JP2012156384A - Optical device, light-emitting device, and method for producing functionally gradient material - Google Patents

Optical device, light-emitting device, and method for producing functionally gradient material Download PDF

Info

Publication number
JP2012156384A
JP2012156384A JP2011015445A JP2011015445A JP2012156384A JP 2012156384 A JP2012156384 A JP 2012156384A JP 2011015445 A JP2011015445 A JP 2011015445A JP 2011015445 A JP2011015445 A JP 2011015445A JP 2012156384 A JP2012156384 A JP 2012156384A
Authority
JP
Japan
Prior art keywords
electrode
corrosion inhibitor
emitting device
metal electrode
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011015445A
Other languages
Japanese (ja)
Other versions
JP5719613B2 (en
Inventor
Norihiko Nakamura
敬彦 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2011015445A priority Critical patent/JP5719613B2/en
Publication of JP2012156384A publication Critical patent/JP2012156384A/en
Application granted granted Critical
Publication of JP5719613B2 publication Critical patent/JP5719613B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45139Silver (Ag) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group

Landscapes

  • Led Device Packages (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a functionally gradient material which prevents a metal electrode from corroding and improves light resistance, and to provide a light-emitting device using the functionally gradient material.SOLUTION: A functionally gradient material comprises: an electrode corrosion inhibitor containing a siloxane compound comprising tetraalkoxysilane, methyltrialkoxysilane, (3-mercapto propyl)trialkoxysilane on one side thereof; and a sealing material containing a polysiloxane compound comprising tetraalkoxysilane, methyltrialkoxysilane, dialkoxydimethylsilane on the other side thereof. A composition ratio of the siloxane compound and the polysiloxane compound changes gradually from one side toward the other side. A light-emitting device using the functionally gradient material is also provided.

Description

本発明は、例えばLED(Light Emitng Diode)などの光半導体素子を実装した基板と、この光半導体素子を傾斜機能材で封止する発光デバイスに関する。   The present invention relates to a substrate on which an optical semiconductor element such as an LED (Light Emitting Diode) is mounted, and a light emitting device that seals the optical semiconductor element with a functionally gradient material.

光半導体装置として知られるLEDランプは、光半導体素子として発光ダイオード(LED)を有し、基板に実装されたLEDを透明な樹脂からなる封止剤で封止した構成である。このLEDを封止する封止剤としては、従来からエポキシ樹脂ベースの組成物が汎用されていた(例えば特許文献1参照)。   An LED lamp known as an optical semiconductor device has a light emitting diode (LED) as an optical semiconductor element, and has an LED mounted on a substrate sealed with a sealing agent made of a transparent resin. As a sealant for sealing the LED, an epoxy resin-based composition has been widely used conventionally (see, for example, Patent Document 1).

しかし、エポキシ樹脂ベースの封止剤では、近年の半導体パッケージの小型化やLEDの高輝度化にともなう発熱量の増大や光の短波長化によってクラッキングや黄変が発生しやすく、信頼性の低下を招いていた。   However, epoxy resin-based sealants are prone to cracking and yellowing due to increased heat generation and shorter wavelength of light due to recent miniaturization of semiconductor packages and higher brightness of LEDs, resulting in lower reliability. Was invited.

そこで、優れた耐熱性を有する点から、封止剤としてシリコーン組成物が使用されている。特に、付加反応硬化型のシリコーン組成物は、加熱により短時間で硬化するため生産性がよく、LEDの封止剤として適している(例えば特許文献2参照)。   Then, the silicone composition is used as a sealing agent from the point which has the outstanding heat resistance. In particular, an addition reaction curable silicone composition cures in a short time by heating, and thus has high productivity and is suitable as an LED sealant (see, for example, Patent Document 2).

特開2000−198930号公報JP 2000-198930 A 特開2004−292714号公報JP 2004-292714 A

しかしながら、シリコーン組成物は、一般に気体透過性に優れるため、外部環境からの影響を受けやすい。LEDランプが大気中の硫黄化合物や排気ガスなどに曝されると、硫黄化合物などがシリコーン組成物の硬化物を透過して、該硬化物で封止された基板上の金属電極、特にAg電極を経時的に腐食して黒変させる。   However, since the silicone composition is generally excellent in gas permeability, it is easily affected by the external environment. When the LED lamp is exposed to sulfur compounds or exhaust gas in the atmosphere, the sulfur compounds pass through the cured product of the silicone composition, and the metal electrode on the substrate sealed with the cured product, particularly the Ag electrode Corrodes over time and turns black.

本発明の目的は、このような課題に対処するためになされたもので、金属電極の腐食を防止する傾斜機能材と、この傾斜機能材を用いて形成した発光デバイスを提供することにある。   An object of the present invention is to address such problems, and is to provide a functionally gradient material that prevents corrosion of a metal electrode and a light-emitting device formed using the functionally gradient material.

本発明は、前記課題を解決するために以下の手段を提供する。
本発明に係る光デバイスは、金属電極を有する光デバイスにおいて、前記金属電極が、前記金属電極に接する面側にテトラアルコキシシラン、メチルトリアルコキシシラン、(3−メルカプトプロピル)トリアルコキシシランからなるシロキサン化合物を含む電極腐食防止剤を有し、前記金属電極に接する面と反対の面側にテトラアルコキシシラン、メチルトリアルコキシシラン、ジアルコキシジメチルシランからなるポリシロキサン化合物を含む封止材を有するとともに、前記金属電極に接する面側から前記反対の面側に向かって前記シロキサン化合物と前記ポリシロキサン化合物との組成比が傾斜的に変化していることを特徴とする傾斜機能材で形成された封止層で覆われていることを特徴とする。
The present invention provides the following means in order to solve the above problems.
The optical device according to the present invention is an optical device having a metal electrode, wherein the metal electrode is a siloxane composed of tetraalkoxysilane, methyltrialkoxysilane, (3-mercaptopropyl) trialkoxysilane on the surface side in contact with the metal electrode It has an electrode corrosion inhibitor containing a compound, and has a sealing material containing a polysiloxane compound composed of tetraalkoxysilane, methyltrialkoxysilane, dialkoxydimethylsilane on the surface opposite to the surface in contact with the metal electrode, A sealing formed of a functionally graded material, wherein the composition ratio of the siloxane compound and the polysiloxane compound changes in a slanting manner from the surface side in contact with the metal electrode toward the opposite surface side It is characterized by being covered with a layer.

これにより、光デバイスの電極の耐腐食性を向上させるとともに、光デバイスの耐光性を向上することができる。   Thereby, while improving the corrosion resistance of the electrode of an optical device, the light resistance of an optical device can be improved.

また、前記シロキサン化合物は、テトラエトキシシラン:メチルトリエトキシシラン:(3−メルカプトプロピル)トリエトキシシランをモル比30〜60:30〜60:1で混合した化合物であり、前記ポリシロキサン化合物は、ジエトキシジメチルシラン:テトラエトキシシラン:メチルトリエトキシシランをモル比78〜156:1:1で混合した化合物であることを特徴とする。   The siloxane compound is a compound obtained by mixing tetraethoxysilane: methyltriethoxysilane: (3-mercaptopropyl) triethoxysilane in a molar ratio of 30-60: 30-60: 1, and the polysiloxane compound is It is a compound in which diethoxydimethylsilane: tetraethoxysilane: methyltriethoxysilane is mixed at a molar ratio of 78 to 156: 1: 1.

