JP2012163239A - Geothermal heat utilization apparatus - Google Patents

Geothermal heat utilization apparatus Download PDF

Info

Publication number
JP2012163239A
JP2012163239A JP2011022611A JP2011022611A JP2012163239A JP 2012163239 A JP2012163239 A JP 2012163239A JP 2011022611 A JP2011022611 A JP 2011022611A JP 2011022611 A JP2011022611 A JP 2011022611A JP 2012163239 A JP2012163239 A JP 2012163239A
Authority
JP
Japan
Prior art keywords
air
building
temperature
outdoor unit
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011022611A
Other languages
Japanese (ja)
Inventor
Mineo Sagara
峰雄 相良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2011022611A priority Critical patent/JP2012163239A/en
Publication of JP2012163239A publication Critical patent/JP2012163239A/en
Pending legal-status Critical Current

Links

Landscapes

  • Central Air Conditioning (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a geothermal heat utilization apparatus that can more effectively utilize geothermal heat.SOLUTION: The geothermal heat utilization apparatus of a building 1 includes: an air conditioner 12 which includes indoor unit 13 installed in the building 1 to exchange heat with air of the indoor side 9 of the building, an outdoor unit 17 for exchanging heat with air captured from an external air capturing port 21, and a path 18 of heat conveyance fluids circulated through the indoor unit 13 and the outdoor unit 17; and an air supply port and an exhaust port. A part of a ventilation path 2 where a suction port 2a is communicated with external air is buried in the ground, the ventilation path 2 is branched, one blow-out port 2A on the downstream side of a branch point is connected to the external air capturing port 21 of the outdoor unit 17, the other blow-out port 2B is connected to the air supply port 11A of the building 1, and switching means 3 of an air flow path is installed at the branch point of the ventilation pipe 2 to switch the supply destination of air conditioned by geothermal heat to the outdoor unit 13 or the inside of the building 1.

Description

本発明は、地中熱利用装置に関するものである。   The present invention relates to a geothermal heat utilization device.

従来、地中熱を利用することで住宅の空調装置の効率を向上させ、電気やガスなどのエネルギー消費量を削減させる空調システムが知られている(例えば特許文献1参照)。   2. Description of the Related Art Conventionally, an air conditioning system that improves the efficiency of a residential air conditioner by using geothermal heat and reduces energy consumption such as electricity and gas is known (for example, see Patent Document 1).

特許文献1には、地中埋設チューブに外気を通過させることで、外気の温度を地中の温度に近づけさせ、その地中埋設チューブを経由させた外気を住宅の屋内に供給する地中熱利用空調システムが開示されている。   Patent Document 1 discloses that underground air that passes outside air through the underground tube to bring the temperature of the outside air closer to the underground temperature, and supplies the outside air that passes through the underground tube to the interior of the house. A use air conditioning system is disclosed.

すなわち、地中の温度は、外気に比べて夏季は低く、冬季は高いため、地中の温度に近づけた外気を屋内に取り込むことで、夏季は屋内を冷やすことができ、冬季は屋内を暖めることができる。   In other words, the underground temperature is lower in the summer than in the outdoor air and high in the winter. By taking outdoor air that is close to the underground temperature indoors, the indoors can be cooled in the summer, and the indoors are warmed in the winter. be able to.

特開2003−35433号公報JP 2003-35433 A

しかしながら、外気温は季節や天候によって変化し、室温はさらに人為的な要因によっても変化する。そのため、外気温と室温との差が大きく、外気を地中で加温又は冷却しても室温との差が依然として大きい場合等、この空気を屋内に直接取り込むことが不適切となる場合もある。この場合、特許文献1に開示された地中熱利用空調システムでは、地中熱を有効に利用することができないこととなる。   However, the outside temperature changes according to the season and weather, and the room temperature also changes due to human factors. For this reason, there are cases where it is inappropriate to take this air directly indoors, such as when the difference between the outside air temperature and the room temperature is large and the difference between the room temperature and the outside air is still large even if the outside air is heated or cooled in the ground. . In this case, the underground heat utilization air conditioning system disclosed in Patent Literature 1 cannot effectively use the underground heat.

そこで、本発明は、地中熱をより有効に利用できる地中熱利用装置を提供することを目的としている。   Then, an object of this invention is to provide the geothermal heat utilization apparatus which can utilize geothermal heat more effectively.

前記目的を達成するために、本発明に係る地中熱利用装置は、建物の中に設置されて建物内の空気と熱交換をおこなう室内機と、外気取込口から取り込まれた建物外の空気と熱交換をおこなう室外機と、前記室内機と前記室外機とを循環する熱搬送流体の経路とを有する空調装置を備えるとともに、給気口と排気口が設けられた前記建物の地中熱利用装置であって、吸込口が外気に連通した通気経路の少なくとも一部を地中に形成し、該通気経路に分岐点を設けるとともに、該分岐点より下流の一の吹出口を前記室外機の外気取込口に向けて設け、他の一の吹出口を前記建物の給気口に接続し、前記通気経路の分岐点に空気流路の切換手段を設けて地中熱で温調された空気の給気先を前記外気取込口又は前記建物の給気口に切換できるようにしたことを特徴とする。   In order to achieve the above object, a geothermal heat utilization device according to the present invention is an indoor unit installed in a building to exchange heat with air in the building, and an outside of the building taken in from an outside air intake. An air conditioner having an outdoor unit that exchanges heat with air, and a path of a heat transfer fluid that circulates between the indoor unit and the outdoor unit, and in the ground of the building provided with an air supply port and an exhaust port A heat utilization device, wherein the suction port forms at least a part of a ventilation path communicating with outside air in the ground, and a branch point is provided in the ventilation path. Provided toward the outside air intake of the machine, another air outlet is connected to the air inlet of the building, and air passage switching means is provided at the branch point of the ventilation path to control the temperature with underground heat So that the air supply destination of the generated air can be switched to the outside air intake port or the building air supply port Characterized in that was.

また、前記通気経路の分岐点より上流の部分に外気の吸込みを促進するための吸込手段を設けてもよい。   Further, a suction means for promoting the suction of outside air may be provided in a portion upstream from the branch point of the ventilation path.

さらに、前記空調装置を操作するためのリモコンに前記切換手段を接続し、該リモコンの操作により前記切換手段を制御して前記地中熱で温調された空気の給気先を選択できるようにしてもよい。   Further, the switching means is connected to a remote controller for operating the air conditioner, and the switching means is controlled by the operation of the remote controller so that a supply destination of air temperature-controlled by the underground heat can be selected. May be.

