JP2012148953A - Method for producing single crystal - Google Patents
Method for producing single crystal Download PDFInfo
- Publication number
- JP2012148953A JP2012148953A JP2011166175A JP2011166175A JP2012148953A JP 2012148953 A JP2012148953 A JP 2012148953A JP 2011166175 A JP2011166175 A JP 2011166175A JP 2011166175 A JP2011166175 A JP 2011166175A JP 2012148953 A JP2012148953 A JP 2012148953A
- Authority
- JP
- Japan
- Prior art keywords
- rotation
- single crystal
- crystal
- speed
- cone
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 162
- 238000004519 manufacturing process Methods 0.000 title claims description 31
- 238000010438 heat treatment Methods 0.000 claims abstract description 27
- 238000000034 method Methods 0.000 claims abstract description 26
- 230000006698 induction Effects 0.000 claims abstract description 24
- 239000002994 raw material Substances 0.000 claims abstract description 10
- 238000002844 melting Methods 0.000 claims abstract description 8
- 230000008018 melting Effects 0.000 claims abstract description 8
- 230000006866 deterioration Effects 0.000 abstract description 9
- 238000004857 zone melting Methods 0.000 abstract description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 7
- 229910052710 silicon Inorganic materials 0.000 description 7
- 239000010703 silicon Substances 0.000 description 7
- 230000002093 peripheral effect Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 239000000155 melt Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 238000002425 crystallisation Methods 0.000 description 3
- 230000008025 crystallization Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000013316 zoning Methods 0.000 description 3
- 239000008710 crystal-8 Substances 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 240000006829 Ficus sundaica Species 0.000 description 1
- 206010033307 Overweight Diseases 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000021332 multicellular organism growth Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B13/00—Single-crystal growth by zone-melting; Refining by zone-melting
- C30B13/16—Heating of the molten zone
- C30B13/20—Heating of the molten zone by induction, e.g. hot wire technique
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/02—Elements
- C30B29/06—Silicon
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
本発明は、原料結晶を誘導加熱コイルで加熱溶融して浮遊帯域を形成し、該浮遊帯域を移動する事で単結晶を育成するFZ法(フローティングゾーン法または浮遊帯溶融法)による単結晶の製造方法に関わり、さらに詳しくは、前記浮遊帯域を移動させて単結晶を製造させ、成長中の単結晶の回転方向を交互に換えて単結晶を成長させるFZ法単結晶製造方法に関する。 In the present invention, a raw crystal is heated and melted by an induction heating coil to form a floating zone, and a single crystal is grown by FZ method (floating zone method or floating zone melting method) by moving the floating zone. More particularly, the present invention relates to an FZ method single crystal manufacturing method in which a single crystal is manufactured by moving the floating zone, and a single crystal is grown by alternately changing the rotation direction of the growing single crystal.
図5は、従来技術におけるFZ法単結晶製造装置の一例を示す概略図である。このFZ単結晶製造装置30を用いて、単結晶を製造する方法について説明する。
先ず、原料結晶棒1を、チャンバー20内に設置された上軸3の上部保持治具4に保持する。一方、種結晶8を、原料結晶棒1の下方に位置する下軸5の下部保持治具6に保持する。
FIG. 5 is a schematic view showing an example of a conventional FZ method single crystal manufacturing apparatus. A method of manufacturing a single crystal using the FZ single
First, the
次に、誘導加熱コイル7により原料結晶棒1を溶融して、種結晶8に融着させる。その後、種絞りにより絞り部9を形成して無転位化する。そして、上軸3と下軸5を回転させながら原料結晶棒1と単結晶棒2を下降させることで浮遊帯域(溶融帯またはメルトともいう)10を原料結晶棒1と育成単結晶棒2の間に形成しながら、結晶径を徐々に大きくし、コーン部分2aを形成する。
コーン初期、その重量は、絞り部9のみで支えられるが、絞り部9は横方向の力に弱く、直径が大きくなり重量が重くなると、絞り部9だけでは支えられない。そこで、高重量の単結晶を製造する際には、コーン途中から図6に示すような結晶保持具を使用する(非特許文献1)。図6は、従来技術における結晶保持装置の一例を示す概略図である。
Next, the raw
In the initial stage of the cone, the weight is supported only by the throttle unit 9, but the throttle unit 9 is weak against lateral force, and when the diameter increases and the weight increases, the throttle unit 9 alone cannot support it. Therefore, when manufacturing a high-weight single crystal, a crystal holder as shown in FIG. 6 is used from the middle of the cone (Non-Patent Document 1). FIG. 6 is a schematic view showing an example of a crystal holding device in the prior art.
その後、目標とする直径に達したら、その直径を維持して、直胴部2bを形成し、浮遊帯域10を原料結晶棒1の上端まで移動させてゾーニングを行う。尚、この単結晶成長は、Arガスに微量の窒素ガスを混合した雰囲気中で行われ、n型FZ単結晶を製造するためには、ドープノズル11より、製造する抵抗率に応じた量のArベースのPH3ガスを流し、p型FZ単結晶を製造するためには、同様にドープノズル11より、製造する抵抗率に応じた量のArベースのB2H6ガスを流す。
Thereafter, when the target diameter is reached, the diameter is maintained, the straight body portion 2b is formed, and the
誘導加熱コイル7としては、銅または銀からなる単巻または複巻の冷却用の水を流通させた誘導加熱コイルが用いられており、例えば図7に示すものが知られている(特許文献1)。図7は、従来技術における誘導加熱コイルの一例を示す概略図である。
この誘導加熱コイル16は、スリット12を有するリング状の誘導加熱コイルで、外周面15から内周面14に向かって断面先細り状に形成されている。
加熱コイルの外周面15には、電源端子13a、13bが設けられており、この両端子13a、13b側のスリット対向面12a、12bを、スリット12を介して極力接近させている。
そして、電源端子とスリットの存在により、コイルの周方向の加熱の強さは、コイルの内径側のスリット部がその他の部位に比べて弱く、電源端子・コイル外周のスリット部がその他の部位に比べて強く、非対称性を持っている。
As the
The
Due to the presence of the power supply terminal and the slit, the heating intensity in the circumferential direction of the coil is weaker in the slit portion on the inner diameter side of the coil than in other portions, and the slit portion on the power supply terminal / coil outer periphery is in other portions. It is stronger and has asymmetry.