また、本発明に係る発光デバイスは、基板と、前記基板に実装された光半導体素子と、前記基板上に形成され、前記光半導体素子と電気的に接続する金属電極と、前記光半導体素子及び前記金属電極を覆う封止層と、を備える発光デバイスであって、前記封止層は、前記金属電極に接する面側にテトラアルコキシシラン、メチルトリアルコキシシラン、(3−メルカプトプロピル)トリアルコキシシランからなるシロキサン化合物を含む電極腐食防止剤を有し、前記金属電極に接する面と反対の面側にテトラアルコキシシラン、メチルトリアルコキシシラン、ジアルコキシジメチルシランからなるポリシロキサン化合物を含む封止材を有するとともに、前記金属電極に接する面側から前記反対の面側に向かって前記シロキサン化合物と前記ポリシロキサン化合物との組成比が傾斜的に変化している傾斜機能材で形成されていることを特徴とする。   The light emitting device according to the present invention includes a substrate, an optical semiconductor element mounted on the substrate, a metal electrode formed on the substrate and electrically connected to the optical semiconductor element, the optical semiconductor element, A sealing layer that covers the metal electrode, wherein the sealing layer has a tetraalkoxysilane, methyltrialkoxysilane, (3-mercaptopropyl) trialkoxysilane on a surface side in contact with the metal electrode. An encapsulant containing a polysiloxane compound comprising tetraalkoxysilane, methyltrialkoxysilane, dialkoxydimethylsilane on the side opposite to the surface in contact with the metal electrode. And the siloxane compound and the polymer from the surface side in contact with the metal electrode toward the opposite surface side. Wherein the composition ratio of the siloxane compound is formed by FGM materials is changing inclinatorily.

これにより、発光デバイス等の電極の耐腐食性を確実に向上させるとともに、発光デバイスの耐光性を確実に向上することができる。また、電極腐食防止剤と封止材が傾斜機能材として一体となっているため、密着性も向上することができる。   Thereby, while improving the corrosion resistance of electrodes, such as a light emitting device, the light resistance of a light emitting device can be improved reliably. Moreover, since the electrode corrosion inhibitor and the sealing material are integrated as a functionally gradient material, adhesion can be improved.

また、前記シロキサン化合物は、テトラエトキシシラン:メチルトリエトキシシラン:(3−メルカプトプロピル)トリエトキシシランをモル比30〜60:30〜60:1で混合した化合物であり、前記ポリシロキサン化合物は、ジエトキシジメチルシラン:テトラエトキシシラン:メチルトリエトキシシランをモル比78〜156:1:1で混合した化合物であることを特徴とする。   The siloxane compound is a compound obtained by mixing tetraethoxysilane: methyltriethoxysilane: (3-mercaptopropyl) triethoxysilane in a molar ratio of 30-60: 30-60: 1, and the polysiloxane compound is It is a compound in which diethoxydimethylsilane: tetraethoxysilane: methyltriethoxysilane is mixed at a molar ratio of 78 to 156: 1: 1.

また、本発明に係る傾斜機能材の製造方法は、テトラアルコキシシラン、メチルトリアルコキシシラン、(3−メルカプトプロピル)トリアルコキシシランからなるシロキサン化合物を含む電極腐食防止剤を金属電極上に塗布する電極腐食防止剤塗布工程と、テトラアルコキシシラン、メチルトリアルコキシシラン、ジアルコキシジメチルシランからなるポリシロキサン化合物を含む封止材を前記電極腐食防止剤上に塗布する封止材塗布工程と、前記電極腐食防止剤と前記封止材とを同時に硬化させる硬化工程とを備えることを特徴とする。
これにより、電極腐食防止剤と封止材による傾斜機能材を形成することができる。
Moreover, the manufacturing method of the functionally gradient material according to the present invention is an electrode in which an electrode corrosion inhibitor containing a siloxane compound composed of tetraalkoxysilane, methyltrialkoxysilane, and (3-mercaptopropyl) trialkoxysilane is applied on a metal electrode. A corrosion inhibitor coating step, a sealing material coating step of coating a sealing material containing a polysiloxane compound comprising tetraalkoxysilane, methyltrialkoxysilane, dialkoxydimethylsilane on the electrode corrosion inhibitor; and the electrode corrosion And a curing step of simultaneously curing the inhibitor and the sealing material.
Thereby, the functional gradient material by an electrode corrosion inhibitor and a sealing material can be formed.

また、前記硬化工程において、マイクロ波を照射することを特徴とする。
これにより、硬化時間を短縮でき、傾斜機能材の形成工程時間を短縮することができる。
Moreover, in the said hardening process, a microwave is irradiated, It is characterized by the above-mentioned.
Thereby, hardening time can be shortened and the formation process time of a functionally gradient material can be shortened.

また、前記電極腐食防止剤塗布工程において、前記電極腐食防止剤を0.5μm〜6μmの厚さで塗布することを特徴とする。
これにより、耐腐食性を保ちつつ、クラック等の発生を防ぐことができる。
In the electrode corrosion inhibitor coating step, the electrode corrosion inhibitor is applied in a thickness of 0.5 to 6 μm.
Thereby, generation | occurrence | production of a crack etc. can be prevented, maintaining corrosion resistance.

上記構成により、電極を備える光デバイスの電極の腐食を防止することができる。さらに、発光デバイスにおいて、耐光性、耐腐食性を有する高信頼性の発光デバイスを提供することができる。   With the configuration described above, corrosion of the electrode of the optical device including the electrode can be prevented. Furthermore, in the light emitting device, a highly reliable light emitting device having light resistance and corrosion resistance can be provided.

本発明の発光デバイスの一実施形態を形成する工程を示すための概略断面図である。It is a schematic sectional drawing for showing the process of forming one Embodiment of the light emitting device of this invention. 本発明の発光デバイスの一実施形態を形成する工程を示すための概略断面図である。It is a schematic sectional drawing for showing the process of forming one Embodiment of the light emitting device of this invention. 本発明の発光デバイスの一実施形態を形成する工程を示すための概略断面図である。It is a schematic sectional drawing for showing the process of forming one Embodiment of the light emitting device of this invention. 本発明の発光デバイスの一実施形態を示す概略断面図である。It is a schematic sectional drawing which shows one Embodiment of the light-emitting device of this invention. 本発明の発光デバイスの一実施形態を形成する工程を示すための概略断面図である。It is a schematic sectional drawing for showing the process of forming one Embodiment of the light emitting device of this invention. 本発明の発光デバイスの一実施形態を示す概略断面図である。It is a schematic sectional drawing which shows one Embodiment of the light-emitting device of this invention. 本発明の発光デバイスの一実施形態を形成する工程を示すための概略断面図である。It is a schematic sectional drawing for showing the process of forming one Embodiment of the light emitting device of this invention. 本発明の発光デバイスの一実施形態を示す概略断面図である。It is a schematic sectional drawing which shows one Embodiment of the light-emitting device of this invention. 本発明の発光デバイスの断面観察図である。It is sectional observation drawing of the light-emitting device of this invention. 比較用発光デバイスの断面観察図である。It is a cross-sectional observation figure of the light emitting device for a comparison.

以下、本発明の実施の形態を図に基づいて詳細に説明する。
図1から図3は、本発明の発光デバイスの一実施形態を形成する工程を示すための概略断面図であり、図4は本発明の発光デバイスの一実施形態を示す概略断面図である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
1 to 3 are schematic cross-sectional views for illustrating a process of forming an embodiment of the light-emitting device of the present invention, and FIG. 4 is a schematic cross-sectional view illustrating an embodiment of the light-emitting device of the present invention.

図4に示すように、本実施形態の発光デバイス1は、基板3と、基板に実装された光半導体素子6と、基板3上に形成され、光半導体素子6と電気的に接続する金属電極4、5と、金属電極4、5を覆う傾斜機能材で形成される封止層9と、を備えている。   As shown in FIG. 4, the light emitting device 1 of the present embodiment includes a substrate 3, an optical semiconductor element 6 mounted on the substrate, and a metal electrode formed on the substrate 3 and electrically connected to the optical semiconductor element 6. 4 and 5 and a sealing layer 9 formed of a functionally gradient material that covers the metal electrodes 4 and 5.