本発明に係る別の地中熱利用装置は、建物の中に設置されて建物内の空気と熱交換をおこなう室内機と、外気取込口から取り込まれた建物外の空気と熱交換をおこなう室外機と、前記室内機と前記室外機とを循環する熱搬送流体の経路とを有する空調装置を備えるとともに、給気口と排気口が設けられた前記建物の地中熱利用装置であって、吸込口が外気に連通した通気経路の少なくとも一部を地中に形成し、該通気経路に分岐点を設けるとともに、該分岐点より下流の一の吹出口を前記室外機の外気取込口に向けて設け、他の一の吹出口を前記建物の給気口に接続し、前記通気経路の分岐点より下流の位置のそれぞれに前記温調空気の流量を調節する流量調節手段を設けてこれらを同時に制御することにより、地中熱で温調された空気の給気先を前記外気取込口又は前記建物の給気口に切換できるようにしたことを特徴とする。   Another geothermal heat utilization apparatus according to the present invention performs heat exchange with an indoor unit installed in a building and exchanging heat with air in the building, and air outside the building taken in from an outside air intake. An apparatus for underground heat utilization in a building, comprising an air conditioner having an outdoor unit, a path of a heat transfer fluid circulating through the indoor unit and the outdoor unit, and provided with an air supply port and an exhaust port. The suction port forms at least a part of the ventilation path communicating with the outside air in the ground, and a branch point is provided in the ventilation path, and the one air outlet downstream from the branch point is the outdoor air intake port of the outdoor unit And a flow rate adjusting means for adjusting the flow rate of the temperature-controlled air at each of the positions downstream from the branch point of the ventilation path. By controlling these simultaneously, the supply of air temperature-controlled by underground heat Previously the is characterized in that to allow switching to the outside air inlet or air inlets of the building.

本発明に係る地中熱利用装置によれば、前記切換手段により給気先を前記建物内又は前記空調装置の室外機とすることが可能である。そのため、例えば冬季暖房時に建物内に温調空気を直接取り込むには温調空気が冷たすぎる場合であっても、給気先を室外機とすることで外気よりは室外機において冷媒と熱交換させることができる等、状況に応じて地中熱の供給先を選択できるので、地中熱を無駄なく有効に利用することができる。   According to the underground heat utilization apparatus according to the present invention, the air supply destination can be the outdoor unit in the building or the air conditioner by the switching means. For this reason, for example, even if the temperature-controlled air is too cold to directly take the temperature-controlled air into the building during the winter season heating, the outdoor unit is used as the air supply destination to exchange heat with the refrigerant in the outdoor unit rather than outside air. Since the supply source of geothermal heat can be selected according to the situation, the geothermal heat can be used effectively without waste.

また、前記通気経路の分岐点より上流の部分に外気の吸込みを促進するための吸込手段を設ければ、一の吸込手段により上述した各給気を行うことができる。   Moreover, if the suction means for accelerating the suction of outside air is provided in a portion upstream from the branch point of the ventilation path, each of the above-described air supply can be performed by one suction means.

さらに、前記空調装置を操作するためのリモコンに前記切換手段に接続し、該リモコンの操作により前記切換手段を制御して前記温調空気の給気先を選択できるようにしたので、ユーザによる制御が簡単となる。   Further, a remote controller for operating the air conditioner is connected to the switching means, and the switching means is controlled by the operation of the remote controller so that the supply destination of the temperature-controlled air can be selected. Becomes easy.

本発明に係る別の地中熱利用装置によれば、前記流量調節手段により給気先を前記建物内又は前記空調装置の室外機とすることが可能である。そのため、上記同様に状況に応じて地中熱の供給先を選択できるので、地中熱を無駄なく有効に利用することができる。   According to another geothermal heat utilization apparatus according to the present invention, the air supply destination can be an outdoor unit in the building or the air conditioner by the flow rate adjusting means. Therefore, since the supply source of geothermal heat can be selected according to the situation as described above, the geothermal heat can be used effectively without waste.

本発明の実施の形態の地中熱利用装置の構成を模式的に示した説明図である。It is explanatory drawing which showed typically the structure of the geothermal heat utilization apparatus of embodiment of this invention. 空調装置の室外機周辺の構成を説明する斜視図である。It is a perspective view explaining the structure of the outdoor unit periphery of an air conditioner. 室外機のカバー部の部分断面図である。It is a fragmentary sectional view of the cover part of an outdoor unit. (a)と(b)は、本発明に係る実施例の地中熱利用装置の構成を説明する図である。(A) And (b) is a figure explaining the structure of the geothermal heat utilization apparatus of the Example which concerns on this invention.

以下、本発明の実施の形態について図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

本発明に係る地中熱利用装置は、図1に示すように、一般にエアコンとして知られるようなヒートポンプシステムを有する建物1に対して、建物1の換気又はヒートポンプシステムの熱交換に地中熱を利用するためのものである。この地中熱利用装置は、一部が地中に埋設され分岐した通気経路としての通気管2と、通気管2の分岐点に設けられた空気流路の切換手段としての二方電磁弁3等とを有している。
<建物>
建物1は、基礎断熱として構築された底盤コンクリート4と、その側縁に立設された側壁コンクリート5と、さらにその上に立設された外壁部6および天井部7とから主に構成され、建物1内の気密性は高いものとなっている。
As shown in FIG. 1, the geothermal heat utilization apparatus according to the present invention provides ground heat to ventilation of a building 1 or heat exchange of the heat pump system for a building 1 having a heat pump system generally known as an air conditioner. It is for use. This geothermal heat utilization device includes a vent pipe 2 as a vent path that is partially buried in the ground and branched, and a two-way electromagnetic valve 3 as a switching means for an air flow path provided at a branch point of the vent pipe 2. Etc.
<Building>
The building 1 is mainly composed of a bottom concrete 4 constructed as a foundation heat insulation, a side wall concrete 5 erected on the side edge thereof, and an outer wall part 6 and a ceiling part 7 erected on the concrete. The airtightness in the building 1 is high.

側壁コンクリート5、外壁部6および天井部7により囲まれる空間は、床部8により居室などの屋内9と床下空間10とに区切られている。外壁部6には、その内側に屋内9の温度を計測する第1の温度センサが設けられている。また外壁部6には、建物1の内外の換気を行う給気口11A,・・・と、排気口11B,・・・とが形成されている。建物1の気密性の高さから、主として給気口11Aと排気口11Bとにより屋内9の換気が行われる。
<床下空間>
建物1の床下空間10には、後述する空調装置12の室内機13が設置されており、この室内機13が床下空間10の暖房又は冷房を行うことで、床下空間10の温熱又は冷熱が床部8を介して屋内9に伝達され、これにより屋内9の暖房又は冷房が行われることとなる。
<基礎断熱部>
側壁コンクリート5の内側には、断熱材によって基礎断熱部14が形成される。このように床下空間10の側方が基礎断熱部14によって囲まれると、空調装置12の室内機13から放出された温熱又は冷熱は、室内機13からみて床部8の方向又は底盤コンクリート4の方向に主に伝達され、側方から漏出しにくいものとなる。
<地表断熱部>
一方、建物1の外周には、図1に示すように、地盤Gの地表面に沿って地表断熱部15が設けられている。地表断熱部15の一端は建物1の底盤コンクリート4の外壁面に当接されており、ここから建物1の横方向に延びるように地表断熱部15が土中に埋設されている。この地表断熱部15は、断熱材を地表の浅い部分に埋設させたり、地表面を断熱材で覆うことによって形成される。地表断熱部15の建物1とは反対側の端部から、地盤Gの深部に向けて地中断熱部16が埋設されている。
A space surrounded by the side wall concrete 5, the outer wall portion 6, and the ceiling portion 7 is divided into an indoor 9 such as a living room and an underfloor space 10 by a floor portion 8. The outer wall 6 is provided with a first temperature sensor for measuring the temperature of the indoor 9 inside thereof. In addition, air supply ports 11A,... For ventilating the inside and outside of the building 1 and exhaust ports 11B,. Due to the high airtightness of the building 1, the indoor 9 is ventilated mainly by the air supply port 11A and the exhaust port 11B.
<Underfloor space>
An indoor unit 13 of an air conditioner 12 to be described later is installed in the underfloor space 10 of the building 1, and the indoor unit 13 performs heating or cooling of the underfloor space 10, so that the heat or cold of the underfloor space 10 is heated to the floor. It is transmitted to the indoor 9 via the unit 8, whereby the indoor 9 is heated or cooled.
<Basic heat insulation part>
Inside the side wall concrete 5, a basic heat insulating portion 14 is formed by a heat insulating material. Thus, when the side of the underfloor space 10 is surrounded by the basic heat insulating part 14, the heat or cold released from the indoor unit 13 of the air conditioner 12 is viewed from the indoor unit 13 in the direction of the floor 8 or the bottom concrete 4. It is mainly transmitted in the direction and is difficult to leak from the side.
<Surface insulation section>
On the other hand, on the outer periphery of the building 1, a ground heat insulating portion 15 is provided along the ground surface of the ground G as shown in FIG. 1. One end of the surface heat insulating portion 15 is in contact with the outer wall surface of the bottom concrete 4 of the building 1, and the surface heat insulating portion 15 is embedded in the soil so as to extend in the lateral direction of the building 1 from here. The surface heat insulating portion 15 is formed by embedding a heat insulating material in a shallow portion of the ground surface or covering the ground surface with a heat insulating material. An underground heat insulating part 16 is embedded from the end of the ground heat insulating part 15 opposite to the building 1 toward the deep part of the ground G.

