partition wall surface of the room. The water supply temperature from 2 to the large diameter pipe 6s ′ is set to 13 ° C. by remote control of the heat source unit 2, and the gate valve 10b ″ on the forward side pipe 6s ′ between the branch point P3 and the branch point P4 is closed. The first type ventilator 7 is driven to absorb outdoor high temperature and high humidity air, and the first type ventilator 7 performs heat exchange and moisture exchange (water vapor exchange) with the low temperature and low humidity air in the room. The air is discharged to the outside as medium temperature and humidity, and the outdoor air is blown to the gas-liquid heat exchanger 5 as medium temperature and humidity, and further cooled and dehumidified to supply cooling and dehumidified air to the living room. Inhale with the seed ventilation device 7, exchange heat and moisture and let it discharge outdoors Reluctant drove radiator circuit 4 and cold water circulation circuit 6.

運転初期の気液熱交換器5にあっては、図2(A)に示す如く、13℃の循環流水w1が循環ポンプ3から、分岐点P1から水量計10a、電磁弁6C1を経て、流水w2で気液熱交換器5内の冷温水コイル5bに、往き側接続口5sから流入して循環コイル5c内を流水して、気液熱交換器5内では、第一種換気装置7から流入した空気流a4を冷却除湿し、該コイル5b内で放熱して、標準水温16℃となった流水w4が、流量制御ユニット10の流量調整ソケット10cの斜片10eを介してソケット10c内に流入した。   In the gas-liquid heat exchanger 5 at the initial stage of operation, as shown in FIG. 2A, the circulating flowing water w1 at 13 ° C. flows from the circulating pump 3 through the water meter 10a and the electromagnetic valve 6C1 from the branch point P1. In w2, it flows into the cold / hot water coil 5b in the gas-liquid heat exchanger 5 from the outgoing connection port 5s and flows through the circulation coil 5c. The flowing air flow a4 is cooled and dehumidified, radiated in the coil 5b, and the flowing water w4 having a standard water temperature of 16 ° C. enters the socket 10c via the slant piece 10e of the flow rate adjusting socket 10c of the flow rate control unit 10. It flowed in.

また、分岐点P1でのT型ソケット6mからの、13℃の循環水は、大径配管6s´内の流水w1として、仕切弁10bを経て、分岐点P2の流量調整ソケット10cの直管片10dに流入し、気液熱交換器5からの流水w4と合流混合して15℃の循環水として、大径配管6s´内を流水して往き側ヘッダー6a内に流入した。   Further, the circulating water at 13 ° C. from the T-shaped socket 6m at the branch point P1 passes through the gate valve 10b as the flowing water w1 in the large-diameter pipe 6s ′, and the straight pipe piece of the flow rate adjusting socket 10c at the branch point P2. 10d, merged and mixed with the flowing water w4 from the gas-liquid heat exchanger 5, and circulated in the large-diameter pipe 6s' as the circulating water at 15 ° C. and then flowed into the forward header 6a.

この場合、流量計10a、仕切弁10b及び流量調整ソケット10cから成る流量制御ユニット10は、熱源機2からの設定流出温度(標準:13℃)の流水w1を、分岐点P1で分流して、冷温水循環回路6側の流量計10aに基づき、気液熱交換器5への流量(標準:3.5L/min)を仕切弁10bの開閉により調整し、調整ソケット10cに於いて流水w1と流水w4とを合流混合し、水温計10fを経て往き側ヘッダー6aに送水するものであり、往き側ヘッダー6aへの送水温度(標準:15℃)を水温計10fで確認し、熱源機2からの送水温度(標準:13℃)を必要に応じて再設定する。
尚、分岐点P3と分岐点P4間の仕切弁10b”は閉止し、放熱回路4往き側の電磁弁6C3及び6C4と、戻り側分岐点P4と戻り側ヘッダー6bとの間の仕切弁10b´は、解放状態である。
In this case, the flow rate control unit 10 including the flow meter 10a, the gate valve 10b, and the flow rate adjusting socket 10c divides the running water w1 of the set outflow temperature (standard: 13 ° C.) from the heat source unit 2 at the branch point P1, Based on the flowmeter 10a on the cold / hot water circulation circuit 6 side, the flow rate (standard: 3.5 L / min) to the gas-liquid heat exchanger 5 is adjusted by opening and closing the gate valve 10b, and the running water w1 and running water are adjusted in the adjusting socket 10c. w4 is mixed and mixed and sent to the outgoing header 6a through the water temperature gauge 10f. The water supply temperature (standard: 15 ° C.) to the outgoing header 6a is confirmed with the water temperature gauge 10f, Reset the water supply temperature (standard: 13 ° C) as necessary.
The gate valve 10b ″ between the branch point P3 and the branch point P4 is closed, and the solenoid valves 6C3 and 6C4 on the forward side of the heat radiation circuit 4 and the gate valve 10b ′ between the return side branch point P4 and the return side header 6b. Is in a released state.

また、冷房の運転中は、気液熱交換器5では、運転初期同様に13℃(標準温度)の冷水が冷温水コイル5bで、標準3℃放熱して標準16℃の冷水となって流量調整ソケット10cに戻り、合流混合して往き側ヘッダー6aに15℃(標準温度)の冷水として流入し、放熱回路では、各放熱体4a群に往き側ヘッダー6aを介して送水し、放熱体4a内での冷房放熱によって、標準22℃と成って戻り側ヘッダー6bに還流した。   Further, during the cooling operation, in the gas-liquid heat exchanger 5, the cold water at 13 ° C. (standard temperature) is radiated by the standard hot water coil 5b and chilled at the standard temperature of 3 ° C. to become the cold water at the standard 16 ° C. Returning to the adjusting socket 10c, it is merged and mixed and flows into the outgoing header 6a as cold water at 15 ° C. (standard temperature). In the heat dissipation circuit, water is sent to each group of radiators 4a via the outgoing header 6a, and the radiator 4a. Due to the cooling heat radiation inside, the temperature reached the standard 22 ° C. and returned to the return side header 6b.

この場合、往き側ヘッダー6aと放熱体4a間の電磁弁6C4は、サーモスタット8aと電線8eを介して接続しているため、温度センサー8bが室温を、サーモスタットの設定温度より低いと判定すれば、電磁弁6C4を作動して放熱体4aへの循環水流を停止して、室温の異常低下を阻止し、放熱回路4の往き側ヘッダー6aの上流に配置した電磁弁6C3は、往き側ヘッダー6aへの流水の開放及び遮断を、サーモスタットの指令で実施し、建物内部の全室の冷房の運転又は停止を制御するものである。   In this case, since the solenoid valve 6C4 between the forward header 6a and the radiator 4a is connected to the thermostat 8a via the electric wire 8e, if the temperature sensor 8b determines that the room temperature is lower than the set temperature of the thermostat, The solenoid valve 6C4 is operated to stop the circulating water flow to the radiator 4a to prevent an abnormal decrease in the room temperature, and the solenoid valve 6C3 disposed upstream of the outward header 6a of the radiator circuit 4 is connected to the outward header 6a. The running water is opened and shut off according to the instruction of the thermostat, and the operation or stop of the cooling of all the rooms inside the building is controlled.

