JP2014169211A - Method for producing semiconductor single crystal - Google Patents

Method for producing semiconductor single crystal Download PDF

Info

Publication number
JP2014169211A
JP2014169211A JP2013042963A JP2013042963A JP2014169211A JP 2014169211 A JP2014169211 A JP 2014169211A JP 2013042963 A JP2013042963 A JP 2013042963A JP 2013042963 A JP2013042963 A JP 2013042963A JP 2014169211 A JP2014169211 A JP 2014169211A
Authority
JP
Japan
Prior art keywords
single crystal
crystal
semiconductor single
rotation
resistivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013042963A
Other languages
Japanese (ja)
Inventor
Satoshi Suzuki
聡 鈴木
Kenichi Sato
佐藤  賢一
Keiichi Nakazawa
慶一 中澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2013042963A priority Critical patent/JP2014169211A/en
Publication of JP2014169211A publication Critical patent/JP2014169211A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a semiconductor single crystal that may reduce a variation in a resistivity in a cross section, particularly in a central part of the single crystal.SOLUTION: Provided is a method for producing a semiconductor single crystal by a FZ process in which the semiconductor single crystal is grown by partially heating a raw crystal with an induction heating coil while rotating the raw crystal to form a molten zone and by moving the molten zone from one side of the raw crystal to the other side. The rotating direction of the semiconductor single crystal is changed alternately so that the semiconductor single crystal is rotated in one direction about a central axis, after which it is rotated in the direction opposite to the one direction and that a rotating acceleration when the rotating direction is changed from the one direction to the opposite direction is different from that when the rotating direction is changed from the opposite direction to the one direction.

Description

本発明は、FZ法(フローティングゾーン法または浮遊帯溶融法)による半導体単結晶の製造方法に関する。   The present invention relates to a method for producing a semiconductor single crystal by FZ method (floating zone method or floating zone melting method).

FZ法は、例えば、現在半導体素子の材料として最も多く使用されているシリコン単結晶等の半導体単結晶の製造方法の一つとして使用される。
通常、シリコン単結晶に所望の抵抗率を与えるためにはN型或いはP型の不純物ドーピングが必要である。FZ法においては、ドーパントガスを溶融帯に吹き付けるガスドーピング法が知られている(非特許文献1参照)。
The FZ method is used, for example, as one method for producing a semiconductor single crystal such as a silicon single crystal that is most frequently used as a material for semiconductor elements.
Usually, in order to give a desired resistivity to a silicon single crystal, N-type or P-type impurity doping is required. In the FZ method, a gas doping method in which a dopant gas is sprayed onto a melting zone is known (see Non-Patent Document 1).

ドーパントガスとして、例えばN型ドーパントであるP(リン)のドーピングにはPH等が、P型ドーパントであるB(ホウ素)のドーピングにはB等が用いられる。
シリコン単結晶の抵抗率は、これらN型ドーパントとP型ドーパントの結晶中の濃度差により変化するが、通常の結晶製造においてN型ドーパントのみ、或いはP型ドーパントのみをドーピングする場合には、抵抗率はドーパント添加量が増加するにつれて低くなる。
As the dopant gas, for example, PH 3 or the like is used for doping P (phosphorus) which is an N-type dopant, and B 2 H 6 or the like is used for doping B (boron) which is a P-type dopant.
The resistivity of a silicon single crystal varies depending on the concentration difference in the crystals of these N-type and P-type dopants. However, in the case of doping only an N-type dopant or only a P-type dopant in normal crystal production, the resistivity The rate decreases with increasing dopant loading.

所望の抵抗率のシリコン単結晶を得るためには、原料の抵抗率と所望の抵抗率を基に算出されたドーパント添加量が適正に保たれる必要がある。供給されるドーパントガスの濃度や流量等を調整することによりドーパント添加量を適正に保ちつつFZ法により単結晶を成長させることで、所望の抵抗率を持つFZシリコン単結晶を得ることができる。   In order to obtain a silicon single crystal having a desired resistivity, it is necessary to appropriately maintain the dopant addition amount calculated based on the resistivity of the raw material and the desired resistivity. An FZ silicon single crystal having a desired resistivity can be obtained by growing the single crystal by the FZ method while adjusting the concentration and flow rate of the supplied dopant gas while keeping the dopant addition amount appropriate.

FZ法により得られたシリコン単結晶から製造されるウェーハには、特に、ウェーハ面内での抵抗率バラツキが小さく面内全域で抵抗率ができる限り均一であることが望まれる。そのため、ウェーハの原料であるFZ単結晶の断面内の抵抗率分布をより均一化することが要求される。この要求を満たすために、特に直径150mm以上の大直径FZ単結晶の製造においては、単結晶の回転方向を交互に変更させながら成長させる方法(例えば特許文献1参照)が提案され、抵抗率分布の均一化が図られている。   In particular, a wafer manufactured from a silicon single crystal obtained by the FZ method is desired to have a uniform resistivity as much as possible over the entire in-plane surface with small variation in resistivity within the wafer surface. Therefore, it is required to make the resistivity distribution in the cross section of the FZ single crystal that is the raw material of the wafer more uniform. In order to satisfy this requirement, particularly in the production of a large-diameter FZ single crystal having a diameter of 150 mm or more, a method of growing while alternately changing the rotation direction of the single crystal (see, for example, Patent Document 1) has been proposed, and resistivity distribution is proposed. Is made uniform.