基礎断熱部14、地表断熱部15、地中断熱部16としては、発泡ウレタン、発泡スチロール等の断熱材を使用することができる。
<空調装置>
本実施の形態で説明する空調装置12は、床下空間10の冷房や暖房をおこなう室内機13と、屋外25の空気と熱交換をおこなう室外機17と、これらを繋いだ冷媒経路18(図2参照)とを有するヒートポンプ式の空調装置である。
<ヒートポンプ>
空調装置12について、図2を参照しながらさらに詳細に説明する。
As the base heat insulation part 14, the surface heat insulation part 15, and the underground heat insulation part 16, heat insulation materials, such as urethane foam and a polystyrene foam, can be used.
<Air conditioner>
The air conditioner 12 described in the present embodiment includes an indoor unit 13 that cools and heats the underfloor space 10, an outdoor unit 17 that exchanges heat with the air in the outdoors 25, and a refrigerant path 18 that connects them (FIG. 2). A heat pump type air conditioner.
<Heat pump>
The air conditioner 12 will be described in more detail with reference to FIG.

この熱搬送流体としての冷媒の経路となる冷媒経路18には、2本の冷媒管が配管されており、その内部を冷媒が搬送される。この冷媒は、室内機13と室外機17との間で循環される冷媒であり、冷房時と暖房時では搬送方向が逆になる。
(冷房)
冷房時は、冷媒管を通って室外機17の圧縮機19へ流れ込んだ気体状の冷媒は、圧縮機19内で圧縮されて高圧・高温状態になる。そして、その状態で室外機17の熱交換部20に流れ込み、室外機17の外気取込口21から取り込まれた外気と熱交換される。このとき、冷媒は温度が下がって液状になり、熱交換部20を通過した外気の温度は上昇して室外機17のファンの回転により排気口22から排出される。
Two refrigerant pipes are provided in the refrigerant path 18 serving as a refrigerant path as the heat transfer fluid, and the refrigerant is conveyed through the refrigerant pipe 18. This refrigerant is a refrigerant circulated between the indoor unit 13 and the outdoor unit 17, and the transport direction is reversed during cooling and heating.
(Air conditioning)
During cooling, the gaseous refrigerant flowing into the compressor 19 of the outdoor unit 17 through the refrigerant pipe is compressed in the compressor 19 to be in a high pressure / high temperature state. In this state, the air flows into the heat exchanging unit 20 of the outdoor unit 17 and is exchanged with the external air taken in from the outdoor air intake port 21 of the outdoor unit 17. At this time, the temperature of the refrigerant decreases and becomes liquid, and the temperature of the outside air that has passed through the heat exchanging unit 20 rises and is discharged from the exhaust port 22 by the rotation of the fan of the outdoor unit 17.

続いて、液状になった冷媒は膨張弁23に搬送され、圧力を一気に下げられて低圧・低温状態の液状となり、そのまま冷媒管を通って室内機13に搬送される。   Subsequently, the liquefied refrigerant is conveyed to the expansion valve 23, the pressure is lowered at a stroke to become a low-pressure / low-temperature liquid, and is directly conveyed to the indoor unit 13 through the refrigerant pipe.

図1に示すように、床下空間10の室内機13の熱交換機(図示省略)に流れ込んだ冷媒により床下空間10の空調を行う。   As shown in FIG. 1, the underfloor space 10 is air-conditioned by the refrigerant flowing into the heat exchanger (not shown) of the indoor unit 13 in the underfloor space 10.

この室内機13の熱交換機において、床下空間10の空気に間接的に触れた冷媒が空気中の熱を奪って蒸発して気体に変化する。そして、熱を奪われた空気は、冷風として室内機13の送風口から床下空間10に吹き出される。
(暖房)
これに対して暖房時は、冷房時とは逆向きに冷媒が循環することになる。すなわち、室内機13の熱交換機には高圧・高温の気体状の冷媒が搬送され、室内機13の吸気口から取り込まれた床下空間10の空気を温風に変えて送風口から吹き出させる。
In the heat exchanger of the indoor unit 13, the refrigerant indirectly touching the air in the underfloor space 10 takes heat in the air and evaporates to change into a gas. The air deprived of heat is blown out from the blower opening of the indoor unit 13 into the underfloor space 10 as cold air.
(heating)
In contrast, during heating, the refrigerant circulates in the opposite direction to that during cooling. That is, a high-pressure and high-temperature gaseous refrigerant is conveyed to the heat exchanger of the indoor unit 13, and the air in the underfloor space 10 taken from the intake port of the indoor unit 13 is changed to warm air and blown out from the blower port.

そして、熱交換機において熱を奪われて液状になった冷媒は、冷媒管を通って室外機17の膨張弁23に搬送される。この膨張弁23で圧力を一気に下げられて低圧・低温状態になった冷媒は、液状のまま熱交換部20に搬送される。   Then, the refrigerant that has been deprived of heat in the heat exchanger and turned into a liquid state is conveyed to the expansion valve 23 of the outdoor unit 17 through the refrigerant pipe. The refrigerant whose pressure has been reduced by the expansion valve 23 to a low pressure / low temperature state is conveyed to the heat exchanging unit 20 in a liquid state.

続いて、熱交換部20に搬送された冷媒は、室外機17の外気取込口21から取り込まれた建物1周辺の外気又は後述する通気管2からの外気と熱交換をおこなう。この結果、冷媒は気体になって温度が上昇し、熱交換部20を通過した外気の温度は下降してから排出される。   Subsequently, the refrigerant transferred to the heat exchanging unit 20 exchanges heat with the outside air around the building 1 taken in from the outside air inlet 21 of the outdoor unit 17 or outside air from the ventilation pipe 2 described later. As a result, the refrigerant becomes a gas and the temperature rises, and the temperature of the outside air that has passed through the heat exchange unit 20 is lowered and then discharged.