また、冷温水循環回路6の分岐点P5の上流の電磁弁6C1は、ヒューミデイスタット9aと電線9eを介して接続しているため、室内湿度を湿度センサー9bが感知して、ヒューミデイスタット9aが室内湿度を設定湿度以下と判断すれば、電磁弁6C1への指令によって、気液熱交換器5への循環水流を停止して、居室内湿度の低下を阻止するものであり、電磁弁6C1は気液熱交換器5の作業を制御するものであり、分岐点P5の下流の電磁弁6C2は、冷房時には閉止し、暖房時には開放して、加湿装置16に温水を送水するものであって、気液熱交換器5は、夏季には冷水を送水して冷却減湿空気を、冬季には温水を送水して貫流空気を加熱し、加湿装置16での加湿を伴った高温高湿空気を居室内に給気するものである。   Further, since the solenoid valve 6C1 upstream of the branch point P5 of the cold / hot water circulation circuit 6 is connected to the Humiday Stat 9a via the electric wire 9e, the humidity sensor 9b detects the indoor humidity, and the Humiday Stat 9a If the indoor humidity is determined to be equal to or lower than the set humidity, the circulating water flow to the gas-liquid heat exchanger 5 is stopped by a command to the electromagnetic valve 6C1 to prevent a decrease in the indoor humidity. The electromagnetic valve 6C1 The operation of the gas-liquid heat exchanger 5 is controlled, and the electromagnetic valve 6C2 downstream of the branch point P5 is closed during cooling, opened during heating, and supplies warm water to the humidifier 16. The gas-liquid heat exchanger 5 supplies cold dehumidified air by supplying cold water in the summer and hot air by supplying hot water by supplying hot water in the winter, and generates high-temperature and high-humidity air accompanied by humidification in the humidifier 16. The air is supplied into the living room.

従って、冷房運転によって、放熱体4aからは、設定室温への冷房が、輻射熱放熱で実施出来て、居室内空気も除湿されたため、人体には、室温が設定温度より低温に感じられ、さわやかな冷房環境が得られた。
しかも、気液熱交換器5で除湿した供給空気流の一部は、天井の接続ボックス11Jの放熱体吹出口14cから、放熱体4aの表面空気よりも低温低湿の空気を放熱体4aに沿って吹き下ろすため、放熱体4aの表面結露は防止出来て、放熱体4aのためのドレン手段は不要となった。
Therefore, by the cooling operation, the radiator 4a can be cooled to the set room temperature by radiant heat radiation and the air in the room is dehumidified, so that the human body feels that the room temperature is lower than the set temperature and is refreshing. A cooling environment was obtained.
Moreover, a part of the supply air flow dehumidified by the gas-liquid heat exchanger 5 passes air having a lower temperature and lower humidity than the surface air of the radiator 4a from the radiator outlet 14c of the ceiling connection box 11J along the radiator 4a. Therefore, the surface condensation of the radiator 4a can be prevented, and the drain means for the radiator 4a is not necessary.

そして、放熱体4aへの吹出口14cからの吹き下ろし空気流a10は、放熱体4a表面の滞留空気層を撹拌して、放熱体4aの対流熱伝達をも促進した。
尚、放熱体吹出口14cから吹き下ろす冷却減湿空気は、調節羽根14fの調整で、放熱体4aに対する前後面のコールドドラフトとなり、上方から床表面に、気流の存在が感じられない状態で流れた。
And the blown-down airflow a10 from the blower outlet 14c to the heat radiating body 4a stirred the staying air layer on the surface of the heat radiating body 4a, and also promoted the convective heat transfer of the heat radiating body 4a.
Note that the cooling and dehumidifying air blown down from the radiator outlet 14c becomes a cold draft on the front and rear surfaces with respect to the radiator 4a by adjusting the adjusting blade 14f, and flows in a state where no airflow is felt on the floor surface from above. It was.

また、新規な気液熱交換器5での除湿作用は、図3(C)に示す如く、給気側Sfからの給気空気流a4が、冷温水コイル5bの、下側風偏向板5d及び上側風偏向板5u〜5uによって、コイル5bの、高圧の上面空間Suから低圧の下面空間Sdへと、フィン5f群の隙間を貫流し、下側空間Sdから供給側Sb、即ち供給側ダクト管11aに送風するため、給気空気流a4をフィン5fの幅方向に対して直交方向に流すにもかかわらず、フィン5f群は、高い熱交換率を発揮し、気液熱交換器5は高い除湿効果を発揮した。
尚、気液熱交換器5のフィン5f群は、通過空気流a4が、第一種換気装置7のエアフィルター7dによって清浄化されているため、チリや埃の付着が無くて、フィン5f群の定期的洗浄作業は不要となった。
Further, as shown in FIG. 3C, the dehumidifying action in the novel gas-liquid heat exchanger 5 is such that the supply air flow a4 from the supply side Sf is converted into the lower wind deflection plate 5d of the cold / hot water coil 5b. And the upper wind deflecting plates 5u 1 to 5u 6 flow through the gaps of the fins 5f group from the high pressure upper surface space Su to the low pressure lower surface space Sd of the coil 5b, and supply from the lower space Sd to the supply side Sb, that is, supply In order to blow air to the side duct pipe 11a, the fin 5f group exhibits a high heat exchange rate despite the flow of the supply air flow a4 in a direction orthogonal to the width direction of the fin 5f, and the gas-liquid heat exchanger 5 exhibited a high dehumidifying effect.
In the fin 5f group of the gas-liquid heat exchanger 5, the passing air flow a4 is cleaned by the air filter 7d of the first type ventilation device 7, so there is no adhesion of dust and dust, and the fin 5f group. Periodic cleaning work is no longer necessary.

また、気液熱交換器5は、除湿作用で生じたフィン5f群の結露水が、フィン5f間を上方から下方へ貫流する空気流で筒本体5aの下面に落下し、ドレンパイプ5gから、小径のドレン配管17sで勝手口の土間17bの蛇行配管を経て屋外の排水枡17aに排出したが、例えば、気温35℃、湿度70%、気液熱交換器5内の循環水の温度が13℃、流量3.5L/min、送風機7bの風量150m/hの場合、一日当り43Lで、温度16℃の結露水が発生するため、該冷温の結露水を蛇行通水した土間17bでは、屋外と冷房中の居室内との略中間の涼しさとなった。 In addition, the gas-liquid heat exchanger 5 causes the condensed water of the fin 5f group generated by the dehumidifying action to fall to the lower surface of the cylinder main body 5a with an air flow that flows between the fins 5f downward from above, and from the drain pipe 5g, The small-diameter drain pipe 17s was discharged to the outdoor drainage basin 17a through the meandering pipe 17b of the doorway. For example, the temperature was 35 ° C., the humidity was 70%, and the temperature of the circulating water in the gas-liquid heat exchanger 5 was 13. In the case of ℃, flow rate 3.5L / min, air flow 150m 3 / h of the blower 7b, dew condensation water at a temperature of 16 ° C is generated at 43L per day. The coolness was almost halfway between the outdoor and air-conditioned rooms.

そして、居室内では、全熱交換型の第一種換気装置7が、屋外の高温高湿空気と居室内の低温低湿空気と熱交換(顕熱交換)及び湿気交換(潜熱交換)して、屋外空気が、中温中湿空気となって気液熱交換器5で冷却減湿空気として居室内に供給されるため、上記例示の温湿度条件にあっては、絶対湿度は、25.4g/kgから12.9g/kg、と約50%の水蒸気量となって、居室内温度よりも低温に感じる、清涼感の伴う快適な空気環境となった。   In the living room, the first heat exchanging device 7 of the total heat exchange type performs heat exchange (sensible heat exchange) and moisture exchange (latent heat exchange) with the outdoor high temperature and high humidity air and the low temperature and low humidity air in the room, Since outdoor air is converted into medium-temperature, medium-humidity air and supplied to the living room as cooled and dehumidified air in the gas-liquid heat exchanger 5, the absolute humidity is 25.4 g / The amount of water vapor from kg to 12.9 g / kg was about 50%, and it became a comfortable air environment with a refreshing feeling that felt lower than the room temperature.