封止層9は、金属電極4、5に接する面側にテトラアルコキシシラン、メチルトリアルコキシシラン、(3−メルカプトプロピル)トリアルコキシシランからなるシロキサン化合物を含む電極腐食防止層を有し、金属電極4、5に接する面と反対の面側にテトラアルコキシシラン、メチルトリアルコキシシラン、ジアルコキシジメチルシランからなるポリシロキサン化合物を含む封止材を有するとともに、金属電極4、5に接する面側から反対の面側に向かってシロキサン化合物とポリシロキサン化合物との組成比が傾斜的に変化している傾斜機能材で形成されている。   The sealing layer 9 has an electrode corrosion prevention layer containing a siloxane compound composed of tetraalkoxysilane, methyltrialkoxysilane, and (3-mercaptopropyl) trialkoxysilane on the surface side in contact with the metal electrodes 4 and 5. 4 and 5 have a sealing material containing a polysiloxane compound composed of tetraalkoxysilane, methyltrialkoxysilane, dialkoxydimethylsilane on the side opposite to the side in contact with 4, 5 and opposite from the side in contact with metal electrodes 4 and 5 The composition ratio of the siloxane compound and the polysiloxane compound is formed with a functionally graded material that changes in a slope toward the surface side.

すなわち、本実施形態の傾斜機能材は、一方の面側にテトラアルコキシシラン、メチルトリアルコキシシラン、(3−メルカプトプロピル)トリアルコキシシランからなるシロキサン化合物を含む電極腐食防止剤を有し、他方の面側にテトラアルコキシシラン、メチルトリアルコキシシラン、ジアルコキシジメチルシランからなるポリシロキサン化合物を含む封止材を有するとともに、一方の面側から他方の面側に向かって前記シロキサン化合物と前記ポリシロキサン化合物との組成比が傾斜的に変化している材料である。   That is, the functionally gradient material of the present embodiment has an electrode corrosion inhibitor containing a siloxane compound composed of tetraalkoxysilane, methyltrialkoxysilane, and (3-mercaptopropyl) trialkoxysilane on one side, The surface side has a sealing material containing a polysiloxane compound composed of tetraalkoxysilane, methyltrialkoxysilane, dialkoxydimethylsilane, and the siloxane compound and the polysiloxane compound from one surface side to the other surface side And the composition ratio changes in a slanting manner.

また、傾斜機能層9は、さらに、硬化剤、或いは、硬化触媒を含有してもよい。これにより、確実に硬化させることができる。   The functionally graded layer 9 may further contain a curing agent or a curing catalyst. Thereby, it can be hardened reliably.

以下、図1から図4において本実施形態の発光デバイスの製造方法を説明する。
図1は、基板上に金属電極を形成する工程(金属電極形成工程)と、反射部材を設置する工程(反射部材設置工程)を示す図である。
Hereinafter, the manufacturing method of the light-emitting device of this embodiment will be described with reference to FIGS.
FIG. 1 is a diagram illustrating a process of forming a metal electrode on a substrate (metal electrode formation process) and a process of installing a reflective member (reflective member installation process).

金属電極形成工程は、基板3に銀ペースト等を用いて形成される銀配線電極などからなる金属電極4、5が形成する。   In the metal electrode forming step, metal electrodes 4 and 5 made of silver wiring electrodes or the like formed on the substrate 3 using a silver paste or the like are formed.

また、反射部材設置工程は、傾斜貫通孔を形成した反射部材2を基板3上に金属電極4、5を介して設置する。   Further, in the reflection member installation step, the reflection member 2 in which the inclined through hole is formed is installed on the substrate 3 via the metal electrodes 4 and 5.

基板3の材質は、セラミックスが一般的に用いられる。なお、基板3の材質は、金属電極4、5を形成するときに加熱される温度に耐えるも樹脂なら使用可能であり、例えばポリイミド樹脂等が使用できる。   As a material for the substrate 3, ceramics is generally used. In addition, the material of the board | substrate 3 can be used if it is resin although it can endure the temperature heated when forming the metal electrodes 4 and 5, For example, a polyimide resin etc. can be used.

反射部材2は、開口端から底面に向かって狭まる傾斜貫通孔を有する。また、傾斜貫通孔は、発光デバイス1の上面視において、例えば円形に形成されている。   The reflecting member 2 has an inclined through hole that narrows from the opening end toward the bottom surface. Further, the inclined through hole is formed, for example, in a circular shape in a top view of the light emitting device 1.

反射部材2の材質は、一般的には多孔質セラミックス等のセラミックスを用いる。また、反射部材2と基板との接合は、金属電極4、5を形成した基板3とエポキシ樹脂等を用いて接合している。   As the material of the reflecting member 2, ceramics such as porous ceramics are generally used. Further, the reflection member 2 and the substrate are bonded using the epoxy resin or the like to the substrate 3 on which the metal electrodes 4 and 5 are formed.

図2は、基板3に光半導体素子6を実装する工程(光半導体素子実装工程)を示す図である。   FIG. 2 is a diagram showing a process of mounting the optical semiconductor element 6 on the substrate 3 (optical semiconductor element mounting process).

光半導体素子実装工程において、光半導体素子6は金属電極4上に搭載されることにより、基板に実装されている。また、光半導体素子6は、金属電極5とワイヤーボンド7により電気的に接続している。   In the optical semiconductor element mounting step, the optical semiconductor element 6 is mounted on the substrate by being mounted on the metal electrode 4. The optical semiconductor element 6 is electrically connected to the metal electrode 5 by a wire bond 7.

なお、光半導体素子6と金属電極4は、図示しないが銀ペースト剤、錫銀ペースト剤、銀ナノ粒子を含むペースト剤等を用いて接合されている。また、光半導体素子6と金属電極4の接続はペースト剤だけに限られるものでなく、ハンダ等を用いてもよい。   Although not shown, the optical semiconductor element 6 and the metal electrode 4 are joined using a silver paste, a tin-silver paste, a paste containing silver nanoparticles, or the like. Further, the connection between the optical semiconductor element 6 and the metal electrode 4 is not limited to the paste agent, and solder or the like may be used.

図3は、金属電極4、5を覆う電極腐食防止剤8を塗布する工程(電極腐食防止剤塗布工程)を示す図である。   FIG. 3 is a diagram showing a step of applying an electrode corrosion inhibitor 8 that covers the metal electrodes 4 and 5 (electrode corrosion inhibitor application step).

電極腐食防止剤8は、テトラアルコキシシラン、メチルトリアルコキシシラン、(3−メルカプトプロピル)トリアルコキシシランからなるシロキサン化合物を含むものである。また、これらの加水分解物、及び、これらが結合したシロキサン結合化合物を含有してもよい。電極腐食防止剤8は、後述する傾斜機能材の金属電極4側の材料となる。   The electrode corrosion inhibitor 8 contains a siloxane compound composed of tetraalkoxysilane, methyltrialkoxysilane, and (3-mercaptopropyl) trialkoxysilane. Moreover, you may contain these hydrolysates and the siloxane bond compound which these couple | bonded. The electrode corrosion inhibitor 8 is a material on the metal electrode 4 side of the functionally gradient material described later.

本実施形態では、テトラエトキシシラン:メチルトリエトキシシラン:(3−メルカプトプロピル)トリエトキシシラン:水:酢酸=50:50:1:175:5(モル比)で混合物を用いる。この混合物を、80℃で20分間攪拌したものを室温まで自然冷却させる。その後、体積比1:2のエタノールとヘキサンの溶媒で5倍に希釈する。その後、スプレー法、ディップ法、刷毛塗布法等により金属電極4上に塗布する。その後、80℃で5分間加熱し、脱溶媒させる。   In this embodiment, a mixture is used with tetraethoxysilane: methyltriethoxysilane: (3-mercaptopropyl) triethoxysilane: water: acetic acid = 50: 50: 1: 175: 5 (molar ratio). The mixture stirred at 80 ° C. for 20 minutes is allowed to cool to room temperature. Then, it is diluted 5 times with a solvent of ethanol and hexane in a volume ratio of 1: 2. Thereafter, the metal electrode 4 is applied by a spray method, a dip method, a brush application method, or the like. Thereafter, the mixture is heated at 80 ° C. for 5 minutes to remove the solvent.

電極腐食防止剤8の層の厚さは、0.5〜6μmで形成する。また電極腐食防止剤8の層の厚さは、好ましくは1〜2μmであるとよい。電極腐食防止剤8の層は、0.5μmより薄い場合、耐腐食性を確保できない。また、電極腐食防止剤8の層が厚いほうが耐腐食性は向上するが、電極腐食防止剤8の層が数十μmの厚さの場合は、乾燥時や、封止層9の硬化時にクラックが発生し、クラック部から腐食が起こる。そのため、電極腐食防止剤の層の厚さは6μm以下に形成するとよい。   The thickness of the electrode corrosion inhibitor 8 is 0.5 to 6 μm. The thickness of the electrode corrosion inhibitor 8 is preferably 1 to 2 μm. When the layer of the electrode corrosion inhibitor 8 is thinner than 0.5 μm, the corrosion resistance cannot be ensured. In addition, the thicker the electrode corrosion inhibitor 8 is, the better the corrosion resistance is. However, when the electrode corrosion inhibitor 8 is several tens of μm thick, it cracks when dried or when the sealing layer 9 is cured. Occurs and corrosion occurs from the crack. For this reason, the thickness of the electrode corrosion inhibitor layer is preferably 6 μm or less.

なお、上記の混合比は一例であり、例えば、(3−メルカプトプロピル)トリエトキシシランのモル比を1としたとき、テトラエトキシシランのモル比は30〜60、メチルトリエトキシシランのモル比は30〜60でもよい。また、水のモル比は、175〜350、酢酸のモル比は2〜10でよい。また、水は加熱後に適宜追加していってもよい。   In addition, said mixing ratio is an example, for example, when the molar ratio of (3-mercaptopropyl) triethoxysilane is 1, the molar ratio of tetraethoxysilane is 30 to 60, and the molar ratio of methyltriethoxysilane is 30-60 may be sufficient. Moreover, the molar ratio of water may be 175 to 350, and the molar ratio of acetic acid may be 2 to 10. Water may be added as appropriate after heating.

図4は、電極腐食防止剤8、光半導体素子6上に封止材を塗布し(封止材塗布工程)、傾斜機能材を形成する工程(傾斜機能材形成工程)を示す図である。   FIG. 4 is a diagram showing a step (gradient function material forming step) in which a sealing material is applied on the electrode corrosion inhibitor 8 and the optical semiconductor element 6 (sealing material application step) to form a functionally gradient material.

封止材は、テトラアルコキシシラン、メチルトリアルコキシシラン、ジアルコキシジメチルシランからなるポリシロキサン化合物を含むものである。また、これらの加水分解物、及び、これらが結合したシロキサン結合化合物を含有してもよい。   The sealing material contains a polysiloxane compound composed of tetraalkoxysilane, methyltrialkoxysilane, dialkoxydimethylsilane. Moreover, you may contain these hydrolysates and the siloxane bond compound which these couple | bonded.

本実施形態では、傾斜機能材は、ジエトキシジメチルシラン:テトラエトキシシラン:メチルトリエトキシシラン:水:酢酸=78:1:1:1230:8(モル比)の混合物で形成する。この混合物を、80℃で22時間攪拌した後、更に、150℃で6時間攪拌する。その後、硬化触媒を滴下し、150℃で2時間加熱する。このとき、電極腐食防止剤8と同時に、固化させる。   In this embodiment, the functionally gradient material is formed of a mixture of diethoxydimethylsilane: tetraethoxysilane: methyltriethoxysilane: water: acetic acid = 78: 1: 1: 1230: 8 (molar ratio). The mixture is stirred at 80 ° C. for 22 hours, and further stirred at 150 ° C. for 6 hours. Thereafter, a curing catalyst is dropped and heated at 150 ° C. for 2 hours. At this time, the electrode corrosion inhibitor 8 is solidified simultaneously.

傾斜機能材は電極腐食防止剤8と同時に固化させるため、電極腐食防止剤8と封止材との界面が形成されず、傾斜膜が形成される。   Since the functionally gradient material is solidified simultaneously with the electrode corrosion inhibitor 8, the interface between the electrode corrosion inhibitor 8 and the sealing material is not formed, and a gradient film is formed.

これにより、一方の面側(金属電極4、5に接する面側)にテトラアルコキシシラン、メチルトリアルコキシシラン、(3−メルカプトプロピル)トリアルコキシシランからなるシロキサン化合物を含む電極腐食防止剤を有し、他方の面側(金属電極4、5に接する面と反対の面側)にテトラアルコキシシラン、メチルトリアルコキシシラン、ジアルコキシジメチルシランからなるポリシロキサン化合物を含む封止材を有するとともに、一方の面側から他方の面側に向かってシロキサン化合物とポリシロキサン化合物との組成比が傾斜的に変化している傾斜機能材を形成することができる。   Accordingly, an electrode corrosion inhibitor containing a siloxane compound composed of tetraalkoxysilane, methyltrialkoxysilane, (3-mercaptopropyl) trialkoxysilane is provided on one surface side (surface side in contact with the metal electrodes 4 and 5). And a sealing material containing a polysiloxane compound composed of tetraalkoxysilane, methyltrialkoxysilane and dialkoxydimethylsilane on the other surface side (the surface opposite to the surface in contact with the metal electrodes 4 and 5), It is possible to form a functionally gradient material in which the composition ratio of the siloxane compound and the polysiloxane compound is changed in an inclined manner from the surface side toward the other surface side.

すなわち傾斜機能材は、一方の面側から他方の面側に向かって、電極腐食防止剤8を構成する組成物の割合が段階的又は連続的に少なくなっていき、封止材を構成する組成物の割合が段階的又は連続的に多くなっていくものである。   That is, in the functionally gradient material, the ratio of the composition constituting the electrode corrosion inhibitor 8 decreases stepwise or continuously from one surface side to the other surface side, and the composition constituting the sealing material The ratio of things increases stepwise or continuously.

なお、シラン剤の混合比は一例であり、これに限定されるものではない。また、触媒として、酢酸を用いた例を示したが、塩酸等の他の酸触媒、及び、塩基触媒を用いてもよい。例えば、テトラエトキシシラン、メチルトリエトキシシランのモル比を1としたとき、ジエトキシジメチルシランのモル比を78〜156にしてもよい。また、水のモル比は適宜変更してもよく、酢酸のモル比は水のモル比に合わせて変更してもよい。   In addition, the mixing ratio of a silane agent is an example and is not limited to this. Moreover, although the example which used acetic acid as a catalyst was shown, you may use other acid catalysts, such as hydrochloric acid, and a base catalyst. For example, when the molar ratio of tetraethoxysilane and methyltriethoxysilane is 1, the molar ratio of diethoxydimethylsilane may be 78 to 156. The molar ratio of water may be changed as appropriate, and the molar ratio of acetic acid may be changed in accordance with the molar ratio of water.

また、傾斜機能材は、ジエトキシジメチルシラン:テトラエトキシシラン:メチルトリエトキシシラン=78:1:1(モル比)の混合物を、80℃20分攪拌した後、マイクロ波を500Wで20分照射し、更に、150℃で6時間攪拌して形成したものでもよい。なお、マイクロ波を用いないで形成する場合と同様に水、酢酸を適宜加える。また、酢酸の量は水の量に合わせて変更することができる。   The functionally gradient material is a mixture of diethoxydimethylsilane: tetraethoxysilane: methyltriethoxysilane = 78: 1: 1 (molar ratio), stirred at 80 ° C. for 20 minutes, and then irradiated with microwaves at 500 W for 20 minutes. Further, it may be formed by stirring at 150 ° C. for 6 hours. Note that water and acetic acid are added as appropriate, as in the case of forming without using a microwave. The amount of acetic acid can be changed according to the amount of water.

マイクロ波を照射することにより、封止層9の形成時間が短縮できる。本実施例では、500Wで20分照射する条件でおこなったが、攪拌する容量や、照射状態に応じて、照射時間やエネルギーを適切に変更することで、所望の傾斜機能材が得られる。   By irradiating the microwave, the formation time of the sealing layer 9 can be shortened. In this example, the irradiation was performed under the condition of irradiation at 500 W for 20 minutes, but a desired functionally gradient material can be obtained by appropriately changing the irradiation time and energy according to the stirring capacity and irradiation state.

また、傾斜機能材は硬化剤、或いは、硬化触媒を含有してもよい。これにより、確実に硬化させることができる。硬化触媒としては、オクチル酸錫、ジブチルチンジアセテート、ジブチルチンジラウレート、ジブチルチンマーカプチド、ジブチルチンチオカルボキシレート、ジブチルチンジマレエート、ジブチルチンオキサイド、モノブチルチンオキサイド、ジオクチルチンチオカルボキシレート、ジオクチルチンマーカプチド等の有機錫化合物、オクテン酸鉛等の有機鉛化合物、フェニル水銀プロピオン酸塩等の有機水銀化合物、有機アンチモン化合物、カリウム、ナトリウム、カルシウム、鉄、マグネシウム、水銀、ニッケル、コバルト、亜鉛、アルミニウム、錫、バナジウム、チタン等のカルボン酸塩、ジブチルチンアミン−2−エチルヘキソエート等の如きアミン塩、ならびに他の酸性触媒および塩基性触媒等が挙げられる。   The functionally gradient material may contain a curing agent or a curing catalyst. Thereby, it can be hardened reliably. Curing catalysts include tin octylate, dibutyltin diacetate, dibutyltin dilaurate, dibutyltin marker peptide, dibutyltin thiocarboxylate, dibutyltin dimaleate, dibutyltin oxide, monobutyltin oxide, dioctyltin thiocarboxylate, dioctyltin Organic tin compounds such as marker peptide, organic lead compounds such as lead octenoate, organic mercury compounds such as phenylmercury propionate, organic antimony compounds, potassium, sodium, calcium, iron, magnesium, mercury, nickel, cobalt, zinc, Examples thereof include carboxylates such as aluminum, tin, vanadium, and titanium, amine salts such as dibutyltinamine-2-ethylhexoate, and other acidic and basic catalysts.

なお、特に限定されないが、硬化触媒としては有機錫化合物が好ましい。これら触媒を特定の有機ポリシロキサンに対し、例えば0.001〜5重量%配合することができる。   Although not particularly limited, an organic tin compound is preferable as the curing catalyst. For example, 0.001 to 5% by weight of these catalysts can be blended with respect to a specific organic polysiloxane.

また、傾斜機能材は透明であるが、光半導体素子6で発光する発光色を変換するために、蛍光体等の混合物を混入させてもよい。   The functionally gradient material is transparent, but a mixture such as a phosphor may be mixed in order to convert the color of light emitted from the optical semiconductor element 6.

ここまで、1つの発光デバイスの構造を説明したが、本実施形態に係る発明を実施する際には、ウェハ単位で処理することが可能であり、抵コストで実現できるものである。   Up to this point, the structure of one light emitting device has been described. However, when carrying out the invention according to the present embodiment, it is possible to perform processing in units of wafers, which can be realized at low cost.

また、発光デバイス1の構造は図4に示したものに限られるものでなく、例えば図5〜図8に示す構造でもよい。図5〜図8は本発明の発光デバイスの別の実施形態を示す概略断面図である。   Further, the structure of the light emitting device 1 is not limited to that shown in FIG. 4, and for example, the structure shown in FIGS. 5-8 is a schematic sectional drawing which shows another embodiment of the light-emitting device of this invention.

図5、図6は本発明の発光デバイスの別の実施形態を示す概略断面図である。
図5は本発明の発光デバイスの別の実施形態における電極腐食防止剤塗布工程を示す概略断面図である。
5 and 6 are schematic cross-sectional views showing another embodiment of the light-emitting device of the present invention.
FIG. 5 is a schematic cross-sectional view showing an electrode corrosion inhibitor coating step in another embodiment of the light emitting device of the present invention.

図5において、図4と異なる点は、電極腐食防止剤8が、金属電極4、5上だけでなく、反射部材2全体も覆っている点である。   5 is different from FIG. 4 in that the electrode corrosion inhibitor 8 covers not only the metal electrodes 4 and 5 but also the entire reflecting member 2.

本発明で形成する電極腐食防止剤は透明体であり、透過率もよい。そのため、反射部材2を電極腐食防止剤8が覆っていても良い。このように構成することで、ウェハ単位での製造時に、容易に電極腐食防止剤8を形成することが可能になる。   The electrode corrosion inhibitor formed in the present invention is a transparent body and has good transmittance. Therefore, the electrode corrosion inhibitor 8 may cover the reflecting member 2. By comprising in this way, it becomes possible to form the electrode corrosion inhibitor 8 easily at the time of manufacture in a wafer unit.

図6は、図5に示した電極腐食防止剤塗布工程を行った発光デバイスである。このとき、図6には、反射部材2の基板3と接する面と反対の面上に一部電極腐食防止剤が形成されている。これは、発光デバイス1の性能を妨げる要因にはならないため、剥離等により、必ずしも除去する必要はない。この場合、マスク等により電極腐食防止剤8の塗布領域を調整しなくてもよいため、電極腐食防止剤塗布工程を簡略化することができる。   FIG. 6 shows a light emitting device that has undergone the electrode corrosion inhibitor coating step shown in FIG. At this time, in FIG. 6, the electrode corrosion inhibitor is partially formed on the surface of the reflecting member 2 opposite to the surface in contact with the substrate 3. Since this does not hinder the performance of the light emitting device 1, it is not necessarily removed by peeling or the like. In this case, since it is not necessary to adjust the application area | region of the electrode corrosion inhibitor 8 with a mask etc., an electrode corrosion inhibitor application | coating process can be simplified.

図7、8は本発明の発光デバイスの別の実施形態を示す概略断面図である。
図7は本発明の発光デバイスの別の実施形態における電極腐食防止剤塗布工程を示す概略断面図である。
7 and 8 are schematic cross-sectional views showing another embodiment of the light-emitting device of the present invention.
FIG. 7 is a schematic cross-sectional view showing an electrode corrosion inhibitor coating step in another embodiment of the light emitting device of the present invention.

図7において、発光デバイス1は、中央部に窪み部を有する基板3と、基板3の一方の面側において、その中央部に設けられた窪み部の底部に実装された光半導体素子6と、基板3上に形成され、光半導体素子6と電気的に接続する内部電極である金属電極14、15と、金属電極14、15を覆う電極腐食防止剤8とから構成されている。   In FIG. 7, the light emitting device 1 includes a substrate 3 having a depression at the center, an optical semiconductor element 6 mounted on the bottom of the depression provided at the center on one surface side of the substrate 3, and It is composed of metal electrodes 14 and 15 that are internal electrodes that are formed on the substrate 3 and are electrically connected to the optical semiconductor element 6, and an electrode corrosion inhibitor 8 that covers the metal electrodes 14 and 15.

また、基板3の一方の面と反対の面側に形成された外部電極11、12と金属電極14、15とが貫通電極13によって接続されている。また、基板3の窪み部の壁部は傾斜面で形成されている。また窪み部の壁面には、光半導体素子6からの光を効率よく放射するために銀で形成された反射膜16が形成されている。また、光半導体素子6と金属電極14は銀ペースト等によって接合され、光半導体素子6と内部電極15はワイヤーボンド7で接続されている。   Further, the external electrodes 11 and 12 and the metal electrodes 14 and 15 formed on the surface opposite to the one surface of the substrate 3 are connected by the through electrode 13. Moreover, the wall part of the hollow part of the board | substrate 3 is formed in the inclined surface. In addition, a reflective film 16 made of silver is formed on the wall surface of the recess to efficiently radiate light from the optical semiconductor element 6. The optical semiconductor element 6 and the metal electrode 14 are joined by silver paste or the like, and the optical semiconductor element 6 and the internal electrode 15 are connected by a wire bond 7.

電極腐食防止剤8は、さらに反射膜16、基板3の窪み部の壁面、基板3の一方の面のうち露出する部分を覆っている。   The electrode corrosion inhibitor 8 further covers the exposed portion of the reflective film 16, the wall surface of the recessed portion of the substrate 3, and one surface of the substrate 3.

なお、本実施形態においても、電極腐食防止剤8に金属電極14、15が覆われていればよく、金属電極14、15の腐食を防止することができる。   In the present embodiment as well, the metal electrodes 14 and 15 need only be covered with the electrode corrosion inhibitor 8, and corrosion of the metal electrodes 14 and 15 can be prevented.

図8は、図7に示した電極腐食防止剤塗布工程を行った発光デバイスである。
図8に示すように、傾斜機能材によって凹形状内を封止されている発光デバイス1が形成される。図6と同様に、基板3の外部電極を形成する面と反対の面上に一部電極腐食防止剤8が形成されている。これは、発光デバイス1の性能を妨げる要因にはならないため、剥離等により、必ずしも除去する必要はない。
FIG. 8 shows a light-emitting device that has undergone the electrode corrosion inhibitor coating step shown in FIG.
As shown in FIG. 8, the light emitting device 1 in which the concave shape is sealed with the functionally gradient material is formed. Similar to FIG. 6, a partial electrode corrosion inhibitor 8 is formed on the surface of the substrate 3 opposite to the surface on which the external electrodes are formed. Since this does not hinder the performance of the light emitting device 1, it is not necessarily removed by peeling or the like.

図9は、本実施形態により作製した発光デバイスの断面観察図である。また、図10は、比較用に作製した従来の発光デバイスの断面観察図である。   FIG. 9 is a cross-sectional observation view of the light-emitting device manufactured according to the present embodiment. FIG. 10 is a cross-sectional observation view of a conventional light-emitting device manufactured for comparison.

図9に示す発光デバイスは、基板3に多層の反射膜16が形成され、更に傾斜機能材からなる封止層9が形成されているものである。ここで、封止層9において、反射膜16側の面が電極腐食防止剤で構成され、図示しない反対の面、すなわち図中の縞模様が表れている方の面が封止材で構成されている。   In the light-emitting device shown in FIG. 9, a multilayer reflective film 16 is formed on a substrate 3, and a sealing layer 9 made of a functionally gradient material is further formed. Here, in the sealing layer 9, the surface on the reflective film 16 side is composed of an electrode corrosion inhibitor, and the opposite surface (not shown), that is, the surface on which the striped pattern in the figure appears is composed of a sealing material. ing.

図10に示す従来の発光デバイスは、基板3に多層の反射膜16が形成され、プリコート層8があり、更にシリコーン樹脂17を塗布し、硬化させたものである。   In the conventional light emitting device shown in FIG. 10, a multilayer reflective film 16 is formed on a substrate 3, a precoat layer 8 is applied, and a silicone resin 17 is further applied and cured.

図9に示すように、封止層9において、電極腐食防止剤と封止材との界面が、反射膜16の周辺部18で不明りょうとなっている。そのため、本実施形態により、傾斜膜を有する傾斜機能材からなる封止層9が形成されていることが確認できる。   As shown in FIG. 9, in the sealing layer 9, the interface between the electrode corrosion inhibitor and the sealing material is unclear at the peripheral portion 18 of the reflective film 16. Therefore, according to this embodiment, it can be confirmed that the sealing layer 9 made of a functionally gradient material having a gradient film is formed.

一方、図10では、プリコート層8とシリコーン樹脂17との界面が明りょうに現れていることが確認できる。図9においては、封止層9においてこのような界面が表れていない。   On the other hand, in FIG. 10, it can be confirmed that the interface between the precoat layer 8 and the silicone resin 17 clearly appears. In FIG. 9, such an interface does not appear in the sealing layer 9.

[耐腐食性試験]
以下、発光デバイスにおける腐食性試験により、本発明をさらに具体的に説明するが、本発明は以下の試験例に限定されるものではない。
[Corrosion resistance test]
Hereinafter, the present invention will be described more specifically by a corrosive test in a light emitting device, but the present invention is not limited to the following test examples.

本発明における発光デバイス1と、光半導体素子6が実装された基板3上に直接、市販シリコーン樹脂(KER2500;信越シリコーン)で封止した発光デバイスを用意し、硫黄結晶0.1gとともに100ccガラス瓶に入れ密閉して70℃で放置し、1日後に封止した部分の銀電極の腐食の程度を目視で観察した。結果を表1に示す。   A light emitting device sealed with a commercially available silicone resin (KER2500; Shin-Etsu silicone) is directly prepared on the substrate 3 on which the light emitting device 1 and the optical semiconductor element 6 are mounted in the present invention. The container was sealed and allowed to stand at 70 ° C., and the degree of corrosion of the silver electrode sealed after one day was visually observed. The results are shown in Table 1.

表1中の○は「腐食(変色)なし」を示し、×は「黒変あり」を示すものである。表1に示すように、KER2500を用いた発光デバイスでは、黒変していたのに対し、本発明における発光デバイスでは、変色がなかった。   In Table 1, “◯” indicates “no corrosion (discoloration)”, and “x” indicates “black discoloration”. As shown in Table 1, the light emitting device using KER2500 was blackened, whereas the light emitting device of the present invention did not change color.

[透過性試験]
本発明の電極腐食防止剤を石英ガラス上に塗布し、80℃で5分間放置して脱溶媒させた電極腐食防止剤に、本発明の封止材を1.5mmの厚みとなるように塗布し、150℃で2時間放置した試料と、市販シリコーン樹脂(KER2500;信越シリコーン)を石英ガラス上に1.5mm厚に塗布し、硬化させた試料とを作製した。これらの試料の波長450nmにおける透過率を、石英ガラスをブランク(対照)として測定した。結果を表2に示す。
[Permeability test]
The electrode corrosion inhibitor of the present invention is applied onto quartz glass, and the sealing material of the present invention is applied to a thickness of 1.5 mm on the electrode corrosion inhibitor that has been left for 5 minutes at 80 ° C. to remove the solvent. Then, a sample that was allowed to stand at 150 ° C. for 2 hours and a sample in which a commercially available silicone resin (KER2500; Shin-Etsu Silicone) was applied to quartz glass to a thickness of 1.5 mm were cured. The transmittance of these samples at a wavelength of 450 nm was measured using quartz glass as a blank (control). The results are shown in Table 2.

表2中の○は「透過率90%以上」を示し、×は「透過率90%未満」を示すものである。   In Table 2, “◯” indicates “transmittance of 90% or more”, and “x” indicates “transmittance of less than 90%”.

[耐光性試験]
透過性試験と同様の試料を作製し、波長450nmにおける透過率を測定した。紫外線ロングライフカーボンアークランプを用いて、100時間紫外線を照射した後、再度、波長450nmにおける透過率を測定し、変化率を求めた。結果を表2に示す。
[Light resistance test]
A sample similar to the permeability test was prepared, and the transmittance at a wavelength of 450 nm was measured. After irradiating with ultraviolet rays for 100 hours using an ultraviolet long life carbon arc lamp, the transmittance at a wavelength of 450 nm was measured again to determine the rate of change. The results are shown in Table 2.

表2中の○は「変化率10%未満」を示し、×は「変化率10%以上」を示すものである。   In Table 2, “◯” indicates “change rate of less than 10%”, and “x” indicates “change rate of 10% or more”.

表1、表2に示した通り、本発明による傾斜機能材からなる封止層を備える発光デバイスで、腐食性に優れるとともに、耐光性の効果を確認できた。   As shown in Tables 1 and 2, the light-emitting device provided with the sealing layer made of the functionally graded material according to the present invention was excellent in corrosivity and confirmed the effect of light resistance.

また、本発明の傾斜機能材は、発光デバイス以外の電極を有する光デバイスに用いることができる。このとき、本発明の傾斜機能材で形成した封止層により電極を覆うことで、電極を腐食から保護することができる。   Moreover, the functionally gradient material of the present invention can be used for an optical device having an electrode other than a light emitting device. At this time, the electrode can be protected from corrosion by covering the electrode with the sealing layer formed of the functionally gradient material of the present invention.

1 発光デバイス
2 反射部材
3 基板
4、5 金属電極
6 光半導体素子
7 ワイヤーボンド
8 電極腐食防止剤
9 封止層
11、12 外部電極
13 貫通電極
14、15 金属電極
16 反射膜
17 シリコーン樹脂
DESCRIPTION OF SYMBOLS 1 Light emitting device 2 Reflective member 3 Board | substrate 4, 5 Metal electrode 6 Optical semiconductor element 7 Wire bond 8 Electrode corrosion inhibitor 9 Sealing layer 11, 12 External electrode 13 Through electrode 14, 15 Metal electrode 16 Reflective film 17 Silicone resin

Claims (7)

金属電極を有する光デバイスにおいて、
前記金属電極は、前記金属電極に接する面側にテトラアルコキシシラン、メチルトリアルコキシシラン、(3−メルカプトプロピル)トリアルコキシシランからなるシロキサン化合物を含む電極腐食防止剤を有し、前記金属電極に接する面と反対の面側にテトラアルコキシシラン、メチルトリアルコキシシラン、ジアルコキシジメチルシランからなるポリシロキサン化合物を含む封止材を有するとともに、前記金属電極に接する面側から前記反対の面側に向かって前記シロキサン化合物と前記ポリシロキサン化合物との組成比が傾斜的に変化していることを特徴とする傾斜機能材で形成された封止層で覆われていることを特徴とする光デバイス。
In an optical device having a metal electrode,
The metal electrode has an electrode corrosion inhibitor containing a siloxane compound composed of tetraalkoxysilane, methyltrialkoxysilane, and (3-mercaptopropyl) trialkoxysilane on the side in contact with the metal electrode, and is in contact with the metal electrode A sealing material containing a polysiloxane compound composed of tetraalkoxysilane, methyltrialkoxysilane, dialkoxydimethylsilane is provided on the surface opposite to the surface, and from the surface in contact with the metal electrode toward the opposite surface. An optical device characterized by being covered with a sealing layer formed of a functionally gradient material, wherein the composition ratio of the siloxane compound and the polysiloxane compound changes in a gradient manner.
前記シロキサン化合物は、テトラエトキシシラン:メチルトリエトキシシラン:(3−メルカプトプロピル)トリエトキシシランをモル比30〜60:30〜60:1で混合した化合物であり、
前記ポリシロキサン化合物は、ジエトキシジメチルシラン:テトラエトキシシラン:メチルトリエトキシシランをモル比78〜156:1:1で混合した化合物であることを特徴とする請求項1に記載の光デバイス。
The siloxane compound is a compound obtained by mixing tetraethoxysilane: methyltriethoxysilane: (3-mercaptopropyl) triethoxysilane in a molar ratio of 30-60: 30-60: 1,
2. The optical device according to claim 1, wherein the polysiloxane compound is a compound in which diethoxydimethylsilane: tetraethoxysilane: methyltriethoxysilane is mixed at a molar ratio of 78 to 156: 1: 1.
基板と、前記基板に実装された光半導体素子と、前記基板上に形成され、前記光半導体素子と電気的に接続する金属電極と、前記光半導体素子及び前記金属電極を覆う封止層と、を備える発光デバイスにおいて、
前記封止層は、前記金属電極に接する面側にテトラアルコキシシラン、メチルトリアルコキシシラン、(3−メルカプトプロピル)トリアルコキシシランからなるシロキサン化合物を含む電極腐食防止剤を有し、前記金属電極に接する面と反対の面側にテトラアルコキシシラン、メチルトリアルコキシシラン、ジアルコキシジメチルシランからなるポリシロキサン化合物を含む封止材を有するとともに、前記金属電極に接する面側から前記反対の面側に向かって前記シロキサン化合物と前記ポリシロキサン化合物との組成比が傾斜的に変化している傾斜機能材で形成されていることを特徴とする発光デバイス。
A substrate, an optical semiconductor element mounted on the substrate, a metal electrode formed on the substrate and electrically connected to the optical semiconductor element, a sealing layer covering the optical semiconductor element and the metal electrode, A light emitting device comprising:
The sealing layer has an electrode corrosion inhibitor containing a siloxane compound composed of tetraalkoxysilane, methyltrialkoxysilane, and (3-mercaptopropyl) trialkoxysilane on the side in contact with the metal electrode, and the metal electrode has A sealing material containing a polysiloxane compound composed of tetraalkoxysilane, methyltrialkoxysilane, dialkoxydimethylsilane is provided on the surface opposite to the surface in contact with the surface, and the surface facing the metal electrode is directed to the surface opposite to the surface. A light-emitting device, wherein the composition ratio of the siloxane compound and the polysiloxane compound is changed in a gradient manner.
前記シロキサン化合物は、テトラエトキシシラン:メチルトリエトキシシラン:(3−メルカプトプロピル)トリエトキシシランをモル比30〜60:30〜60:1で混合した化合物であり、
前記ポリシロキサン化合物は、ジエトキシジメチルシラン:テトラエトキシシラン:メチルトリエトキシシランをモル比78〜156:1:1で混合した化合物であることを特徴とする請求項3に記載の発光デバイス。
The siloxane compound is a compound obtained by mixing tetraethoxysilane: methyltriethoxysilane: (3-mercaptopropyl) triethoxysilane in a molar ratio of 30-60: 30-60: 1,
4. The light emitting device according to claim 3, wherein the polysiloxane compound is a compound in which diethoxydimethylsilane: tetraethoxysilane: methyltriethoxysilane is mixed at a molar ratio of 78 to 156: 1: 1.
テトラアルコキシシラン、メチルトリアルコキシシラン、(3−メルカプトプロピル)トリアルコキシシランからなるシロキサン化合物を含む電極腐食防止剤を金属電極上に塗布する電極腐食防止剤塗布工程と、
テトラアルコキシシラン、メチルトリアルコキシシラン、ジアルコキシジメチルシランからなるポリシロキサン化合物を含む封止材を前記電極腐食防止剤上に塗布する封止材塗布工程と、
前記電極腐食防止剤と前記封止材とを同時に硬化させる硬化工程とを備えることを特徴とする傾斜機能材の製造方法。
An electrode corrosion inhibitor coating step of applying an electrode corrosion inhibitor containing a siloxane compound composed of tetraalkoxysilane, methyltrialkoxysilane, (3-mercaptopropyl) trialkoxysilane on a metal electrode;
A sealing material coating step of coating a sealing material containing a polysiloxane compound comprising tetraalkoxysilane, methyltrialkoxysilane, dialkoxydimethylsilane on the electrode corrosion inhibitor;
A method for producing a functionally gradient material, comprising: a curing step of simultaneously curing the electrode corrosion inhibitor and the sealing material.
前記硬化工程において、マイクロ波を照射することを特徴とする請求項5に記載の傾斜機能材の製造方法。   The method for producing a functionally gradient material according to claim 5, wherein microwaves are irradiated in the curing step. 前記電極腐食防止剤塗布工程において、前記電極腐食防止剤を0.5μm〜6μmの厚さで塗布することを特徴とする請求項5又は請求項6に記載の傾斜機能材の製造方法。   The method for producing a functionally gradient material according to claim 5 or 6, wherein, in the electrode corrosion inhibitor coating step, the electrode corrosion inhibitor is applied in a thickness of 0.5 to 6 µm.
JP2011015445A 2011-01-27 2011-01-27 Optical device, light emitting device, and method of manufacturing functionally gradient material Active JP5719613B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011015445A JP5719613B2 (en) 2011-01-27 2011-01-27 Optical device, light emitting device, and method of manufacturing functionally gradient material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011015445A JP5719613B2 (en) 2011-01-27 2011-01-27 Optical device, light emitting device, and method of manufacturing functionally gradient material

