JP2022116291A - Heat exchange assist device - Google Patents

Heat exchange assist device Download PDF

Info

Publication number
JP2022116291A
JP2022116291A JP2022090773A JP2022090773A JP2022116291A JP 2022116291 A JP2022116291 A JP 2022116291A JP 2022090773 A JP2022090773 A JP 2022090773A JP 2022090773 A JP2022090773 A JP 2022090773A JP 2022116291 A JP2022116291 A JP 2022116291A
Authority
JP
Japan
Prior art keywords
air
heat
heat source
heat exchanger
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022090773A
Other languages
Japanese (ja)
Other versions
JP7320308B2 (en
Inventor
喜代美 今
Kiyomi Kon
修一郎 今
Shuichiro Kon
祐治郎 今
Yujiro Kon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riviera Co Ltd
Original Assignee
Riviera Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018175110A external-priority patent/JP7109781B2/en
Application filed by Riviera Co Ltd filed Critical Riviera Co Ltd
Priority to JP2022090773A priority Critical patent/JP7320308B2/en
Publication of JP2022116291A publication Critical patent/JP2022116291A/en
Application granted granted Critical
Publication of JP7320308B2 publication Critical patent/JP7320308B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To efficiently assist in exchanging heat of a heat source side air heat exchanger in a heat source device.
SOLUTION: A heat exchange assist device comprises an air blower 10, a radiator 20 that passes air received from the air blower 10 and exchanges heat with cold/hot water supplied from the outside, a first duct part 40 that takes in and circulates air having passed through the radiator 20, and an air discharge part 50 that is connected to the downstream side of the first duct part 40 and discharges the air in the first duct part 40, where the air discharge part 50 is provided so as to blow air to an air suction surface of a heat source side air heat exchanger a1 of a heat source device A.
SELECTED DRAWING: Figure 3
COPYRIGHT: (C)2022,JPO&INPIT

Description

本発明は、例えば、チラーや、冷凍機、ショーケース、空調機、給湯器等、冷凍サイクルを有する既設の熱源機器における熱源側空気熱交換器の熱交換を補助する熱交換補助装置に関するものである。 The present invention relates to a heat exchange auxiliary device that assists heat exchange of a heat source side air heat exchanger in existing heat source equipment having a refrigeration cycle, such as chillers, refrigerators, showcases, air conditioners, water heaters, etc. be.

空冷式の室外機による冷暖房及び冷凍機等の運転は、常に外気温度に影響される。特に、夏場における冷房運転では、外気温度が高くなればなるほど、消費エネルギーが増え、逆に冬場における暖房運転では、外気温度が下がれば下がるほど、消費エネルギーが増えてしまう。また、雪国においては、空気熱交換器に雪が付着して凍結し、無駄なデフロスト運転が頻繁に起こり暖房運転が中断されてしまうという不具合も発生する。
そこで、室外機を水冷式に変えることも考えられるが、既設の設備が無駄になってしまう上、イニシャルコストが膨大にかかるので、現実的でない。
The operation of air-cooled outdoor units such as cooling and heating and refrigerators is always affected by the outside air temperature. In particular, in the cooling operation in the summer, the higher the outside air temperature, the more energy is consumed. In addition, in a snowy country, snow adheres to the air heat exchanger and freezes, resulting in frequent useless defrost operation and interruption of heating operation.
Therefore, it is conceivable to change the outdoor unit to a water-cooled type, but it is not realistic because the existing equipment is wasted and the initial cost is enormous.

このような問題を解決するために、例えば特許文献1に記載される発明では、冷凍サイクルを構成する空気調和機と、貯水槽に貯水した水を補助空気熱交換器に循環させるようにした補助装置とを備え、前記空気調和機の室外熱交換器に補助空気熱交換器を近接して、補助空気熱交換器により一度熱交換した後の空気を、室外熱交換器に通過させ再度熱交換して、外気温度の悪影響を受け難くし、冷凍サイクルの効率を向上しようとしている。 In order to solve such a problem, for example, in the invention described in Patent Document 1, an air conditioner that constitutes a refrigeration cycle and an auxiliary air heat exchanger that circulates water stored in a water tank to an auxiliary air heat exchanger. and an auxiliary air heat exchanger is brought close to the outdoor heat exchanger of the air conditioner, and the air after heat exchange by the auxiliary air heat exchanger is passed through the outdoor heat exchanger again for heat exchange. As a result, it is difficult to be adversely affected by the outside air temperature, and the efficiency of the refrigeration cycle is improved.

特開2015-78813号公報JP 2015-78813 A

しかしながら、上記従来技術によれば、空気調和機の室外熱交換器の近くに、補助空気熱交換器を配置する必要がある。このため、例えば、空気調和機が多数ある場合には、その空気調和機の室外熱交換器毎に、補助空気熱交換器を具備する必要がある。
また、例えば空冷チラーのように、3方の側面に横断面コ字状に曲げられた空気熱交換器(プレートフィンコイル)を有する場合には、この空気熱交換器に沿ってコ字状に補助空気熱交換器を配置する必要が生じ、構成が複雑でコスト高になってしまう。また、上記何れの態様においても、外気が補助空気交換器により抵抗を受けたり、補助空気熱交換器に当たった空気や通過した空気が横方向へ漏れたり等して、効率の低下が懸念される。
However, according to the above conventional technology, it is necessary to arrange an auxiliary air heat exchanger near the outdoor heat exchanger of the air conditioner. Therefore, for example, when there are many air conditioners, it is necessary to provide an auxiliary air heat exchanger for each outdoor heat exchanger of the air conditioner.
In addition, for example, when an air-cooled chiller has an air heat exchanger (plate fin coil) bent in a U-shaped cross section on three side surfaces, An auxiliary air heat exchanger needs to be arranged, which complicates the construction and increases the cost. Moreover, in any of the above-described modes, there is a concern that the outside air may receive resistance from the auxiliary air heat exchanger, or the air that hits or passes through the auxiliary air heat exchanger may leak in the lateral direction, resulting in a decrease in efficiency. be.

このような課題に鑑みて、本発明は、以下の構成を具備するものである。
送風機と、前記送風機から受ける空気を通過させて外部から供給される冷温水と熱交換するラジエータと、前記ラジエータを通過した空気を取り入れて流通させる第一のダクト部と、前記第一のダクト部の下流側に接続されて前記第一のダクト部内の空気を吐出する空気吐出部とを具備し、前記空気吐出部が、熱源機器の熱源側空気熱交換器の空気吸込み面へ空気を吹き付けるように設けられていることを特徴とする熱交換補助装置。
In view of such problems, the present invention comprises the following configurations.
A blower, a radiator for passing air received from the blower and exchanging heat with cold/hot water supplied from the outside, a first duct section for taking in and circulating the air that has passed through the radiator, and the first duct section. and an air discharge section connected to the downstream side of the first duct section for discharging air in the first duct section, wherein the air discharge section blows air onto the air intake surface of the heat source side air heat exchanger of the heat source equipment. A heat exchange auxiliary device characterized by being provided in.