ここで、ウェーハ抵抗率のバラツキを低減するため、原料と単結晶の回転軸をずらして(偏芯という)融液の攪拌を非軸対称にし、単結晶の回転の方向を正転と逆転とで交互に回転させる方法(以後、交互回転という)が行われている(特許文献1、特許文献2)。
交互回転は、10rpm以上の回転速度で行う事が望ましいが、コーン初期は結晶保持装置が使えないため、交互回転ではなく、低速での一方向回転にする必要がある。
そこで、コーン中、結晶保持装置によりしっかり保持された後、単結晶の回転速度を低速から10rpm以上にアップし、且つ、一方向回転から交互回転に変更しながら、所望の一定値(以後、最終回転速度と呼ぶ)に到達させる。
その後、回転速度が最終回転速度である、例えば20rpmに達した場合、図4に示すようなパターンにおいて所定周期で交互回転を繰り返し、単結晶を成長・製造する。図4は、従来技術における時間に対する単結晶の回転速度のパターンの一例を示した図である。このパターンは、最終回転速度を20rpmとし、正転は6秒間、逆転は3.6秒間として、これら正転及び逆転を周期的に繰り返すパターンである。
Here, in order to reduce the variation in wafer resistivity, the rotation axis of the raw material and the single crystal is shifted (referred to as eccentricity) to make the stirring of the melt non-axisymmetric, and the direction of rotation of the single crystal is forward rotation and reverse rotation. (Hereinafter, referred to as alternate rotation) (see
The alternate rotation is preferably performed at a rotation speed of 10 rpm or more. However, since the crystal holding device cannot be used at the initial stage of the cone, it is necessary to perform the rotation in one direction at a low speed instead of the alternate rotation.
Therefore, after the cone is firmly held by the crystal holding device, the rotation speed of the single crystal is increased from a low speed to 10 rpm or more, and the unidirectional rotation is changed to the alternate rotation. (Referred to as rotation speed).
Thereafter, when the rotational speed reaches the final rotational speed, for example, 20 rpm, the single crystal is grown and manufactured by repeating the alternating rotation at a predetermined cycle in the pattern as shown in FIG. FIG. 4 is a diagram showing an example of a rotation speed pattern of a single crystal with respect to time in the prior art. In this pattern, the final rotation speed is 20 rpm, the forward rotation is 6 seconds, the reverse rotation is 3.6 seconds, and the forward rotation and the reverse rotation are periodically repeated.
一方、コーン中に交互回転を開始する前の一方向回転において10rpm以上に高速回転させると、スリットによる誘導加熱コイルの不均一性と高速回転による遠心力により、単結晶が局部的に偏って成長して、ヨレやコブ発生等の結晶形状悪化が顕著になり、有転位化や融液の脱落による操業トラブルの原因となるため、低回転速度で交互回転に変更する必要がある。
例えば、交互回転の直胴部成長における最終条件を、回転速度(最終回転速度)は20rpm、正転の回転量は2.0回転、逆転の回転量は1.2回転、正転または逆転のどちらか一方向における一定速度が反転して、他方向における一定速度となるまでの時間(以後、変化時間という)は1.6秒とする。この場合に、コーン中における回転周期を、前記直胴部における最終条件の回転周期(回転時間)と同じ一定値として、回転速度7rpmで交互回転に変更すると、そのときの回転量は正転で0.7回転、逆転で0.42回転となってしまう。
このように単結晶の回転量が1回転以下となると、誘導加熱コイルの不均一性の影響を受けやすく、コーン中の結晶形状の悪化がより顕著となるという問題がある。
On the other hand, when rotating at a high speed of 10 rpm or more in one direction rotation before starting alternate rotation in the cone, the single crystal grows locally and unevenly due to the nonuniformity of the induction heating coil due to the slit and the centrifugal force due to the high speed rotation. Then, crystal shape deterioration such as twisting and bumping becomes prominent and causes operational troubles due to dislocation and dropout of the melt. Therefore, it is necessary to change to alternate rotation at a low rotation speed.
For example, the final condition in the straight body growth of alternating rotation is that the rotation speed (final rotation speed) is 20 rpm, the normal rotation amount is 2.0 rotations, the reverse rotation amount is 1.2 rotations, and the normal rotation or reverse rotation The time until the constant speed in one of the directions is reversed to the constant speed in the other direction (hereinafter referred to as change time) is 1.6 seconds. In this case, if the rotation cycle in the cone is changed to alternate rotation at a rotation speed of 7 rpm with the same constant value as the rotation cycle (rotation time) of the final condition in the straight body portion, the rotation amount at that time is normal rotation. It will be 0.42 rotation by 0.7 rotation and reverse rotation.
As described above, when the rotation amount of the single crystal is 1 rotation or less, there is a problem that it is easily affected by the nonuniformity of the induction heating coil, and the deterioration of the crystal shape in the cone becomes more remarkable.
本発明は、FZ法による単結晶製造における単結晶の交互回転において、単結晶の回転量が1回転に満たない場合や、回転方向が反転する場合の結晶形状の悪化を低減し、結晶を安定して製造する方法を提供することを目的とする。 The present invention stabilizes the crystal by reducing the deterioration of the crystal shape when the rotation amount of the single crystal is less than one rotation or when the rotation direction is reversed in the alternating rotation of the single crystal in the single crystal production by the FZ method. An object of the present invention is to provide a method for manufacturing the same.