2.冬季の暖房運転
暖房運転は、居室内間仕切壁Wi表面に配置したサーモスタット8a及びヒューミデイスタット9aで、居室内空気を温度22℃、湿度50%に設定し、熱源機2から往き側大径配管6s´への送水温度を熱源機2のリモートコントロールで45℃に設定し、分岐点P3と分岐点P4との間の往き側配管6s´上の仕切弁10b”は閉止し、第一種換気装置7を駆動させて、屋外の低温低湿空気を吸気し、第一種換気装置7で居室内の高温高湿空気と熱交換(顕熱交換)及び水蒸気交換(潜熱交換)して、気液熱交換器5で吸気空気を暖め、加湿装置16で加湿して、居室内に加熱加湿空気を供給し、そして居室内の空気を、第一種換気装置7で吸気し、顕熱潜熱交換して屋外に排出させながら、放熱回路4、冷温水循環回路6及び加湿回路60を作動運転した。
2. Heating operation in winter Heating operation is performed by thermostat 8a and Humidaystat 9a arranged on the partition wall Wi surface of the room, the room air is set to a temperature of 22 ° C. and a humidity of 50%, and the large-diameter piping on the outgoing side from the heat source machine 2 The water supply temperature to 6s ′ is set to 45 ° C. by remote control of the heat source device 2, the gate valve 10b ″ on the outgoing side pipe 6s ′ between the branch point P3 and the branch point P4 is closed, and the first type ventilation The device 7 is driven to suck in outdoor low-temperature and low-humidity air, and the first-class ventilation device 7 exchanges heat (sensible heat exchange) and water vapor (latent heat exchange) with high-temperature and high-humidity air in the room. The intake air is warmed by the heat exchanger 5, humidified by the humidifying device 16, heated humidified air is supplied to the living room, and the air in the living room is sucked by the first-class ventilation device 7 and sensible heat latent heat exchange is performed. While discharging to the outdoors, heat dissipation circuit 4, cold / hot water circulation circuit And it operated driving humidification circuit 60.

運転初期の気液熱交換器5にあっては、図2(A)に示す如く、45℃の循環水が、大径配管6s´で循環ポンプ3を経て、分岐点P1から小径配管6s”に入り、流水w2で分岐点P5を経由して、分岐点P5から流水w3で気液熱交換器5内の冷温水コイル5bの往き側接続口5sに流入し、冷温水コイル5b内の循環コイル5c内を流水して、気液熱交換器5内では、第一種換気装置7から流入した空気流a4を加熱して放熱し、循環水が40℃となって冷温水コイル5bの戻り側接続口5rから流水w4で流量調整ソケット10cに斜片10eから流入した。   In the gas-liquid heat exchanger 5 at the initial stage of operation, as shown in FIG. 2 (A), the circulating water at 45 ° C. passes through the circulation pump 3 through the large-diameter pipe 6s ′, and reaches the small-diameter pipe 6s ”from the branch point P1. The water flows into the forward connection port 5s of the cold / hot water coil 5b in the gas / liquid heat exchanger 5 from the branch point P5 through the branch point P5 in the flowing water w2 and circulates in the cold / hot water coil 5b. In the gas-liquid heat exchanger 5, the air flow a4 flowing from the first type ventilation device 7 is heated to dissipate heat, and the circulating water becomes 40 ° C., and the cold / hot water coil 5b returns. The slant piece 10e flowed into the flow rate adjusting socket 10c from the side connection port 5r with running water w4.

また、分岐点P1から大径配管6s´で仕切弁10bを経て分岐点2に流入する45°の流水w1は、流量調整ソケット10cの大径直管片10dに流入し、斜片10eから流入した40℃の流水w4と合流して43℃の混合流水w5として、水温計10f、T型ソケット6m、電磁弁6C3を経て、往き側ヘッダー6aに流入し、細径の往き側配管6sで流水w6として放熱体4aに入り、放熱体4aで放熱して38℃の温水となり、戻り側配管6rから流水w7として戻り側ヘッダー6b、仕切弁10b´、分岐点P4のT型ソケット6mを経て、38℃の温水で熱源機2に還流し、熱源機2で、45℃に再加熱して、再循環させて暖房作用を実施した。   Also, the 45 ° flowing water w1 flowing into the branch point 2 from the branch point P1 through the gate valve 10b through the large-diameter pipe 6s ′ flows into the large-diameter straight pipe piece 10d of the flow rate adjusting socket 10c and into the slant piece 10e. It merges with the flowing water w4 of 40 ° C. to form a mixed flowing water w5 of 43 ° C., flows through the thermometer 10f, the T-shaped socket 6m, and the electromagnetic valve 6C3, flows into the outgoing header 6a, and flows into the outgoing header 6s with a small diameter. Into the heat radiating body 4a and radiate heat by the heat radiating body 4a to become warm water of 38 ° C. As the flowing water w7 from the return side pipe 6r, the return side header 6b, the gate valve 10b ′, and the T-shaped socket 6m at the branch point P4, 38 The mixture was recirculated to the heat source unit 2 with warm water of ° C., reheated to 45 ° C. with the heat source unit 2, and recirculated to perform a heating operation.

そして、図6(A)に示す如く、気液熱交換器5で加熱された空気流a5は加湿装置16に流入し、加湿された空気流a7は、ダクト管11aを経由して、室内吹出口14bからの吹出空気流a8、及び図7(A)に示す如く、天井配管の接続ボックス11Jの、調節羽根14fを備えた放熱体吹出口14cからの放熱体4aへの吹き下し空気流a10として居室内に吹出し、居室内は、加熱加湿された快適な暖房となった。
この場合、図1に示す如く、分岐点P5の前後の電磁弁6C1,6C2は、おのおの電線9eで、居室内のヒューミデイスタット9aと接続しており、電磁弁6C1は、暖房運転時には常時開放し、電磁弁6C2は、居室内湿度が設定湿度より高くなった場合に閉止する。
Then, as shown in FIG. 6A, the air flow a5 heated by the gas-liquid heat exchanger 5 flows into the humidifier 16, and the humidified air flow a7 passes through the duct pipe 11a and is blown into the room. The air flow a8 from the outlet 14b and the airflow blown down to the radiator 4a from the radiator outlet 14c having the adjustment blade 14f of the connection box 11J of the ceiling pipe as shown in FIG. A10 was blown into the room, and the room was heated and humidified for comfortable heating.
In this case, as shown in FIG. 1, the electromagnetic valves 6C1 and 6C2 before and after the branch point P5 are connected to the indoor medium 9a by the electric wires 9e, and the electromagnetic valve 6C1 is always open during heating operation. The solenoid valve 6C2 is closed when the humidity in the room becomes higher than the set humidity.

3.中間期の運転
春季、秋季の中間期にあっては、図2(A)に示す如く、放熱回路4の戻り側ヘッダー6bの下流に配置した手動の仕切弁10b´を閉止し、分岐点P3と分岐点P4間のバイパスの配管6s´上に配置した仕切弁10b”を開放し、往き側ヘッダー6a上流の電磁弁6C3を閉止し、流水回路は、熱源機2から分岐点P3に至り、バイパス配管6s´で分岐点P4に入って熱源機2に還流する回路に、分岐点P1から分流して気液熱交換器5に入り、分岐点Pで合流する回路のみの作動可能、即ち、気液熱交換器5と加湿装置16用の流水回路のみ作動可能とし、放熱体4aへの流水は閉止しておく。
即ち、加湿装置16は、ヒューミデイスタット9aが居室内の湿度を感知して制御運転し、気液熱交換器5は、冷暖房時には稼動し、夏季に居室内の湿度が設定湿度以下の場合に、電磁弁6C1を遮断して循環水を停止する。
3. In the intermediate period of spring and autumn, as shown in FIG. 2 (A), the manual gate valve 10b 'disposed downstream of the return side header 6b of the heat radiation circuit 4 is closed and the branch point P3 is closed. And the branch valve 10b "disposed on the bypass pipe 6s' between the branch point P4 and the solenoid valve 6C3 upstream of the outgoing header 6a are closed, and the flowing water circuit reaches from the heat source unit 2 to the branch point P3, Only the circuit that diverts from the branch point P1 and enters the gas-liquid heat exchanger 5 and joins at the branch point P to the circuit that enters the branch point P4 and returns to the heat source unit 2 through the bypass pipe 6s ′. Only the flowing water circuit for the gas-liquid heat exchanger 5 and the humidifying device 16 can be operated, and the flowing water to the radiator 4a is closed.
In other words, the humidifier 16 operates when the Humidaystat 9a senses the humidity in the room, and the gas-liquid heat exchanger 5 operates during cooling and heating, and the humidity in the room is lower than the set humidity in the summer. Then, the solenoid valve 6C1 is shut off to stop the circulating water.