さらに、熱交換部20から圧縮機19に流れ込んだ気体状の冷媒は、圧縮機19内で圧縮されて高圧・高温状態になって冷媒管を通って室内機13に向けて搬送される。
<地中熱利用装置>
このような空調装置12を備える建物1に対して、本実施の形態の地中熱利用装置は、図1に示すように、地盤Gに埋設され分岐した通気管2と、通気管2の分岐点に設けられた二方向電磁弁3とを主として備えている。
<通気管>
通気管2は、その一部が地中に埋設され外気を取り込んで地中熱と熱交換をさせるためのものであり、例えば、連続した一本の貫通路が形成され鋼管、塩化ビニル管などの管材によって構築される。
Further, the gaseous refrigerant that has flowed into the compressor 19 from the heat exchange unit 20 is compressed in the compressor 19 to be in a high pressure / high temperature state, and is conveyed toward the indoor unit 13 through the refrigerant pipe.
<Ground heat utilization device>
For the building 1 having such an air conditioner 12, the geothermal heat utilization device according to the present embodiment includes a vent pipe 2 embedded in the ground G and branched, and a branch of the vent pipe 2, as shown in FIG. It mainly includes a two-way electromagnetic valve 3 provided at a point.
<Ventilation pipe>
The ventilation pipe 2 is a part of which is buried in the ground to take in outside air and exchange heat with the ground heat. For example, a continuous through passage is formed and a steel pipe, a vinyl chloride pipe, etc. Constructed with tube material.

図1の例では、地表断熱部15、地中断熱部16で囲まれた箇所に埋設されている。これにより、床下空間10から底盤コンクリート4を通じて地中に漏出した温熱も効率よく再利用される。   In the example of FIG. 1, it is embedded in a location surrounded by the ground surface heat insulating portion 15 and the underground heat insulating portion 16. Thereby, the heat leaked from the underfloor space 10 into the ground through the bottom concrete 4 is also efficiently reused.

また、通気管2の分岐点は、外気を取り込む側を上流側とした場合に、温調空気を吹き出す下流側であって、地表面に近い箇所で二つに分岐されている。   Further, the branch point of the vent pipe 2 is branched into two at a location close to the ground surface on the downstream side where the temperature-controlled air is blown when the outside air intake side is the upstream side.

通気管2の一端には吸込口2aが形成され、この吸込口2aには外気を取り込んで通気管2内の空気を移送させるための吸込手段としての吸込ファン24、除塵フィルター、第2の温度センサ(図示省略)等が設けられている。   A suction port 2a is formed at one end of the ventilation pipe 2, and a suction fan 24, a dust filter, and a second temperature as suction means for taking outside air into the suction port 2a and transferring the air in the ventilation pipe 2 are provided. A sensor (not shown) and the like are provided.

この吸込ファン24や第2の温度センサは、後述の屋内9に設置された空調装置12のリモコン27に接続されている。この吸込ファン24を設ける位置は、通気管2の分岐点より上流側であればよい。   The suction fan 24 and the second temperature sensor are connected to a remote controller 27 of the air conditioner 12 installed in the indoor 9 described later. The position where the suction fan 24 is provided may be upstream of the branch point of the vent pipe 2.

通気管2の分岐点より下流の2つの他端にはそれぞれ吹出口2A,2Bが形成されている。このうち一方の吹出口2Aは、カバー部26等により空調装置12の室外機17の外気取込口21(図2参照)に接続されている。他方の吹出口2Bは、建物1の給気口11A,・・・のいずれかに接続されている。   Air outlets 2A and 2B are formed at two other ends downstream of the branch point of the vent pipe 2, respectively. One of these outlets 2A is connected to the outside air intake 21 (see FIG. 2) of the outdoor unit 17 of the air conditioner 12 by a cover portion 26 or the like. The other outlet 2B is connected to one of the air inlets 11A of the building 1.

吸込ファン24の回転又は自然風等により通気管2内に流入した外気の温度が地中の温度より高ければ、外気の熱が地中に移動して外気(空気)の温度が低下し、二方向電磁弁3が通電・開成状態で、建物1周辺の外気より低い温度の空気が吹出口2A又は吹出口2Bから吐き出される。   If the temperature of the outside air flowing into the ventilation pipe 2 due to the rotation of the suction fan 24 or natural wind is higher than the temperature in the ground, the heat of the outside air moves into the ground and the temperature of the outside air (air) decreases. When the directional solenoid valve 3 is energized and opened, air having a temperature lower than the outside air around the building 1 is discharged from the air outlet 2A or the air outlet 2B.

逆に、吸い込まれた外気の温度が地中の温度より低ければ、外気の熱が地中に移動して外気(空気)の温度が上昇し、二方向電磁弁3が通電・開成状態で、建物1周辺の外気より高い温度の空気が吹出口2A又は吹出口2Bから吐き出される。
<接続部分>
図2に示すように、吹出口2Aと室外機17の外気取込口21との間は、カバー部26によって覆われている。このカバー部26は、一方の端部が吹出口2Aと略同じ大きさの断面形に形成されており、そこから徐々に奥行き方向(図2において)へ拡開していき他方の端部は外気取込口21と略同じ大きさの断面形に形成されている。
Conversely, if the temperature of the sucked outside air is lower than the temperature in the ground, the heat of the outside air moves into the ground, the temperature of the outside air (air) rises, and the two-way solenoid valve 3 is energized and opened, Air having a temperature higher than the outside air around the building 1 is discharged from the air outlet 2A or the air outlet 2B.
<Connection part>
As shown in FIG. 2, the space between the air outlet 2 </ b> A and the outside air intake port 21 of the outdoor unit 17 is covered with a cover portion 26. One end of the cover portion 26 is formed in a cross-sectional shape that is substantially the same size as the air outlet 2A, and gradually expands in the depth direction (in FIG. 2) from the other end. It is formed in a cross-sectional shape that is approximately the same size as the outside air inlet 21.

なお、カバー部26の一部にはカバー部26の周辺の外気を直接取り込むための複数の孔26a,・・・が形成されており、この複数の孔26a,・・・はいわゆる一方向弁の如く開閉部材26bによりカバー部26の外側から内側へ一方向にのみ外気が流れるように構成されている(図3参照)。図3に示す2点鎖線は開成時を示し、矢印はカバー部26の内部に外気が取り込まれている状態を示す。   In addition, a plurality of holes 26a,... For directly taking in the outside air around the cover part 26 are formed in a part of the cover part 26, and the plurality of holes 26a,. As described above, the open / close member 26b is configured so that outside air flows only in one direction from the outside to the inside of the cover portion 26 (see FIG. 3). A two-dot chain line shown in FIG. 3 indicates the time of opening, and an arrow indicates a state in which outside air is taken into the cover portion 26.

これにより、通気管2から温調空気を外気取込口21に取り込まない又は低流量で取り込む場合でも、カバー部26の内部が室外機17のファン(図示省略)の回転により負圧とならずに確実に外気取込口21に外気が供給される。逆に通気管2の吹出口2Aから温調空気がカバー部26内に吹き出してカバー部26内が正圧となる場合には逆に外気の取り込みが抑制される。   Thereby, even when temperature-controlled air is not taken into the outside air inlet 21 from the ventilation pipe 2 or is taken in at a low flow rate, the inside of the cover portion 26 does not become negative pressure due to the rotation of the fan (not shown) of the outdoor unit 17. The outside air is reliably supplied to the outside air inlet 21. Conversely, when temperature-controlled air blows out from the air outlet 2A of the vent pipe 2 into the cover part 26 and the inside of the cover part 26 becomes a positive pressure, the intake of outside air is suppressed.