上記目的を達成するために、本発明は、誘導加熱コイルで原料結晶を部分的に加熱溶融して溶融帯を形成し、該溶融帯を移動させて単結晶を製造させる際に、成長中の単結晶の回転方向を、正転方向及び逆転方向とで交互に入れ換えて単結晶を成長させるFZ法の単結晶製造方法であって、前記単結晶の交互回転において、一度の回転における正転及び逆転の回転量が、共に予め定められた1回転以上の所定値となるように、単結晶の回転速度に応じてその回転時間を変化させることを特徴とする単結晶の製造方法を提供する。 In order to achieve the above-mentioned object, the present invention is a method in which a raw crystal is partially heated and melted by an induction heating coil to form a molten zone, and the molten zone is moved to produce a single crystal. A single-crystal manufacturing method of FZ method in which a single crystal is grown by alternately switching a rotation direction of a single crystal between a normal rotation direction and a reverse rotation direction, wherein There is provided a method for producing a single crystal, characterized in that the rotation time is changed in accordance with the rotation speed of the single crystal so that the amount of rotation for reverse rotation becomes a predetermined value of one rotation or more determined in advance.
このように、一度の回転における正転及び逆転の回転量が、共に予め定められた1回転以上の所定値となるようにすれば、単結晶の回転量が1回転に満たず、スリットによる誘導加熱コイルの不均一性の影響を受け、結晶形状が悪化することを低減することができる。また、単結晶の回転速度に応じてその回転時間を変化させることによって単結晶の回転量を制御するため、直胴中は勿論、回転速度を低速度にせざるを得ないコーン中の交互回転においてであっても、本発明の効果を得ることができる。 Thus, if the amount of forward rotation and reverse rotation in one rotation is set to a predetermined value equal to or greater than a predetermined rotation, the rotation amount of the single crystal is less than one rotation and induction by a slit is performed. The deterioration of the crystal shape due to the influence of the non-uniformity of the heating coil can be reduced. Also, in order to control the amount of rotation of the single crystal by changing the rotation time according to the rotation speed of the single crystal, not only in the straight body, but also in the alternate rotation in the cone where the rotation speed must be reduced. Even so, the effects of the present invention can be obtained.
またこのとき、前記交互回転において、一方向における一定速度が反転して、他方向における一定速度となるまでの回転速度変化率(回転速度/変化時間)を、10〜20rpm/sとすることが好ましい。 Further, at this time, in the alternate rotation, the rate of change in rotation speed (rotation speed / change time) until the constant speed in one direction is reversed and becomes constant in the other direction may be 10 to 20 rpm / s. preferable.
このように回転速度変化率を設定すれば、コーン中等の低速回転時においては、変化時間を長くしすぎることによって、スリットによる誘導加熱コイルの不均一性の影響を受け、結晶形状が悪化することをより効果的に低減することができる。また直胴中等の高速回転時においては、変化時間を短くしすぎることによるメルト振動等の発生をより効果的に抑制することができる。 If the rotation speed change rate is set in this way, the crystal shape deteriorates due to the influence of the nonuniformity of the induction heating coil due to the slit by making the change time too long at low speed rotation such as in a cone. Can be more effectively reduced. Also, during high-speed rotation such as in a straight cylinder, it is possible to more effectively suppress the occurrence of melt vibration and the like due to the change time being too short.
またこのとき、前記交互回転を、直胴中とは異なる回転速度でコーン中に行うことが好ましい。
また、前記コーン中における交互回転の回転速度を10rpm未満とすることが好ましい。
At this time, the alternate rotation is preferably performed in the cone at a rotation speed different from that in the straight body.
Moreover, it is preferable that the rotational speed of the alternating rotation in the cone is less than 10 rpm.
このようにすれば、上記で説明したように、交互回転の回転速度を低速度とせざるを得ないコーン中であっても、操業トラブルを発生させることなく交互回転を実施でき、これにより直胴部の最初から単結晶のウェーハ抵抗率のバラツキをより効果的に低減することができる。特にコーン中の回転速度が10rpm未満であれば、絞り部等に影響を与えることなく交互回転を行うことができるため好ましい。 In this way, as described above, even in a cone where the rotational speed of the alternate rotation must be low, the alternate rotation can be performed without causing operational troubles. It is possible to more effectively reduce the variation in the wafer resistivity of the single crystal from the beginning of the portion. In particular, if the rotational speed in the cone is less than 10 rpm, it is preferable because the alternate rotation can be performed without affecting the throttle part and the like.
以上説明したように、本発明によれば、単結晶の交互回転において、単結晶の回転速度に応じてその回転時間を変化させることによって、一度の回転における正転及び逆転の回転量が、共に予め定められた1回転以上の所定値となるように回転量を制御することができるため、一度の回転における単結晶の回転量が1回転に満たなくなり、スリットによる誘導加熱コイルの不均一性の影響を受け、結晶形状が悪化することを低減することができる。また、回転速度の大小に関らずに単結晶の回転量を制御できるため、コーン中等のように回転速度を低速度にせざるを得ない場合であっても本発明の効果を得ることができる。
また、前記交互回転において、一方向における一定速度が反転して、他方向における一定速度となるまでの回転速度変化率を10〜20rpm/sとすることによって、コーン中等の低速回転時においては、変化時間を長くしすぎることによって、スリットによる誘導加熱コイルの不均一性の影響を受け、結晶形状が悪化することをより効果的に低減することができる。また直胴中等の高速回転時においては、変化時間を短くしすぎることによるメルト振動等の発生をより効果的に抑制することができる。
As described above, according to the present invention, in the alternate rotation of the single crystal, by changing the rotation time according to the rotation speed of the single crystal, both the forward rotation amount and the reverse rotation amount in one rotation are obtained. Since the amount of rotation can be controlled to be a predetermined value of one rotation or more determined in advance, the amount of rotation of the single crystal in one rotation is less than one rotation, and the induction heating coil is not uniform due to the slit. It is possible to reduce the deterioration of the crystal shape due to the influence. In addition, since the amount of rotation of the single crystal can be controlled regardless of the size of the rotation speed, the effect of the present invention can be obtained even when the rotation speed must be reduced as in a cone or the like. .