春季、秋季の中間期にあっては、図2(A)に示す水回路に於いて、放熱回路4の戻り側ヘッダー6bの下流に配置した手動の仕切弁10b´を閉止し、分岐点P3と分岐点P4間のバイパス配管6s´上の仕切弁10b”を開放し、往き側ヘッダー6a上流の電磁弁6C3を閉止し、流水回路4は、熱源機2→分岐点P1→分岐点P2→分岐点P3→分岐点P4→熱源機2ルートに、分岐点P1→気液熱交換器5→分岐点P2の冷温水循環回路6を付加した回路となり、冷温水循環回路6から加湿装置16に至る電磁弁6C1,6C2で制御される加湿回路60が流水可能となる。   In the middle of spring and autumn, in the water circuit shown in FIG. 2 (A), the manual gate valve 10b 'disposed downstream of the return side header 6b of the heat radiating circuit 4 is closed, and the branch point P3 is closed. And the branch valve 10b "on the bypass pipe 6s' between the branch point P4 and the solenoid valve 6C3 upstream of the forward header 6a are closed, and the flowing water circuit 4 is connected to the heat source unit 2 → the branch point P1 → the branch point P2 → A circuit in which the cold / hot water circulation circuit 6 from the branch point P1 → the gas-liquid heat exchanger 5 → the branch point P2 is added to the branch point P3 → the branch point P4 → the heat source unit 2 route, and the electromagnetic wave from the cold / hot water circulation circuit 6 to the humidifier 16 is obtained. The humidification circuit 60 controlled by the valves 6C1 and 6C2 can flow.

即ち、気液熱交換器5と加湿装置16とのみを作動可能とし、放熱体4aへの流水は閉止する。
また、加湿装置16は、ヒューミデイスタット9aが居室内の湿度を感知して制御し、気液熱交換器5は、冷暖房時には稼動し、夏季に居室内の湿度が設定湿度以下となった場合に、電磁弁6C1を遮断して循環水を停止する。
That is, only the gas-liquid heat exchanger 5 and the humidifier 16 can be operated, and the flowing water to the radiator 4a is closed.
Further, the humidifying device 16 is controlled by the Humidaystat 9a detecting and controlling the humidity in the room, and the gas-liquid heat exchanger 5 operates during cooling and heating, and the humidity in the room becomes lower than the set humidity in summer. Then, the solenoid valve 6C1 is shut off to stop the circulating water.

尚、居室内の温度管理は、熱源機2の水温調整ユニットで実施すれば良く、冷温水循環回路6への流量(標準:3.5L/min)では、居室内供給温度18.3℃、絶対湿度12.9g/kg、除湿量43L/日であるが、仕切弁10bで流量を4.7L/minにすれば、居室内供給温度17.6℃、絶対湿度12.3g/kg、除湿量44L/日となる。
そして、暖房では、空気温度21℃、循環水の温度45℃、流量3.5L/min、送風機7bの風量120m/hでは、居室内に39.6℃の空気を供給出来るが、流量を4.5L/minとすれば、40℃の空気が供給出来る。
It should be noted that the temperature management in the room may be performed by the water temperature adjustment unit of the heat source unit 2, and the supply temperature in the room is 18.3 ° C at the flow rate to the cold / hot water circulation circuit 6 (standard: 3.5 L / min). The humidity is 12.9 g / kg and the dehumidification amount is 43 L / day, but if the flow rate is set to 4.7 L / min with the gate valve 10 b, the room supply temperature is 17.6 ° C., the absolute humidity is 12.3 g / kg, and the dehumidification amount 44L / day.
And in heating, when air temperature is 21 ° C., circulating water temperature is 45 ° C., flow rate is 3.5 L / min, and the air volume of the blower 7b is 120 m 3 / h, 39.6 ° C. air can be supplied into the living room. If it is 4.5 L / min, 40 degreeC air can be supplied.

そして、居室内の温湿度環境の必要に応じて、気液熱交換器5に温水、又は冷水を循環させれば、必要な、高温加湿空気、又は低温低湿空気の居室内への提供が可能となり、中間期にあっては、放熱体4aでの冷暖房は休止して、気液熱交換器5及び加湿装置16の稼動運転のみで、中間期(春、秋)相応の冷暖房が可能となる。   Then, if hot water or cold water is circulated through the gas-liquid heat exchanger 5 as required in the temperature and humidity environment in the living room, necessary high-temperature humidified air or low-temperature and low-humidity air can be provided to the living room. In the intermediate period, the cooling / heating in the radiator 4a is suspended, and only the operation of the gas-liquid heat exchanger 5 and the humidifying device 16 enables the cooling / heating corresponding to the intermediate period (spring, autumn). .

〔換気システムの変形例〕
1.変形例1(図8(A))
図8(A)は、換気システムの実施変形例1の概略図であって、第一種換気法で実施するが、天井内には、屋外側より気液熱交換器5→加湿装置16→第一種換気装置7の順で配置するため、気液熱交換器5、加湿装置16、第一種換気装置7は、ダクト11内に予め収納してユニット化することで、現場作業は容易になる。
しかも、換気機能は、本発明の実施例と同一機能を発揮する。
[Variation of ventilation system]
1. Modification 1 (FIG. 8A)
FIG. 8 (A) is a schematic diagram of the first modified example of the ventilation system, which is implemented by the first type ventilation method. In the ceiling, the gas-liquid heat exchanger 5 → the humidifier 16 → Since the gas-liquid heat exchanger 5, the humidifier 16, and the first-class ventilation device 7 are stored in the duct 11 in advance and unitized, the field work is easy because they are arranged in the order of the first-class ventilation device 7. become.
Moreover, the ventilation function exhibits the same function as the embodiment of the present invention.

2.変形例2(図8(B))
図8(B)は、換気システムの変形例2の概略図であって、本発明の実施例の第一種換気法を第二種換気法に変えたもので、排気は、自然排気口13aから屋外に排出するものであり、第二種換気法であるために、換気システムは、熱交換(顕熱、潜熱)システムが付設していなくて、ダクトファン12c及びエアフィルター12dで構成しており、本発明の実施例や変形例1に比べて安価となる。
2. Modification 2 (FIG. 8B)
FIG. 8B is a schematic diagram of a second modification of the ventilation system, in which the first type ventilation method according to the embodiment of the present invention is changed to the second type ventilation method, and the exhaust is the natural exhaust port 13a. Because it is a type 2 ventilation method, the ventilation system is not equipped with a heat exchange (sensible heat, latent heat) system, and is composed of a duct fan 12c and an air filter 12d. Therefore, it is less expensive than the embodiment of the present invention or the first modification.

3.変形例3(図8(C))
図8(C)は、換気システムの変形例3の概略図であって、給気は、自然吸気口13bから吸気し、排気はダクトファン12cと屋外排気口14aとをダクト管11aを介して連結して、居室内の空気を排出し、気液熱交換器5及び加湿装置16は、自然吸気口13b及び屋外排気口14aとは連通せずに、居室内空気を、室内吸気口15bからダクト管11aを介して消費電力の小さなダクトファン12cから気液熱交換器5及び加湿装置16に流入し、室内吹出口14bから居室内に給気循環する第三種換気法であり、気液熱交換器5及び加湿装置16は、配置位置の制約が無く、施工配置が自由となる。
3. Modification 3 (FIG. 8C)
FIG. 8C is a schematic diagram of a third modification of the ventilation system, in which supply air is taken in from the natural air inlet 13b, and exhaust air is passed through the duct fan 12c and the outdoor air outlet 14a via the duct pipe 11a. The air-liquid heat exchanger 5 and the humidifying device 16 do not communicate with the natural intake port 13b and the outdoor exhaust port 14a, and the indoor air is supplied from the indoor intake port 15b. This is a third type ventilation method that flows into the gas-liquid heat exchanger 5 and the humidifying device 16 from the duct fan 12c with low power consumption via the duct pipe 11a, and supplies and circulates through the indoor outlet 14b to the room. The heat exchanger 5 and the humidifier 16 have no restrictions on the arrangement position, and the construction arrangement is free.