そして、通気管2の吹出口2Aから吹き出た空気は、カバー部26の内空を通って室外機17の外気取込口21(図2参照)に供給される。
<二方向電磁弁>
通気管2の分岐点に設けられた切換手段としての二方向電磁弁3は、通気管2内で温調空気の給気先を建物1の屋内9又は空調装置12の室外機17に選択するためのものである。
And the air which blown off from the blower outlet 2A of the ventilation pipe 2 is supplied to the outdoor air intake 21 (refer FIG. 2) of the outdoor unit 17 through the inner space of the cover part 26.
<Two-way solenoid valve>
The two-way solenoid valve 3 as a switching means provided at the branch point of the vent pipe 2 selects the air supply destination of the temperature-controlled air in the vent pipe 2 as the indoor unit 9 of the building 1 or the outdoor unit 17 of the air conditioner 12. Is for.

この二方向電磁弁3は、通気管2内の分岐点付近を流れる温調空気の温度を計測する第3の温度センサを有し、吸込ファン24と同様に屋内9に設けられた空調装置12を操作するためのリモコン27にそれぞれが接続されている。
<リモコン>
リモコン27は、地中熱利用装置を制御するリモコンとしても機能し、温度や設定内容を表す表示部、制御手段、記憶手段、給気先や風量の設定ボタン、自動運転モードの設定ボタン等を有している。
This two-way solenoid valve 3 has a third temperature sensor for measuring the temperature of temperature-controlled air flowing near the branch point in the vent pipe 2, and the air conditioner 12 provided in the indoor 9 like the suction fan 24. Each is connected to a remote controller 27 for operating the.
<Remote control>
The remote controller 27 also functions as a remote controller for controlling the geothermal heat utilization device, and includes a display unit indicating temperature and setting contents, a control unit, a storage unit, an air supply destination and air volume setting button, an automatic operation mode setting button, and the like. Have.

この記憶手段には空調装置12の制御命令に関するプログラムの他に、二方向電磁弁3の制御命令に関するプログラム、吸込ファン24の制御命令に関するプログラム等が記憶されている。これらのプログラムに基づいた制御命令により二方向電磁弁3、吸込ファン24が制御される。   In addition to the program related to the control command for the air conditioner 12, this storage means stores a program related to the control command for the two-way solenoid valve 3, a program related to the control command for the suction fan 24, and the like. The two-way solenoid valve 3 and the suction fan 24 are controlled by control commands based on these programs.

さらに、この記憶手段には二方向電磁弁3を第1〜3の温度センサの計測結果に基づいて地中熱利用装置を自動制御するための自動運転モードのプログラムが記憶されている。   Further, this storage means stores an automatic operation mode program for automatically controlling the geothermal heat utilization device of the two-way electromagnetic valve 3 based on the measurement results of the first to third temperature sensors.

すなわち、リモコン27を操作することにより、吸込ファン24と二方向電磁弁3の電源のON、OFFや、建物1の屋内9又は室外機17へ給気する空気の風量の設定、温調空気の給気先の設定を手動で行うことができるようになっている。   That is, by operating the remote controller 27, the power of the suction fan 24 and the two-way solenoid valve 3 is turned on and off, the air volume supplied to the indoor 9 or outdoor unit 17 of the building 1 is set, and the temperature control air The air supply destination can be set manually.

また、この手動設定の代わりに、第1〜3の温度センサの計測結果に基づいて、給気先の設定や風量等の設定を自動で行う自動運転モードのON・OFF設定が可能となっている。
<動作>
(通常運転モード)
屋内9に設置されたリモコン27を操作して、空調装置12の電源をONに設定し、空調装置12の冷房運転又は暖房運転を行うと、空調装置12の室内機13により床下空間10、ひいては屋内9の冷房又は暖房が行われる。
Also, instead of this manual setting, ON / OFF setting of the automatic operation mode that automatically sets the air supply destination and the air volume based on the measurement results of the first to third temperature sensors is possible. Yes.
<Operation>
(Normal operation mode)
When the air conditioner 12 is turned on by operating the remote controller 27 installed in the indoor 9 and the air conditioner 12 is cooled or heated, the indoor unit 13 of the air conditioner 12 causes the underfloor space 10 and consequently The indoor 9 is cooled or heated.

ここで、リモコン27を操作して地中熱利用装置をONに設定すると、初期設定の給気先、風量で地中熱利用装置の吸込ファン24と二方向電磁弁3が稼動する。この給気先、風量の設定はリモコン27を操作することで変更することができるようになっている。
(自動運転モード)
自動運転モードをONに設定すると、通常運転モードから切り替わり、二方向電磁弁3が第1〜3の温度センサの検出結果に基づいて温調空気の給気先が自動設定される。
Here, when the geothermal heat utilization device is set to ON by operating the remote controller 27, the suction fan 24 and the two-way electromagnetic valve 3 of the geothermal heat utilization device are operated with the initially set air supply destination and air volume. The setting of the air supply destination and the air volume can be changed by operating the remote controller 27.
(Automatic operation mode)
When the automatic operation mode is set to ON, the operation mode is switched from the normal operation mode, and the two-way solenoid valve 3 automatically sets the supply destination of the temperature-controlled air based on the detection results of the first to third temperature sensors.

すなわち、夏季に空調装置12を冷房運転中、温調空気の温度が、屋内9の温度より低い場合には温調空気を建物1の屋内9へ給気し、屋内9の温度より高く且つ外気温未満の場合には室外機17内へ給気し、外気温以上の場合にはこの給気を行わず、代わりに室外機周辺の外気がカバー部26の孔26aを通じて室外機17内へ自然給気される。   That is, during the cooling operation of the air conditioner 12 in summer, when the temperature of the temperature-controlled air is lower than the temperature of the indoor 9, the temperature-controlled air is supplied to the indoor 9 of the building 1 and is higher than the temperature of the indoor 9 and outside. When the temperature is lower than the temperature, the air is supplied into the outdoor unit 17, and when the temperature is higher than the outside temperature, the air is not supplied. Instead, the outside air around the outdoor unit is naturally introduced into the outdoor unit 17 through the hole 26a of the cover portion 26. It is aired.

冬季に空調装置12を暖房運転中、温調空気の温度が、屋内9の温度より高い場合には温調空気を建物1の屋内9へ給気し、屋内9の温度より低く且つ外気温より高い場合には室外機17内へ給気し、外気温以下の場合にはこの給気を行わず、代わりに室外機周辺の外気がカバー部26の孔26aを通じて室外機17内へ自然給気される。   During the heating operation of the air conditioner 12 in winter, when the temperature of the temperature-controlled air is higher than the temperature of the indoor 9, the temperature-controlled air is supplied to the indoor 9 of the building 1, and is lower than the temperature of the indoor 9 and above the outside temperature. When the air temperature is high, the air is supplied into the outdoor unit 17. When the air temperature is lower than the outdoor temperature, this air supply is not performed. Instead, the outside air around the outdoor unit is naturally supplied into the outdoor unit 17 through the hole 26 a of the cover 26. Is done.