Further, in the alternate rotation, by changing the rotation speed change rate until the constant speed in one direction is reversed and the constant speed in the other direction is 10 to 20 rpm / s, at the time of low speed rotation such as in a cone, By making the change time too long, it is possible to more effectively reduce the deterioration of the crystal shape due to the influence of the nonuniformity of the induction heating coil due to the slit. Also, during high-speed rotation such as in a straight cylinder, it is possible to more effectively suppress the occurrence of melt vibration and the like due to the change time being too short.
以下、本発明についてより具体的に説明する。
前述のように、従来、単結晶を交互回転させる際に、単に交互回転させる時間、即ち周期を一定にして制御すると、その回転量が1回転以下となることがあり、誘導加熱コイルの不均一性の影響を受けやすく、特にコーン中のように低速で回転させる必要がある場合に結晶形状の悪化がより顕著となるという問題があった。
Hereinafter, the present invention will be described more specifically.
As described above, conventionally, when the single crystal is alternately rotated, if the time for the alternate rotation, that is, the period is controlled to be constant, the amount of rotation may be less than 1 rotation, and the induction heating coil is not uniform. There is a problem that the crystal shape deteriorates more remarkably, particularly when it is necessary to rotate at a low speed as in a cone.
本発明者らが鋭意検討した結果、一度の回転における正転及び逆転の回転量が、共に予め定められた1回転以上の所定値となるようにすれば、スリットによる誘導加熱コイルの不均一性の影響を受け、結晶形状が悪化することを低減できることを見出し、本発明を完成させた。 As a result of intensive studies by the present inventors, if both the forward rotation and the reverse rotation amount in one rotation are set to a predetermined value of one rotation or more, non-uniformity of the induction heating coil due to the slits. As a result, it was found that deterioration of the crystal shape can be reduced, and the present invention has been completed.
即ち、本発明は、誘導加熱コイルで原料結晶を部分的に加熱溶融して溶融帯を形成し、該溶融帯を移動させて単結晶を製造させる際に、成長中の単結晶の回転方向を、正転方向及び逆転方向とで交互に入れ換えて単結晶を成長させるFZ法の単結晶製造方法であって、前記単結晶の交互回転において、一度の回転における正転及び逆転の回転量が、共に予め定められた1回転以上の所定値となるように、単結晶の回転速度に応じてその回転時間を変化させることを特徴とする単結晶の製造方法である。 That is, according to the present invention, when a raw material crystal is partially heated and melted by an induction heating coil to form a melting zone, and the single crystal is produced by moving the melting zone, the rotation direction of the growing single crystal is changed. A single crystal production method of the FZ method in which a single crystal is grown by alternately switching in a normal rotation direction and a reverse rotation direction, and in the alternating rotation of the single crystal, the amount of rotation of normal rotation and reverse rotation in one rotation is The single crystal manufacturing method is characterized in that the rotation time of the single crystal is changed in accordance with the rotation speed of the single crystal so that both of them have a predetermined value of one rotation or more.
以下、本発明の実施形態について図面を参照して説明するが、本発明はこれらに限定されるものではない。
先ず、FZ法による単結晶製造装置を用いて、浮遊帯域を原料結晶棒と育成単結晶棒の間に形成しながら、結晶径を徐々に大きくし、コーン部分を形成する。ここで用いられる単結晶製造装置は、図5に示されるような従来のものを用いても良い。
尚、原料結晶棒の直径、目的とする単結晶の抵抗率、直径、直胴長さ等は、当業者が適宜選択して決定することであり、これらに限定されるわけではないが、例えば原料結晶棒の直径を100〜205mm、目的とする単結晶の抵抗率を1〜5000Ωcm、単結晶の直径を100〜205mm、直胴長さを10〜150cmとすることができる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited thereto.
First, using a single crystal manufacturing apparatus based on the FZ method, while forming a floating zone between a raw crystal rod and a grown single crystal rod, the crystal diameter is gradually increased to form a cone portion. As the single crystal manufacturing apparatus used here, a conventional apparatus as shown in FIG. 5 may be used.
In addition, the diameter of the raw material crystal rod, the resistivity of the target single crystal, the diameter, the length of the straight body and the like are to be appropriately selected and determined by those skilled in the art, but are not limited thereto, for example, The diameter of the raw crystal rod can be 100 to 205 mm, the resistivity of the target single crystal can be 1 to 5000 Ωcm, the diameter of the single crystal can be 100 to 205 mm, and the length of the straight body can be 10 to 150 cm.
またこのとき、原料結晶棒の回転中心となる上軸と、単結晶化の際に育成単結晶棒の回転中心となる下軸を偏芯させて単結晶を育成することができる。このように両中心軸をずらすことにより、単結晶化の際に溶融部を撹拌させ、製造する単結晶の品質を均一化させることができる。
尚、上記偏芯における偏芯量は、当業者が適宜選択して設定することなので、これに限定されるわけではないが、例えば10mmとすることができる。
At this time, the single crystal can be grown by decentering the upper axis serving as the rotation center of the raw material crystal rod and the lower shaft serving as the rotation center of the grown single crystal rod during single crystallization. By shifting both central axes in this way, the melted portion can be stirred during single crystallization, and the quality of the single crystal to be produced can be made uniform.
The eccentricity in the eccentricity is appropriately selected and set by those skilled in the art, and is not limited thereto, but may be, for example, 10 mm.