4.変形例4(図9)
図9は、換気システムの変形例4の概略図であって、(A)は床下の上視図、(B)は上下階関係の側面図である。
変形例4は、1階床下内に気液熱交換器5、ダクトファン12c、エアフィルター12dをダクト管11aで配置するものであり、図9(A)に示す如く、基礎区画E1外側の基礎18f立上り部に、床下換気口15cを配置し、1階床から吊下げ形態で、区画E2にエアフィルター12d及びダクトファン12cを、区画E4に気液熱交換器5を、おのおの配置してダクト管11aで接続するもので、気液熱交換器5は、本発明実施例同様に、放熱回路4から分岐した冷温水循環回路6の往き側配管6s”を往き側接続口5sに、戻り側配管6r”を戻り側接続口5rに接続し、ドレンパイプ5gから排水パイプ7kを基礎18f立上り部から屋外に突出させる。
4). Modification 4 (FIG. 9)
FIG. 9 is a schematic diagram of a fourth modification of the ventilation system, in which (A) is a top view below the floor, and (B) is a side view relating to the upper and lower floors.
In the fourth modification, the gas-liquid heat exchanger 5, the duct fan 12c, and the air filter 12d are arranged in the first floor under the duct pipe 11a. As shown in FIG. 9A, the foundation outside the foundation section E1 is arranged. An underfloor ventilation port 15c is arranged at the rising portion of 18f, suspended from the first floor, an air filter 12d and a duct fan 12c in the section E2, a gas-liquid heat exchanger 5 in the section E4, and a duct. The gas / liquid heat exchanger 5 is connected by the pipe 11a, and the gas-liquid heat exchanger 5 is connected to the return side pipe 6s "of the cold / hot water circulation circuit 6 branched from the heat dissipation circuit 4 and the return side pipe 5s. 6r ″ is connected to the return side connection port 5r, and the drain pipe 7k is projected from the drain pipe 5g to the outside from the rising portion of the foundation 18f.

そして、気液熱交換器5の後端から区画E6に配置するダクト管11aに接続し、区画E6のダクト管11aからは、風量調整ダンパー12fを備えた吹出口14を直交突出配置する。
また、区画E4では、区画E6へのダクト管11aから分岐して上方への縦ダクト管11a”を立設し、その先端を1階天井Cと2階床下間に、横方向曲折配置する。
And it connects to the duct pipe | tube 11a arrange | positioned to the division E6 from the rear end of the gas-liquid heat exchanger 5, and the blower outlet 14 provided with the air quantity adjustment damper 12f is orthogonally arranged from the duct pipe | tube 11a of the division E6.
Further, in the section E4, a vertical duct pipe 11a ″ that branches from the duct pipe 11a to the section E6 is provided upright, and a tip thereof is bent in the lateral direction between the first-floor ceiling C and the second-floor floor.

また、建物内の各基礎18f立上り部には、径100mmの床下通気口15dを穿孔配置し、区画E6に配置するダクト管11aから直交する吹出口14からの冷却減湿空気、又は加湿空気を床下の各区画群に供給すると共に、1階床に配設した床換気口V群から1階各居室内へ、縦ダクト管11a”から1階天井C内に送風する空気は、2階床に配置した床換気口V群から2階各居室内に供給する。
そして、排気は、1階及び2階の外壁Woに配設する自然排気口13aで排気し、台所、トイレ、浴室等の湿気の多い部屋は、換気扇14eを用いて電気制御でコントロール排気する。
Further, at the rising part of each foundation 18f in the building, a floor under vent 15d having a diameter of 100 mm is formed by drilling, and cooling dehumidified air or humid air from the outlet 14 orthogonal to the duct pipe 11a disposed in the section E6 is supplied. Air supplied to each compartment group under the floor and air blown from the vertical ventilation duct 11a "into the first floor ceiling C from the floor ventilation port V group arranged on the first floor to the first floor living room is the second floor Supplied to the second floor of each room from the floor ventilation port V.
Exhaust air is exhausted through a natural exhaust port 13a disposed on the outer walls Wo on the first and second floors, and humid rooms such as kitchens, toilets, and bathrooms are controlled and exhausted by electrical control using a ventilation fan 14e.

即ち、変形例4の換気システムは、床下換気口15cからダクト管11aを介して屋外空気を取り入れ、エアフィルター12dで清浄し、気液熱交換器5で冷却減湿、又は加湿して、風量調整ダンパー12fで風量調節して吹出口14から床下の各空間に送風すると共に、1階の床換気口Vからは1階居間に、縦ダクト管11a”からの送風は、2階の床換気口Vを介して2階居間に送風し、床下、1階居室及び2階居室を換気する。
そして、必要に応じて、換気システム内に加湿装置16を組み入れれば良い。
That is, the ventilation system of the modification 4 takes outdoor air from the underfloor ventilation port 15c through the duct pipe 11a, cleans it with the air filter 12d, cools and dehumidifies it with the gas-liquid heat exchanger 5, or humidifies it. The adjustment damper 12f adjusts the air volume and blows air from the air outlet 14 to each space below the floor, while the first floor floor ventilation port V sends air to the first floor, and the vertical duct pipe 11a "sends air to the second floor. The air is blown between the second-floor living rooms through the mouth V, and the underfloor, first-floor room, and second-floor room are ventilated.
And the humidification apparatus 16 should just be integrated in a ventilation system as needed.

従って、変形例4の換気システムは、高気密、高断熱建物にあっては、十分に冷暖房効果が発揮出来るものであり、床下換気で床下の空気は澱みが無く、且つ湿気が少なく出来るため;
(イ).構造用木材及び鉄骨材の腐食を防止する、
(ロ).床下除湿によって白蟻の発生を阻止する、
(ハ).床下を収納スペースに換えることが出来る;
等の利点が得られ、電気配管、非常設備配線、冷暖房設備配管、換気設備配管、給排水衛生設備配管などが集中する天井C内から、大径の換気設備配管が床下に移せるため、天井C内及び床下の配管作業が容易となり、床下の作業は他作業の影響を受けないため、工事期間の短縮化も可能となる。
Therefore, since the ventilation system of the modification 4 can fully exhibit an air-conditioning / heating effect in a highly air-tight and highly insulated building, the under-floor air has no stagnation and less moisture due to under-floor ventilation;
(I). Prevent corrosion of structural wood and steel frame,
(B). Prevent the generation of white ants by dehumidifying under the floor,
(C). The floor can be replaced with storage space;
In the ceiling C, large-diameter ventilation equipment piping can be moved under the floor from inside the ceiling C where electrical piping, emergency equipment wiring, air conditioning equipment piping, ventilation equipment piping, water supply and sanitation equipment piping, etc. are concentrated. Also, piping work under the floor becomes easy, and the work under the floor is not affected by other work, so that the construction period can be shortened.

5.変形例5(図10)
図10は、換気システムの変形例5の概略図であって、(A)は床下の上視図、(B)は上下階関係を示す側面図である。
変形例5は変形例4同様に、1階床下内に、気液熱交換器5、ダクトファン12c、エアフィルター12dをダクト管11aで配置するものであるが、変形例4は、往き側縦ダクト管11a”のみを1階天井C内に延出配置したのに対し、変形例5は、図10(B)に示す如く、往き側の縦ダクト管11a”を1階天井C内に延出配置すると共に、戻り側縦ダクト管11a´を、2階天井内と1階天井内から床下の給気ダクト管11aと接続した点で異なる。
5. Modification 5 (FIG. 10)
10A and 10B are schematic views of Modification 5 of the ventilation system, in which FIG. 10A is a top view below the floor, and FIG. 10B is a side view showing the upper and lower floor relationship.
Similar to the fourth modification, the fifth modification arranges the gas-liquid heat exchanger 5, the duct fan 12c, and the air filter 12d by the duct pipe 11a in the lower floor of the first floor. Whereas only the duct pipe 11a ″ extends and is arranged in the first-floor ceiling C, the modified example 5 extends the forward-side vertical duct pipe 11a ″ into the first-floor ceiling C as shown in FIG. The difference is that the return side vertical duct pipe 11a 'is connected to the air supply duct pipe 11a below the floor from the inside of the second floor ceiling and the first floor ceiling.