また特許文献2では、単結晶の面内の抵抗率分布を安定化させるために、FZ単結晶の製造中において、正逆回転比、回転角度等の単結晶の回転条件をある条件範囲に定めることが提案されている。   In Patent Document 2, in order to stabilize the in-plane resistivity distribution of the single crystal, the rotation conditions of the single crystal such as the forward / reverse rotation ratio and the rotation angle are set within a certain range during the manufacture of the FZ single crystal. It has been proposed.

特開平7−315980号公報JP 7-315980 A 特開2008−266102号公報JP 2008-266102 A

WOLFGANG KELLER、ALFRED MUHLBAUER著「Floating−Zone Silicon」p.82−92、MARCEL DEKKER, INC.発行“Floating-Zone Silicon” by WOLFGAN KELLER, ALFRED MUHLBAUER, p. 82-92, MARCEL DEKKER, INC. Issue

近年、求められるFZウェーハの直径が拡大してきており、特に直径200mm以上のFZウェーハの需要が増加している。一方、ウェーハ面内の抵抗率バラツキは、直径が拡大したとしても、より小さい直径のウェーハと同等以上が要求され、FZ単結晶の断面内抵抗率バラツキをより小さくする必要がある。   In recent years, the required diameter of FZ wafers has been increasing, and in particular, the demand for FZ wafers having a diameter of 200 mm or more is increasing. On the other hand, the resistivity variation in the wafer surface is required to be equal to or greater than that of a wafer having a smaller diameter even if the diameter is increased, and it is necessary to further reduce the resistivity variation in the cross section of the FZ single crystal.

上記したように、単結晶回転方向を交互に変更させながらFZ単結晶を製造する方法を用いることは、単結晶の断面内抵抗率バラツキを小さくするために有効である。例えば、特許文献2のようにFZ単結晶製造時の結晶回転条件をある範囲に収めることで、更に断面内抵抗率の分布の調整が可能となる。しかし、結晶直径が大きい場合(例えば200mm以上)、断面内抵抗率分布が十分均一になっているとは言えず、特に単結晶断面内の中心部の抵抗率を制御することは困難である。   As described above, using the method of manufacturing the FZ single crystal while alternately changing the single crystal rotation direction is effective for reducing the in-section resistivity variation of the single crystal. For example, by adjusting the crystal rotation conditions during FZ single crystal manufacture within a certain range as in Patent Document 2, it is possible to further adjust the distribution of resistivity in the cross section. However, when the crystal diameter is large (for example, 200 mm or more), the resistivity distribution in the cross section cannot be said to be sufficiently uniform, and it is particularly difficult to control the resistivity in the central portion in the single crystal cross section.

このように、従来の方法では、単結晶断面内の抵抗率分布の全体的な形状はある程度平坦化できるものの、単結晶中心部では抵抗率の大きな変動が存在し、単結晶から得られたウェーハ間の抵抗率バラツキが大きくなる。
本発明は前述のような問題に鑑みてなされたもので、単結晶断面内の特に中心部における抵抗率バラツキを低減可能な半導体単結晶の製造方法を提供することを目的とする。
As described above, in the conventional method, although the overall shape of the resistivity distribution in the single crystal section can be flattened to some extent, there is a large variation in resistivity at the center of the single crystal, and the wafer obtained from the single crystal. There will be a large variation in resistivity.
The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a method for manufacturing a semiconductor single crystal that can reduce resistivity variation particularly in the central portion in the cross section of the single crystal.

上記目的を達成するために、本発明によれば、原料結晶を回転させながら、該原料結晶を誘導加熱コイルにより部分的に加熱溶融して溶融帯を形成し、該溶融帯を前記原料結晶の一端部から他端部へ移動させて半導体単結晶を成長させるFZ法による半導体単結晶の製造方法であって、前記半導体単結晶の成長中に、前記半導体単結晶を中心軸周りに一方向に回転させた後、該一方向とは逆方向に回転させるように回転方向を交互に変更させ、前記一方向から前記逆方向に回転方向を変更する際の回転加速度を、前記逆方向から前記一方向に回転方向を変更する際とは異なる回転加速度とすることを特徴とする半導体単結晶の製造方法が提供される。   In order to achieve the above object, according to the present invention, while rotating a raw material crystal, the raw material crystal is partially heated and melted by an induction heating coil to form a molten zone, and the molten zone is A method of manufacturing a semiconductor single crystal by an FZ method in which a semiconductor single crystal is grown by moving from one end to the other end, wherein the semiconductor single crystal is unidirectionally around a central axis during the growth of the semiconductor single crystal. After the rotation, the rotation direction is alternately changed to rotate in the direction opposite to the one direction, and the rotational acceleration when the rotation direction is changed from the one direction to the opposite direction is changed from the one direction to the one direction. There is provided a method for producing a semiconductor single crystal, characterized in that the rotational acceleration is different from that when changing the direction of rotation.

このような半導体単結晶の製造方法であれば、メルトの回転を強めることができるので、特に単結晶中心部でのメルト対流の速度を増加することができる。これにより、単結晶断面内の特に結晶中心部における抵抗率バラツキを低減できる。   With such a method for producing a semiconductor single crystal, the rotation of the melt can be strengthened, so that the speed of melt convection can be increased particularly at the center of the single crystal. Thereby, the resistivity variation in the crystal | crystallization center part in a single crystal cross section can be reduced.