次に、本実施の形態の地中熱利用装置の作用について説明する。
(1)本実施の形態の地中熱利用装置によれば、必要に応じて温調空気の給気先を建物1の屋内9又は室外機17に切り換えることができる。
Next, the operation of the geothermal heat utilization device of the present embodiment will be described.
(1) According to the geothermal heat utilization apparatus of the present embodiment, the supply destination of temperature-controlled air can be switched to the indoor 9 or the outdoor unit 17 of the building 1 as necessary.

冬季暖房運転や夏季冷房運転時に、暖房や冷房開始直後で外気温と屋内9との温度差が小さく、冷房や暖房が実質的に稼動していない初期段階では、温調空気を屋内9に給気することで冷房や暖房の代わりとなる。   During the winter heating operation or summer cooling operation, the temperature difference between the outside air temperature and the indoor 9 is small immediately after the start of heating or cooling, and the temperature-controlled air is supplied to the indoor 9 in the initial stage where the cooling or heating is not substantially operating. It can be used as a substitute for cooling or heating.

さらに、空調装置12による冷房や暖房が進んで、屋内9に直接取り込むには温調空気が冷たすぎたり熱すぎたりする場合となっても、給気先を室外機とすることで外気よりは室外機において高効率に冷媒と熱交換させることができる。   Furthermore, even if the air conditioning device 12 has advanced cooling and heating, and the temperature-controlled air is too cold or too hot to be taken directly into the indoor 9, the air supply destination is an outdoor unit, so that it is more effective than the outside air. Heat exchange with the refrigerant can be performed with high efficiency in the outdoor unit.

さらに建物1の換気目的で給気先を建物1の屋内9とすれば、温調空気により屋内9を換気することとなるので、外気による換気よりは屋内9の熱の損失を低く抑えた換気をすることができる。   Furthermore, if the air supply destination is the indoor 9 of the building 1 for the purpose of ventilation of the building 1, the indoor 9 is ventilated by temperature-controlled air. Therefore, the ventilation in which the heat loss of the indoor 9 is suppressed lower than the ventilation by the outside air. Can do.

このように、状況に応じて温調空気の供給先を選択できるので、空調装置12の冷房・暖房運転に地中熱が無駄なく有効に利用され、ほぼ年間を通じて省電力・省エネルギーを達成できる。
(2)通気管2の吸込口2aに外気を吸い込むための吸込ファン24を設けたので、温調空気を建物1の屋内9に取り込む場合と、空調装置12の室外機17に取り込む場合との双方の場合において、一の吸込ファン24によりそれぞれの給気を行うことができる。
(3)空調装置12を操作するためのリモコンに二方向電磁弁3を接続し、リモコン27の操作により二方向電磁弁3を制御して温調空気の給気先を選択できるようにしたので、温調空気の給気先の選択と設定が簡単となる。
(4)空調装置12の自動運転モードによれば、上述のように第1〜3の各温度センサが検出する温度に基づいて温調空気の給気先を建物1の屋内9又は室外機17に自動的に設定するので、例えば料理等の人為的な要因等により建物1の屋内9の温度が変化しても、それに応じて二方向電磁弁3が自動的に切り換わり適正な給気先が自動で選択される。このため、ユーザが定期的に外気温度等をチェックして改めて給気先を設定し直す必要がなく、地中熱の利用機会を逸することなく地中熱の利用効率が向上する。
Thus, since the supply destination of temperature-controlled air can be selected according to the situation, geothermal heat can be effectively used for cooling and heating operation of the air conditioner 12 without waste, and power saving and energy saving can be achieved almost throughout the year.
(2) Since the suction fan 24 for sucking outside air is provided in the suction port 2a of the ventilation pipe 2, the case where the temperature-controlled air is taken into the indoor 9 of the building 1 and the case where the temperature-controlled air is taken into the outdoor unit 17 of the air conditioner 12 In both cases, each intake air can be supplied by one suction fan 24.
(3) Since the two-way solenoid valve 3 is connected to the remote controller for operating the air conditioner 12, and the two-way solenoid valve 3 is controlled by the operation of the remote controller 27 so that the temperature-controlled air supply destination can be selected. This makes it easy to select and set the temperature control air supply destination.
(4) According to the automatic operation mode of the air conditioner 12, as described above, the temperature-controlled air is supplied to the indoor 9 or the outdoor unit 17 based on the temperatures detected by the first to third temperature sensors. Therefore, even if the temperature of the indoor 9 of the building 1 changes due to, for example, human factors such as cooking, the two-way solenoid valve 3 automatically switches accordingly and the appropriate air supply destination Is automatically selected. For this reason, it is not necessary for the user to periodically check the outside air temperature or the like and set the air supply destination again, and the use efficiency of the geothermal heat is improved without losing the opportunity to use the geothermal heat.

図4は、本発明の実施例に係る地中熱利用装置を示す図である。   FIG. 4 is a diagram illustrating a geothermal heat utilization apparatus according to an embodiment of the present invention.

図4に示すように、二方向電磁弁3の代わりに通気管2の分岐点より下流の位置に流量調節手段をそれぞれ設けて、以下に説明するようにこれらを同時に制御するようにしてもよい。   As shown in FIG. 4, instead of the two-way solenoid valve 3, flow rate adjusting means may be provided at positions downstream from the branch point of the vent pipe 2, and these may be controlled simultaneously as described below. .

すなわち、実施例の地中熱利用装置は、二方向電磁弁3の代わりに、流量調節手段としての開閉ダンパー3A,3Bおよびファン3C,3Dを有している。   That is, the geothermal heat utilization apparatus of the embodiment has opening / closing dampers 3A, 3B and fans 3C, 3D as flow rate adjusting means instead of the two-way solenoid valve 3.

この場合、図4に示すように、建物1の給気口11Aに接続された通気管2の吹出口2Bと分岐点との間、室外機17に接続された通気管2の吹出口2Aと通気管2の分岐点との間のそれぞれに、流量調節手段としての開閉ダンパー3A,3Bおよびファン3C,3Dを設ける。   In this case, as shown in FIG. 4, between the outlet 2B of the vent pipe 2 connected to the air inlet 11A of the building 1 and the branch point, the outlet 2A of the vent pipe 2 connected to the outdoor unit 17 Opening and closing dampers 3A and 3B and fans 3C and 3D as flow rate adjusting means are provided between the branch points of the vent pipe 2.

これらのファン3C,3Dやダンパー3A,3Bは、屋内9のリモコン27に接続されており、上述した通常運転モードや自動運転モードの制御が可能となっている。すなわち、屋内9に設置されたリモコン27を操作して、上記同様に床下空間10と屋内9の冷房又は暖房が行われる。また、ここで、リモコン27を操作して流量調節手段の制御(開閉ダンパー3A,3Bの開閉制御およびファン3C,3Dの回転制御)をすることができる。   These fans 3C, 3D and dampers 3A, 3B are connected to a remote control 27 in the indoor 9 and can control the normal operation mode and the automatic operation mode described above. That is, the remote control 27 installed in the indoor 9 is operated to cool or heat the underfloor space 10 and the indoor 9 as described above. Further, here, the remote controller 27 can be operated to control the flow rate adjusting means (open / close control of the open / close dampers 3A, 3B and rotation control of the fans 3C, 3D).