即ち、変形例5の換気システムは、図10(A)に示す如く、床下換気システムで、気液熱交換器5からの冷却除湿空気又は加湿空気を、床下の各区画E1〜E8のスペース内に、各床下通気口15dを介して送風すると共に、図10(B)に示す如く、往き側縦ダクト管11a”を、1階天井内に折曲配置して先端を床換気口Vと接続し、戻り側縦ダクト管11a´には、先端に室内吸気口15bを備えた、2階天井C内及び1階天井C内の戻り側縦ダクト管11aを接続し、1階居室及び2階居室内の空気を吸引して縦ダクト管11a´で再度、床下の給気系統に戻すものである。   That is, the ventilation system of the modified example 5 is an underfloor ventilation system as shown in FIG. 10 (A), and the cooled dehumidified air or humidified air from the gas-liquid heat exchanger 5 is supplied into the spaces of the sections E1 to E8 under the floor. In addition, air is blown through the underfloor vents 15d, and as shown in FIG. 10 (B), the forward vertical duct pipe 11a "is bent in the first floor ceiling and the tip is connected to the floor vent V. The return-side vertical duct pipe 11a 'is connected to the return-side vertical duct pipe 11a in the second-floor ceiling C and the first-floor ceiling C, which has an indoor air inlet 15b at the tip, and the first-floor room and the second floor The air in the living room is sucked and returned to the air supply system under the floor again by the vertical duct pipe 11a '.

即ち、変形例5(図10)の換気システムは、床下のエアフィルター12d、ダクトファン12c、気液熱交換器5、及び必要に応じて付加配置する加湿装置16で処理された供給空気を、床下各スペースに送風すると共に、1階床下の床換気口Vから吹出して1階居室を換気し、往き側縦ダクト管11a”からは2階床換気口Vから吹出して2階居室を換気し、1階天井Cの室内吸気口15b群及び2階天井Cの室内吸気口15b群からの吸入空気を戻り側縦ダクト管11a´で再度床下の換気システムに戻す閉循環換気システムとなる。   That is, the ventilation system of the modified example 5 (FIG. 10) uses the air filter 12d under the floor, the duct fan 12c, the gas-liquid heat exchanger 5, and the supply air processed by the humidifier 16 additionally arranged as necessary. While blowing air to each space under the floor, it blows out from the floor ventilation port V below the first floor to ventilate the first floor room, and blows out from the second floor floor ventilation port V from the outgoing side vertical duct pipe 11a "to ventilate the second floor room. The closed-circulation ventilation system returns the intake air from the indoor inlet 15b group on the first floor ceiling C and the indoor inlet 15b group on the second floor ceiling C to the ventilation system below the floor again by the return side vertical duct pipe 11a '.

尚、図10(B)に示す如く、1階及び2階の天井C内に、慣用の24時間計画換気システム用のダクトファン12cを配置し、室内吸気口15bを介して、室内空気を吸気して屋外排気口14aから排出し、給気は外壁Wo面に配置した自然給気口13bから取込み、居室内では、閉循環換気空気と外気との必要交換を行う。   As shown in FIG. 10B, a duct fan 12c for a conventional 24-hour planned ventilation system is arranged in the ceiling C on the first floor and the second floor, and the indoor air is sucked through the indoor air inlet 15b. Then, the air is discharged from the outdoor exhaust port 14a, and the air supply is taken in from the natural air supply port 13b arranged on the outer wall Wo surface, and the necessary exchange between the closed circulation ventilation air and the outside air is performed in the room.

従って、変形例5(図10)の床下換気システムは、変形例4(図9)の床下換気システム特有の(イ)、(ロ)、(ハ)のメリットに、更に(ニ).2階床の床換気口Vはダクト管11aと連通のため、吹出し空気の熱効率が高い。(ホ).換気システムは、居室内空気を循環させるので、冷却又は加熱処理の温度差が小さくて、省エネルギー稼動となる、等の特有の効果を得る。   Therefore, the underfloor ventilation system of the modified example 5 (FIG. 10) has the advantages (i), (b), and (c) peculiar to the underfloor ventilation system of the modified example 4 (FIG. 9). Since the floor ventilation port V on the second floor communicates with the duct pipe 11a, the thermal efficiency of the blown air is high. (E). Since the ventilation system circulates the air in the room, it obtains a unique effect such as a small temperature difference in cooling or heat treatment, and energy saving operation.

1 冷暖房換気システム
2 熱源機
3 循環ポンプ
4 放熱回路
4a 放熱体
4r,5r 戻り側接続口
4s,5s 往き側接続口
5 気液熱交換器
5a 筒本体
5b 冷温水コイル
5c 循環コイル
5d 下側風偏向板(風偏向板)
5e,5e´ エンドプレート
5f フィン
5g,16g ドレンパイプ
5J レジューサー管
5m,14m,16m 切欠
5n 受金具
5u,5u,5u,5u,5u,5u 上側風偏向板(風偏向板)
6 冷温水循環回路
6a 往き側ヘッダー
6b 戻り側ヘッダー
6C1,6C2,6C3,6C4 電磁弁
6m T型ソケット
6r,6r´,6r” 戻り側配管(配管、パイプ)
6s,6s´,6s” 往き側配管(配管、パイプ)
7 第一種換気装置
7a ケーシング
7b,7b” 送風機
7c エレメント
7d,12d エアフィルター
7e,7e´,11e 接続口
7k 排水パイプ
8a サーモスタット
8b 温度センサー
8e,9e 電線
9a ヒューミデイスタット
9b 湿度センサー
10a 流量計
10b,10b´,10b” 仕切弁
10c 流量調整ソケット
10d 大径直管片(直管片)
10e 斜片
10f 水温計
11 ダクト
11a ダクト管
11a´,11a” 縦ダクト管
11J 接続ボックス
12c ダクトファン
12f 風量調整ダンパー
13a 自然排気口
13b 自然給気口
14 吹出口
14a 屋外排気口
14b 室内吹出口
14c 放熱体吹出口
14e 換気扇
14f 調節羽根
15a 屋外吸気口
15b 室内吸気口
15c 床下換気口
15d 床下通気口
16 加湿装置
16a 直管
16b 噴霧ノズル(ノズル)
16c 枝管
16d 下部ケーシング
16d´ 船底面
16e 底蓋
16p エリミネーター板
16r 供給側接続口
16s 給気側接続口
16u 上部ケーシング
17a 排水枡
17b 土間
17s ドレン配管
18f 基礎
60 加湿回路
C 天井
E1,E2,E3,E4,E5,E6,E7,E8 区画空間
F 床
P1,P2,P3,P4,P5 分岐点
Sd 下側空間
Su 上側空間
V 床換気口
Wo 外壁
Wi 間仕切壁
DESCRIPTION OF SYMBOLS 1 Air-conditioning / ventilation system 2 Heat source machine 3 Circulation pump 4 Radiation circuit 4a Radiator 4r, 5r Return side connection port 4s, 5s Outward side connection port 5 Gas-liquid heat exchanger 5a Cylinder body 5b Cold / hot water coil 5c Circulation coil 5d Lower side wind Deflection plate (wind deflection plate)
5e, 5e' end plate 5f fins 5 g, 16g drain pipe 5J reducer pipe 5m, 14m, 16m notch 5n pivot bracket 5u 1, 5u 2, 5u 3 , 5u 4, 5u 5, 5u 6 upper wind deflector (wind deflector Board)
6 Cold / hot water circulation circuit 6a Outward header 6b Return header 6C1, 6C2, 6C3, 6C4 Solenoid valve 6m T-type sockets 6r, 6r ', 6r "Return side piping (piping, pipe)
6s, 6s', 6s "Outward piping (piping, pipe)
7 First type ventilation device 7a Casing 7b, 7b "Blower 7c Element 7d, 12d Air filter 7e, 7e ', 11e Connection port 7k Drain pipe 8a Thermostat 8b Temperature sensor 8e, 9e Electric wire 9a Humidaystat 9b Humidity sensor 10a Flow meter 10b, 10b ', 10b "Gate valve 10c Flow rate adjusting socket 10d Large diameter straight pipe piece (straight pipe piece)
10e Slope 10f Water temperature gauge 11 Duct 11a Duct pipe 11a ', 11a "Vertical duct pipe 11J Connection box 12c Duct fan 12f Air flow adjustment damper 13a Natural exhaust port 13b Natural air inlet 14 Air outlet 14a Outdoor exhaust port 14b Indoor air outlet 14c Radiator outlet 14e Ventilation fan 14f Adjusting blade 15a Outdoor air inlet 15b Indoor air inlet 15c Underfloor vent 15d Underfloor vent 16 Humidifier 16a Straight pipe 16b Spray nozzle (nozzle)
16c Branch pipe 16d Lower casing 16d 'Ship bottom surface 16e Bottom lid 16p Eliminator plate 16r Supply side connection port 16s Air supply side connection port 16u Upper casing 17a Drainage 17b Dirt 17s Drain piping 18f Foundation 60 Humidification circuit C Ceiling E1, E2, E3 , E4, E5, E6, E7, E8 Partition space F Floor P1, P2, P3, P4, P5 Branch point Sd Lower space Su Upper space V Floor ventilation port Wo Outer wall Wi Partition wall