Publications (2)

Publication Number Publication Date
JP2012156384A true JP2012156384A (en) 2012-08-16
JP5719613B2 JP5719613B2 (en) 2015-05-20

Family

ID=46837783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011015445A Active JP5719613B2 (en) 2011-01-27 2011-01-27 Optical device, light emitting device, and method of manufacturing functionally gradient material

Country Status (1)

Country Link
JP (1) JP5719613B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015023081A (en) * 2013-07-17 2015-02-02 日亜化学工業株式会社 Light-emitting device
US11010834B2 (en) 2006-04-04 2021-05-18 Bgc Partners, Inc. System and method for optimizing execution of trading orders
US11030693B2 (en) 2005-08-05 2021-06-08 Bgc Partners, Inc. System and method for matching trading orders based on priority
US11094004B2 (en) 2005-08-04 2021-08-17 Espeed, Inc. System and method for apportioning trading orders based on size of displayed quantities
US11244365B2 (en) 2004-01-29 2022-02-08 Bgc Partners, Inc. System and method for controlling the disclosure of a trading order
US11625777B2 (en) 2005-06-07 2023-04-11 Bgc Partners, Inc. System and method for routing a trading order based upon quantity

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002033517A (en) * 2000-05-09 2002-01-31 Nichia Chem Ind Ltd Light emitting element and its manufacturing method
JP2004327975A (en) * 2003-04-01 2004-11-18 Agilent Technol Inc Sticking method of phosphors onto light emitting diode
JP2004343059A (en) * 2003-04-24 2004-12-02 Nichia Chem Ind Ltd Semiconductor device and its manufacturing method
JP2007067116A (en) * 2005-08-30 2007-03-15 Toshiba Lighting & Technology Corp Light-emitting device
JP2007284745A (en) * 2006-04-17 2007-11-01 Nagoya City Anticorrosive agent, and method for producing anticorrosive agent
JP2009108109A (en) * 2007-10-26 2009-05-21 Arakawa Chem Ind Co Ltd Thermosetting resin composition, cured product, and light emitting diode derived from them
WO2009090867A1 (en) * 2008-01-15 2009-07-23 Sekisui Chemical Co., Ltd. Resist material and laminate
JP2009206124A (en) * 2008-02-26 2009-09-10 Shin Etsu Chem Co Ltd Sealing method of led device, and led device
JP2010168496A (en) * 2009-01-23 2010-08-05 Shin-Etsu Chemical Co Ltd Primer composition and photosemiconductor device using the same
JP2010168443A (en) * 2009-01-21 2010-08-05 Jsr Corp Curable composition

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002033517A (en) * 2000-05-09 2002-01-31 Nichia Chem Ind Ltd Light emitting element and its manufacturing method
JP2004327975A (en) * 2003-04-01 2004-11-18 Agilent Technol Inc Sticking method of phosphors onto light emitting diode
JP2004343059A (en) * 2003-04-24 2004-12-02 Nichia Chem Ind Ltd Semiconductor device and its manufacturing method
JP2007067116A (en) * 2005-08-30 2007-03-15 Toshiba Lighting & Technology Corp Light-emitting device
JP2007284745A (en) * 2006-04-17 2007-11-01 Nagoya City Anticorrosive agent, and method for producing anticorrosive agent
JP2009108109A (en) * 2007-10-26 2009-05-21 Arakawa Chem Ind Co Ltd Thermosetting resin composition, cured product, and light emitting diode derived from them
WO2009090867A1 (en) * 2008-01-15 2009-07-23 Sekisui Chemical Co., Ltd. Resist material and laminate
JP2009206124A (en) * 2008-02-26 2009-09-10 Shin Etsu Chem Co Ltd Sealing method of led device, and led device
JP2010168443A (en) * 2009-01-21 2010-08-05 Jsr Corp Curable composition
JP2010168496A (en) * 2009-01-23 2010-08-05 Shin-Etsu Chemical Co Ltd Primer composition and photosemiconductor device using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11244365B2 (en) 2004-01-29 2022-02-08 Bgc Partners, Inc. System and method for controlling the disclosure of a trading order
US11625777B2 (en) 2005-06-07 2023-04-11 Bgc Partners, Inc. System and method for routing a trading order based upon quantity
US11094004B2 (en) 2005-08-04 2021-08-17 Espeed, Inc. System and method for apportioning trading orders based on size of displayed quantities
US11030693B2 (en) 2005-08-05 2021-06-08 Bgc Partners, Inc. System and method for matching trading orders based on priority
US11010834B2 (en) 2006-04-04 2021-05-18 Bgc Partners, Inc. System and method for optimizing execution of trading orders
JP2015023081A (en) * 2013-07-17 2015-02-02 日亜化学工業株式会社 Light-emitting device

Also Published As

Publication number Publication date
JP5719613B2 (en) 2015-05-20

Similar Documents

Publication Publication Date Title
JP5719613B2 (en) Optical device, light emitting device, and method of manufacturing functionally gradient material
JP5864089B2 (en) Method for manufacturing light emitting device
TWI641726B (en) Silver surface treatment agent and illuminating device
JP5307824B2 (en) Package for optical semiconductor device, optical semiconductor device using the same, and manufacturing method thereof
TW201312807A (en) Light emitter device packages, components, and methods for improved chemical resistance and related methods
JP2010239043A (en) Led light source and method of manufacturing led light source
JP2009224536A (en) Led device and method of manufacturing the same
JP5559027B2 (en) Silicone lens, LED device with lens, and manufacturing method of LED device with lens
JPWO2010150880A1 (en) White reflector and manufacturing method thereof
US8866181B2 (en) Method for producing a component with at least one organic material and component with at least one organic material
US20090256171A1 (en) Resin composition for sealing light-emitting device and lamp
JP2011111506A (en) Wavelength conversion particle, wavelength conversion member, and light emitting device
JP2011204986A (en) Lamp and method for manufacturing the same
WO2013137079A1 (en) Method for producing optical semiconductor device and optical semiconductor device
JP2011129901A (en) Method of manufacturing semiconductor light emitting device
JP2007059419A (en) Led package with compound semiconductor light emitting element
TWI552375B (en) An optical semiconductor device and a method for manufacturing the same, and a silver surface treatment agent and a light emitting device
JP5308385B2 (en) Wavelength converting particle, wavelength converting member, and light emitting device
JP5563440B2 (en) Resin lens, LED device with lens, and manufacturing method of LED device with lens
JP5891368B2 (en) Coated phosphor and light emitting device
JP2012153827A (en) Electrode corrosion inhibitor and light emitting device using the electrode corrosion inhibitor
US11056625B2 (en) Clear coating for light emitting device exterior having chemical resistance and related methods
JP2012156383A (en) Light-emitting device and method of manufacturing the same
JP6203479B2 (en) OPTICAL SEMICONDUCTOR DEVICE, MANUFACTURING METHOD THEREOF, SUBSTRATE USED FOR MANUFACTURING
JP6269284B2 (en) Silver surface treatment agent and light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150323

R150 Certificate of patent or registration of utility model

Ref document number: 5719613

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250