(通常運転モード)
実施例の地中熱利用装置によれば、温調空気を建物1の屋内9に給気する場合には、図4(a)に示すように、ダンパー3Aを開成しファン3Cを回転させて温調空気を屋内9に流入させるとともに、ファン3Dを停止しダンパー3Bを閉成する。
(Normal operation mode)
According to the geothermal heat utilization apparatus of the embodiment, when the temperature-controlled air is supplied to the indoor 9 of the building 1, the damper 3A is opened and the fan 3C is rotated as shown in FIG. While the temperature-controlled air flows into the indoor 9, the fan 3D is stopped and the damper 3B is closed.

一方、空調装置12の室外機17に温調空気を給気する場合には、図4(b)に示すように、ダンパー3Bを開成しファン3Dを回転させて温調空気を室外機17に流入させるとともに、ファン3Cを停止しダンパー3Aを閉成する。   On the other hand, when supplying the temperature-controlled air to the outdoor unit 17 of the air conditioner 12, the damper 3B is opened and the fan 3D is rotated to supply the temperature-controlled air to the outdoor unit 17, as shown in FIG. At the same time, the fan 3C is stopped and the damper 3A is closed.

これにより、温調空気の給気先を建物1の屋内9又は室外機17に設定することができる。   Thereby, the supply destination of temperature-controlled air can be set in the indoor 9 or the outdoor unit 17 of the building 1.

自動運転モードについては、既に説明したように給気先が自動に切り替わるので、ユーザが定期的に外気温度等をチェックして改めて給気先を設定し直す必要がなく、地中熱の利用機会を逸することなく地中熱の利用効率が向上する。   In the automatic operation mode, as already explained, the air supply destination is automatically switched, so there is no need for the user to periodically check the outside air temperature etc. and set the air supply destination again. The utilization efficiency of geothermal heat is improved without losing energy.

以上、図面を参照して、本発明に係る実施の形態および実施例を詳述してきたが、具体的な構成は、この実施の形態および実施例に限らず、本発明の要旨を逸脱しない程度の設計的変更は、本発明に含まれる。   The embodiments and examples according to the present invention have been described in detail above with reference to the drawings. However, the specific configuration is not limited to the embodiments and examples, and does not depart from the gist of the present invention. These design changes are included in the present invention.

例えば、前記実施の形態では、建物1の床下空間に設置された空調装置12に対して適用する場合について説明したが、これに限定されるものではなく、建物1の室内に設置される空調装置や、さらには住宅以外の建物に設置される空調装置に対しても適用することができる。   For example, in the above-described embodiment, the case of applying to the air conditioner 12 installed in the underfloor space of the building 1 has been described. However, the present invention is not limited to this, and the air conditioner installed in the room of the building 1 It can also be applied to an air conditioner installed in a building other than a house.

また、前記実施の形態では、通気管2の吹出口2Aと室外機17の外気取込口21との間をカバー部26で覆ったが、これに限定されるものではなく、吹出口2Aが外気取込口21に近接して配置されている場合はカバー部26を設けなくてもよい。   Moreover, in the said embodiment, although between the blower outlet 2A of the ventilation pipe 2 and the outdoor air intake 21 of the outdoor unit 17 was covered with the cover part 26, it is not limited to this, The blower outlet 2A is not limited to this. In the case where the cover portion 26 is disposed in the vicinity of the outside air intake port 21, the cover portion 26 may not be provided.

通気管2は、二分岐としたが、建物1の大きさ等に合わせて三分岐以上としてもよい。   Although the ventilation pipe 2 has two branches, it may have three or more branches in accordance with the size of the building 1 or the like.

通気管2の地中埋設部分については通気経路があればよいので、単に通気用の穴を掘削して内壁を固めた地下トンネルとし、この部分の通気管の一部又は全部を省略してもよい。   Since it is sufficient if there is a ventilation path for the underground portion of the ventilation pipe 2, it is possible to simply excavate a hole for ventilation to form an underground tunnel with a solid inner wall, and omit a part or all of this part of the ventilation pipe. Good.

1・・・建物
11A・・・給気口
11B・・・排気口
13・・・室内機
17・・・室外機
18・・・冷媒経路(熱搬送流体の経路)
12・・・空調装置
2・・・通気管(通気経路)
21・・・外気取込口
2a・・・吸込口
3・・・二方電磁弁(切換手段)
3A,3B・・・開閉ダンパー(流量調節手段)
3C,3D・・・ファン(流量調節手段)
DESCRIPTION OF SYMBOLS 1 ... Building 11A ... Air supply port 11B ... Exhaust port 13 ... Indoor unit 17 ... Outdoor unit 18 ... Refrigerant path (heat carrier fluid path)
12 ... Air conditioner 2 ... Ventilation pipe (ventilation path)
21 ... Outside air intake port 2a ... Suction port 3 ... Two-way solenoid valve (switching means)
3A, 3B ・ ・ ・ Open / close damper (flow rate adjusting means)
3C, 3D ... Fan (flow rate adjusting means)

Claims (4)

建物の中に設置されて建物内の空気と熱交換をおこなう室内機と、外気取込口から取り込まれた建物外の空気と熱交換をおこなう室外機と、前記室内機と前記室外機とを循環する熱搬送流体の経路とを有する空調装置を備えるとともに、給気口と排気口が設けられた前記建物の地中熱利用装置であって、
吸込口が外気に連通した通気経路の少なくとも一部を地中に形成し、
該通気経路に分岐点を設けるとともに、該分岐点より下流の一の吹出口を前記室外機の外気取込口に向けて設け、
他の一の吹出口を前記建物の給気口に接続し、
前記通気経路の分岐点に空気流路の切換手段を設けて地中熱で温調された空気の給気先を前記外気取込口又は前記建物の給気口に切換できるようにしたことを特徴とする地中熱利用装置。
An indoor unit installed in a building for exchanging heat with the air in the building, an outdoor unit for exchanging heat with air outside the building taken in from the outside air intake port, and the indoor unit and the outdoor unit An air conditioner having a path for circulating heat transfer fluid, and a geothermal heat utilization device for the building provided with an air supply port and an exhaust port,
The suction port forms at least part of the ventilation path communicating with the outside air in the ground,
A branch point is provided in the ventilation path, and one outlet is provided downstream from the branch point toward the outside air intake of the outdoor unit,
Connect another air outlet to the air inlet of the building,
An air flow path switching means is provided at a branch point of the ventilation path so that an air supply destination of air temperature-controlled by underground heat can be switched to the outside air intake port or the building air supply port. Features a geothermal heat utilization device.
前記通気経路の分岐点より上流の部分に外気の吸込みを促進するための吸込手段を設けたことを特徴とする請求項1に記載の地中熱利用装置。   2. The geothermal heat utilization apparatus according to claim 1, wherein a suction means for accelerating the suction of outside air is provided in a portion upstream of the branch point of the ventilation path. 前記空調装置を操作するためのリモコンに前記切換手段を接続し、該リモコンの操作により前記切換手段を制御して前記地中熱で温調された空気の給気先を選択できるようにしたことを特徴とする請求項1〜3いずれか1項に記載の地中熱利用装置。   The switching means is connected to a remote control for operating the air conditioner, and the supply means of the air temperature-controlled by the underground heat can be selected by controlling the switching means by operating the remote control. The geothermal heat utilization apparatus according to any one of claims 1 to 3. 建物の中に設置されて建物内の空気と熱交換をおこなう室内機と、外気取込口から取り込まれた建物外の空気と熱交換をおこなう室外機と、前記室内機と前記室外機とを循環する熱搬送流体の経路とを有する空調装置を備えるとともに、給気口と排気口が設けられた前記建物の地中熱利用装置であって、
吸込口が外気に連通した通気経路の少なくとも一部を地中に形成し、
該通気経路に分岐点を設けるとともに、該分岐点より下流の一の吹出口を前記室外機の外気取込口に向けて設け、
他の一の吹出口を前記建物の給気口に接続し、
前記通気経路の分岐点より下流の位置のそれぞれに前記温調空気の流量を調節する流量調節手段を設けてこれらを同時に制御することにより、地中熱で温調された空気の給気先を前記外気取込口又は前記建物の給気口に切換できるようにしたことを特徴とする地中熱利用装置。
An indoor unit installed in a building for exchanging heat with the air in the building, an outdoor unit for exchanging heat with air outside the building taken in from the outside air intake port, and the indoor unit and the outdoor unit An air conditioner having a path for circulating heat transfer fluid, and a geothermal heat utilization device for the building provided with an air supply port and an exhaust port,
The suction port forms at least part of the ventilation path communicating with the outside air in the ground,
A branch point is provided in the ventilation path, and one outlet is provided downstream from the branch point toward the outside air intake of the outdoor unit,
Connect another air outlet to the air inlet of the building,
By providing a flow rate adjusting means for adjusting the flow rate of the temperature-controlled air at each of the positions downstream from the branch point of the ventilation path and controlling them simultaneously, the supply destination of air temperature-controlled by underground heat is controlled. A geothermal heat utilization device characterized in that it can be switched to the outside air intake port or the air supply port of the building.
JP2011022611A 2011-02-04 2011-02-04 Geothermal heat utilization apparatus Pending JP2012163239A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011022611A JP2012163239A (en) 2011-02-04 2011-02-04 Geothermal heat utilization apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011022611A JP2012163239A (en) 2011-02-04 2011-02-04 Geothermal heat utilization apparatus