次に、コーン中において、回転速度を徐々に加速していき、7rpmとなったところで交互回転を開始する。直胴中の交互回転の最終条件を、最終回転速度は20rpm、正転の回転量は2.0回転、逆転の回転量は1.2回転、回転速度変化率は12.5rpm/sとし、この条件になるようにコーン中に回転速度が最終回転速度に到達するまで加速させる。最終回転速度に到達した後も、コーン中と同様に交互回転を続け、直胴部を成長させ単結晶を製造する。
このときの回転速度の加速パターンは、例えば図3に示すようなパターンを用いることができる。図3は、コーン中における結晶直径に対する単結晶の回転速度のパターンの一例をグラフで示した図である。
上記のように、コーン中に直胴中とは回転速度が異なりさらに10rpm/s未満の回転速度として交互回転を行えば、絞り部等に影響を与えずにコーンの変形を抑制できるとともに、直胴部の最初から単結晶のウェーハ抵抗率のバラツキをより効果的に低減することができる。
Next, the rotational speed is gradually accelerated in the cone, and alternate rotation is started when the rotational speed reaches 7 rpm. The final condition of the alternate rotation in the straight body is that the final rotation speed is 20 rpm, the forward rotation amount is 2.0 rotations, the reverse rotation amount is 1.2 rotations, and the rotation speed change rate is 12.5 rpm / s, In order to satisfy this condition, the cone is accelerated until the rotation speed reaches the final rotation speed. Even after reaching the final rotation speed, the rotation is continued in the same manner as in the cone, and the straight body is grown to produce a single crystal.
For example, a pattern as shown in FIG. 3 can be used as the acceleration pattern of the rotational speed at this time. FIG. 3 is a graph showing an example of the pattern of the rotation speed of a single crystal with respect to the crystal diameter in the cone.
As described above, if the rotational speed of the cone is different from that of the straight body and is alternately rotated at a rotational speed of less than 10 rpm / s, deformation of the cone can be suppressed without affecting the throttle portion and the like. It is possible to more effectively reduce the variation in wafer resistivity of the single crystal from the beginning of the body portion.
またこのとき、例えば図1に示すような関係に基づいて回転時間を変化させて、コーン中の正転及び逆転の回転量が共に一度の回転で1回転以上、より好ましくは1.2回転以上するように制御する。さらに、交互回転を行っている最中は図2に示すような関係に基づいて変化時間を調整し、回転速度変化率が10〜20rpm/sの一定値となるように制御する。図1は本発明における単結晶の回転速度と回転時間の関係の一例をグラフで示した図、図2は本発明における単結晶の回転速度と変化時間の関係の一例をグラフで示した図である。 At this time, for example, the rotation time is changed based on the relationship as shown in FIG. 1, and both the forward and reverse rotation amounts in the cone are one rotation or more, more preferably 1.2 rotations or more. Control to do. Further, during the alternate rotation, the change time is adjusted based on the relationship shown in FIG. 2, and the rotation speed change rate is controlled to be a constant value of 10 to 20 rpm / s. FIG. 1 is a graph showing an example of the relationship between the rotation speed and rotation time of a single crystal in the present invention, and FIG. 2 is a graph showing an example of the relationship between the rotation speed and change time of a single crystal in the present invention. is there.
例えばコーン中に7rpmで交互回転を開始したとき、図1に基づき回転時間は正転を17.1秒、逆転を10.2秒とし、図2に基づき変化時間は0.56秒とすることによって、回転速度の大小に関わらず正転の回転量は2.0回転、逆転の回転量は1.2回転で一定となるようにし、さらに回転速度変化率も12.5rpm/sで一定となるようにする。
その後は、図3のパターンに従いコーン直径の増大に伴い、結晶の回転速度を上げていく。このとき、結晶の回転速度の増大に伴い、図1に従って回転時間を減少させ、図2に従って変化時間を増大させれば、回転量及び回転速度変化率を所望の値で一定にすることができる。
For example, when alternate rotation is started at 7 rpm in a cone, the rotation time is 17.1 seconds for forward rotation and 10.2 seconds for reverse rotation based on FIG. 1, and the change time is 0.56 seconds based on FIG. Therefore, regardless of the magnitude of the rotational speed, the forward rotation amount is 2.0 rotations, the reverse rotation amount is constant at 1.2 rotations, and the rotation speed change rate is also constant at 12.5 rpm / s. To be.
Thereafter, according to the pattern of FIG. 3, the rotation speed of the crystal is increased as the cone diameter increases. At this time, if the rotation time is decreased according to FIG. 1 and the change time is increased according to FIG. 2 as the rotation speed of the crystal increases, the rotation amount and the rotation speed change rate can be made constant at desired values. .
従来のように、例えば図4に示すような回転パターンで直胴中における最終回転速度を20rpm、正転の回転時間を6秒、逆転の回転時間を3.6秒、変化時間を1.6秒で周期を一定とする場合、コーン中に回転速度7rpmで直胴中と同じ周期として交互回転を開始すると、正転の回転量が0.7回転、逆転の回転量が0.42回転となってしまい、一度の回転における回転量が1回転に満たなくなるためにスリットによる誘導加熱コイルの不均一性の影響を受け、コーン中の結晶形状が悪化してしまう可能性がある。
また、コーン中の低速回転時においては、変化時間が長すぎることによっても、スリットによる誘導加熱コイルの不均一性の影響を受け、結晶形状が悪化してしまうことがあり、さらに直胴中の高速回転時では、変化時間が短すぎることによるメルト振動等が発生してしまうことがある。
As in the prior art, for example, in the rotation pattern shown in FIG. 4, the final rotation speed in the straight body is 20 rpm, the normal rotation time is 6 seconds, the reverse rotation time is 3.6 seconds, and the change time is 1.6. When the cycle is constant in seconds, when the alternate rotation is started in the cone at the rotation speed of 7 rpm and the same cycle as in the straight body, the forward rotation amount is 0.7 rotations and the reverse rotation amount is 0.42 rotations. Therefore, since the amount of rotation in one rotation is less than one rotation, the shape of the crystal in the cone may be deteriorated due to the influence of non-uniformity of the induction heating coil due to the slit.
In addition, at the time of low-speed rotation in the cone, even if the change time is too long, it may be affected by the nonuniformity of the induction heating coil due to the slit, and the crystal shape may be deteriorated. During high-speed rotation, melt vibration or the like may occur due to the change time being too short.