このとき、前記半導体単結晶を前記一方向に回転させる際の回転量を、前記逆方向に回転させる際の回転量より大きくすることが好ましい。
このようにすれば、メルトが一方向に継続して回転するようになるので、メルト対流の速度をより増加することができ、抵抗率バラツキをより効果的に低減できる。
At this time, it is preferable that the amount of rotation when rotating the semiconductor single crystal in the one direction is larger than the amount of rotation when rotating in the reverse direction.
In this way, since the melt continues to rotate in one direction, the speed of the melt convection can be further increased, and the resistivity variation can be more effectively reduced.

また、前記回転加速度を900°/s以下とすることを特徴とすることが好ましい。
このようにすれば、単結晶化が阻害されることもなく、歩留まり及び生産性の低下を抑制できる。
The rotational acceleration is preferably 900 ° / s 2 or less.
In this way, it is possible to suppress a decrease in yield and productivity without inhibiting single crystallization.

本発明では、FZ法による半導体単結晶の製造において、半導体単結晶の成長中に、半導体単結晶を中心軸周りに一方向に回転させた後、該一方向とは逆方向に回転させるように回転方向を交互に変更させ、前記一方向から前記逆方向に回転方向を変更する際の回転加速度を、前記逆方向から前記一方向に回転方向を変更する際とは異なる回転加速度とするので、特に単結晶中心部でのメルト対流を増大することができ、単結晶断面内の特に中心部における抵抗率バラツキを低減できる。これにより、半導体単結晶の製造歩留まり及び生産性を向上できる。   In the present invention, in the manufacture of a semiconductor single crystal by the FZ method, during the growth of the semiconductor single crystal, the semiconductor single crystal is rotated in one direction around the central axis and then rotated in the opposite direction to the one direction. Since the rotation direction is changed alternately, and the rotation acceleration when changing the rotation direction from the one direction to the reverse direction is different from that when changing the rotation direction from the reverse direction to the one direction, In particular, the melt convection at the center of the single crystal can be increased, and the resistivity variation can be reduced particularly in the center of the single crystal cross section. Thereby, the manufacturing yield and productivity of a semiconductor single crystal can be improved.

FZ法による単結晶製造装置の一例を示す概略図である。It is the schematic which shows an example of the single crystal manufacturing apparatus by FZ method. メルト内固液界面付近のメルト対流の例を示す図である。It is a figure which shows the example of the melt convection near the solid-liquid interface in a melt. 本発明の半導体単結晶の製造方法における半導体単結晶の回転パターンの例を示す図である。It is a figure which shows the example of the rotation pattern of the semiconductor single crystal in the manufacturing method of the semiconductor single crystal of this invention. 本発明の半導体単結晶の製造方法における半導体単結晶の回転パターンの別の例を示す図である。It is a figure which shows another example of the rotation pattern of the semiconductor single crystal in the manufacturing method of the semiconductor single crystal of this invention. 結晶回転方向の反転時の回転加速度と抵抗率バラツキσの最大値の関係を示す図である。It is a figure which shows the relationship between the rotational acceleration at the time of the reversal of a crystal rotation direction, and the maximum value of resistivity variation (sigma).

以下、本発明について実施の形態を説明するが、本発明はこれに限定されるものではない。
本発明者等は、FZ法による半導体単結晶(FZ単結晶)の製造において単結晶の回転方向を交互に変更させる方法を用いる場合に、単結晶製造条件を大幅に変更せず、かつ従来と比べて単結晶の取得成功率を低下させることなく、単結晶断面内の特に中心部における軸方向の抵抗率分布を更に均一化させるために鋭意検討を重ねた。
Hereinafter, although an embodiment is described about the present invention, the present invention is not limited to this.
In the production of a semiconductor single crystal (FZ single crystal) by the FZ method, the present inventors have not changed the single crystal production conditions greatly when using a method of alternately changing the rotation direction of the single crystal, and Compared to this, the inventors have intensively studied in order to make the resistivity distribution in the axial direction in the cross section of the single crystal particularly uniform, without lowering the acquisition success rate of the single crystal.

その結果、まず、単結晶中心部の抵抗率バラツキが以下に示す原因により大きくなることが判明した。
FZ単結晶製造で使用される誘導加熱コイルの形状は完全に軸対称ではなく、それによって形成される磁場分布も完全に軸対称にすることができないことから、原料結晶の加熱は軸対称でなく不均一である。このため回転速度が一定であっても結晶部位毎の成長速度に差が生ずる。
As a result, it was first found that the resistivity variation at the center of the single crystal was increased due to the following causes.
The shape of the induction heating coil used in the FZ single crystal production is not completely axisymmetric, and the magnetic field distribution formed thereby cannot be perfectly axisymmetric, so the heating of the raw crystal is not axisymmetric. It is uneven. For this reason, even if the rotational speed is constant, a difference occurs in the growth speed for each crystal part.

BurtonらのBPS理論(J.Chem.Phys. 21(1958)、1987)によれば、結晶成長速度の大小によって有効偏析係数は変化し、メルトから結晶へのドーパント不純物の導入が変化するため、結晶の抵抗率にも影響を及ぼすことになる。結晶部位毎の成長速度の差により結晶内の抵抗率が変動し、さらには得られるウェーハ面内のミクロ/マクロな抵抗率変動に繋がる。そのため、誘導加熱コイルでの加熱状態をできる限り軸対称に近づける、もしくは非軸対称加熱の影響を低減するような施策を行うなど、成長速度の差を極めて小さくするようにすることが望ましい。   According to Burton et al.'S BPS theory (J. Chem. Phys. 21 (1958), 1987), the effective segregation coefficient changes depending on the crystal growth rate, and the introduction of dopant impurities from the melt to the crystal changes. It also affects the resistivity of the crystal. The resistivity in the crystal fluctuates due to the difference in the growth rate for each crystal site, and further leads to micro / macro resistivity fluctuation in the obtained wafer surface. For this reason, it is desirable to make the difference in growth rate extremely small, for example, by making the heating state in the induction heating coil as close as possible to axial symmetry or reducing the influence of non-axisymmetric heating.