本発明は、以上説明したように構成されているので、簡素な構造により既設の熱源機器の熱源側空気熱交換器の熱交換を効率よく補助することができる。 INDUSTRIAL APPLICABILITY Since the present invention is configured as described above, it is possible to efficiently assist the heat exchange of the heat source side air heat exchanger of the existing heat source equipment with a simple structure.

本発明に係る熱交換補助装置の一例について、その要部を示す平面図であり、(a)は熱交換補助装置を熱源機器に装着する前の状態を示し、(b)は熱交換補助装置を熱源機器に装着した後の状態を示す。1 is a plan view showing a main part of an example of an auxiliary heat exchange device according to the present invention, where (a) shows a state before mounting the auxiliary heat exchange device on a heat source device, and (b) shows the auxiliary heat exchange device. is attached to the heat source equipment. 本発明に係る熱交換補助装置の一例について、要部を断面で示す概略構造図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic structure drawing which shows a principal part in a cross section about an example of the heat exchange auxiliary|assistant apparatus which concerns on this invention. 本発明に係る熱交換補助装置の他例について、要部を断面で示す概略構造図である。FIG. 5 is a schematic structural diagram showing a cross section of a main part of another example of the heat exchange auxiliary device according to the present invention. 本発明に係る熱交換補助装置の他例について、要部を断面で示す概略構造図である。FIG. 5 is a schematic structural diagram showing a cross section of a main part of another example of the heat exchange auxiliary device according to the present invention.

本実施の形態では、以下の特徴を開示している。
第一の特徴は、送風機と、前記送風機から受ける空気を通過させて外部から供給される冷温水と熱交換するラジエータと、前記ラジエータを通過した空気を取り入れて流通させる第一のダクト部と、前記第一のダクト部の下流側に接続されて前記第一のダクト部内の空気を吐出する空気吐出部とを具備し、前記空気吐出部が、熱源機器の熱源側空気熱交換器の空気吸込み面へ空気を吹き付けるように設けられている(図1~図4参照)。
The present embodiment discloses the following features.
The first feature is a blower, a radiator that allows the air received from the blower to pass through and exchanges heat with cold and hot water supplied from the outside, and a first duct portion that takes in and distributes the air that has passed through the radiator, an air discharge part connected to the downstream side of the first duct part and discharging air in the first duct part, wherein the air discharge part sucks air into a heat source side air heat exchanger of the heat source equipment. It is provided to blow air onto the surface (see FIGS. 1-4).

第二の特徴として、前記空気吐出部は、熱源機器の熱源側空気熱交換器の空気吸込み面に近接して、該空気吸込み面を覆うように形成されている(図1~図4参照)。 As a second feature, the air discharge part is formed so as to be close to and cover the air suction surface of the heat source side air heat exchanger of the heat source equipment (see FIGS. 1 to 4). .

第三の特徴は、熱源機器の熱源側空気熱交換器から排出される空気を回収して、この空気を前記送風機の吸込み側へ戻す第二のダクト部を具備した(図3参照)。 The third feature is that the air discharged from the heat source side air heat exchanger of the heat source equipment is collected and the second duct portion is provided to return the air to the suction side of the blower (see FIG. 3).

第四の特徴は、前記第二のダクト部により前記送風機の吸込み側へ戻される空気の量を調整する空気流量調整装置を設けた(図3参照)。 A fourth feature is that an air flow rate adjusting device is provided for adjusting the amount of air returned to the suction side of the blower by the second duct portion (see FIG. 3).

第五の特徴は、前記ラジエータに冷温水を循環させる冷温水循環経路を有し、この循環通水経路には、循環する冷温水を自然水と熱交換する水熱交換器と、循環する冷温水を一時貯溜してから流す一時貯溜タンクとが設けられている(図2~図4参照)。 A fifth feature is that the radiator has a cold/hot water circulation path for circulating cold/hot water, and the circulation water path includes a water heat exchanger for heat-exchanging the circulating cold/hot water with natural water, and a circulating cold/hot water. A temporary storage tank is provided to temporarily store and then flow the water (see FIGS. 2 to 4).

<第一の実施態様>
次に、上記特徴を有する第一の実施態様について、図面に基づいて詳細に説明する。
図1及び図2は、本発明に係る熱交換補助装置の一例を示す。
<First Embodiment>
Next, a first embodiment having the above features will be described in detail with reference to the drawings.
1 and 2 show an example of a heat exchange auxiliary device according to the present invention.

この熱交換補助装置1は、送風機10と、送風機10から受ける空気を通過させて外部から供給される冷温水と熱交換するラジエータ20と、ラジエータ20を通過した空気を取り入れる集合管部30と、集合管部30の下流側に接続されて空気を流通させる第一のダクト部40と、第一のダクト部40の下流側に接続され第一のダクト部40から供給される空気を吐出する複数の空気吐出部50と、ラジエータ20に冷温水を循環させる冷温水循環経路60と、冷温水循環経路60と熱交換をする自然水循環経路70とを具備し、空気吐出部50によって熱源機器Aの熱源側空気熱交換器a1の空気吸込み面へ空気を吹き付けて、熱源側空気熱交換器a1による熱交換作用を補助する。 This heat exchange auxiliary device 1 includes a blower 10, a radiator 20 that allows the air received from the blower 10 to pass through and exchanges heat with hot and cold water supplied from the outside, a collecting pipe section 30 that takes in the air that has passed through the radiator 20, A first duct portion 40 connected to the downstream side of the collecting pipe portion 30 for circulating air, and a plurality of duct portions 40 connected to the downstream side of the first duct portion 40 and discharging the air supplied from the first duct portion 40. , a cold/hot water circulation path 60 that circulates cold/hot water in the radiator 20, and a natural water circulation path 70 that exchanges heat with the cold/hot water circulation path 60. Air is blown to the air intake surface of the air heat exchanger a1 to assist the heat exchange effect of the heat source side air heat exchanger a1.

ここで、当該熱交換補助装置1の熱交換補助の対象となる熱源機器は、例えば、チラーや、エアコン、冷凍機、給湯器等、冷凍サイクルを有する機器であればよい。この熱源機器は、ヒートポンプ式機器や、冷房専用機器、暖房専用機器とすることが可能である。
図1~3に例示する熱源機器Aは、ヒートポンプ式エアコンの室外機であり、空冷の熱源側空気熱交換器a1と、この熱源側空気熱交換器a1に空気を流通させるファンa2とを備える。
熱源側空気熱交換器a1は、図示例によれば、略矩形平板状のプレートフィンコイルを上から視て略L字型に曲げたものである。
Here, the heat source equipment to which the heat exchange auxiliary device 1 assists in heat exchange may be equipment having a refrigeration cycle, such as a chiller, an air conditioner, a refrigerator, and a water heater. This heat source device can be a heat pump device, a cooling-only device, or a heating-only device.
The heat source device A illustrated in FIGS. 1 to 3 is an outdoor unit of a heat pump air conditioner, and includes an air-cooled heat source side air heat exchanger a1 and a fan a2 that circulates air through the heat source side air heat exchanger a1. .
According to the illustrated example, the heat source side air heat exchanger a1 is formed by bending a substantially rectangular plate-like plate fin coil into a substantially L shape when viewed from above.

送風機10には、例えば、プロペラファンや、シロッコファン、ターボファン等を用いることが可能である。 For example, a propeller fan, a sirocco fan, a turbo fan, or the like can be used as the blower 10 .

ラジエータ20は、適宜な隙間を置いて略平行に配設された多数の熱交換フィン21と、これら熱交換フィン21に蛇行状に挿通された通水管22とを備え、送風機10により送られて前記隙間を流通する空気と、通水管22を流れる液体(冷温水)との熱交換を行う。 The radiator 20 includes a large number of heat exchange fins 21 arranged substantially parallel with appropriate gaps, and a water pipe 22 passing through the heat exchange fins 21 in a meandering manner. Heat exchange is performed between the air flowing through the gap and the liquid (cold/hot water) flowing through the water pipe 22 .

集合管部30は、ラジエータ20の送出側の空気を集めるように形成され、図示例によれば、送風機10及びラジエータ20の側方を覆う筒状部31と、該筒状部31の下流側に接続されて開口面積を縮小する縮小管部32とを備え、筒状部31の上流側の開口を吸込み口にしている。 The collecting pipe portion 30 is formed to collect air on the delivery side of the radiator 20, and according to the illustrated example, a tubular portion 31 covering the sides of the fan 10 and the radiator 20 and a downstream side of the tubular portion 31 , and the opening on the upstream side of the cylindrical portion 31 is used as a suction port.

第一のダクト部40は、長尺な円筒状又は角筒状のたダクトである。この第一のダクト部40は、複数の熱源機器Aの設置状況に応じて、直管状ダクトや、エルボ状ダクトを適宜に接続して構成される。
この第一のダクト部40は、上流側が集合管部30に連通しており、最も下流側の端部が閉鎖されている。
The first duct portion 40 is an elongated cylindrical or rectangular tubular duct. The first duct section 40 is configured by appropriately connecting a straight tubular duct or an elbow duct according to the installation situation of the plurality of heat source devices A. As shown in FIG.
The first duct portion 40 communicates with the collecting pipe portion 30 on the upstream side and is closed at the end on the most downstream side.

空気吐出部50は、第一のダクト部40の周壁面に分岐するようにして設けられる。詳細に説明すれば、この空気吐出部50は、第一のダクト部40からT字状に分岐された分岐管部51と、この分岐管部51の下流側に接続されたフード部52とを一体に備える。 The air discharge part 50 is provided so as to branch off from the peripheral wall surface of the first duct part 40 . Specifically, the air discharge portion 50 includes a branch pipe portion 51 branched from the first duct portion 40 in a T-shape, and a hood portion 52 connected to the downstream side of the branch pipe portion 51. Prepare for unity.

分岐管部51は、図示例によれば、短尺の直管であるが、長尺状の直管や、蛇腹管等、熱源機器Aの設置状況に応じて適宜な長さ及び形状の管体が用いられる。 According to the illustrated example, the branch pipe portion 51 is a short straight pipe, but it may be a long straight pipe, a bellows pipe, or other suitable length and shape depending on the installation situation of the heat source device A. is used.

フード部52は、熱源機器Aの熱源側空気熱交換器a1の空気吸込み面に近接して、該空気吸込み面を覆うフード状に形成されている。
このフード部52は、分岐管部51から下流へ向けて拡大する拡大管(ディフューザー)状に形成されるとともに、その下流側端部が、熱源側空気熱交換器a1の交差する二つの吸込み面の略全部をL字状に覆う(図1~図3参照)。
The hood portion 52 is formed in the shape of a hood that is close to the air suction surface of the heat source side air heat exchanger a1 of the heat source device A and covers the air suction surface.
The hood portion 52 is formed in a diffuser shape that expands downstream from the branch pipe portion 51, and its downstream end extends from the two intersecting suction surfaces of the heat source side air heat exchanger a1. substantially all of the is covered in an L shape (see FIGS. 1 to 3).

集合管部30、第一のダクト部40及び空気吐出部50は、その外面側が、断熱材により断熱処理されている。この断熱材には、例えば、ウレタンフォームや、グラスウール、その他の周知の断熱材を用いることが可能である。 The collecting pipe portion 30, the first duct portion 40, and the air discharge portion 50 are heat-insulated with a heat insulating material on their outer surface sides. For example, urethane foam, glass wool, or other well-known heat insulating materials can be used for this heat insulating material.

また、冷温水循環経路60は、配管接続された循環流路中に、上述したラジエータ20の二次側の部分と、二次側の液(冷温水)を自然水循環経路70側の自然水と熱交換する
水熱交換器61と、二次側を循環する液を一時貯溜してから流す一時貯溜タンク62と、冷温水を強制的に搬送するポンプ63とを備える(図2参照)。
In addition, the cold/hot water circulation path 60 includes the secondary side portion of the radiator 20 described above and the liquid (cold/hot water) on the secondary side in the circulation path connected by piping. It comprises a water heat exchanger 61 for exchange, a temporary storage tank 62 for temporarily storing the liquid circulating on the secondary side and then flowing it, and a pump 63 for forcibly conveying cold and hot water (see FIG. 2).

水熱交換器61は、一次側の自然水(例えば地下水等)と、二次側の液(例えば、防食不凍液や水等)とを、多数のプレートを介して熱交換するようにしたプレート式熱交換器である。
この水熱交換器61の一次側には、後述する自然水循環経路70を構成する配管が接続され、二次側には、冷温水循環経路60を構成する配管が接続される。
The water heat exchanger 61 is a plate type that exchanges heat between natural water on the primary side (e.g., groundwater, etc.) and liquid on the secondary side (e.g., anticorrosive antifreeze liquid, water, etc.) via a large number of plates. A heat exchanger.
The primary side of the water heat exchanger 61 is connected to the pipes forming the natural water circulation path 70 described later, and the secondary side is connected to the pipes forming the cold/hot water circulation path 60 .

一時貯溜タンク62は、側壁及び上下の壁部を有する中空密閉状のタンクであり、その上部側に水熱交換器61の下流側の配管を接続している。そして、この一時貯溜タンク62の下部側には吐出口が設けられ、この吐出口には、ポンプ63を介してラジエータ20の入口へ向かう配管が接続されている。
この一時貯溜タンク62は、供給される液を一時貯溜した後に一定量ずつ徐々に吐出するように、前記吐出口の管内径を、流入側の管内径よりも小さくしている。
なお、他例としては、一時貯溜タンク62内の貯水量が所定量以上になったことを水位センサにより感知し、この感知状態に応じて吐出口を電動バルブにより開放する態様や、一時貯溜タンク62内の貯水量が所定量以上になった場合にフロート弁により吐出口を開放する態様等とすることも可能である。
The temporary storage tank 62 is a hollow, airtight tank having side walls and upper and lower walls. A discharge port is provided on the lower side of the temporary storage tank 62 , and a pipe directed to the inlet of the radiator 20 via a pump 63 is connected to the discharge port.
The temporary reservoir tank 62 has a pipe inner diameter smaller than that on the inflow side so that the liquid to be supplied is temporarily reserved and then gradually discharged by a constant amount.
As another example, a water level sensor senses that the amount of water stored in the temporary storage tank 62 exceeds a predetermined amount, and an electric valve opens the discharge port according to this sensing state. It is also possible to adopt a mode in which the discharge port is opened by a float valve when the amount of water stored in 62 exceeds a predetermined amount.

自然水循環経路70は、配管接続された循環流路中に、上述したラジエータ20の一次側部分と、地中に埋め込まれた地下水往還装置71と、一次側の液を地表において強制的に搬送するポンプ72とを具備している。なお、ポンプ72は、必要に応じて、地中の地下水往還装置71内に設けられた水中ポンプに置換してもよい。 The natural water circulation path 70 includes the above-described primary side portion of the radiator 20 and a groundwater reciprocating device 71 embedded in the ground, and forcibly transports the liquid on the primary side to the ground surface in the circulation flow path connected by piping. A pump 72 is provided. The pump 72 may be replaced with a submersible pump provided inside the underground water circulation device 71 as necessary.

地下水往還装置71は、地下水脈から地下水を吸い上げて、この地下水を、水熱交換器61により熱交換した後に、地下水脈へ戻す装置である。この地下水往還装置71には、例えば、特開2006-9335号公報に開示された地中装置を用いることが可能である。
なお、他例としては、この地下水往還装置71を、河川水や湖水をポンプで汲み上げて水熱交換器61に流通させる構成や、雨水槽に貯水した雨水をポンプで汲み上げて水熱交換器61に流通させる構成等に置換することも可能である。
The groundwater circulation device 71 is a device that sucks up the groundwater from the groundwater vein, exchanges the heat of this groundwater with the water heat exchanger 61, and then returns it to the groundwater vein. For example, an underground device disclosed in JP-A-2006-9335 can be used as the underground water circulation device 71 .
In addition, as another example, the groundwater circulation device 71 may be configured to pump river water or lake water and circulate it to the water heat exchanger 61, or to pump rainwater stored in a rainwater tank to the water heat exchanger 61. It is also possible to replace it with a configuration that distributes it to

次に、上記構成の熱交換補助装置1について、その特徴的な作用効果を詳細に説明する。
上記構成の熱交換補助装置1は、図1(a)(b)に示すように、複数の熱源機器Aに対し、複数の空気吐出部50を装着するようにして用いられる。
Next, the characteristic functions and effects of the heat exchange auxiliary device 1 having the above configuration will be described in detail.
As shown in FIGS. 1(a) and 1(b), the heat exchange auxiliary device 1 having the above configuration is used by attaching a plurality of air discharge sections 50 to a plurality of heat source devices A. As shown in FIGS.

前記装着状態において、冷温水循環経路60に冷温水を循環するとともに、自然水循環経路70に自然水を循環して、送風機10による送風を行えば、外気が、送風機10を介して集合管部30内へ侵入し、ラジエータ20によって熱交換される。そして、その熱交換後の空気は、第一のダクト部40内を通過して、各空気吐出部50から熱源機器Aの熱源側空気熱交換器a1に吹き付けられる。
このため、熱源機器A側においては、熱源側空気熱交換器a1を外気に直接触れるようにした場合と比較し、良好な空気熱交換を行うことができる。
In the mounted state, cold/hot water is circulated through the cold/hot water circulation path 60, natural water is circulated through the natural water circulation path 70, and air is blown by the blower 10. and is heat-exchanged by the radiator 20 . After the heat exchange, the air passes through the first duct section 40 and is blown from each air discharge section 50 to the heat source side air heat exchanger a1 of the heat source device A. As shown in FIG.
Therefore, on the heat source device A side, better air heat exchange can be performed than when the heat source side air heat exchanger a1 is in direct contact with the outside air.

例えば、熱源機器A(ヒートポンプ式エアコンの室外機)が冷房運転をしているときに、地下水往還装置71によって温度15°C前後の地下水を汲み上げて自然水循環経路70に循環させ、この地下水の熱を自然水循環経路70及び冷温水循環経路60に伝達した場合、外気が前記地下水の温度よりも高ければ、その外気をラジエータ20によって冷却し、その冷風を、高温の各熱源側空気熱交換器a1に吹き付けることができるので、熱源機器Aの冷房効率を向上させることができる。 For example, when the heat source device A (the outdoor unit of the heat pump air conditioner) is in cooling operation, the groundwater recirculation device 71 pumps up groundwater at a temperature of about 15° C. and circulates it through the natural water circulation path 70 to heat the groundwater. is transmitted to the natural water circulation path 70 and the cold/hot water circulation path 60, if the temperature of the outside air is higher than the temperature of the groundwater, the outside air is cooled by the radiator 20, and the cold air is sent to each high temperature heat source side air heat exchanger a1 Since it can be sprayed, the cooling efficiency of the heat source equipment A can be improved.

熱源機器Aによって暖房運転をしているときに、地下水往還装置71によって温度15°C前後の地下水を汲み上げて自然水循環経路70に循環させ、この地下水の熱を自然水循環経路70及び冷温水循環経路60に伝達した場合、外気が地下水の温度よりも低ければ、その外気をラジエータ20によって加熱し、その温風を、低温の各熱源側空気熱交換器a1に吹き付けることができるので、熱源機器Aの暖房効率を向上させることができる。なお、地下水の温度は、一年中、ある程度一定に保たれることが知られている。 During heating operation by the heat source equipment A, groundwater at a temperature of about 15°C is pumped up by the groundwater recirculation device 71 and circulated through the natural water circulation path 70, and the heat of this groundwater is transferred to the natural water circulation path 70 and the cold/hot water circulation path 60. When the temperature of the outside air is lower than the temperature of the groundwater, the outside air is heated by the radiator 20, and the hot air can be blown to each low-temperature heat source side air heat exchanger a1. Heating efficiency can be improved. It is known that the temperature of groundwater is kept constant to some extent throughout the year.

また、熱交換補助装置1によれば、熱源側空気熱交換器a1の空気吸込み面を覆うようにして、空気吐出部50を配設している。このため、冬場に熱源機器Aを暖房運転した場合に、低温の熱源側空気熱交換器a1が直接冷気に曝されるのを防ぐことができ、ひいては、熱源側空気熱交換器a1に霜や雪が付着して無駄なデフロスト運転が頻繁に繰り返されるようなことを防ぐことができる。 Further, according to the heat exchange auxiliary device 1, the air discharge section 50 is arranged so as to cover the air suction surface of the heat source side air heat exchanger a1. Therefore, when the heat source device A is operated for heating in winter, it is possible to prevent the low-temperature heat source side air heat exchanger a1 from being directly exposed to cold air. It is possible to prevent frequent repetition of useless defrost operation due to adhesion of snow.

よって、本実施の形態の熱交換補助装置1によれば、従来技術のように複数の熱交換器に応じて複数の補助空気熱交換器を具備する必要がなく、簡素な構造により既設の熱源機器Aの熱源側空気熱交換器a1の熱交換を効率よく補助し、各熱源機器Aの運転効率を向上させることができる。 Therefore, according to the heat exchange auxiliary device 1 of the present embodiment, there is no need to provide a plurality of auxiliary air heat exchangers corresponding to the plurality of heat exchangers as in the conventional technology, and an existing heat source can be installed with a simple structure. The heat exchange of the heat source side air heat exchanger a1 of the device A can be efficiently assisted, and the operating efficiency of each heat source device A can be improved.

<第二の実施態様>
次に、第二の実施態様について説明する。
なお、以下に示す実施態様は、上記した熱交換補助装置1に対し、構成を追加したり一部を変更したりしたものであるため、主に、その追加変更箇所について詳述し、共通する部分については重複する詳細説明を省略する。
<Second embodiment>
Next, a second embodiment will be described.
In addition, since the embodiments shown below are those in which the configuration is added or partially changed with respect to the heat exchange auxiliary device 1 described above, mainly the added and changed parts will be described in detail, and common Duplicate detailed descriptions of the parts are omitted.

図3に示す熱交換補助装置2は、上述した熱交換補助装置1に対し、集合管部30を集合管部30’に置換し、熱源機器Aの熱源側空気熱交換器a1から排出される空気を回収する回収管110と、回収管110により回収した空気を送風機10の吸込み側へ戻す第二のダクト部120と、第二のダクト部120により送風機10の吸込み側へ戻される空気の量を調整する空気流量調整装置130とを追加したものである。 The heat exchange auxiliary device 2 shown in FIG. A recovery pipe 110 for recovering air, a second duct portion 120 for returning the air recovered by the recovery pipe 110 to the suction side of the blower 10, and the amount of air returned to the suction side of the blower 10 by the second duct portion 120. is added with an air flow rate adjusting device 130 that adjusts the

集合管部30’は、上記集合管部30’に対し、吸込み部33と吸込み管34を追加したものである。 A collecting pipe portion 30' is obtained by adding a suction portion 33 and a suction pipe 34 to the collecting pipe portion 30'.

吸込み部33は、送風機10の吸込み側を覆うとともに下流側へ向かって拡大する拡大管状に形成され、筒状部31に一体的に接続される。
吸込み管34は、吸込み部33の上流側に直管状に接続された管体であり、その上流側の吸込み口を開口している。
この吸込み管34内には、後述する空気流量調整装置130を構成する第一のダンパー装置131と外気温センサ134が設けられる。
The suction part 33 is formed in an enlarged tubular shape that covers the suction side of the fan 10 and expands toward the downstream side, and is integrally connected to the cylindrical part 31 .
The suction pipe 34 is a tubular body connected to the upstream side of the suction portion 33 in a straight pipe shape, and has an upstream suction port open.
In this suction pipe 34, a first damper device 131 and an outside air temperature sensor 134 are provided, which constitute an air flow control device 130, which will be described later.

外気温センサ134は、例えば測温抵抗体等を用いた温度センサであり、第一のダンパー装置131よりも上流側で外気温を測定し、その外気温を示す電気信号を図示しない制御回路へ送る。 The outside air temperature sensor 134 is, for example, a temperature sensor using a resistance temperature detector or the like, measures the outside air temperature on the upstream side of the first damper device 131, and sends an electric signal indicating the outside air temperature to a control circuit (not shown). send.

なお、他例としては、吸込み部33と筒状部31の間に隙間を有する態様や、吸込み部33を省いて吸込み管34から吐出される空気が送風機10に吹き付けられる態様等とすることも可能である。 As other examples, there may be a mode in which a gap is provided between the suction portion 33 and the cylindrical portion 31, or a mode in which the suction portion 33 is omitted and the air discharged from the suction pipe 34 is blown to the blower 10. It is possible.

回収管110は、熱源機器Aのファンa2の下流側を覆うとともに下流側へむかって縮小する縮小管部111と、この縮小管部111の下流側に接続されるとともに第二のダク
ト部120に対し合流するように接続される合流管部112とを一体に具備している。
図示例によれば、縮小管部111は空気吐出部50と別体に構成しているが、他例としては、縮小管部111を空気吐出部50と一体に構成することも可能である。
合流管部112は、図示例によれば直管状に形成しているが、例えば、蛇腹管やエルボ管等、現場状況に応じた態様とすることが可能である。
The recovery pipe 110 includes a reduced pipe portion 111 that covers the downstream side of the fan a2 of the heat source device A and shrinks toward the downstream side; It is integrally provided with a confluence pipe portion 112 connected so as to merge with each other.
According to the illustrated example, the contraction pipe portion 111 is configured separately from the air discharge portion 50, but as another example, the contraction pipe portion 111 and the air discharge portion 50 can be configured integrally.
According to the illustrated example, the confluence pipe portion 112 is formed in a straight pipe shape, but it may be formed in a manner suitable for site conditions, such as a bellows pipe or an elbow pipe.

第二のダクト部120は、複数の熱源機器Aの並び方向へわたる長尺状のダクト本体121と、ダクト本体121の下流側に接続されて送風機10の吸込み側へ向かう戻り管部122とを備え、連続する空気流路を形成する。 The second duct portion 120 includes a long duct body 121 extending in the direction in which the plurality of heat source devices A are arranged, and a return pipe portion 122 connected to the downstream side of the duct body 121 and directed toward the suction side of the blower 10. and form a continuous air flow path.

ダクト本体121の最上流側(図3によれば右端側の図示しない部分)は、閉鎖されている。
ダクト本体121の最下流側は、後述する空気流量調整装置130を構成する第三のダンパー装置133を介して外気に連通している。
The most upstream side of the duct body 121 (the portion on the right end side, not shown in FIG. 3) is closed.
The most downstream side of the duct main body 121 communicates with the outside air via a third damper device 133 that constitutes an air flow control device 130, which will be described later.

戻り管部122は、ダクト本体121の下流側において、第三のダンパー装置133よりも上流側で周壁からT字状に分岐された管体である。この戻り管部122の下流側の端部は、吸込み管34の周壁に接続され、第二のダクト部120内の空気を吸込み管34内へ戻す流路を形成している。
この戻り管部122内には、戻り空気温センサ122aと、後述する第二のダンパー装置132とが設けられる。
The return pipe portion 122 is a tubular body branched in a T shape from the peripheral wall upstream of the third damper device 133 on the downstream side of the duct main body 121 . The downstream end of the return pipe portion 122 is connected to the peripheral wall of the suction pipe 34 to form a flow path for returning the air in the second duct portion 120 to the suction pipe 34 .
A return air temperature sensor 122a and a second damper device 132, which will be described later, are provided in the return pipe portion 122. As shown in FIG.

なお、ダクト本体121、戻り管部122、吸込み部33及び吸込み部33等は、第一のダクト部40等と同様にして断熱処理されている。 The duct main body 121, the return pipe portion 122, the suction portion 33, the suction portion 33, and the like are thermally insulated in the same manner as the first duct portion 40 and the like.

戻り空気温センサ122aは、例えば測温抵抗体等を用いた温度センサであり、第二のダクト部120内の空気の温度を測定し、その温度に応じた電気信号を図示しない制御回路へ送る。 The return air temperature sensor 122a is a temperature sensor using, for example, a resistance temperature detector, which measures the temperature of the air in the second duct section 120 and sends an electrical signal corresponding to the temperature to a control circuit (not shown). .

空気流量調整装置130は、吸込み管34内における戻り管部122よりも上流側に設けられた第一のダンパー装置131と、戻り管部122内の戻り空気温センサ122aよりも下流側に設けられた第二のダンパー装置132と、ダクト本体121における戻り管部122の分岐箇所よりも下流端側に設けられた第三のダンパー装置133と、図示しない制御回路とを備え、前記制御回路によって、第一~第三のダンパー装置131,132,133を適宜に制御する。 The air flow control device 130 includes a first damper device 131 provided upstream of the return pipe portion 122 in the suction pipe 34 and a return air temperature sensor 122a provided in the return pipe portion 122 downstream of the return air temperature sensor 122a. a second damper device 132, a third damper device 133 provided downstream of the branch point of the return pipe portion 122 in the duct body 121, and a control circuit (not shown). The first to third damper devices 131, 132, 133 are appropriately controlled.

第一~第三のダンパー装置131,132,133の各々は、管内で回転するように支持された流量調整板pと、流量調整板pを回転させる電動モータ(図示せず)とを具備してなる。流量調整板pは、管内に空気流通させる位置(例えば、管の中心軸に略平行する位置)と、管内の空気の流れを遮る位置(例えば、管の中心軸に略直交する位置)との間で略90度回転する。前記電動モータは、例えばステッピングモータやサーボモータ等からなり、前記制御回路からの指令により、前記流量調整板pの回転角度を調整する。 Each of the first to third damper devices 131, 132, 133 includes a flow control plate p supported to rotate within the pipe, and an electric motor (not shown) that rotates the flow control plate p. It becomes The flow regulating plate p is positioned between a position that allows air to flow in the pipe (for example, a position that is substantially parallel to the central axis of the pipe) and a position that blocks the flow of air in the pipe (for example, a position that is substantially perpendicular to the central axis of the pipe). It rotates about 90 degrees between them. The electric motor is, for example, a stepping motor or a servomotor, and adjusts the rotation angle of the flow rate adjusting plate p according to commands from the control circuit.

次に、上記構成の熱交換補助装置2について、その特徴的な作用効果を詳細に説明する。
熱交換補助装置2によれば、上述した熱交換補助装置1と同様にして、地下水の熱を利用して、各熱源機器Aの運転効率を向上させることができる。
その上、熱交換補助装置2では、第二のダクト部120によって各熱源機器Aの排熱を再利用することができる。
Next, the characteristic functions and effects of the heat exchange auxiliary device 2 having the above configuration will be described in detail.
According to the heat exchange auxiliary device 2, similarly to the heat exchange auxiliary device 1 described above, it is possible to improve the operation efficiency of each heat source device A by utilizing the heat of groundwater.
Moreover, in the heat exchange auxiliary device 2 , the exhaust heat of each heat source device A can be reused by the second duct section 120 .

詳細に説明すれば、空気流量調整装置130の制御により、第一のダンパー装置131を全閉、第二のダンパー装置132を全開、第三のダンパー装置133を全閉にした場合は、第一のダクト部40及び第二のダクト部120内に空気の循環経路が形成される(以降、循環モードと称する。)。
また、空気流量調整装置130の制御により、第一のダンパー装置131を全開、第二のダンパー装置132を全閉、第三のダンパー装置133を全開にした場合は、吸込み管34に吸い込まれる外気が、各熱源機器Aを通過した後、吸込み管34側へ戻されることなく、第三のダンパー装置133から外部へ排出される(以降、開放モードと称する。)。
Specifically, when the first damper device 131 is fully closed, the second damper device 132 is fully opened, and the third damper device 133 is fully closed, the first An air circulation path is formed in the duct portion 40 and the second duct portion 120 (hereinafter referred to as circulation mode).
Further, when the first damper device 131 is fully opened, the second damper device 132 is fully closed, and the third damper device 133 is fully opened under the control of the air flow rate adjusting device 130, the external air sucked into the suction pipe 34 After passing through each heat source device A, it is discharged to the outside from the third damper device 133 without being returned to the suction pipe 34 side (hereinafter referred to as open mode).

図示しない制御回路は、熱源機器Aの冷房運転中、当初、空気流量調整装置130を前記循環モードとし、外気温センサ134の温度と、戻り空気温センサ122aの温度を比較する。
そして、前記制御回路は、戻り空気温センサ122aの温度が、外気温センサ134の温度よりも低い場合、前記循環モードを継続する。また、戻り空気温センサ122aの温度が、外気温センサ134の温度よりも高くなった場合には、空気流量調整装置130を前記開放モードにし、温度の比較的低い外気を積極的に取り入れる。
A control circuit (not shown) initially puts the air flow control device 130 in the circulation mode during the cooling operation of the heat source device A, and compares the temperature of the outside air temperature sensor 134 with the temperature of the return air temperature sensor 122a.
When the temperature of the return air temperature sensor 122a is lower than the temperature of the outside air temperature sensor 134, the control circuit continues the circulation mode. Further, when the temperature of the return air temperature sensor 122a becomes higher than the temperature of the outside air temperature sensor 134, the air flow rate adjusting device 130 is set to the open mode to positively take in outside air having a relatively low temperature.

また、熱源機器Aを暖房運転した場合は、前記循環モード中、戻り空気温センサ122aの温度が、外気温センサ134の温度よりも低くなった場合に、空気流量調整装置130を前記開放モードに切り替え、温度の比較的高い外気を積極的に取り入れる。 Further, when the heat source device A is operated for heating, if the temperature of the return air temperature sensor 122a becomes lower than the temperature of the outside air temperature sensor 134 during the circulation mode, the air flow rate adjusting device 130 is switched to the open mode. Switch to actively take in outside air with a relatively high temperature.

よって、熱交換補助装置2によれば、各熱源機器Aの排熱を再利用して、各熱源機器Aの運転効率を効果的に向上させることができ、排熱の放出が少ないので周囲環境への悪影響も少ない。 Therefore, according to the heat exchange auxiliary device 2, the exhaust heat of each heat source device A can be reused to effectively improve the operating efficiency of each heat source device A, and since less exhaust heat is released, the ambient environment can be improved. has little adverse effect on

なお、熱交換補助装置2によれば、第一~第三のダンパー装置131,132,133を全閉又は全開するようにしたが、他例としては、第一~第三のダンパー装置131,132,133の開放量をそれぞれ適宜に調整することも可能である。 According to the heat exchange auxiliary device 2, the first to third damper devices 131, 132, 133 are fully closed or fully opened. It is also possible to appropriately adjust the opening amounts of 132 and 133 respectively.

<第三の実施態様>
図4に示す熱交換補助装置3は、上述した熱交換補助装置1に対し、熱交換補助の対象である熱源機器Aを熱源機器Bに置換し、これに応じて、空気吐出部50を、形状の異なる空気吐出部50’に変更したものである。
<Third embodiment>
In contrast to the heat exchange auxiliary device 1 described above, the heat exchange auxiliary device 3 shown in FIG. It is changed to an air discharge portion 50' having a different shape.

熱源機器Bは、上面視略コ字状の熱源側空気熱交換器b1に対し三つの側面から吸込んだ空気を、天側のファンb2によって上方へ排出するようにした空冷ヒートポンプチラーである。 The heat source device B is an air-cooled heat pump chiller in which the air taken in from the three sides of the heat source side air heat exchanger b1, which is substantially U-shaped when viewed from above, is discharged upward by the fan b2 on the top side.

空気吐出部50’は、分岐管部51の下流側に、熱源側空気熱交換器b1の3側面を囲むフード部53を接続してなる。
フード部53は、熱源側空気熱交換器b1の三つの空気吸込み面を全て覆うとともに、熱源側空気熱交換器b1の上方側を天板55により覆うように形成される。天板55には、ファンb2の排気孔54が設けられる。
The air discharge section 50′ is formed by connecting a hood section 53 surrounding three side surfaces of the heat source side air heat exchanger b1 to the downstream side of the branch pipe section 51. As shown in FIG.
The hood part 53 is formed so as to cover all three air intake surfaces of the heat source side air heat exchanger b1 and to cover the upper side of the heat source side air heat exchanger b1 with the top plate 55 . The top plate 55 is provided with an exhaust hole 54 for the fan b2.

よって、上記構成の熱交換補助装置3によれば、上述した熱交換補助装置1と同様にして、地下水の熱を利用して、各熱源機器Aの運転効率を向上させることができる。 Therefore, according to the heat exchange auxiliary device 3 configured as described above, the operation efficiency of each heat source device A can be improved by using the heat of the groundwater, in the same manner as the heat exchange auxiliary device 1 described above.

なお、空気吐出部50’(図4参照)の他例としては、天板55を省いて、上方を略全て開放した態様とすることも可能である。
また、空気吐出部50’は、図示例によれば、熱源機器Aの三方の側面を覆うように形成したが、この空気吐出部50’の他例としては、熱源機器Aの四方の側面を覆うように形成することも可能である。
As another example of the air discharge section 50' (see FIG. 4), it is possible to omit the top plate 55 and open the top substantially entirely.
Further, according to the illustrated example, the air discharge part 50' is formed so as to cover the three sides of the heat source device A, but as another example of this air discharge part 50', the four sides of the heat source device A can be It is also possible to form it so as to cover it.

また、上述した熱交換補助装置1,2,3において、第一のダクト部40及び/又は第二のダクト部120内の適宜箇所に、軸流ファンを設けて、ダクト内の空気の流動を補助するようにしてもよい。 In addition, in the heat exchange auxiliary devices 1, 2, and 3 described above, an axial fan is provided at an appropriate location in the first duct portion 40 and/or the second duct portion 120 to control the flow of air in the duct. You may make it assist.

また、上記実施態様では、熱源機器A,Bをヒートポンプ式機器としているが、他例としては、これら熱源機器を冷房専用機器や暖房専用機器、冷凍サイクルを有する給湯器等とすることも可能である。 In the above embodiment, the heat source devices A and B are heat pump type devices, but as other examples, these heat source devices can be cooling-only devices, heating-only devices, water heaters having a refrigeration cycle, and the like. be.

また、上記実施態様では、同種類の複数の熱源機器A又はBに対応して、熱交換補助装置1,2又は3を構成したが、他例としては、異なる種類の複数の熱源機器に対応して熱交換補助装置を構成することも可能である。 In the above embodiment, the auxiliary heat exchange device 1, 2 or 3 is configured to correspond to a plurality of heat source devices A or B of the same type, but as another example, it corresponds to a plurality of heat source devices of different types. It is also possible to configure a heat exchange auxiliary device by

また、本発明は上述した実施態様に限定されず、本発明の要旨を変更しない範囲で適宜変更可能である。 Moreover, the present invention is not limited to the embodiments described above, and can be modified as appropriate without changing the gist of the present invention.

1,2,3:熱交換補助装置
10:送風機
20:ラジエータ
30:集合管部
40:第一のダクト部
50:空気吐出部
60:冷温水循環経路
61:水熱交換器
62:一時貯溜タンク
63,72:ポンプ
70:自然水循環経路
71:地下水往還装置
120:第二のダクト部
122a:戻り空気温センサ
130:空気流量調整装置
131,132,133:第一~第三のダンパー装置
134:外気温センサ
A,B:熱源機器
a1,b1:熱源側空気熱交換器
a2,b2:ファン
Reference Signs List 1, 2, 3: heat exchange auxiliary device 10: blower 20: radiator 30: collection pipe section 40: first duct section 50: air discharge section 60: cold/hot water circulation path 61: water heat exchanger 62: temporary storage tank 63 , 72: Pump 70: Natural water circulation path 71: Groundwater circulation device 120: Second duct portion 122a: Return air temperature sensor 130: Air flow rate adjustment device 131, 132, 133: First to third damper devices 134: Outside Air temperature sensor A, B: heat source device a1, b1: heat source side air heat exchanger a2, b2: fan

Claims (3)

送風機と、前記送風機から受ける空気を通過させて外部から供給される冷温水と熱交換するラジエータと、前記ラジエータを通過した空気を取り入れて流通させる第一のダクト部と、前記第一のダクト部の下流側に接続されて前記第一のダクト部内の空気を吐出する空気吐出部とを具備し、
前記空気吐出部が、熱源機器の熱源側空気熱交換器の空気吸込み面へ空気を吹き付けるように設けられていることを特徴とする熱交換補助装置。
A blower, a radiator for passing air received from the blower and exchanging heat with cold/hot water supplied from the outside, a first duct section for taking in and circulating the air that has passed through the radiator, and the first duct section. an air discharge unit connected to the downstream side of the and discharges the air in the first duct unit,
A heat exchange auxiliary device, wherein the air discharge part is provided so as to blow air onto an air intake surface of a heat source side air heat exchanger of the heat source equipment.
前記空気吐出部は、熱源機器の熱源側空気熱交換器の空気吸込み面に近接して、該空気吸込み面を覆うように形成されていることを特徴とする請求項1記載の熱交換補助装置。 2. The heat exchange auxiliary device according to claim 1, wherein the air discharge part is formed in the vicinity of the air suction surface of the heat source side air heat exchanger of the heat source equipment so as to cover the air suction surface. . 前記ラジエータに冷温水を循環させる冷温水循環経路を有し、この冷温水循環経路には、循環する冷温水を自然水と熱交換する水熱交換器と、循環する冷温水を一時貯溜してから流す一時貯溜タンクとが設けられていることを特徴とする請求項1または2記載の熱交換補助装置。 The radiator has a cold/hot water circulation path for circulating cold/hot water, and the cold/hot water circulation path includes a water heat exchanger that exchanges heat between the circulating cold/hot water and natural water, and a water heat exchanger that temporarily stores the circulating cold/hot water before flowing it. 3. A heat exchange auxiliary device according to claim 1, further comprising a temporary storage tank.
JP2022090773A 2018-09-19 2022-06-03 Auxiliary heat exchange device Active JP7320308B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022090773A JP7320308B2 (en) 2018-09-19 2022-06-03 Auxiliary heat exchange device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018175110A JP7109781B2 (en) 2018-09-19 2018-09-19 Auxiliary heat exchange device
JP2022090773A JP7320308B2 (en) 2018-09-19 2022-06-03 Auxiliary heat exchange device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018175110A Division JP7109781B2 (en) 2018-09-19 2018-09-19 Auxiliary heat exchange device

Publications (2)

Publication Number Publication Date
JP2022116291A true JP2022116291A (en) 2022-08-09
JP7320308B2 JP7320308B2 (en) 2023-08-03

Family

ID=87469807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022090773A Active JP7320308B2 (en) 2018-09-19 2022-06-03 Auxiliary heat exchange device

Country Status (1)

Country Link
JP (1) JP7320308B2 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5481649A (en) * 1977-12-12 1979-06-29 Toshiba Corp Separate type air conditioner
JPH0237238A (en) * 1988-05-07 1990-02-07 Hitachi Cable Ltd Additional device for heat pump type air conditioner used for area cooling heating system
JPH085191A (en) * 1994-06-17 1996-01-12 Takasago Thermal Eng Co Ltd Air heat source type heat pump unit air conditioner
JP2004301470A (en) * 2003-04-01 2004-10-28 Matsushita Electric Ind Co Ltd Underground heat utilizing system
JP2011141073A (en) * 2010-01-06 2011-07-21 Sankei Kikaku:Kk Device and method of improving efficiency of air conditioning device
JP2012163239A (en) * 2011-02-04 2012-08-30 Sekisui Chem Co Ltd Geothermal heat utilization apparatus
JP2013076527A (en) * 2011-09-30 2013-04-25 Daikin Industries Ltd Outdoor unit for air conditioner
JP2013155949A (en) * 2012-01-31 2013-08-15 Nakano Refrigerators Co Ltd Refrigeration device
JP2014031991A (en) * 2012-08-06 2014-02-20 Dainippon Printing Co Ltd Efficiency improvement device for heat pump air conditioner
JP2015078813A (en) * 2013-10-18 2015-04-23 株式会社東芝 Air conditioner auxiliary device
JP2016017721A (en) * 2014-07-10 2016-02-01 株式会社育水舎アクアシステム Outdoor machine system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4178437B2 (en) 2000-02-02 2008-11-12 三菱電機株式会社 Refrigeration air conditioner
JP2008180482A (en) 2007-01-23 2008-08-07 Fresh Corporation:Kk Auxiliary device for raising and lowering temperature of outdoor unit of air conditioner and refrigerator
JP5913874B2 (en) 2011-09-12 2016-04-27 矢崎総業株式会社 Power circuit breaker
JP2014206347A (en) 2013-04-15 2014-10-30 株式会社トクシン電気 Auxiliary cooling device for outdoor unit and auxiliary cooling system
JP5760156B1 (en) 2015-03-09 2015-08-05 有限会社吉田構造デザイン Shock absorbing fence

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5481649A (en) * 1977-12-12 1979-06-29 Toshiba Corp Separate type air conditioner
JPH0237238A (en) * 1988-05-07 1990-02-07 Hitachi Cable Ltd Additional device for heat pump type air conditioner used for area cooling heating system
JPH085191A (en) * 1994-06-17 1996-01-12 Takasago Thermal Eng Co Ltd Air heat source type heat pump unit air conditioner
JP2004301470A (en) * 2003-04-01 2004-10-28 Matsushita Electric Ind Co Ltd Underground heat utilizing system
JP2011141073A (en) * 2010-01-06 2011-07-21 Sankei Kikaku:Kk Device and method of improving efficiency of air conditioning device
JP2012163239A (en) * 2011-02-04 2012-08-30 Sekisui Chem Co Ltd Geothermal heat utilization apparatus
JP2013076527A (en) * 2011-09-30 2013-04-25 Daikin Industries Ltd Outdoor unit for air conditioner
JP2013155949A (en) * 2012-01-31 2013-08-15 Nakano Refrigerators Co Ltd Refrigeration device
JP2014031991A (en) * 2012-08-06 2014-02-20 Dainippon Printing Co Ltd Efficiency improvement device for heat pump air conditioner
JP2015078813A (en) * 2013-10-18 2015-04-23 株式会社東芝 Air conditioner auxiliary device
JP2016017721A (en) * 2014-07-10 2016-02-01 株式会社育水舎アクアシステム Outdoor machine system

Also Published As

Publication number Publication date
JP7320308B2 (en) 2023-08-03

Similar Documents

Publication Publication Date Title
US8408019B2 (en) Air conditioning device utilizing temperature differentiation of exhausted gas to even temperature of external heat exchanger
KR102502979B1 (en) air conditioning system
CN101113852A (en) Co-generation unit and control method of the same
CN101512239A (en) Radiation type cooling and heating device
US8381541B2 (en) Air conditioning device utilizing temperature differentiation of exhausted gas to even temperature of external heat exchanger
JP6087497B2 (en) Ground heat utilization system using garage
JP7320308B2 (en) Auxiliary heat exchange device
KR100496895B1 (en) Heat pump type cooling and heating by subterranean heat
JP7109781B2 (en) Auxiliary heat exchange device
KR200430990Y1 (en) Heat pump type Cooling and heating by subterranean heat on the water
JP6781560B2 (en) Ventilator
KR100946381B1 (en) Hybrid heat pump type cooling and heating apparatus
JP7092362B2 (en) Temperature / humidity control device
JP6374748B2 (en) Underground heat exchange air conditioning system
KR101423137B1 (en) a heating apparatus without an outside-equipment
KR101520914B1 (en) Heat pump of Hybrid
CN219346786U (en) Hot water unit for inhibiting frosting
JP7325110B2 (en) Geothermal heat utilization equipment
KR100774592B1 (en) Heat pump type cooling and heating by subterranean heat on the water
JP2007319089A (en) Heating device of agricultural greenhouse
KR101093211B1 (en) Hybrid type cold and warm water supply system for heat pump
JP2008044562A (en) Heat pump type air conditioner for vehicle
JP2017203573A (en) Air conditioner and method for installing auxiliary heat exchanger
CN105605821A (en) Carbon dioxide direct extension air conditioning device
CN117419419A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220603

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220628

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221108

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20221214

C876 Explanation why request for accelerated appeal examination is justified

Free format text: JAPANESE INTERMEDIATE CODE: C876

Effective date: 20221214

C305 Report on accelerated appeal examination

Free format text: JAPANESE INTERMEDIATE CODE: C305

Effective date: 20230112

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20230117

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20230131

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20230418

C302 Record of communication

Free format text: JAPANESE INTERMEDIATE CODE: C302

Effective date: 20230427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230714

R150 Certificate of patent or registration of utility model

Ref document number: 7320308

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150