Claims (11)

冷温水を作成する熱源機(2)から、循環ポンプ(3)により、往き側ヘッダー(6a)を経て放熱体(4a)、戻り側ヘッダー(6b)、熱源機(2)へと循環する放熱回路(4)に対し、放熱回路(4)の往き側配管(6s´)の循環ポンプ(3)下流の第1分岐点(P1)から分流して、気液熱交換器(5)を経て、放熱回路(4)の往き側配管(6s´)に還流復帰する冷温水循環回路(6)を付設し、気液熱交換器(5)を機械式換気システムの給気経路中に配置して、放熱体(4a)及び気液熱交換器(5)を、居室内の温湿度、放熱回路(4)及び冷温水循環回路(6)の温度、流量を調整して運転する冷暖房換気システムであって、
前記気液熱交換器(5)は、長手の筒本体(5a)の前後を機械式換気システムの給気経路に接続し、筒本体(5a)内には、冷温水循環回路(6)に接続した冷温水コイル(5b)を上下中間層の長手方向に配置し、冷温水コイル(5b)の前端下面は下側風偏向板(5d)で閉止し、冷温水コイル(5b)の上面は、後端を上側風偏向板(5u1)で閉止すると共に、長手方向に上側風偏向板群(5u2〜5u6)を間隔配置して、供給空気流(a4)を冷温水コイル(5b)の前端上部に導入して冷温水コイル(5b)の下面後端から放出する
冷暖房換気システム。
Heat radiated from the heat source machine (2) for producing cold / hot water to the heat radiating body (4a), the return side header (6b), and the heat source machine (2) through the forward header (6a) by the circulation pump (3) The circuit (4) is diverted from the first branch point (P1) downstream of the circulation pump (3) of the outgoing side pipe (6s') of the heat dissipation circuit (4), and passes through the gas-liquid heat exchanger (5). A cold / hot water circulation circuit (6) that returns to the return pipe (6s') of the heat dissipation circuit (4) is attached, and a gas-liquid heat exchanger (5) is placed in the air supply path of the mechanical ventilation system. The cooling / heating ventilation system operates the radiator (4a) and the gas-liquid heat exchanger (5) by adjusting the temperature and humidity of the room, the temperature and flow rate of the radiator circuit (4) and the cold / hot water circulation circuit (6). And
The gas-liquid heat exchanger (5) connects the longitudinal cylinder body (5a) to the air supply path of the mechanical ventilation system, and the cylinder body (5a) is connected to a cold / hot water circulation circuit (6). The cold / hot water coil (5b) is arranged in the longitudinal direction of the upper and lower intermediate layers, the lower surface of the front end of the cold / hot water coil (5b) is closed by the lower wind deflector (5d), and the upper surface of the cold / hot water coil (5b) is The rear end is closed by the upper wind deflection plate (5u1), and the upper wind deflection plate groups (5u2 to 5u6) are spaced apart in the longitudinal direction so that the supply air flow (a4) is transferred to the upper front end of the cold / hot water coil (5b). An air-conditioning / ventilation system that is introduced into the hot-water coil (5b) and discharged from the rear end of the lower surface .
給気経路中の気液熱交換器(5)の下流に加湿装置(16)を配置し、冷温水循環回路(6)から電磁弁(6C2)を介して分岐した加湿回路(60)で加湿装置(16)を作動させる、請求項1に記載の冷暖房換気システム。   A humidifier (16) is disposed downstream of the gas-liquid heat exchanger (5) in the air supply path, and the humidifier is connected to the humidifier circuit (60) branched from the cold / hot water circulation circuit (6) via the solenoid valve (6C2). The air conditioning / ventilation system according to claim 1, wherein (16) is operated. 加湿装置(16)は、長方形の角筒形態で、船底面(16d´)を備えた下部ケーシング(16d)と、蓋形態の上部ケーシング(16u)とから成り、上部ケーシング(16u)は、加湿回路(60)と連通する上部の直管(16a)から先端に噴霧ノズル(16b)を備えた複数の枝管(16c)が貫入し、下部ケーシング(16d)は、前端の給気側接続口(16s)と後端の供給側接続口(16r)とを備え、船底面(16d´)の過半に亘る切欠(16m)に底蓋(16e)を着脱自在に装着すると共に、供給側接続口(16r)の前面には、水滴放出防止用のエリミネーター板(16p)を、エリミネーター板(16p)の下方にはドレンパイプ(16g)を備えている、請求項2に記載の冷暖房換気システム。   The humidifier (16) is in the form of a rectangular square tube and comprises a lower casing (16d) having a ship bottom (16d ') and an upper casing (16u) in the form of a lid. The upper casing (16u) is a humidifier. A plurality of branch pipes (16c) provided with spray nozzles (16b) penetrate from the upper straight pipe (16a) communicating with the circuit (60), and the lower casing (16d) is connected to the air supply side connection port at the front end. (16s) and a supply-side connection port (16r) at the rear end, and a bottom lid (16e) is detachably attached to a notch (16m) over the majority of the ship bottom surface (16d '), and a supply-side connection port The air conditioning / ventilation system according to claim 2, wherein an eliminator plate (16p) for preventing water droplet discharge is provided on the front surface of (16r), and a drain pipe (16g) is provided below the eliminator plate (16p). 気液熱交換器(5)で熱交換された給気空気(a10)を放熱体(4a)に吹き付ける、請求項1又は2、又は3に記載の冷暖房換気システム。   The cooling and heating ventilation system according to claim 1, 2 or 3, wherein the supply air (a10) heat-exchanged by the gas-liquid heat exchanger (5) is blown to the radiator (4a). 放熱体(4a)の上部にダクト管(11a)と接続した接続ボックス(11J)を配置し、気液熱交換器(5)を経由した給気空気(a10)を、接続ボックス(11J)の調節羽根(14f)を備えた放熱体吹出口(14c)から放熱体(4a)に吹き付ける、請求項4に記載の冷暖房換気システム。   The connection box (11J) connected to the duct pipe (11a) is arranged on the upper part of the radiator (4a), and the supplied air (a10) via the gas-liquid heat exchanger (5) is connected to the connection box (11J). The cooling and heating ventilation system according to claim 4, wherein the heat radiator (4a) is blown from a heat radiator outlet (14c) provided with adjusting blades (14f). 気液熱交換器(5)は、後部下面にドレンパイプ(5g)を垂下し、上側風偏向板群(5u2〜5u6)を、後方から前方へ、順次通過風量を増大させるように間隔配置した、請求項1乃至5のいずれか1項に記載の冷暖房換気システム。 Gas-liquid heat exchanger (5) is suspended a drain pipe (5 g) to the rear lower surface, upper wind deflecting plate group and (5U2~5u6), from the rear to the front, the interval arranged to increase sequentially passing air volume the air conditioning and heating ventilation system according to any one of claims 1 to 5. 機械式換気システムに全熱交換型第一種換気装置(7)を配置し、給気経路中の第一種換気装置(7)の出口側若しくは入口側に気液熱交換器(5)を配置し、気液熱交換器(5)からは、ドレンパイプ(5g)を介してドレン配管(17s)で勝手口等の土間(17b)に冷暖房放熱して、排水枡(17a)に排水する、請求項1に記載の冷暖房換気システム。   A total heat exchange type 1 ventilator (7) is arranged in the mechanical ventilation system, and a gas-liquid heat exchanger (5) is installed on the outlet side or the inlet side of the type 1 ventilator (7) in the air supply path. Arranged and discharged from the gas-liquid heat exchanger (5) through the drain pipe (5g) through the drain pipe (17s) to the soil (17b) such as a doorway, and then discharged to the drainage basin (17a). The air-conditioning / ventilation system according to claim 1. ダクト管(11a)で、床下換気口(15c)からエアーフィルター(12d)、ダクトファン(12c)、気液熱交換器(5)を経て吹出口(14)に亘る換気システムを1階床下に配置し、床下換気口(15c)から取り入れる給気空気流を、気液熱交換器(5)で処理して床下の各区画空間(E1〜E8)に送風して、床下空間を換気すると共に、床下空間から各床換気口(V)を介して居室内も換気する、請求項1に記載の冷暖房換気システム。   A duct pipe (11a) allows the ventilation system from the underfloor ventilation port (15c) to the air outlet (14d) through the air filter (12d), the duct fan (12c), the gas-liquid heat exchanger (5), and the air outlet (14) to be located under the first floor. The air supply air flow that is arranged and taken in from the underfloor ventilation port (15c) is processed by the gas-liquid heat exchanger (5) and blown to each partition space (E1 to E8) under the floor to ventilate the underfloor space. The air conditioning / ventilation system according to claim 1, wherein the room is also ventilated from the underfloor space through each floor ventilation opening (V). 床下配置のダクト管(11a)から給気用の上り縦ダクト管(11a”)を上階の床(F)に導き、上階の床換気口(V)から上階居室を換気する、請求項8に記載の冷暖房換気システム。   An upward vertical duct pipe (11a ") for supplying air is led from the duct pipe (11a) arranged under the floor to the upper floor (F), and the upper-floor room is ventilated from the upper floor vent (V). Item 9. The air conditioning and ventilation system according to Item 8. 自然給気口(13b)から屋外空気を室内に取り入れ、室内吸気口(15b)からダクトファン(12c)を介して屋外排気口(14a)で排気する換気システムに於いて、天井の室内吸気口(15b)から下り縦ダクト管(11a´)を経由して1階床下の給気ダクト管(11a)に至り、床下の給気ダクト管(11a)は、エアーフィルター(12d)、ダクトファン(12c)、気液熱交換器(5)を経て吹出口(14)から1階床下の各区画空間(E1〜E8)を換気して、床換気口(V)から居室内も換気する、請求項1に記載の冷暖房換気システム。   In a ventilation system in which outdoor air is taken into a room through a natural air inlet (13b) and exhausted from an indoor air inlet (15b) through a duct fan (12c) through an outdoor air outlet (14a), the ceiling indoor air inlet From (15b) to the air supply duct pipe (11a) under the first floor via the descending vertical duct pipe (11a '), the air supply duct pipe (11a) under the floor includes an air filter (12d), a duct fan ( 12c), through the gas-liquid heat exchanger (5), ventilate each compartment space (E1 to E8) below the first floor from the outlet (14), and ventilate the room from the floor vent (V). Item 2. The air conditioning and ventilation system according to Item 1. 床下の給気ダクト管(11a)から上り縦ダクト管(11a”)を経由して天井内給気ダクト管(11a)に至り、天井内給気ダクト管(11a)から床換気口(V)を介して居室内を換気する、請求項9に記載の冷暖房換気システム。   From the air supply duct pipe (11a) under the floor to the air supply duct pipe (11a) in the ceiling via the upward vertical duct pipe (11a "), the air supply duct pipe (11a) in the ceiling to the floor ventilation port (V) The air conditioning / ventilation system according to claim 9, wherein the interior of the room is ventilated through a wall.
JP2013032074A 2013-02-21 2013-02-21 Air conditioning and ventilation system Active JP5913151B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013032074A JP5913151B2 (en) 2013-02-21 2013-02-21 Air conditioning and ventilation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013032074A JP5913151B2 (en) 2013-02-21 2013-02-21 Air conditioning and ventilation system