Publications (1)

Publication Number Publication Date
JP2012163239A true JP2012163239A (en) 2012-08-30

Family

ID=46842800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011022611A Pending JP2012163239A (en) 2011-02-04 2011-02-04 Geothermal heat utilization apparatus

Country Status (1)

Country Link
JP (1) JP2012163239A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5504372B1 (en) * 2013-11-22 2014-05-28 積水化学工業株式会社 Air conditioning system control device, air conditioning system and building
JP5552190B1 (en) * 2013-04-24 2014-07-16 積水化学工業株式会社 Air conditioning system control device, air conditioning system and building
JP2015042908A (en) * 2013-08-25 2015-03-05 一般社団法人エレメント Outdoor unit system and air conditioning system
JP2015068540A (en) * 2013-09-27 2015-04-13 サンデン株式会社 Heat pump device
JP2016008764A (en) * 2014-06-24 2016-01-18 積水化学工業株式会社 Floor heating system, building, and unit building
JP2020046116A (en) * 2018-09-19 2020-03-26 株式会社リビエラ Heat exchange assist device
JP2022027687A (en) * 2020-07-30 2022-02-14 ダイキン工業株式会社 Air conditioner unit, air conditioner and installation method for air conditioner unit
JP2022116291A (en) * 2018-09-19 2022-08-09 株式会社リビエラ Heat exchange assist device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61262535A (en) * 1985-05-14 1986-11-20 Natl House Ind Co Ltd Air-conditioning device
JP2004301470A (en) * 2003-04-01 2004-10-28 Matsushita Electric Ind Co Ltd Underground heat utilizing system
JP2005024140A (en) * 2003-06-30 2005-01-27 Sekisui Chem Co Ltd Air conditioning system of building, and air conditioning/hot-water supply system of building
JP2006170596A (en) * 2004-11-16 2006-06-29 Sanyo Electric Co Ltd Air conditioner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61262535A (en) * 1985-05-14 1986-11-20 Natl House Ind Co Ltd Air-conditioning device
JP2004301470A (en) * 2003-04-01 2004-10-28 Matsushita Electric Ind Co Ltd Underground heat utilizing system
JP2005024140A (en) * 2003-06-30 2005-01-27 Sekisui Chem Co Ltd Air conditioning system of building, and air conditioning/hot-water supply system of building
JP2006170596A (en) * 2004-11-16 2006-06-29 Sanyo Electric Co Ltd Air conditioner

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5552190B1 (en) * 2013-04-24 2014-07-16 積水化学工業株式会社 Air conditioning system control device, air conditioning system and building
JP2015117835A (en) * 2013-04-24 2015-06-25 積水化学工業株式会社 Air-conditioning system control device, air-conditioning system and building
JP2015042908A (en) * 2013-08-25 2015-03-05 一般社団法人エレメント Outdoor unit system and air conditioning system
JP2015068540A (en) * 2013-09-27 2015-04-13 サンデン株式会社 Heat pump device
JP5504372B1 (en) * 2013-11-22 2014-05-28 積水化学工業株式会社 Air conditioning system control device, air conditioning system and building
JP2015102270A (en) * 2013-11-22 2015-06-04 積水化学工業株式会社 Air-conditioning system control device, air-conditioning system, and building
JP2016008764A (en) * 2014-06-24 2016-01-18 積水化学工業株式会社 Floor heating system, building, and unit building
JP2020046116A (en) * 2018-09-19 2020-03-26 株式会社リビエラ Heat exchange assist device
JP7109781B2 (en) 2018-09-19 2022-08-01 株式会社リビエラ Auxiliary heat exchange device
JP2022116291A (en) * 2018-09-19 2022-08-09 株式会社リビエラ Heat exchange assist device
JP7320308B2 (en) 2018-09-19 2023-08-03 株式会社リビエラ Auxiliary heat exchange device
JP2022027687A (en) * 2020-07-30 2022-02-14 ダイキン工業株式会社 Air conditioner unit, air conditioner and installation method for air conditioner unit

Similar Documents

Publication Publication Date Title
JP2012163239A (en) Geothermal heat utilization apparatus
KR101713546B1 (en) One body type airconditioing Circulation System
JP5858062B2 (en) Air conditioning system
WO2020103522A1 (en) Assembly-type air conditioning wall and operating method thereof
JP6249387B1 (en) Floor air conditioning system
CN106352400A (en) Air conditioning device
KR100800328B1 (en) Heat pump using underground air as heat source
CN110553325A (en) Room temperature adjusting device and control method
JP6087497B2 (en) Ground heat utilization system using garage
JP6781560B2 (en) Ventilator
JP5082639B2 (en) Air conditioner
JP5249837B2 (en) Ventilation air conditioning system and building
CN104633773A (en) Temperature adjusting system
JP3148898U (en) Geothermal building
JP5806574B2 (en) Building heat utilization structure
JP5057660B2 (en) Cold exhaust heat utilization system and control method thereof
JP2021113646A (en) Dwelling house, dwelling house with heat pump air conditioner, and air conditioning method
JP2012063032A (en) Terrestrial heat utilizing system for air-conditioning
JP6285690B2 (en) Air conditioning system and building
KR100795353B1 (en) Air-conditioning equipment using underground air as the heat source
JP2013087957A (en) Air conditioning system and building
KR101300401B1 (en) Hybrid ventilation apparatus of building and method of that
JP5485114B2 (en) Air conditioning system
CN102235728A (en) Energy-saving system for communication base station and control method thereof
KR101705747B1 (en) Absorption refrigeration type airconditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140501

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140930