単結晶の成長中に単結晶の回転方向を交互に変更させる方法では、一般的に単結晶の回転数をある程度大きくし、結晶成長不均一の緩和、すなわち抵抗率変動を小さくすることができる。ただし、単結晶の回転方向を変える際にその所要時間をゼロにすることは事実上不可能であるため、回転方向の反転時には回転の減速、停止が必ず生ずる。この減速、停止時には不均一加熱の影響を避けることができず、結果として結晶成長が不均一になる。つまりこの方法を用いた場合は、回転方向反転の周期に沿った抵抗率バラツキが生ずることになる。   In the method of alternately changing the rotation direction of the single crystal during the growth of the single crystal, generally, the number of rotations of the single crystal can be increased to some extent, and the unevenness of crystal growth, that is, the change in resistivity can be reduced. However, since it is practically impossible to reduce the time required for changing the rotation direction of the single crystal, the rotation is always decelerated and stopped when the rotation direction is reversed. At the time of deceleration and stop, the influence of non-uniform heating cannot be avoided, resulting in non-uniform crystal growth. That is, when this method is used, resistivity variation occurs along the rotation direction inversion cycle.

特に単結晶外周部においては、非軸対称加熱による不均一加熱の影響が大きいため、単結晶外周部の面内部位で温度差が生ずる。これにより単結晶外周部の面内部位で成長速度差が生じ、抵抗率が不均一となる。上記したように、不均一加熱は誘導加熱コイルによるものであるから、単結晶外周部における抵抗率バラツキは単結晶の回転周期に対応して繰り返されることになる。   In particular, in the outer periphery of the single crystal, the influence of non-uniform heating due to non-axisymmetric heating is large, and therefore a temperature difference occurs in the in-plane portion of the outer periphery of the single crystal. As a result, a growth rate difference occurs in the in-plane portion of the outer periphery of the single crystal, and the resistivity becomes non-uniform. As described above, since the non-uniform heating is caused by the induction heating coil, the resistivity variation at the outer periphery of the single crystal is repeated corresponding to the rotation period of the single crystal.

他方、単結晶中心部は回転中心軸の近傍であるので、非軸対称加熱の影響を受けた結晶成長速度の差が生じるようなことはない。しかし、単結晶成長中には単結晶外周部側から中心部側へのメルトの流れが存在するため、単結晶外周部の不均一加熱の影響を受けた温度差のあるメルトが単結晶中心部に流入する。また、単結晶外周部では、結晶成長速度差があることでメルトと結晶の固液界面近傍における面内でドーパント濃度差を生ずるが、このようなドーパント濃度差が生じたメルトも単結晶中心部に流入する。このように、単結晶中心部でも単結晶外周部側から流入するメルトの影響を受けて抵抗率が変動する。   On the other hand, since the center portion of the single crystal is in the vicinity of the rotation center axis, there is no difference in crystal growth rate affected by non-axisymmetric heating. However, since there is a melt flow from the outer peripheral side of the single crystal to the central side during the growth of the single crystal, the melt having a temperature difference affected by the uneven heating of the outer peripheral portion of the single crystal is Flow into. In addition, at the outer periphery of the single crystal, the difference in crystal growth rate causes a difference in dopant concentration in the plane near the melt-crystal solid-liquid interface. Flow into. Thus, the resistivity fluctuates even at the center of the single crystal due to the influence of the melt flowing from the outer periphery of the single crystal.

ここで、単結晶中心部付近のメルトの温度やドーパント濃度を均一に制御することができれば抵抗率バラツキを低減することは可能であるが、実際には非常に複雑であり困難で、単結晶外周部では、比較的に温度や濃度の変動が周期的・規則的になるのに対し、単結晶中心部では、それら変動が大きく不規則となる傾向があり、軸方向の抵抗率バラツキが大きくなる。   Here, if the melt temperature and dopant concentration in the vicinity of the center of the single crystal can be controlled uniformly, it is possible to reduce the resistivity variation. In contrast, temperature and concentration fluctuations are relatively periodic and regular in the area, whereas in the central part of the single crystal, these fluctuations tend to be large and irregular, and the resistivity variation in the axial direction increases. .

これに対して本発明者等は、単結晶の回転方向を交互に変更する際に、一方向からその逆方向に回転方向を変更する区間の回転加速度を、逆方向から一方向に回転方向を変更する区間とは異なる回転加速度とすることで、特に単結晶中心部のメルト対流の速度を増加し、抵抗率分布を均一化するのに有効であることに想到し、本発明を完成させた。   On the other hand, when the inventors alternately change the rotation direction of the single crystal, the rotation acceleration of the section in which the rotation direction is changed from one direction to the opposite direction is changed from the reverse direction to the one direction. The present invention has been completed by conceiving that it is effective for increasing the speed of melt convection at the center of the single crystal and making the resistivity distribution uniform by setting the rotational acceleration different from the section to be changed. .

まず、本発明の半導体単結晶の製造方法で用いられるFZ法による単結晶製造装置(FZ単結晶製造装置)について図1を参照して説明する。ここでは、半導体単結晶としてシリコン単結晶を製造する場合について説明する。
図1に示すように、FZ単結晶製造装置1は、チャンバー11を有しており、該チャンバー11内には、回転可能な上軸12および下軸13が設けられている。該上軸12には原料結晶14として所定の直径のシリコン棒が取り付けられ、また下軸13には種結晶15が取り付けられる。またチャンバー11内には、原料結晶14を溶融するための誘導加熱コイル16や、ガスドーピングの際に、原料結晶14が溶融された溶融帯18にドーパントガスを噴出するためのドープノズル20が配置されている。
First, the single crystal manufacturing apparatus (FZ single crystal manufacturing apparatus) by FZ method used with the manufacturing method of the semiconductor single crystal of this invention is demonstrated with reference to FIG. Here, a case where a silicon single crystal is manufactured as a semiconductor single crystal will be described.
As shown in FIG. 1, the FZ single crystal manufacturing apparatus 1 includes a chamber 11, and a rotatable upper shaft 12 and a lower shaft 13 are provided in the chamber 11. A silicon rod having a predetermined diameter is attached to the upper shaft 12 as a raw material crystal 14, and a seed crystal 15 is attached to the lower shaft 13. In the chamber 11, an induction heating coil 16 for melting the raw material crystal 14 and a dope nozzle 20 for jetting a dopant gas into the melting zone 18 where the raw material crystal 14 is melted during gas doping are arranged. ing.

本発明の半導体単結晶の製造方法では、このようなFZ単結晶製造装置1を用いて、まず、原料結晶14の先端を誘導加熱コイル16で溶融した後、種結晶15に融着させる。その後、絞り17により無転位化し、上軸12及び下軸13を回転させながら下降させ、溶融帯18を原料結晶14に対して相対的に上方に移動させながらシリコン単結晶19を成長させる。
この時、シリコン単結晶19を中心軸周りに一方向に回転させた後、該一方向とは逆方向に回転させるように回転方向を交互に変更させる。更に、このとき、回転加速度を、下記に詳細に説明するように調整する。
In the method for producing a semiconductor single crystal according to the present invention, the tip of the raw material crystal 14 is first melted by the induction heating coil 16 and then fused to the seed crystal 15 by using such an FZ single crystal production apparatus 1. Thereafter, dislocation is eliminated by the diaphragm 17, the upper shaft 12 and the lower shaft 13 are moved downward while rotating, and the silicon single crystal 19 is grown while the melting zone 18 is moved upward relative to the raw material crystal 14.
At this time, after rotating the silicon single crystal 19 in one direction around the central axis, the rotation direction is alternately changed so as to rotate in the direction opposite to the one direction. Further, at this time, the rotational acceleration is adjusted as described in detail below.

上記絞り後には、所望の直径までシリコン単結晶19の直径を徐々に拡大させてコーン部を形成し、所望直径まで達した後は所望直径を保ったまま結晶成長を行い、直胴部を形成する。成長中に、ドープノズル20からドーパントガスを溶融帯18に噴射してドーパントを供給し、所望の抵抗率を持つ単結晶棒とする。溶融帯18を原料結晶14の上端まで移動させてシリコン単結晶19の製造を終える。   After the drawing, the diameter of the silicon single crystal 19 is gradually expanded to a desired diameter to form a cone portion. After reaching the desired diameter, crystal growth is performed while maintaining the desired diameter to form a straight body portion. To do. During the growth, a dopant gas is injected from the dope nozzle 20 into the melting zone 18 to supply the dopant, thereby forming a single crystal rod having a desired resistivity. The melting zone 18 is moved to the upper end of the raw material crystal 14 to complete the production of the silicon single crystal 19.

従来の製造方法のように、単結晶を一定の回転方向・回転数で定常回転させる場合、単結晶断面内の抵抗率分布は、単結晶製造時に使用される誘導加熱コイルなどによる加熱分布及び結晶回転数などの結晶製造条件に応じて変化する径方向のメルト対流により決定される。
図2に、径方向メルト対流の模式図を示す。図2は単結晶中心部を含み結晶成長軸と平行な断面で、単結晶中心部から外周部までの半分のメルト部分の範囲を表しており、メルト内各位置における結晶径方向のメルト対流を模式的に矢印で表示している。
When a single crystal is steadily rotated with a constant rotation direction and number of rotations as in the conventional manufacturing method, the resistivity distribution in the cross section of the single crystal is determined by the heating distribution by the induction heating coil or the like used in the manufacture of the single crystal and the crystal. It is determined by the radial melt convection that changes according to the crystal production conditions such as the number of revolutions.
FIG. 2 shows a schematic diagram of radial melt convection. FIG. 2 is a cross section including the center portion of the single crystal and parallel to the crystal growth axis, and represents the range of a half melt portion from the center portion of the single crystal to the outer peripheral portion. This is schematically indicated by an arrow.

前記のBPS理論によれば、メルト対流の速度が大きい場合(例えば、図2のIのようなメルトフローの場合)は境界拡散層厚さが減少し抵抗率は上昇する。逆に、メルト対流速度が小さい場合(例えば、図2のIIのようにメルトが滞留する場合)は抵抗率は減少する。結晶固液界面近傍のメルト対流の速度分布により、面内抵抗率分布が形成される。この現象は、結晶の回転とほぼ同様にメルトが回転しているためである。   According to the BPS theory, when the speed of melt convection is high (for example, in the case of melt flow as shown in I of FIG. 2), the boundary diffusion layer thickness decreases and the resistivity increases. On the other hand, when the melt convection speed is low (for example, when the melt stays like II in FIG. 2), the resistivity decreases. An in-plane resistivity distribution is formed by the velocity distribution of the melt convection near the crystal solid-liquid interface. This phenomenon is because the melt is rotating in substantially the same manner as the rotation of the crystal.

一方、本発明のように、単結晶の回転方向を交互に変更しながら単結晶を成長させる場合は、回転方向の反転時に単結晶の回転とメルトの回転の相対回転速度は増大する。すなわち結晶径方向のメルト対流と比べて十分に大きな結晶周方向のメルト対流が発生しているということであり、上記した定常回転時には大きな影響を及ぼす結晶径方向メルト対流の影響が打ち消されるため、交互回転時の断面内抵抗率分布は平坦に近づく。この際に非軸対称加熱の影響を小さくするため単結晶回転をより高速にすることで、全体的な抵抗率バラツキを低減できる。   On the other hand, when the single crystal is grown while alternately changing the rotation direction of the single crystal as in the present invention, the relative rotation speed of the rotation of the single crystal and the rotation of the melt increases when the rotation direction is reversed. That is, a sufficiently large crystal circumferential melt convection is generated compared to the crystal diameter direction melt convection, and the influence of the crystal diameter direction melt convection that has a large effect during the above-described steady rotation is negated, The resistivity distribution in the cross section at the time of alternate rotation approaches flat. In this case, the overall resistivity variation can be reduced by increasing the single crystal rotation speed in order to reduce the influence of non-axisymmetric heating.

更に本発明では、図3に示すように、一方向からその逆方向に回転方向を変更する際(図3のAで示す区間)の回転加速度を、逆方向から一方向に回転方向を変更する際(図3のBで示す区間)とは異なる回転加速度とする。
このように両区間で異なる回転加速度を用いることで、特に単結晶中心部でのメルト対流を増大させることができる。その結果、単結晶中心部の軸方向の抵抗率バラツキを低減できる。
Furthermore, in the present invention, as shown in FIG. 3, the rotational acceleration when changing the rotation direction from one direction to the opposite direction (section indicated by A in FIG. 3) is changed from the reverse direction to one direction. The rotational acceleration is different from that at the time (section indicated by B in FIG. 3).
In this way, by using different rotational accelerations in both sections, it is possible to increase the melt convection particularly at the center of the single crystal. As a result, the resistivity variation in the axial direction of the single crystal central portion can be reduced.

このとき、各方向に回転させる際の回転量は特に限定されない。例えば図3に示すように、一方向(プラス方向)と逆方向(マイナス方向)に同じ回転量で交互に回転させることができる。   At this time, the amount of rotation when rotating in each direction is not particularly limited. For example, as shown in FIG. 3, it can be rotated alternately by the same rotation amount in one direction (plus direction) and in the opposite direction (minus direction).

或いは、例えば図4に示すように、一方向(プラス方向)に回転する回転量を逆方向(マイナス方向)に回転する回転量よりも大きくして、各方向への回転量比率(小さい方の回転量/大きい方の回転量)を小さくすることができる。
このように回転量比率を小さくする場合には、メルトは回転量の大きい方向(図4の場合ではプラス方向)に継続して回転するようになるので、単結晶中心部におけるメルト対流速度は図3のような回転パターンを適用した場合に比べて増加する。
Alternatively, for example, as shown in FIG. 4, the rotation amount rotating in one direction (plus direction) is made larger than the rotation amount rotating in the reverse direction (minus direction), and the rotation amount ratio in each direction (the smaller one) Rotation amount / larger rotation amount) can be reduced.
When the rotation amount ratio is reduced in this way, the melt continues to rotate in the direction in which the rotation amount is large (in the plus direction in the case of FIG. 4), so the melt convection speed at the center of the single crystal is It increases compared with the case where a rotation pattern like 3 is applied.

このとき、図4に示すように、回転量の大きい方向から回転量の小さい方向に結晶の回転方向を変更する時(図4のAの区間)の回転加速度を、回転量の小さい方向から回転量の大きい方向に結晶の回転方向を変える時(図4のBの区間)の回転加速度よりも小さくすれば、上記の継続したメルトの回転を更に強めることができ、すなわち、単結晶中心部のメルト対流の速度をより増加することができる。これにより、抵抗率のバラツキをより効果的に低減できる。   At this time, as shown in FIG. 4, the rotational acceleration when the rotation direction of the crystal is changed from the direction in which the rotation amount is large to the direction in which the rotation amount is small (section A in FIG. 4) is rotated from the direction in which the rotation amount is small. If the rotational acceleration is changed to be smaller than the rotational acceleration at the time of changing the rotation direction of the crystal in the direction in which the amount is large (section B in FIG. 4), the continuous melt rotation can be further strengthened. The speed of melt convection can be further increased. Thereby, the variation in resistivity can be reduced more effectively.

回転加速度の絶対値は、単結晶製造条件に応じて適宜設定できるが、大きくすることが好ましい。図5に、図3に示す回転パターンでA区間の回転加速度を固定し、B区間の回転加速度を増加させたときの抵抗率バラツキσを示す。図5に示すように、回転加速度を大きくすることで抵抗率バラツキσの面内最大値も減少する。これは、メルト対流速度が小さく滞留する傾向にある単結晶中心部においても、回転加速度の絶対値を大きくすることによりメルト対流速度が増加した効果によるものである。   The absolute value of the rotational acceleration can be set as appropriate according to the single crystal manufacturing conditions, but is preferably increased. FIG. 5 shows the resistivity variation σ when the rotational acceleration in the A section is fixed and the rotational acceleration in the B section is increased with the rotation pattern shown in FIG. As shown in FIG. 5, by increasing the rotational acceleration, the in-plane maximum value of the resistivity variation σ also decreases. This is due to the effect of increasing the melt convection speed by increasing the absolute value of the rotational acceleration even in the center portion of the single crystal where the melt convection speed tends to stay small.

このとき、回転加速度の絶対値を大きくする上限として、900°/s以下とすることが好ましい。このようにすれば、単結晶化が阻害される頻度を低減でき、大直径の単結晶を製造する場合であっても、歩留まり、生産性を向上できる。
また、回転加速度の絶対値の下限として、20°/s以上とすることが好ましい。このようにすれば、回転方向の反転が遅くなりすぎることで誘導加熱コイルの加熱不均一の影響が大きくなり、結晶形状の悪化から単結晶取得率が低下するのを防ぐことができる。
At this time, the upper limit for increasing the absolute value of the rotational acceleration is preferably 900 ° / s 2 or less. In this way, the frequency at which single crystallization is hindered can be reduced, and yield and productivity can be improved even when a single crystal having a large diameter is manufactured.
Further, the lower limit of the absolute value of the rotational acceleration is preferably 20 ° / s 2 or more. In this way, since the reversal of the rotation direction becomes too slow, the influence of uneven heating of the induction heating coil becomes large, and it is possible to prevent the single crystal acquisition rate from being lowered due to the deterioration of the crystal shape.

以下、本発明の実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples of the present invention, but the present invention is not limited to these.

(実施例)
図1に示すようなFZ単結晶製造装置を用いて、直径203mmのFZシリコン単結晶を製造した。図4に示すような回転方向を交互に変更するパターンで単結晶を回転させながら成長させた。このときの回転量比率を0.75とし、回転量の大きい方向から回転量の小さい方向に単結晶の回転方向を変更する時(図4のAの区間)の回転加速度を100°/sとし、回転量の小さい方向から回転量の大きい方向に単結晶の回転方向を変える時(図4のBの区間)の回転加速度を350°/sとした。
(Example)
An FZ silicon single crystal having a diameter of 203 mm was manufactured using an FZ single crystal manufacturing apparatus as shown in FIG. Single crystals were grown while rotating in a pattern in which the rotation directions were alternately changed as shown in FIG. At this time, the rotation amount ratio is set to 0.75, and the rotation acceleration when the rotation direction of the single crystal is changed from the direction in which the rotation amount is large to the direction in which the rotation amount is small (section A in FIG. 4) is 100 ° / s 2. The rotational acceleration when changing the rotation direction of the single crystal from the direction of small rotation amount to the direction of large rotation amount (section B in FIG. 4) was set to 350 ° / s 2 .

製造したシリコン単結晶をウェーハ状に切断し、50枚のウェーハの中心部の抵抗率バラツキφ及び全体的な抵抗率バラツキを評価した。ここで、全体的な抵抗率バラツキとして、RRG(=ウェーハ面内の抵抗率最大値−ウェーハ面内の抵抗率最小値)/(ウェーハ面内の抵抗率最小値)を定義した。
その結果、RRGの値は4.5〜21.2%、中心部の抵抗率バラツキφは4.0%であり、後述する比較例の結果と比べて同等以上の全体的な抵抗率バラツキを維持したまま、中心部の抵抗率バラツキが低減されていることが分かった。
The manufactured silicon single crystal was cut into wafers, and the resistivity variation φ and the overall resistivity variation at the center of 50 wafers were evaluated. Here, RRG (= maximum resistivity value in the wafer surface−minimum resistivity value in the wafer surface) / (minimum resistivity value in the wafer surface) was defined as the overall resistivity variation.
As a result, the value of RRG is 4.5 to 21.2%, and the resistivity variation φ at the center is 4.0%, and the overall resistivity variation is equal to or greater than the result of the comparative example described later. It was found that the resistivity variation in the central part was reduced while maintaining.

(比較例)
回転方向を変更する時の回転加速度をいずれも100°/sとした以外、実施例と同様な条件でFZシリコン単結晶を製造し、実施例と同様に抵抗率バラツキを評価した。
その結果、RRGの値は5.4〜21.2%、中心部の抵抗率バラツキφは5.4%であり、実施例と比べ抵抗率バラツキが悪化してしまった。
(Comparative example)
An FZ silicon single crystal was manufactured under the same conditions as in the example except that the rotational acceleration when changing the rotation direction was 100 ° / s 2, and the resistivity variation was evaluated in the same manner as in the example.
As a result, the value of RRG was 5.4 to 21.2%, and the resistivity variation φ in the central portion was 5.4%, and the resistivity variation was worse than that of the example.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

1…FZ単結晶製造装置、 11…チャンバ−、 12…上軸、 13…下軸、
14…原料結晶、 15…種結晶、 16…誘導加熱コイル、 17…絞り、
18…溶融帯、 19…半導体単結晶、 20…ドープノズル。
DESCRIPTION OF SYMBOLS 1 ... FZ single-crystal manufacturing apparatus, 11 ... Chamber, 12 ... Upper axis, 13 ... Lower axis,
14 ... Raw crystal, 15 ... Seed crystal, 16 ... Induction heating coil, 17 ... Drawing,
18 ... Melting zone, 19 ... Semiconductor single crystal, 20 ... Dope nozzle.

Claims (3)

原料結晶を回転させながら、該原料結晶を誘導加熱コイルにより部分的に加熱溶融して溶融帯を形成し、該溶融帯を前記原料結晶の一端部から他端部へ移動させて半導体単結晶を成長させるFZ法による半導体単結晶の製造方法であって、
前記半導体単結晶の成長中に、前記半導体単結晶を中心軸周りに一方向に回転させた後、該一方向とは逆方向に回転させるように回転方向を交互に変更させ、前記一方向から前記逆方向に回転方向を変更する際の回転加速度を、前記逆方向から前記一方向に回転方向を変更する際とは異なる回転加速度とすることを特徴とする半導体単結晶の製造方法。
While rotating the raw material crystal, the raw material crystal is partially heated and melted by an induction heating coil to form a melting zone, and the melting zone is moved from one end portion to the other end portion of the raw material crystal to obtain a semiconductor single crystal. A method for producing a semiconductor single crystal by an FZ method to be grown,
During the growth of the semiconductor single crystal, the semiconductor single crystal is rotated in one direction around the central axis, and then the rotation direction is alternately changed so as to rotate in the opposite direction to the one direction. A method for producing a semiconductor single crystal, wherein the rotational acceleration when changing the rotational direction in the reverse direction is different from the rotational acceleration when changing the rotational direction from the reverse direction to the one direction.
前記半導体単結晶を前記一方向に回転させる際の回転量を、前記逆方向に回転させる際の回転量より大きくすることを特徴とする請求項1に記載の半導体単結晶の製造方法。   The method for producing a semiconductor single crystal according to claim 1, wherein a rotation amount when rotating the semiconductor single crystal in the one direction is larger than a rotation amount when rotating in the reverse direction. 前記回転加速度を900°/s以下とすることを特徴とする請求項1又は請求項2に記載の半導体単結晶の製造方法。 The method for manufacturing a semiconductor single crystal according to claim 1, wherein the rotational acceleration is set to 900 ° / s 2 or less.
JP2013042963A 2013-03-05 2013-03-05 Method for producing semiconductor single crystal Pending JP2014169211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013042963A JP2014169211A (en) 2013-03-05 2013-03-05 Method for producing semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013042963A JP2014169211A (en) 2013-03-05 2013-03-05 Method for producing semiconductor single crystal

Publications (1)

Publication Number Publication Date
JP2014169211A true JP2014169211A (en) 2014-09-18

Family

ID=51691910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013042963A Pending JP2014169211A (en) 2013-03-05 2013-03-05 Method for producing semiconductor single crystal

Country Status (1)

Country Link
JP (1) JP2014169211A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003112992A (en) * 2001-08-02 2003-04-18 Wacker Siltronic Ag Method and apparatus for manufacturing single crystal
JP2008266102A (en) * 2007-04-25 2008-11-06 Sumco Techxiv株式会社 Method for manufacturing silicon single crystal by fz (floating zone) method
JP2010254516A (en) * 2009-04-24 2010-11-11 Shin Etsu Handotai Co Ltd Method and apparatus for producing semiconductor single crystal
JP2012148953A (en) * 2010-12-28 2012-08-09 Shin Etsu Handotai Co Ltd Method for producing single crystal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003112992A (en) * 2001-08-02 2003-04-18 Wacker Siltronic Ag Method and apparatus for manufacturing single crystal
JP2008266102A (en) * 2007-04-25 2008-11-06 Sumco Techxiv株式会社 Method for manufacturing silicon single crystal by fz (floating zone) method
JP2010254516A (en) * 2009-04-24 2010-11-11 Shin Etsu Handotai Co Ltd Method and apparatus for producing semiconductor single crystal
JP2012148953A (en) * 2010-12-28 2012-08-09 Shin Etsu Handotai Co Ltd Method for producing single crystal

Similar Documents

Publication Publication Date Title
JP5029637B2 (en) Manufacturing method of semiconductor single crystal
KR101997565B1 (en) Method for producing monocrystalline silicon
JP6491763B2 (en) Method for producing silicon single crystal ingot
JP5375889B2 (en) Single crystal manufacturing method
US20090293804A1 (en) Method of shoulder formation in growing silicon single crystals
JP6248816B2 (en) Single crystal manufacturing method
JP6119642B2 (en) Manufacturing method of semiconductor single crystal
JP4831203B2 (en) Semiconductor single crystal manufacturing method and semiconductor single crystal manufacturing apparatus
WO2012114375A1 (en) Method for manufacturing n-type silicon single crystal, and phosphorus-doped n-type silicon single crystal
JP2009057270A (en) Method of raising silicon single crystal
JP7010179B2 (en) Single crystal manufacturing method and equipment and silicon single crystal ingot
JP6756244B2 (en) Manufacturing method of semiconductor silicon single crystal
JP5895875B2 (en) Manufacturing method of semiconductor single crystal
JP5716689B2 (en) Silicon single crystal manufacturing method and silicon single crystal manufacturing apparatus
KR101384060B1 (en) Method for Manufacturing Silicon Single Crystal Ingot
JP6720841B2 (en) Method for manufacturing semiconductor silicon single crystal
JP6459987B2 (en) Method for producing silicon single crystal
JP2014169211A (en) Method for producing semiconductor single crystal
JP5201730B2 (en) Manufacturing method of FZ method silicon single crystal
JP5234148B2 (en) Semiconductor single crystal manufacturing method and semiconductor single crystal manufacturing apparatus
JP5888264B2 (en) Manufacturing method of semiconductor single crystal
JP6488975B2 (en) Pulling method of silicon single crystal
JP2018062428A (en) Production method of silicon single crystal
KR101343505B1 (en) Method and apparatus for manufacturing single crystal ingot
JP5136252B2 (en) Method for growing silicon single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160301