Publications (2)

Publication Number Publication Date
JP2014163528A JP2014163528A (en) 2014-09-08
JP5913151B2 true JP5913151B2 (en) 2016-04-27

Family

ID=51614310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013032074A Active JP5913151B2 (en) 2013-02-21 2013-02-21 Air conditioning and ventilation system

Country Status (1)

Country Link
JP (1) JP5913151B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6480690B2 (en) * 2014-09-17 2019-03-13 旭化成ホームズ株式会社 Whole building air conditioning system
CN109911166B (en) * 2019-02-14 2023-04-25 江苏科技大学 Seawater direct radiation cold supply heating type environment control system
JP7166220B2 (en) * 2019-05-29 2022-11-07 三菱電機株式会社 ventilation air conditioning system
CN114646086B (en) * 2022-02-14 2023-08-22 重庆宸投科技有限公司 Multifunctional radiator for household heating

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05141721A (en) * 1991-11-21 1993-06-08 Taikisha Ltd Ice storage system air conditioner
JP2000179884A (en) * 1998-12-14 2000-06-27 Aisin Seiki Co Ltd Radiation type cooling, heating and ventilating device
JP3944181B2 (en) * 2004-03-24 2007-07-11 株式会社白岩工務所 Building air conditioning system
JP4673632B2 (en) * 2005-02-07 2011-04-20 三建設備工業株式会社 Air conditioning system
JP5525312B2 (en) * 2010-04-01 2014-06-18 積水化学工業株式会社 Ventilation air conditioning system and building

Also Published As

Publication number Publication date
JP2014163528A (en) 2014-09-08

Similar Documents

Publication Publication Date Title
US8267164B2 (en) Energy recovery and humidity control
US6405543B2 (en) High-efficiency air-conditioning system with high-volume air distribution
US20100307733A1 (en) Hvac system and zone control unit
JP6147537B2 (en) Air conditioner
AU730254B2 (en) High-efficiency air-conditioning system with high-volume air distribution
KR20070054230A (en) Ventilator and building
JP5913151B2 (en) Air conditioning and ventilation system
JP2012007766A (en) Air conditioning device of air/heat-source heat pump type
JP6825900B2 (en) Air conditioning system
JP6208194B2 (en) Air conditioning ventilation system
JP4524348B1 (en) Energy saving ventilation system
JP2010181096A (en) Ventilation air conditioning system and unit building
JP2016151377A (en) Air-supply box and air conditioning system for habitable room using the air-supply box
JP5369260B2 (en) Air heat exchange system and air heat exchanger used
JP2009084936A (en) Thermal insulation dwelling house and ventilation system
KR100738177B1 (en) Heating device for combined use of floor water and indoor air.
KR101563696B1 (en) Humidifying and Ventilating Apparatus
JP2006132823A (en) Indoor air-conditioning system of building
JP4698204B2 (en) Indoor air conditioning system for buildings
JP2011112239A (en) Ventilation air-conditioning system and building
JP6858396B2 (en) Air conditioning system
JP7171664B2 (en) Whole building humidification air conditioning system
JP2020148386A (en) Pressure heat exchange ventilation type building
JP7351496B2 (en) ventilation system
JP2013011385A (en) Air conditioning system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151001

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20151001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20151001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160401

R150 Certificate of patent or registration of utility model

Ref document number: 5913151

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350