しかし本発明は、前述の通り、単結晶の回転速度に応じて回転時間または変化時間を調節することによって回転量または回転速度変化率を制御しているため、このような操業トラブルが起こる可能性は無い。これによって、結晶形状が良く、抵抗率が均一化された単結晶を得ることができ、さらに単結晶製造における歩留まりを向上させることができる。
尚、上記単結晶の交互回転の最終条件(最終回転速度、正転及び逆転の回転量、変化時間等)、コーン中に交互回転を開始する際の回転速度及び回転速度変化率等は、当業者が適宜設定すべきものであり、上記例示したものに限定されるものではない。
However, as described above, the present invention controls the amount of rotation or the rate of change of the rotation speed by adjusting the rotation time or the change time according to the rotation speed of the single crystal. There is no. As a result, a single crystal having a good crystal shape and uniform resistivity can be obtained, and the yield in manufacturing the single crystal can be improved.
The final conditions for the alternate rotation of the single crystal (final rotational speed, forward and reverse rotational amounts, change time, etc.), rotational speed at the time of starting alternate rotation during the cone, rotational speed change rate, etc. It should be set by a trader as appropriate, and is not limited to those exemplified above.
以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例1)
図5に示すような単結晶製造装置を用いて、直径130mmのシリコン原料棒に対してFZ法によりゾーニングを行い、コーン中に一方向回転の回転速度が7rpmになった時点で交互回転を開始し、その後回転速度をアップして、回転速度の最終回転速度である20rpmに到達させた。直胴中に最終回転速度である20rpmに到達した後も交互回転を続け、n型100Ωcm以下の直径128mm、直胴長さ150cmのシリコン単結晶を製造した。
ここで交互回転を行う際に、コーン中及び直胴中共に、図1に示すような単結晶の回転速度と回転時間の関係において、回転時間を調整することにより、単結晶の回転量は正転で2.0回転、逆転で1.2回転と一定になるようにした。また変化時間は、1.6秒で一定とし、偏芯量は10mmとした。そしてこれらを単結晶製造装置が有する制御用コンピュータにプログラミングして制御した。
この条件でFZ法による単結晶製造を10回実施した所、結晶変形、有転位化が発生することなく単結晶の製造に10回とも成功した。
EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated more concretely, this invention is not limited to these.
Example 1
Using a single crystal manufacturing device as shown in FIG. 5, zoning is performed on a silicon raw material rod having a diameter of 130 mm by the FZ method, and alternate rotation starts when the rotational speed of one-way rotation reaches 7 rpm in the cone. Then, the rotational speed was increased to reach 20 rpm which is the final rotational speed of the rotational speed. After reaching the final rotation speed of 20 rpm in the straight body, the alternating rotation was continued to produce a silicon single crystal having an n-type diameter of 100 Ωcm or less, a diameter of 128 mm, and a straight body length of 150 cm.
Here, when the alternate rotation is performed, the amount of rotation of the single crystal is adjusted by adjusting the rotation time in the relationship between the rotation speed and the rotation time of the single crystal as shown in FIG. The rotation was kept constant at 2.0 rotations and 1.2 rotations at reverse rotation. The change time was fixed at 1.6 seconds, and the eccentricity was 10 mm. These were controlled by programming a control computer included in the single crystal manufacturing apparatus.
When single crystal production by FZ method was performed 10 times under these conditions, single crystal production was successful 10 times without causing crystal deformation and dislocation formation.
(実施例2)
最終回転速度を30rpmとする以外は実施例1と同じ条件でシリコン単結晶を製造した。尚、この条件においても、回転速度の大小に関わらず、コーン中及び直胴中共に単結晶の回転量は正転で2.0回転、逆転で1.2回転と一定になるようにした。
この条件でFZ法による単結晶製造を10回実施した所、成功は7回であった。
(Example 2)
A silicon single crystal was produced under the same conditions as in Example 1 except that the final rotation speed was 30 rpm. Even under this condition, the amount of rotation of the single crystal in the cone and the straight body was constant at 2.0 rotations in the forward rotation and 1.2 rotations in the reverse rotation regardless of the rotation speed.
When the single crystal production by the FZ method was carried out 10 times under these conditions, the success was 7 times.
(実施例3)
交互回転の回転方向の反転時において、図2に示すような単結晶の回転速度と変化時間の関係から、コーン中及び直胴中共に、変化時間を調整することにより回転速度変化率を12.5rpm/sで一定とすること以外は実施例2と同じ条件でシリコン単結晶を製造した。尚、この条件においても、回転速度の大小に関わらず、コーン中及び直胴中共に単結晶の回転量は正転で2.0回転、逆転で1.2回転と一定になるようにした。
この条件でFZ法による単結晶製造を10回実施した所、成功は10回であった。
(Example 3)
At the time of reversal of the rotation direction of the alternating rotation, from the relationship between the rotation speed of the single crystal and the change time as shown in FIG. A silicon single crystal was produced under the same conditions as in Example 2 except that the pressure was constant at 5 rpm / s. Even under this condition, the amount of rotation of the single crystal in the cone and the straight body was constant at 2.0 rotations in the forward rotation and 1.2 rotations in the reverse rotation regardless of the rotation speed.
When the single crystal production by the FZ method was carried out 10 times under these conditions, the success was 10 times.
(比較例)
図5に示すような単結晶製造装置を用いて、直径130mmのシリコン原料棒に対してFZ法によりゾーニングを行い、コーン中に一方向回転の回転速度が7rpmになった時点で交互回転を開始し、その後回転速度をアップして、回転速度の最終回転速度である20rpmに到達させた。直胴中に最終回転速度である20rpmに到達した後も、図4に示すような時間に対する回転速度のパターンで周期的に交互回転を続け、n型100Ωcm以下の直径128mm、直胴長さ150cmのシリコン単結晶を製造した。
このとき、単結晶の回転速度に対する回転時間及び変化時間は一定で、単結晶の回転速度の大小に関わらず、コーン中及び直胴中共に正転の回転時間を6秒(コーン中の回転量0.7回転、直胴中の回転量2回転)、逆転の回転時間を3.6秒(コーン中の回転量0.42回転、直胴中の回転量1.2回転)、変化時間を1.6秒と一定にした。
この条件でFZ法による単結晶製造を10回実施した所、成功は2回であった。
(Comparative example)
Using a single crystal manufacturing device as shown in FIG. 5, zoning is performed on a silicon raw material rod having a diameter of 130 mm by the FZ method, and alternate rotation starts when the rotational speed of one-way rotation reaches 7 rpm in the cone. Then, the rotational speed was increased to reach 20 rpm which is the final rotational speed of the rotational speed. Even after reaching the final rotational speed of 20 rpm during the straight body, the alternating rotation continues periodically in a rotational speed pattern with respect to time as shown in FIG. 4, and the n-type has a diameter of 100 Ωcm or less, a diameter of 128 mm, and a straight body length of 150 cm. A silicon single crystal was manufactured.
At this time, the rotation time and change time with respect to the rotation speed of the single crystal are constant, and the rotation time for normal rotation is 6 seconds (the amount of rotation in the cone) in both the cone and the straight body regardless of the rotation speed of the single crystal. 0.7 rotation, 2 rotations in the cylinder), rotation time of reverse rotation is 3.6 seconds (0.42 rotations in the cone, 1.2 rotations in the cylinder), change time It was kept constant at 1.6 seconds.
The single crystal production by the FZ method was carried out 10 times under these conditions, and the success was 2 times.
このように、実施例1においては、コーン中に7rpmという比較的低速度で交互回転を開始し、さらに本発明の効果により、単結晶の回転速度の大小に関わらず一度の回転における正転及び逆転の回転数が、共に1回転以上となるようにした。これによって、絞り部等に影響を与えることなく直胴中の最初から交互回転を始めることができ、さらにスリットによる誘導加熱コイルの不均一性の影響によって、特にコーン中の結晶形状が悪化することを低減することができたため、10回の実施のうち2回しか成功しなかった比較例と比べ、10回の実施のうち10回成功という良い結果を得ることができた。
また、実施例2においては、抵抗率の均一性を高めるべく回転速度を速くし、結晶回転方向の融液のゆれが大きい場合であっても、10回の実施のうち7回成功と、ある程度良い結果が得られた。
Thus, in Example 1, alternating rotation is started at a relatively low speed of 7 rpm in the cone, and due to the effect of the present invention, normal rotation and rotation in one rotation are performed regardless of the rotation speed of the single crystal. The rotation speed of the reverse rotation was set to be 1 rotation or more. As a result, it is possible to start alternate rotation from the beginning in the straight body without affecting the throttling portion, etc., and further, the crystal shape in the cone is particularly deteriorated due to the non-uniformity of the induction heating coil due to the slit. As a result, it was possible to obtain a good result of 10 successes in 10 executions as compared with a comparative example in which only 2 executions were successful in 10 executions.
Further, in Example 2, even when the rotational speed is increased to increase the uniformity of the resistivity and the fluctuation of the melt in the crystal rotation direction is large, 7 out of 10 executions are successful. Good results were obtained.
ここで実施例3においては、コーン中及び直胴中共に交互回転の回転方向が反転する際の回転速度変化率を10〜20rpm/sの一定値である12.5rpm/sとしたため、コーン中の低速回転時における結晶形状の悪化をより効果的に低減することができ、また直胴中の高速回転時におけるメルト振動等の発生をより効果的に抑制することができた。これによって、10回の実施のうち10回成功という実施例2よりもさらに良い結果を得ることができた。 Here, in Example 3, since the rotation speed change rate when the rotation direction of the alternating rotation is reversed in both the cone and the straight cylinder is 12.5 rpm / s which is a constant value of 10 to 20 rpm / s, It was possible to more effectively reduce the deterioration of the crystal shape at the time of low-speed rotation, and to more effectively suppress the occurrence of melt vibration and the like at the time of high-speed rotation in the straight body. As a result, it was possible to obtain a better result than Example 2 in which 10 out of 10 executions were successful.
なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載した技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and has the same operational effects can be used. Included in the technical scope.
1…原料結晶棒、 2…単結晶棒、 2a…コーン部、 2b…直胴部 3…上軸、
4…上部保持治具、 5…下軸、 6…下部保持治具、 7、16…誘導加熱コイル、
8…種結晶、 9…絞り部、 10…浮遊帯域、 11…ドープノズル、
12…スリット、 12a、12b…スリット対向面 13a、13b…電源端子、
14…内周面、 15…外周面、 20…チャンバー、 30…単結晶製造装置。
DESCRIPTION OF
4 ... Upper holding jig, 5 ... Lower shaft, 6 ... Lower holding jig, 7, 16 ... Induction heating coil,
8 ... Seed crystal, 9 ... Restriction part, 10 ... Floating zone, 11 ... Dope nozzle,
12 ... Slit, 12a, 12b ...
DESCRIPTION OF
Claims (4)
The method for producing a single crystal according to claim 3, wherein the rotational speed of the alternating rotation in the cone is less than 10 rpm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011166175A JP5375889B2 (en) | 2010-12-28 | 2011-07-29 | Single crystal manufacturing method |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010292525 | 2010-12-28 | ||
JP2010292525 | 2010-12-28 | ||
JP2011166175A JP5375889B2 (en) | 2010-12-28 | 2011-07-29 | Single crystal manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012148953A true JP2012148953A (en) | 2012-08-09 |
JP5375889B2 JP5375889B2 (en) | 2013-12-25 |
Family
ID=46508929
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011166175A Active JP5375889B2 (en) | 2010-12-28 | 2011-07-29 | Single crystal manufacturing method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5375889B2 (en) |
DE (1) | DE102011122381B4 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014127646A1 (en) * | 2013-02-25 | 2014-08-28 | 天津市环欧半导体材料技术有限公司 | Method for preparing solar grade silicon single crystal using czochralski zone melting method |
JP2014162717A (en) * | 2013-02-28 | 2014-09-08 | Shin Etsu Handotai Co Ltd | Method of producing semiconductor single crystal |
JP2014169211A (en) * | 2013-03-05 | 2014-09-18 | Shin Etsu Handotai Co Ltd | Method for producing semiconductor single crystal |
JP2014172774A (en) * | 2013-03-07 | 2014-09-22 | Shin Etsu Handotai Co Ltd | Method for producing semiconductor single crystal |
JP2015229612A (en) * | 2014-06-05 | 2015-12-21 | 株式会社Sumco | Manufacturing method of single crystal |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102014226419A1 (en) | 2014-12-18 | 2016-06-23 | Siltronic Ag | A method of growing a single crystal by crystallizing the single crystal from a flow zone |
CN115734412A (en) * | 2022-11-30 | 2023-03-03 | 北京北方华创微电子装备有限公司 | Induction coil assembly driving system and control method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003055089A (en) * | 2001-08-02 | 2003-02-26 | Wacker Siltronic Ag | Silicon single crystal produced by float zone method and silicon substrate |
JP2003112992A (en) * | 2001-08-02 | 2003-04-18 | Wacker Siltronic Ag | Method and apparatus for manufacturing single crystal |
JP2008266102A (en) * | 2007-04-25 | 2008-11-06 | Sumco Techxiv株式会社 | Method for manufacturing silicon single crystal by fz (floating zone) method |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2820027B2 (en) | 1994-05-24 | 1998-11-05 | 信越半導体株式会社 | Semiconductor single crystal growth method |
-
2011
- 2011-07-29 JP JP2011166175A patent/JP5375889B2/en active Active
- 2011-12-22 DE DE102011122381.2A patent/DE102011122381B4/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003055089A (en) * | 2001-08-02 | 2003-02-26 | Wacker Siltronic Ag | Silicon single crystal produced by float zone method and silicon substrate |
JP2003112992A (en) * | 2001-08-02 | 2003-04-18 | Wacker Siltronic Ag | Method and apparatus for manufacturing single crystal |
JP2009227581A (en) * | 2001-08-02 | 2009-10-08 | Siltronic Ag | Silicon single crystal produced by float zone method, and silicon substrate |
JP2008266102A (en) * | 2007-04-25 | 2008-11-06 | Sumco Techxiv株式会社 | Method for manufacturing silicon single crystal by fz (floating zone) method |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014127646A1 (en) * | 2013-02-25 | 2014-08-28 | 天津市环欧半导体材料技术有限公司 | Method for preparing solar grade silicon single crystal using czochralski zone melting method |
JP2014162717A (en) * | 2013-02-28 | 2014-09-08 | Shin Etsu Handotai Co Ltd | Method of producing semiconductor single crystal |
JP2014169211A (en) * | 2013-03-05 | 2014-09-18 | Shin Etsu Handotai Co Ltd | Method for producing semiconductor single crystal |
JP2014172774A (en) * | 2013-03-07 | 2014-09-22 | Shin Etsu Handotai Co Ltd | Method for producing semiconductor single crystal |
JP2015229612A (en) * | 2014-06-05 | 2015-12-21 | 株式会社Sumco | Manufacturing method of single crystal |
Also Published As
Publication number | Publication date |
---|---|
DE102011122381A1 (en) | 2012-06-28 |
DE102011122381B4 (en) | 2020-01-16 |
JP5375889B2 (en) | 2013-12-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5375889B2 (en) | Single crystal manufacturing method | |
WO2014091671A1 (en) | Method for producing monocrystalline silicon | |
TWI836947B (en) | Seed crystal pulling device, crystal growth equipment and seed crystal pulling method | |
JP2010215431A (en) | Method for producing semiconductor single crystal | |
US20090293804A1 (en) | Method of shoulder formation in growing silicon single crystals | |
JP6491763B2 (en) | Method for producing silicon single crystal ingot | |
WO2012114375A1 (en) | Method for manufacturing n-type silicon single crystal, and phosphorus-doped n-type silicon single crystal | |
JP6248816B2 (en) | Single crystal manufacturing method | |
JP4831203B2 (en) | Semiconductor single crystal manufacturing method and semiconductor single crystal manufacturing apparatus | |
JP6756244B2 (en) | Manufacturing method of semiconductor silicon single crystal | |
JP2015160800A (en) | Semiconductor single crystal manufacturing method, and silicon single crystal | |
JP5888264B2 (en) | Manufacturing method of semiconductor single crystal | |
JP5594257B2 (en) | Single crystal manufacturing method | |
JP5895875B2 (en) | Manufacturing method of semiconductor single crystal | |
JP5234148B2 (en) | Semiconductor single crystal manufacturing method and semiconductor single crystal manufacturing apparatus | |
JP5924181B2 (en) | Manufacturing method of FZ single crystal silicon | |
JP4513407B2 (en) | Method for producing single crystal | |
JP5365617B2 (en) | Semiconductor single crystal manufacturing apparatus and semiconductor single crystal manufacturing method | |
CN112779593B (en) | Method for producing single crystal | |
JP6488975B2 (en) | Pulling method of silicon single crystal | |
JP5454625B2 (en) | Silicon single crystal wafer obtained from ingot pulled by silicon single crystal pulling method | |
JP6777013B2 (en) | Single crystal manufacturing method | |
JP5056603B2 (en) | Silicon single crystal pulling method and silicon single crystal wafer obtained from ingot pulled by the method | |
JP2014169211A (en) | Method for producing semiconductor single crystal | |
JP5246209B2 (en) | Manufacturing method of semiconductor single crystal rod |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20121219 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130827 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130829 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130909 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5375889 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |