JP2012163783A - 自由曲面プリズムを用いた回折光学系及び画像撮像装置 - Google Patents

自由曲面プリズムを用いた回折光学系及び画像撮像装置 Download PDF

Info

Publication number
JP2012163783A
JP2012163783A JP2011024279A JP2011024279A JP2012163783A JP 2012163783 A JP2012163783 A JP 2012163783A JP 2011024279 A JP2011024279 A JP 2011024279A JP 2011024279 A JP2011024279 A JP 2011024279A JP 2012163783 A JP2012163783 A JP 2012163783A
Authority
JP
Japan
Prior art keywords
diffractive optical
line
optical system
free
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011024279A
Other languages
English (en)
Other versions
JP5672542B2 (ja
Inventor
Kenzaburo Suzuki
憲三郎 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2011024279A priority Critical patent/JP5672542B2/ja
Priority to CN201280007920.5A priority patent/CN103370641B/zh
Priority to PCT/JP2012/000256 priority patent/WO2012108126A1/ja
Priority to US13/982,788 priority patent/US9459384B2/en
Priority to TW101103193A priority patent/TWI521240B/zh
Publication of JP2012163783A publication Critical patent/JP2012163783A/ja
Application granted granted Critical
Publication of JP5672542B2 publication Critical patent/JP5672542B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • G02B17/0856Catadioptric systems comprising a refractive element with a reflective surface, the reflection taking place inside the element, e.g. Mangin mirrors
    • G02B17/086Catadioptric systems comprising a refractive element with a reflective surface, the reflection taking place inside the element, e.g. Mangin mirrors wherein the system is made of a single block of optical material, e.g. solid catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • G02B27/0037Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration with diffracting elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4205Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant
    • G02B27/4211Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant correcting chromatic aberrations

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Studio Devices (AREA)

Abstract

【課題】自由曲面プリズムで発生する色収差を、可視域から赤外域までの広波長域に亘り
良好に補正し得るとともに、回折光学素子の製造誤差の影響を受けにくく製造しやすい自
由曲面プリズムを用いた回折光学系及び画像撮像装置を提供する。
【解決手段】自由曲面プリズム14と、複数の回折素子要素121,122が互いに積層
され界面に格子構造の回折光学面DMが形成された複層型回折光学素子とを備えるととも
に、0.005<(ΔNg+ΔNs)/2<0.45という条件式を満足するようにする
。ΔNgはg線に対する回折光学面DMにおける屈折率差であり、ΔNsはs線に対する
回折光学面DMにおける屈折率差である。
【選択図】図1

Description

本発明は、例えば、監視用カメラとして利用可能な自由曲面プリズムを用いた回折光学
系及び画像撮像装置に関する。
近年、光軸の周りに対称でない非球面、すなわち「自由曲面」が使われ始めている。自
由曲面は回転対称な光学系と異なり、レイアウト上の自由度と収差補正上の自由度とを併
せ持っているため、小型で高性能な光学系が得られるという利点を有している。特に、自
由曲面を有するプリズム(自由曲面プリズム)は、射出成形ガラスや樹脂の材料・成形技
術の発展に伴い高精度な形状を実現できるようになっており、小型でハイスペックかつ高
性能な光学系を達成するポテンシャルが極めて高い。しかしながら、プリズム材料の持つ
波長分散性により光学系に色収差が生じてしまうことが多々あり、それが画質を損ねる原
因となっている。特に赤外域までの広い波長域において自由曲面プリズムを用いようとす
ると、この傾向は顕著となる。
従来、自由曲面を有する偏心プリズムと入射瞳との間に回折光学素子(DOE)を配置
することによって、偏心プリズム単体に残留する色収差を補正するようにした光学系が知
られている(例えば、下記特許文献1を参照)。
特許第3559624号公報
しかしながら、上記特許文献1に開示された光学系は、単層型DOEを用いているので
広い波長域に亘って良好な回折効率が得られず、有害なフレアが発生しやすいため、可視
域から赤外域までの広い波長域での使用には適さないという問題がある。
本発明は、このような事情に鑑みてなされたものであり、自由曲面プリズムと回折光学
素子とを備えた光学系において、自由曲面プリズム中の光路を光線が伝播することで発生
する色収差を、可視域から赤外域までの広波長域に亘り良好に補正し得るとともに、回折
光学素子の製造誤差の影響を受けにくく製造しやすい自由曲面プリズムを用いた回折光学
系及び、これを備えた画像撮像装置を提供することを目的とする。
本発明を例示する自由曲面プリズムを用いた回折光学系の一態様は、
非回転対称な非球面である自由曲面を有するプリズムと、複数の回折素子要素が互いに
積層され、かつ当該複数の回折素子要素の界面に格子構造の回折光学面が形成されてなる
複層型回折光学素子と、を備えており、
g線に対する前記回折光学面における屈折率差をΔNgとし、s線に対する前記回折光
学面における屈折率差をΔNsとするとき、以下の条件式(1)を満たすことを特徴とす
る。
0.005 < (ΔNg + ΔNs)/2 < 0.45 …(1)
また、本発明を例示する画像撮像装置の一態様は、上記回折光学系と、この回折光学系
により結像された画像を撮像する撮像素子と、を備えてなることを特徴とする。
なお、上述した複層型回折光学素子は密着複層型回折光学素子とも称され、2つ以上の
回折素子要素を重畳して形成したものであり、各回折素子要素間にはスペースを設けず、
互いに密着されたものを意味するものとする。
本発明によれば、自由曲面を有するプリズムにおいて発生する色収差を、可視域から赤
外域までの広波長域に亘り良好に補正し得るとともに、回折光学素子の製造誤差の影響を
受けにくく製造しやすいものとすることができる。
第1実施例に係る自由曲面プリズムを用いた回折光学系の断面図である。 第1実施例に係る複層型回折光学素子の概念的な構成を例示する断面図である。 第1実施例に係る自由曲面プリズムを用いた回折光学系のスポットダイヤグラムである。 第2実施例に係る自由曲面プリズムを用いた回折光学系の断面図である。 第2実施例に係る自由曲面プリズムを用いた回折光学系のスポットダイヤグラムである。 複層型回折光学素子の断面の一例を示す概略図であり、(a)は従来技術に係る分離複層型の回折光学素子の断面の一例を示す概略図、(b)は本実施形態に係る分離複層型の回折光学素子の断面の一例を示す概略図である。
以下、本発明の実施形態について上記図面を参照しながら説明する。なお、図1、図2
及び図4においては、方向を示すための座標系を図示している。また、図1、図2及び図
4中の○で囲んだ数字は、面番号を示している。
〈第1実施形態〉
図1に示すように、第1実施形態に係る自由曲面プリズムを用いた回折光学系10(以
下、単に「回折光学系10」と称することがある)は、物体側から順に、絞り11と、第
1面121及び第2面122が互いに平行に構成された平板状ガラス12と、この平板状
ガラス12の第2面122上に形成された複層型回折光学素子13と、第1面141、第
2面142及び第3面143を備えた自由曲面プリズム14と、を備えた偏心光学系とし
て構成されている。なお、図1には、撮像素子20(例えば、CCDやCMOS等からな
る)及び撮像面21が図示されているが、これは回折光学系10を構成するものではない
。また、撮像素子20の受光面上に、回折光学系10によって形成される像が位置する。
自由曲面プリズム14は、第1面141、第2面142及び第3面143が、いずれも
非回転対称な非球面である自由曲面で構成されている。ところで、一般に、このような自
由曲面プリズムは、設計の自由度が大きいことから、小型化を達成しつつ単色収差に関し
ては高性能な光学性能が得られるものであるが、プリズム材料が有する波長分散性により
、自由曲面プリズム中の光路を光線が伝播する際に色収差が発生しやすい。
複層型回折光学素子13は、自由曲面プリズム14の波長分散性の影響を低減し、回折
光学系10全体としての色収差を良好に補正するために配置されており、図2に示すよう
に、第1の回折素子要素131及び第2の回折素子要素132が、平板状ガラス12の第
2面122上に物体側からこの順に互いに密着するように積層され、かつ当該2つの回折
素子要素131,132の界面に格子構造の回折光学面DMが形成されている。
一般に、回折光学面とは、光に対して回折作用を施す光学面であり、回折光学素子とは
、このような回折光学面を備えた光学素子をいい、その種類としては、従来から知られて
いるように回折格子やフレネルゾーンプレートなどがある。このような回折光学素子によ
り回折作用を施された光は、屈折や反射とは異なる振る舞いを示すことが知られており、
その具体例としては、屈折や反射では正の分散値を有するのに対して、負の分散値を有す
ることが挙げられる。この性質は色収差補正に極めて有効であり、高価な特殊低分散ガラ
スでしか達し得ない(通常のガラスでは達し得ない)良好な色収差補正が可能となる。本
発明では、この性質を赤外域まで広げた波長帯域での色消しに適用している。
しかし、このような回折光学面を有する単層型の回折光学素子では、設計波長からずれ
た波長域の光によりフレアが発生し、画質・結像性能を損ねてしまう問題があり、その使
用態様はレーザー光源などの単一波長や狭い波長域での使用に限られていた。このため、
近年、複層型回折光学素子が提案されている。このタイプの回折光学素子は、例えば、鋸
歯状に形成された回折光学面(レリーフパターン)を有し、異なる屈折率及び分散を有し
た複数の光学素子要素を分離あるいは密着させた形で積層させてなるものであり、所望の
広波長域(例えば、可視光領域)のほぼ全域で高い回折効率が保たれる。すなわち、回折
効率の波長特性が良好であるという特徴を有している。
複層型の回折光学素子の構造について説明すると、一般に、図6(a),(b)に示す
ように、第1の材質からなる第1光学素子要素111と、これとは屈折率や分散値が異な
る第2の材質からなる第2光学素子要素112とから構成され、それぞれの光学素子要素
の対向し合う面には鋸歯状の回折格子111a,112aが形成されている。そして、特
定の2波長に対して色消し条件を満足させるように、第1光学素子要素111の格子高さ
(溝の高さ)h1を所定の値に決定し、第2光学素子要素112の格子高さh2を別の所
定の値に決定する。これにより、特定の2波長に対しては回折効率が1.0となり、その
他の波長に対してもかなり高い回折効率を得ることができるようになる。このように、回
折光学素子を複層型にすることで、回折光学素子をほぼ全波長に対して適用することがで
きるようになる。なお、回折効率(一次回折光の回折効率:本実施形態においては一次回
折光を用いている)とは、透過型の回折光学素子において、該回折光学素子に入射する光
の強度I0と、回折光学素子を透過した光に含まれる一次回折光の強度I1との割合η(=
1/I0)として定義される。
また、所定条件を満たすことにより、図6(b)に示すように、第1光学素子要素11
1の格子高さh1と、第2光学素子要素112の格子高さh2とを一致させた、本実施形
態に係る複層型回折光学素子13のような、いわゆる密着複層型の回折光学素子を達成す
ることが可能となる。この密着複層型の回折光学素子では、図6(a)に示す従来技術に
係る分離複層型に比べ、格子高さの誤差感度(公差)が緩くなったり、格子面の面粗さの
誤差感度(公差)が緩くなったりする等、製造し易くなるメリットがあり、生産性に優れ
、量産性が高く、光学製品のコストダウンに好都合であるという利点を有している。
そこで、本実施形態に係る回折光学系10では、このような密着複層型回折光学素子の
性質を利用して、小型化及び結像性能、特に、短波長可視域から赤外域に至る広範囲での
色収差補正の向上を図っている。
また、本実施形態に係る回折光学系10においては、下記条件式(1)を満足している
。ここで、ΔNgはg線に対する複層型回折光学素子13の回折光学面DM(図2参照)
における屈折率差を示し、ΔNsはs線に対する複層型回折光学素子13の回折光学面D
Mにおける屈折率差を示している。
0.005 < (ΔNg + ΔNs)/2 < 0.45 …(1)
複層型回折光学素子13では、回折光学面DMの光軸方向の両側で屈折率が異なること
が必要であるが、回折光学面DMにおけるg線に対する屈折率差ΔNgと、s線に対する
屈折率差ΔNsとの差が大きいと、製造上の誤差感度が大きくなる。
上記条件式(1)は、複層型回折光学素子13の回折光学面DMの屈折率差ΔNg、Δ
Nsの平均値の適切な範囲を規定するものであり、条件式(1)の上限を上回ると、屈折
率差ΔNgとΔNsの平均値が大きくなりすぎてしまい、回折光学素子の製造誤差感度が
大きくなりすぎる。逆に、条件式(1)の下限を下回ると、屈折率差ΔNgとΔNsの平
均値が小さくなりすぎてしまい、必要な回折を生じさせるためには回折光学面DMの格子
の高さh(図2参照)を大きくしなければならない。このため、条件式(1)の下限を下
回ると複層型回折光学素子13の製造上不利となる。また、格子の高さhが大きくなると
格子の端面134(図2参照)に斜めに入射する入射光の割合が増え、回折効率が低下す
るとともに、端面134に入射する入射光による散乱または反射による迷光が大きくなっ
てしまい、不要なフレアの発生要因ともなる。なお、条件式(1)の効果を十分に発揮す
るには、上限値を0.20とすることがより好ましく、また、下限値を0.10とするこ
とがより好ましい。
また、本実施形態に係る回折光学系10においては、下記条件式(2)を満足すること
が好ましい。ここで、Φmは回折光学面DMの屈折力を示し、Φは回折光学系10全系の
屈折力を示している。
1.0×10-7 < Φm/Φ …(2)
条件式(2)は、全系の屈折力Φに対する回折光学面DMの屈折力Φmの比(Φm/Φ
)の適切な範囲を規定するものであり、条件式(2)の下限を下回ると、相対的にΦmが
強くなりすぎてしまい、色収差が過剰に発生する不都合が生じやすくなる。なお、効果を
より十分に発揮するには下限数値を1.0×10-5とすることが望ましい。
また、本実施形態に係る回折光学系10においては、下記条件式(3)を満足すること
が好ましい。ここで、hは回折光学面DMの格子高さを示し、λdはd線の波長を示して
いる。
h/λd < 100.0 …(3)
条件式(3)は、基準波長となるd線の波長λdに対する格子高さhの比の適切な範囲
を規定するものであり、条件式(3)の上限を上回ると、回折光学面DMの格子高さhが
大きくなりすぎて、斜め入射光に対する回折効率が低下してしまい、不要なフレア光が発
生し不都合である。なお、格子高さhは、端面134(図2参照)の近傍を通る主たる光
線角度の方向に沿っての高さであって、光軸Ax方向の高さに限定したものではない。高
さhについては通常、光軸Ax方向の高さが屈折率差と設計中心波長との乗算で定められ
るスカラー理論によるブレーズ高さとされることが多い。しかし、光軸Ax方向とは異な
る方向からの入射光に対しては最適ブレーズではないので回折効率が低下してしまう。こ
のため、格子高さhは端面134の近傍を通る主たる光線の角度の方向に沿っての高さと
する。
回折光学面DMの端面134による散乱とブレーズ光の回折効率の低下とを軽減するた
めには、図2に示すように、通常光軸Ax方向に平行に形成される端面134を、入射瞳
(絞り11の中心P)に向けて勾配を与えて傾けることが好ましい。すなわち、主光線に
倣って端面134に勾配を与えることが好ましい。これは、端面134を入射瞳に向ける
と言い換えても同じである。また、図2に示すように端面134に傾きを与えると、回折
光学面DMの回折面133と端面134とのなす角が鈍角となることから、金型を用いた
樹脂成形により回折光学面DMを形成することが可能となり、製法上でのコストダウンも
図れて好ましい。さらには、この端面134部分には、階段状のステップや粗面として正
反射を防ぐ構造とすれば迷光が減ってより好ましい。なお、効果をより十分に発揮するに
は、条件式(3)の上限数値を50.0とすることが望ましい。
また、本実施形態に係る回折光学系10においては、使用波長域の短波長端の波長λS
が450nm以下、使用波長域の長波長端の波長λLが800nm以上であり、赤外のアッベ
数をνIRとするとき、下記条件式(4)を満足することが好ましい。
50.0 < |νIR| …(4)
条件式(4)は、赤外のアッベ数をνIRの適正なる範囲を示している。なお、νIR
は以下のごとく、定義するものとする。νIRは回折光学系10全体の色消し状態を示す
ものであり、回折光学系10の色消しの能力を示しているともいえる。
νIR=d線における全系の焦点距離fd/(波長λSでの全系の焦点距離fS−波長
λLでの全系の焦点距離fL)
可視域から赤外域での良好な色収差補正を達成するためには、条件式(4)を満たすこと
が肝要である。条件式(4)の下限を下回ると、色消し状態が不十分で実用的でない領域
となり不都合である。また、十分に複層型回折光学素子13が機能していないことになり
、可視域から赤外域を含めた広波長帯での良好な色消しが達成できなくなる。なお、色消
しの効果をより十分に発揮させるには、条件式(4)の下限値を70.0とすることが好
ましい。また、波長λSとしてはg線とすることが好ましく、波長λLとしてはs線また
はt線とすることが好ましい。
また、本実施形態に係る回折光学系10においては、下記条件式(5)を満足すること
が好ましい。ここで、Ed、Eg及びECは、d線、g線及びC線に対する回折効率設計
値をそれぞれ示している。
0.8 < (Eg+EC)/(2×Eg) …(5)
条件式(5)は広帯域化した際の回折効率のバランスの適切なる範囲を規定するもので
ある。条件式(5)の下限を下回ると、短波長、長波長のいずれかで回折効率が低下して
しまい、回折フレアが大きくなり画質を損ねてしまう。なお、効果をより十分に発揮させ
るためには、条件式(5)の下限値を0.95とすることが望ましい。なお、回折効率計
算はスカラー計算で行っている。
また、本実施形態に係る回折光学系10においては、第1の回折格子要素131の構成
材料及び第2の回折格子要素132の構成材料のうちの一方を高屈折率低分散の材料、他
方を低屈折率高分散の材料とし、当該高屈折率低分散の材料と低屈折率高分散の材料との
主分散(NF−NC)の差をΔ(NF−NC)とするとき、下記条件式(6)を満足する
ことが好ましい。
−20.0 < ΔNd/Δ(NF−NC) < −2.0 …(6)
条件式(6)は、上述の高屈折率低分散の材料と低屈折率高分散の材料との間で適切な
る屈折率と分散の配分を示している。この条件は、広い波長帯域の全域に亘り、十分に高
い回折効率を得るために必須の要件である。この条件式(6)の範囲を外れると、十分に
高い回折効率は得ることが困難となる。なお、効果をより十分に発揮させるためには、条
件式(6)の下限値を−5.0とすることが好ましい。また、上限値については−3.0
とすることが好ましい。
また、本実施形態に係る回折光学系10においては、g線とs線に対する焦点距離の差
をΔgs、F線とC線に対する焦点距離の差をΔFCとするとき、下記条件式(7)を満
足することが好ましい。
0.5 < Δgs/ΔFC < 8.0 …(7)
条件式(7)は回折光学系10全体の色消し状態を示すものであり、回折光学系10を
、例えば監視用カメラに搭載する場合などの用途に必要な色消し状態の条件範囲を示して
いる。なお、焦点距離とは、この場合、偏心光学系の基準軸の周りの微少光束を光線追跡
して得られる計算結果をさすものとする。なお、本条件式は通常のCCD等の撮像素子で
感度を有するs線までの波長を扱っている。
条件式(7)の上限を上回ると、色消しが不十分となって良好な撮影画像が得られない
。一方、条件式(7)の下限を下回ると、色消し性能は十分であるが、回折光学面DMの
格子ピッチが細かくなる傾向となって、フレアが多く発生しかつ製造しにくくなってしま
い、不都合である。なお、効果をより十分に発揮させるには条件式(7)の上限値を4.
0とすることが好ましい。また、下限値については1.0とすることが好ましい。
また、本実施形態に係る回折光学系10において、さらに広い波長での優れた赤外域で
の性能を達成するためには、以下の条件式(8)、(9)を満たすことが好ましい。
0.5 < Δgt/ΔFC < 8.0 …(8)
0.3 < Xan/Yan < 2.5 …(9)
条件式(8)では、最大像高さでのg線及びt線に対する焦点距離の差をΔgt、同じ
くF線及びC線に対する焦点距離の差をΔFCとしている。この条件式(8)は、上記条
件式(7)と同様、回折光学系10全体の色消し状態を示すものであり、監視用カメラな
どの用途に必要な色消し状態の条件範囲を示している。なお、本条件式は通常のCCD等
の感度よりも更に長波長までの感度を有する特殊な撮像素子に対するもので、t線までの
波長を扱っている。
条件式(8)の上限を上回ると色消しが不十分となって良好な撮影画像が得られない。
一方、条件式(8)の下限を下回ると、条件式(7)と同様であるが、さらに回折光学面
DMの格子ピッチが細かくなる傾向となって不都合である。なお、効果をより十分に発揮
させるには条件式(8)の上限値を4.0とすることが好ましい。また、下限値について
は1.0とすることが好ましい。
条件式(8)では、回折光学系10のX、Y方向の入射半画角をXan、Yanとして
いる。先にも述べたとおり、自由曲面プリズムは、光路を折り曲げてコンパクトにできる
ことや面形状を恣意的に選定することで高度な収差補正を達成する事ができる利点がある
が、広角化したり明るくしたりするためには、プリズム中の光路が長くなると、色収差の
発生が大きくなる不都合が発生しやすい。したがって、縦と横の入射角度の差が大き過ぎ
ると、その大きい方の角度の光線がプリズム中を通る光路長が長くなりすぎ、収差の発生
が大きくなる不都合が発生しやすくなる。
条件式(9)は、入射半画角Xan及びYanの比の適正なる範囲を規定するものであ
る。条件式(9)の範囲を超えると、その大きい方の入射半画角の光線に対し十分な色補
正を達成するためには格子ピッチが細かくなる傾向となって、フレアが発生しやすくなる
不都合ばかりか、製造しにくくなってしまう。また、画面のアスペクト比が縦長ないしは
横長の奇妙なものとなって実用にそぐわない。なお、効果をより十分に発揮させるには、
条件式(9)の上限値を2.0とすることが好ましい。また、下限値については0.5と
することが好ましい。
また、本実施形態に係る回折光学系10を実際に構成するには、以下に述べる要件を満
たすことが好ましい。例えば、自由曲面プリズム14を構成する際は、樹脂ないしはモー
ルドガラスによる射出成形で製作することが好ましい。高精細な画像用光学系など内部歪
による複屈折を小さく押さえるためにはモールドガラスによる射出成形が望ましい。また
、ガラスないしは樹脂の成形を金型で行えば、加工製造が容易になりコストダウンを図れ
るという利点もある。
また、複層型回折光学素子13は、UV硬化型樹脂で構成すれば、生産効率がアップす
るので生産上好ましい。この場合、工数が削減でき、コストダウンにも繋がり好都合であ
る。また、小型軽量化のためには、複層型回折光学素子13を構成する光学材料は、比重
が2.0以下の樹脂材料であることが好ましい。ガラスに比して樹脂は比重が小さいため
、光学系の軽量化に有効である。さらに効果を発揮するには、比重が1.6以下であるこ
とが好ましい。
また、複層型回折光学素子13は、その屈折力が正パワーの場合でも負パワーの場合で
も、高屈折率材料で構成された回折素子要素の山側端部をシャープにさせることが、製造
時に回折効率の低下を抑制するには重要である。すなわち、負パワーの場合には、入射瞳
に近い方を低屈折率材料で構成された回折素子要素とすることが必要である。なお、図2
では、端面134の断面形状が直線状となっているが、階段状となってもよいし、曲面状
となってもよい。例えば、端面を階段状にすることで、各波長の光が端面で発生するフレ
ア光を均一にする効果がある。
また、複層型回折光学素子13は、その成形性を良好に保ち、優れた量産性を確保する
には、第2の回折素子要素132を構成する材料の粘度(未硬化物粘度)は、少なくとも
40(mPa・s)以上であることが好ましい。40(mPa・s)以下であると、成形
中に樹脂が流れやすくなってしまうので精密形状を成形することが困難となってしまうと
いう不都合が生じる。一方、第1の回折素子要素131を構成する材料の粘度は、逆に少
なくとも2000(mPa・s)以上であることが好ましい。
次に、本実施形態に係る画像撮像装置について説明する。この画像撮像装置は、図1に
示すように、上述の回折光学系10と撮像素子20とを備えており、回折光学系10によ
り撮像面21上に結像される被写体像を撮像素子20により撮像するように構成されてい
る。
〈第2実施形態〉
図4に示すように、第2実施形態に係る自由曲面プリズムを用いた回折光学系30(以
下、単に「回折光学系30」と称することがある)は、物体側から順に、絞り31と、第
1面321、第2面322及び第3面323を備えた自由曲面プリズム32と、この自由
曲面プリズム32の内部に配された複層型回折光学素子33と、を備えた偏心光学系とし
て構成されている。なお、図4には、撮像素子40(例えば、CCDやCMOS等からな
る)及び撮像面41が図示されているが、これは回折光学系30を構成するものではない
。また、撮像素子40の受光面上に、回折光学系30によって形成される像が位置する。
自由曲面プリズム32は、第1面321、第2面322及び第3面323が、いずれも
非回転対称な非球面である自由曲面で構成されている。複層型回折光学素子33は、自由
曲面プリズム32の波長分散性の影響を低減し、回折光学系30全体としての色収差を良
好に補正するために配置されており、第1の回折素子要素331及び第2の回折素子要素
332が互いに密着するように積層され、かつ当該2つの回折素子要素331,332の
界面に格子構造の回折光学面DMが形成されている。なお、この複層型回折光学素子33
の構成は、図2に示す複層型回折光学素子13と同様であり、その詳細な説明は省略する
また、本実施形態においても、上述の第1実施形態において説明した好ましい態様、例
えば、条件式(2)〜(9)を満足するなどの態様を、同様に適用することが好ましい。
次に、本実施形態に係る画像撮像装置について説明する。この画像撮像装置は、図4に
示すように、上述の回折光学系30と撮像素子40とを備えており、回折光学系30によ
り撮像面41上に結像される被写体像を撮像素子40により撮像するように構成されてい
る。
なお、本発明に係る自由曲面プリズムを用いた回折光学系及び画像撮像装置は、上記実
施形態のものに限られるものではなく種々の態様の変更が可能である。例えば、回折光学
素子を配置する位置は適宜設定することが可能であり、回折光学素子を複数箇所に配置し
てもよい。また、回折光学素子の層数は2つに限られるものではなく3層以上のものとし
てもよい。さらに、非球面レンズ、屈折率分布型レンズ、結晶材料レンズなどの他の光学
部材を組み込んで、本発明に係る自由曲面プリズムを用いた回折光学系を構成することも
可能である。
以下、本発明に係る自由曲面プリズムを用いた回折光学系の具体的な実施例(第1実施
例及び第2実施例)について説明する。なお、各実施例において、回折光学面の位相差は
位相関数法を用いて計算した。
また、回折光学面の形状を決める位相多項式は、以下の数式(A)に示すとおりである
Figure 2012163783
ここで、数式(A)において、j、m,nの間には、次の数式(B)で表わされる関係
が成立している。
Figure 2012163783
また、自由曲面に関しては、次の数式(C)で定義される。なお、数式(C)において
、Zは中心軸に平行な面のサグ量であり、cは面頂点(原点)での曲率であり、kはコー
ニック定数であり、hは中心軸上の原点においてこれと垂直に交わる平面内での原点から
の距離であり、Cjはxy多項式の係数である。
Figure 2012163783
ここで、数式(C)中のj,m,nの間には、次の数式(D)および(E)で表わされ
る関係が成立している。
Figure 2012163783
Figure 2012163783
また、各実施例においては、収差特性の算出対象として、g線、F線、e線、d線、C
線、s線及びt線の各スペクトル線を用いている。これら各スペクトル線の波長(単位:
nm)は以下の通りである。
g線 435.835 F線 486.133 e線 546.074 d線 587.562
C線 656.273 s線 852.110 t線 1013.980
(第1実施例)
第1実施例について、図1〜図3および表1〜表8を用いて説明する。図1に示すよう
に、第1実施例に係る自由曲面プリズムを用いた回折光学系10(以下、単に「回折光学
系10」と称することがある)は、物体側から順に、絞り11と、第1面121及び第2
面122が互いに平行に構成された平板状ガラス12と、この平板状ガラス12の第2面
122上に形成された複層型回折光学素子13と、第1面141、第2面142及び第3
面143を備えた自由曲面プリズム14と、を備えた偏心光学系として構成されている。
自由曲面プリズム14は、第1面141、第2面142及び第3面143が、いずれも
非回転対称な非球面である自由曲面で構成されている。また、図2に示すように複層型回
折光学素子13は、第1の回折素子要素131及び第2の回折素子要素132が、平板状
ガラス12の第2面122上に物体側からこの順に互いに密着するように積層され、かつ
当該2つの回折素子要素131,132の界面に格子構造の回折光学面DMが形成されて
いる。また、本実施例では、第1の回折素子要素131が高屈折率低分散の材料により構
成され、第2の回折素子要素132が低屈折率高分散の材料により構成されており、複層
型回折光学素子13は正の屈折力を有している。
下の表1に、第1実施例に係る回折光学系10の構成データを示す。なお、以下の各実
施例の構成データを示す表中に記されている「*a」はその面が位相差関数で表される形状
であることを表し、「*b」はその面が自由曲面であることを表し、「*c」はその面が偏心
していることを表している。なお、以下の全ての諸元において掲載される、曲率半径、面
間隔、その他長さの単位は、特記がない場合は「mm」が使われている。ただし、光学系は
、比例拡大又は比例縮小しても同等の光学性能が得られるので、単位は「mm」に限定され
ることなく、他の適当な単位を用いることが可能である。このことは後述する第2実施例
でも同様である。
(表1)
(構成データ)
面番号 曲率半径 面間隔
物体 無限 無限
1(絞り) 無限 5.0000
2 無限 0.6667
3 無限 0.0333
4*a*c 無限 0.0333
5 無限 1.2271
6*b*c -30.3581
7*b*c -14.0818
8*b*c -30.3581
9*b*c -4.8808 -0.8494
像面 無限
第1実施例に係る回折光学系10において、平板状ガラス12及び自由曲面プリズム1
4は同じ硝材により構成されている。下の表2に、g線、F線、e線、d線、C線、s線
及びt線の各スペクトル線に対する平板状ガラス12及び自由曲面プリズム14の構成材
料の屈折率を示す。
(表2)
(屈折率データ)
波長(nm) 屈折率(平板状ガラス及び自由曲面プリズム)
g線(435.835) 1.52669
F線(486.133) 1.52238
e線(546.074) 1.51872
d線(587.562) 1.51680
C線(656.273) 1.51432
s線(852.110) 1.50980
t線(1013.980) 1.50731
下の表3に、g線、F線、e線、d線、C線、s線及びt線の各スペクトル線に対する
第1の回折素子要素131及び第2の回折素子要素132の各構成材料の屈折率を示す。
(表3)
(屈折率データ)
波長(nm) 屈折率 (第1の回折素子要素) (第2の回折素子要素)
g線(435.835) 1.57133 1.54906
F線(486.133) 1.56499 1.53911
e線(546.074) 1.55981 1.53153
d線(587.562) 1.55714 1.5278
C線(656.273) 1.55348 1.52329
s線(852.110) 1.54846 1.5162
t線(1013.980) 1.54582 1.51201
下の表4に、第4面(回折光学面DM)における位相差関数(数式(B))の係数Cの
値を示す。
(表4)
(位相差関数係数データ)
係数
C3 -9.6000E-04
C5 -8.4000E-04
C10 2.7810E-05
C14 2.1600E-05
下の表5に、第6面(第8面)、第7面及び第9面の自由曲面データ式(数式(A))
の各項係数を示す。
(表5)
(自由曲面データ)
項 第6(8)面係数 第7面係数 第9面係数
C4(x^2) -8.6820023E-04 3.6037855E-04 1.2834385E-02
C6(y^2) 3.8045241E-04 2.5973410E-04 7.8708196E-03
C8(x^2*y) 8.3096007E-06 -1.2458402E-05 8.7026592E-04
C10(y^3) 7.2547211E-06 -1.0288437E-05 9.1559626E-05
C11(x^4) -2.0681573E-06 -1.1192385E-06 2.9785335E-05
C13(x^2*y^2) -1.0238401E-06 -1.1701761E-06 1.8868075E-04
C15(y^4) -3.6093202E-07 -1.8135487E-07 5.2326361E-06
C17(x^4*y) 3.0997379E-07 5.3874899E-08 -9.2399463E-06
C19(x^2*y^3) 1.1058042E-07 -1.4068248E-08 6.9154034E-06
C21(y^5) 1.6643911E-08 6.9332255E-09 -1.9942454E-06
下の表6に、第4面、第6面(第8面)、第7面及び第9面の偏心データを示す。ここ
で、XDE、YDE及びZDEは、それぞれX方向、Y方向及びZ方向のシフトを表し、
ADE、BDE及びCDEは、それぞれX軸、Y軸及びZ軸周りの傾き(単位:度)を表
す。このことは、後述の表14において同様である。
(表6)
(偏心データ)
偏心 第4面 第6(8)面 第7面 第9面
XDE 0.0 0.0 0.0 0.0
YDE 0.666666667 -0.372003973 0.118037618 -5.034353463
ZDE 0.0 0.0 2.633333333 2.324955306
ADE 0.0 -4.040538719 20.88166768 -69.12432971
BDE 0.0 0.0 0.0 0.0
CDE 0.0 0.0 0.0 0.0
下の表7に、上述の条件式(1)〜(9)に関する各パラメータの対応値を示す。
(表7)
(パラメータ対応値)
パラメータ 対応値
ΔNg 0.02227
ΔNs 0.03226
Φm 0.00068862
Φ 0.05292
h 20.0(μm)
λd 0.587562(μm)
fd 6.29867
fg 6.25183
fF 6.27177
fC 6.30930
fs 6.32927
ft 6.33957
ft−fg 0.08773
Δgs(fs−fg) 0.07743
ΔFC(fC−fF) 0.03753
Eg 0.9984
EC 0.9844
Ed 1.0000
Δ(NF−NC) −0.00467
xan 16.95122
yan 12.87656
下の表8に、上述の条件式(1)〜(9)の対応値を示す。表8に示すように、第1実
施例は、条件式(1)〜(9)を全て満足している。
(表8)
(条件式対応値)
条件式 対応値
(1)(ΔNg + ΔNs)/2 0.02727
(2)Φm/Φ 0.01301
(3)h/λd 34.03896
(4)|νIR|
s線 81.347
t線 71.796
(5)(Eg+EC)/(2×Ed) 0.9914
(6)ΔNd/Δ(NF−NC) −6.283
(7)Δgs/ΔFC 2.945
(8)Δgt/ΔFC 2.258
(9)xan/yan 1.3164
図3は、第1実施例に係る回折光学系10のg線、F線、e線、d線、C線、s線及び
t線の各スペクトル線に対するスポットダイヤグラムである。スポットダイヤグラムの下
部に表示してある直線の長さは、撮像面上の0.1mmに相当する。この図3によれば、色収
差が良好に補正され、優れた結像性能を有していることがわかる。
(第2実施例)
第2実施例について、図4および表9〜表16を用いて説明する。図4に示すように、
第2実施例に係る自由曲面プリズムを用いた回折光学系30(以下、単に「回折光学系3
0」と称することがある)は、物体側から順に、絞り31と、第1面321、第2面32
2及び第3面323を備えた自由曲面プリズム32と、この自由曲面プリズム32の内部
に配された複層型回折光学素子33と、を備えた偏心光学系として構成されている。
自由曲面プリズム32は、第1面321、第2面322及び第3面323が、いずれも
非回転対称な非球面である自由曲面で構成されている。また、複層型回折光学素子33は
、自由曲面プリズム32内において、第1の回折素子要素331及び第2の回折素子要素
332が互いに密着するように積層され、かつ当該2つの回折素子要素331,332の
界面に格子構造の回折光学面DMが形成されている。また、本実施例では、第1の回折素
子要素331が低屈折率高分散の材料により構成され、第2の回折素子要素332が高屈
折率低分散の材料により構成されており、複層型回折光学素子13は正の屈折力を有して
いる。
下の表9に、第2実施例に係る回折光学系30の構成データを示す。なお、以下の各実
施例の構成データを示す表中に記されている「*a」はその面が位相差関数で表される形状
であることを表し、「*b」はその面が自由曲面であることを表し、「*c」はその面が偏心
していることを表している。
(表9)
(構成データ)
面番号 曲率半径 面間隔
物体 無限 無限
1(絞り) 無限 6.6667
2*b*c -30.3581
3*b*c -14.0818
4*b*c -30.3581
5 無限
6*a*c 無限
7 無限
8*b*c -4.8808 -0.8352
像面 無限
下の表10に、g線、F線、e線、d線、C線、s線及びt線の各スペクトル線に対す
る自由曲面プリズム32の構成材料の屈折率を示す。
(表10)
(屈折率データ)
波長(nm) 屈折率(自由曲面プリズム)
g線(435.835) 1.52669
F線(486.133) 1.52238
e線(546.074) 1.51872
d線(587.562) 1.51680
C線(656.273) 1.51432
s線(852.110) 1.50980
t線(1013.980) 1.50731
下の表11に、g線、F線、e線、d線、C線、s線及びt線の各スペクトル線に対す
る第1の回折素子要素331及び第2の回折素子要素332の各構成材料の屈折率を示す
(表11)
(屈折率データ)
波長(nm) 屈折率 (第1の回折素子要素) (第2の回折素子要素)
g線(435.835) 1.54906 1.57133
F線(486.133) 1.53911 1.56499
e線(546.074) 1.53153 1.55981
d線(587.562) 1.5278 1.55714
C線(656.273) 1.52329 1.55348
s線(852.110) 1.5162 1.54846
t線(1013.980) 1.51201 1.54582
下の表12に、第6面(回折光学面DM)における位相差関数(数式(B))の係数C
の値を示す。
(表12)
(位相差関数係数データ)
係数
C3 -3.6000E-03
C5 -2.7000E-03
C10 2.7000E-06
C14 -5.4000E-06
下の表13に、第2面(第4面)、第3面及び第8面の自由曲面データ式(数式(A)
)の各項係数を示す。
(表13)
(自由曲面データ)
項 第2(4)面係数 第3面係数 第8面係数
C4(x^2) -8.6820023E-04 3.6037855E-04 1.2834385E-02
C6(y^2) 3.8045241E-04 2.5973410E-04 7.8708196E-03
C8(x^2*y) 8.3096007E-06 -1.2458402E-05 8.7026592E-04
C10(y^3) 7.2547211E-06 -1.0288437E-05 9.1559626E-05
C11(x^4) -2.0681573E-06 -1.1192385E-06 2.9785335E-05
C13(x^2*y^2) -1.0238401E-06 -1.1701761E-06 1.8868075E-04
C15(y^4) -3.6093202E-07 -1.8135487E-07 5.2326361E-06
C17(x^4*y) 3.0997379E-07 5.3874899E-08 -9.2399463E-06
C19(x^2*y^3) 1.1058042E-07 -1.4068248E-08 6.9154034E-06
C21(y^5) 1.6643911E-08 6.9332255E-09 -1.9942454E-06
下の表14に、第2面(第4面)、第3面、第6面及び第8面の偏心データを示す。
(表14)
(偏心データ)
偏心 第2(4)面 第3面 第6面 第8面
XDE 0.0 0.0 0.0 0.0
YDE -0.372003973 0.118037618 -5.034353463 -4.367686796
ZDE 0.0 2.633333333 2.324955306 52.324955306
ADE -4.040538719 20.88166768 -69.1243297 -69.1243297
BDE 0.0 0.0 0.0 0.0
CDE 0.0 0.0 0.0 0.0
下の表15に、上述の条件式(1)〜(9)に関する各パラメータの対応値を示す。
(表15)
(パラメータ対応値)
パラメータ 対応値
ΔNg 0.02227
ΔNs 0.03226
Φm 0.0016584
Φ 0.05306
h 20.0(μm)
λd 0.587562(μm)
fd 6.28277
fg 6.23503
fF 6.24967
fC 6.26050
fs 6.26693
ft 6.25950
ft−fg 0.02447
Δgs(fs−fg) 0.03190
ΔFC(fC−fF) 0.01083
Eg 0.9984
EC 0.9844
Ed 1.0000
Δ(NF−NC) −0.00467
xan 16.95122
yan 12.87656
下の表16に、上述の条件式(1)〜(9)の対応値を示す。表16に示すように、第
2実施例は、条件式(1)〜(9)を全て満足している。
(表16)
(条件式対応値)
条件式 対応値
(1)(ΔNg + ΔNs)/2 0.02727
(2)Φm/Φ 0.03126
(3)h/λd 34.03896
(4)|νIR|
s線 196.952
t線 256.754
(5)(Eg+EC)/(2×Ed) 0.9914
(6)ΔNd/Δ(NF−NC) −6.283
(7)Δgs/ΔFC 2.945
(8)Δgt/ΔFC 2.258
(9)xan/yan 1.3164
図5は、第2実施例に係る回折光学系10のg線、F線、e線、d線、C線、s線及び
t線の各スペクトル線に対するスポットダイヤグラムである。スポットダイヤグラムの下
部に表示してある直線の長さは、撮像面上の0.1mmに相当する。この図5によれば、色収
差が良好に補正され、優れた結像性能を有していることがわかる。
11,31 絞り
12 平板状ガラス
13,33 回折光学素子
14,32 自由曲面レンズ
20,40 撮像素子
131,331 第1の回折素子要素
132,332 第2の回折素子要素
DM 回折光学面

Claims (10)

  1. 非回転対称な非球面である自由曲面を有するプリズムと、複数の回折素子要素が互いに
    積層され、かつ当該複数の回折素子要素の界面に格子構造の回折光学面が形成されてなる
    複層型回折光学素子と、を備えてなる自由曲面プリズムを用いた回折光学系であって、
    g線に対する前記回折光学面における屈折率差をΔNgとし、s線に対する前記回折光
    学面における屈折率差をΔNsとするとき、以下の条件式(1)を満たすことを特徴とす
    る自由曲面プリズムを用いた回折光学系。
    0.005 < (ΔNg + ΔNs)/2 < 0.45 …(1)
  2. 前記回折光学面の屈折力をΦmとし、全系の屈折力をΦとするとき、以下の条件式(2
    )を満たすことを特徴とする請求項1に記載の自由曲面プリズムを用いた回折光学系。
    1.0×10-7 < Φm/Φ …(2)
  3. 前記回折光学面の格子高さをhとし、d線の波長をλdとするとき、以下の条件式(3
    )を満たすことを特徴とする請求項1または2に記載の自由曲面プリズムを用いた回折光
    学系。
    h/λd < 100.0 …(3)
  4. 使用波長域の短波長端の波長λSが450nm以下、使用波長域の長波長端の波長λLが
    800nm以上であり、赤外のアッベ数をνIRとするとき、以下の条件式(4)を満たす
    ことを特徴とする請求項1から3のいずれか一項に記載の自由曲面プリズムを用いた回折
    光学系。
    50.0 < |νIR| …(4)
    ただし、前記赤外のアッベ数νIRは、以下のごとく定義される。
    νIR=d線における全系の焦点距離fd/(前記波長λSでの全系の焦点距離fS
    −前記波長λLでの全系の焦点距離fL)
  5. 前記波長λSがg線であり、前記波長λLがs線であることを特徴とする請求項1から
    4のいずれか一項に記載の自由曲面プリズムを用いた回折光学系。
  6. 前記波長λSがg線であり、前記波長λLがt線であることを特徴とする請求項1から
    4のいずれか一項に記載の自由曲面プリズムを用いた回折光学系。
  7. 前記回折光学素子のd線、g線及びC線に対する回折効率設計値をそれぞれEd、Eg
    及びECとするとき、以下の条件式(5)を満たすことを特徴とする請求項1から6のい
    ずれか一項に記載の自由曲面プリズムを用いた回折光学系。
    0.8 < (Eg+EC)/(2×Ed) …(5)
  8. 前記複数の回折素子要素が第1の回折格子要素と第2の回折格子要素とからなり、
    前記第1の回折格子要素の構成材料及び前記第2の回折格子要素の構成材料のうちの一
    方が高屈折率低分散の材料、他方が低屈折率高分散の材料であり、当該高屈折率低分散の
    材料と低屈折率高分散の材料との主分散(NF−NC)の差をΔ(NF−NC)とすると
    き、以下の条件式(6)を満たすことを特徴とする請求項1から7のいずれか一項に記載
    の自由曲面プリズムを用いた回折光学系。
    −20.0 < ΔNd/Δ(NF−NC) < −2.0 …(6)
  9. g線とs線に対する焦点距離の差をΔgs、F線とC線に対する焦点距離の差をΔFC
    とするとき、以下の条件式(7)を満たすことを特徴とする請求項1から8のいずれか一
    項に記載の自由曲面プリズムを用いた回折光学系。
    0.5 < Δgs/ΔFC < 8.0 …(7)
  10. 請求項1から9のいずれか一項に記載の自由曲面プリズムを用いた回折光学系と、この
    回折光学系により結像された画像を撮像する撮像素子と、を備えてなることを特徴とする
    画像撮像装置。
JP2011024279A 2011-02-07 2011-02-07 自由曲面プリズムを用いた回折光学系及び画像撮像装置 Expired - Fee Related JP5672542B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011024279A JP5672542B2 (ja) 2011-02-07 2011-02-07 自由曲面プリズムを用いた回折光学系及び画像撮像装置
CN201280007920.5A CN103370641B (zh) 2011-02-07 2012-01-18 使用自由曲面棱镜的衍射光学系统及图像拍摄装置
PCT/JP2012/000256 WO2012108126A1 (ja) 2011-02-07 2012-01-18 自由曲面プリズムを用いた回折光学系及び画像撮像装置
US13/982,788 US9459384B2 (en) 2011-02-07 2012-01-18 Diffraction optical system using free curve surface prism, and image capturing device
TW101103193A TWI521240B (zh) 2011-02-07 2012-02-01 A diffractive optical system using a free-form surface prism and an image capturing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011024279A JP5672542B2 (ja) 2011-02-07 2011-02-07 自由曲面プリズムを用いた回折光学系及び画像撮像装置

Publications (2)

Publication Number Publication Date
JP2012163783A true JP2012163783A (ja) 2012-08-30
JP5672542B2 JP5672542B2 (ja) 2015-02-18

Family

ID=46638354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011024279A Expired - Fee Related JP5672542B2 (ja) 2011-02-07 2011-02-07 自由曲面プリズムを用いた回折光学系及び画像撮像装置

Country Status (5)

Country Link
US (1) US9459384B2 (ja)
JP (1) JP5672542B2 (ja)
CN (1) CN103370641B (ja)
TW (1) TWI521240B (ja)
WO (1) WO2012108126A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111142249A (zh) * 2018-11-01 2020-05-12 精工爱普生株式会社 显示装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5652747B2 (ja) * 2010-11-12 2015-01-14 株式会社ニコン 光学系、画像表示装置及び画像撮像装置
CN103389577A (zh) * 2013-07-23 2013-11-13 中国科学院长春光学精密机械与物理研究所 含自由曲面棱镜的大视场紧凑型扫描红外光学系统
US9902120B2 (en) 2015-02-09 2018-02-27 Omnivision Technologies, Inc. Wide-angle camera using achromatic doublet prism array and method of manufacturing the same
CN110133844B (zh) * 2018-02-09 2020-09-08 清华大学 具有色散器件的自由曲面光学系统的设计方法
CN113031259B (zh) * 2020-12-31 2023-06-30 嘉兴驭光光电科技有限公司 菲涅尔化柱状透镜的设计方法及菲涅尔化柱状透镜
CN114280764B (zh) * 2021-12-27 2023-12-08 苏州大学 一种基于自由曲面棱镜的大视场分光成像方法及其系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009078357A1 (ja) * 2007-12-14 2009-06-25 Nikon Corporation 回折光学系及び光学機器
JP2009139897A (ja) * 2007-12-11 2009-06-25 Canon Inc 画像観察装置
JP2009216858A (ja) * 2008-03-10 2009-09-24 Fujinon Corp 撮像レンズおよび撮像装置
JP2010271590A (ja) * 2009-05-22 2010-12-02 Fujifilm Corp 回折光学素子を用いた光学系および装置
JP2011085769A (ja) * 2009-10-15 2011-04-28 Canon Inc 撮像表示装置
JP2012103572A (ja) * 2010-11-12 2012-05-31 Nikon Corp 光学系、画像表示装置及び画像撮像装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3559624B2 (ja) 1995-08-21 2004-09-02 オリンパス株式会社 画像表示装置
US5768025A (en) * 1995-08-21 1998-06-16 Olympus Optical Co., Ltd. Optical system and image display apparatus
JP3472154B2 (ja) * 1998-09-17 2003-12-02 キヤノン株式会社 回折光学素子及びこれを有する光学系
JP2005107298A (ja) * 2003-09-30 2005-04-21 Nikon Corp 回折光学素子及び回折光学素子の製造方法
JP5251517B2 (ja) * 2007-01-25 2013-07-31 株式会社ニコン 眼鏡レンズ
JP4958757B2 (ja) * 2007-12-13 2012-06-20 キヤノン株式会社 画像表示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009139897A (ja) * 2007-12-11 2009-06-25 Canon Inc 画像観察装置
WO2009078357A1 (ja) * 2007-12-14 2009-06-25 Nikon Corporation 回折光学系及び光学機器
JP2009216858A (ja) * 2008-03-10 2009-09-24 Fujinon Corp 撮像レンズおよび撮像装置
JP2010271590A (ja) * 2009-05-22 2010-12-02 Fujifilm Corp 回折光学素子を用いた光学系および装置
JP2011085769A (ja) * 2009-10-15 2011-04-28 Canon Inc 撮像表示装置
JP2012103572A (ja) * 2010-11-12 2012-05-31 Nikon Corp 光学系、画像表示装置及び画像撮像装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111142249A (zh) * 2018-11-01 2020-05-12 精工爱普生株式会社 显示装置
CN111142249B (zh) * 2018-11-01 2022-06-10 精工爱普生株式会社 显示装置

Also Published As

Publication number Publication date
US9459384B2 (en) 2016-10-04
CN103370641B (zh) 2015-09-16
CN103370641A (zh) 2013-10-23
US20130308191A1 (en) 2013-11-21
TWI521240B (zh) 2016-02-11
JP5672542B2 (ja) 2015-02-18
WO2012108126A1 (ja) 2012-08-16
TW201237465A (en) 2012-09-16

Similar Documents

Publication Publication Date Title
JP5672542B2 (ja) 自由曲面プリズムを用いた回折光学系及び画像撮像装置
JP4817076B2 (ja) 回折光学素子
JP5652747B2 (ja) 光学系、画像表示装置及び画像撮像装置
US8139295B2 (en) Optical system and eye piece
US8120852B2 (en) Diffractive optical element, optical system, and optical apparatus
TW201809774A (zh) 目鏡光學系統及頭戴式顯示器
JP2012163831A (ja) 超広角レンズおよびこれを搭載した撮像装置
US20100246006A1 (en) Diffractive optical system and optical device
US20190212530A1 (en) Inverted equal-magnification relay lens and camera system
JP2009025573A (ja) 回折光学系
JP5251517B2 (ja) 眼鏡レンズ
JPWO2008032447A1 (ja) 撮影レンズ及びカメラ
JPWO2010143394A1 (ja) 回折光学素子
JP4743607B2 (ja) フレネルレンズ、および、このフレネルレンズを用いた液晶プロジェクタ
JPWO2012137421A1 (ja) ズーム光学系及びこれを有する撮像装置
JP2012247450A (ja) 光学系
JP2017173818A (ja) 撮像レンズ
JP5224187B2 (ja) 眼鏡レンズ、回折光学素子、回折光学系及び光学機器
JP5369648B2 (ja) 回折光学素子、光学系及び光学機器
WO2020036032A1 (ja) レンズ光学系及び撮像装置
JP2011123317A (ja) 回折光学素子、光学系及び光学装置
JP2018004914A (ja) 回折光学素子及びそれを有する光学系、撮像装置、レンズ装置
JP2011145348A (ja) サブイメージ光学系及びこれを有する光学機器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141211

R150 Certificate of patent or registration of utility model

Ref document number: 5672542

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees