JP5888264B2 - Manufacturing method of semiconductor single crystal - Google Patents

Manufacturing method of semiconductor single crystal Download PDF

Info

Publication number
JP5888264B2
JP5888264B2 JP2013038139A JP2013038139A JP5888264B2 JP 5888264 B2 JP5888264 B2 JP 5888264B2 JP 2013038139 A JP2013038139 A JP 2013038139A JP 2013038139 A JP2013038139 A JP 2013038139A JP 5888264 B2 JP5888264 B2 JP 5888264B2
Authority
JP
Japan
Prior art keywords
single crystal
rotation
growth
semiconductor single
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013038139A
Other languages
Japanese (ja)
Other versions
JP2014162717A (en
Inventor
一徳 渡邉
一徳 渡邉
英樹 重野
英樹 重野
佐藤 賢一
佐藤  賢一
慶一 中沢
慶一 中沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2013038139A priority Critical patent/JP5888264B2/en
Publication of JP2014162717A publication Critical patent/JP2014162717A/en
Application granted granted Critical
Publication of JP5888264B2 publication Critical patent/JP5888264B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、原料結晶を部分的に誘導加熱コイルで加熱溶融して浮遊帯域を形成し、該浮遊帯域を移動する事で単結晶を育成するFZ法(フローティングゾーン法または浮遊帯溶融法)による半導体単結晶の製造方法に関わり、さらに詳しくは、前記浮遊帯域を移動させて単結晶を製造させ、成長中の半導体単結晶の回転方向を交互に変更して半導体単結晶を成長させる半導体単結晶の製造方法に関する。   The present invention is based on the FZ method (floating zone method or floating zone melting method) in which a raw crystal is partially heated and melted by an induction heating coil to form a floating zone and a single crystal is grown by moving the floating zone. More particularly, a semiconductor single crystal in which a single crystal is manufactured by moving the floating zone, and a semiconductor single crystal is grown by alternately changing the rotation direction of the growing semiconductor single crystal. It relates to the manufacturing method.

図6は、従来技術におけるFZ法単結晶製造装置の一例を示す概略図である。このFZ単結晶装置60を用いて、単結晶を製造する方法について説明する。
まず、原料結晶棒1を、チャンバー11内に設置された上軸3の上部保持治具4に保持する。一方、直径の小さい単結晶の種(種結晶)8を、原料結晶棒1の下方に位置する下軸5の下部保持治具6に保持する。
FIG. 6 is a schematic diagram showing an example of a conventional FZ method single crystal manufacturing apparatus. A method for producing a single crystal using the FZ single crystal apparatus 60 will be described.
First, the raw crystal rod 1 is held on the upper holding jig 4 of the upper shaft 3 installed in the chamber 11. On the other hand, a single crystal seed (seed crystal) 8 having a small diameter is held by the lower holding jig 6 of the lower shaft 5 located below the raw crystal rod 1.

次に、誘導加熱コイル7により原料結晶棒1を溶融して、種結晶8に融着させる。その後、種絞りにより絞り部9を形成して無転位化する。そして、上軸3と下軸5を回転させながら原料結晶棒1と単結晶棒2を下降させることで浮遊帯域(溶融帯あるいはメルトという)10を原料結晶棒1と育成単結晶棒2の間に形成し、結晶径を徐々に大きくし、コーン部分2aを形成する。その後、直胴部2bを形成し、該浮遊帯域10を原料結晶棒1の上端まで移動させてゾーニングして単結晶棒2を育成する。   Next, the raw material crystal rod 1 is melted by the induction heating coil 7 and fused to the seed crystal 8. Thereafter, the narrowed portion 9 is formed by seed drawing to make dislocation-free. Then, by rotating the upper shaft 3 and the lower shaft 5 while lowering the raw crystal rod 1 and the single crystal rod 2, the floating zone (referred to as a melting zone or melt) 10 is formed between the raw crystal rod 1 and the grown single crystal rod 2. The crystal diameter is gradually increased to form the cone portion 2a. Thereafter, the straight body portion 2 b is formed, and the floating zone 10 is moved to the upper end of the raw crystal rod 1 to perform zoning to grow the single crystal rod 2.

なお、この単結晶成長は、不活性ガス雰囲気中で行われ、また、n型FZ単結晶またはp型FZ単結晶を製造するために、ドープノズル(不図示)により、製造する導電型、抵抗率に応じた量の不活性ガスベースのPH又はBを流す。 This single crystal growth is performed in an inert gas atmosphere, and in order to produce an n-type FZ single crystal or a p-type FZ single crystal, the conductivity type and resistivity produced by a dope nozzle (not shown). An amount of inert gas based PH 3 or B 2 H 6 according to

誘導加熱コイル7としては、銅又は銀の冷却用の水を流通させた誘導加熱コイルが用いられており、例えば図2に示すものを用いている。誘導加熱コイル7は高周波発振機との接続部30側のスリット31付近の加熱がその他の部位より強く、非対称性を持っている。   As the induction heating coil 7, an induction heating coil in which water for cooling copper or silver is circulated is used, for example, the one shown in FIG. The induction heating coil 7 has asymmetry because the heating in the vicinity of the slit 31 on the connection part 30 side with the high frequency oscillator is stronger than the other parts.

ここで、ウェーハ抵抗率のバラツキを低減するため、原料棒1と単結晶棒2の回転軸をずらして(偏芯させて)融液の撹拌を非対称としている。加えて、単結晶(下軸側)の回転の方向を正転と逆転とで交互に回転させる(以下、交互回転と呼ぶ)方法が行われている(例えば特許文献1)。   Here, in order to reduce the variation in the wafer resistivity, the rotating shafts of the raw material rod 1 and the single crystal rod 2 are shifted (eccentric) to agitate the melt. In addition, a method in which the direction of rotation of the single crystal (on the lower shaft side) is rotated alternately between forward rotation and reverse rotation (hereinafter referred to as alternate rotation) is performed (for example, Patent Document 1).

この交互回転においては単結晶のコーン部2aより行っており、コーン部における交互回転条件は直胴部と同様、すなわち、正転と逆転の回転回数を直胴部と同様としている。コーン部より交互回転をさせることにより直胴部開始位置から安定した面内抵抗率分布を得ることができ、直胴全体で要求された品質を得ることができている。   This alternate rotation is performed from the single-crystal cone portion 2a, and the alternate rotation condition in the cone portion is the same as that of the straight body portion, that is, the number of forward and reverse rotations is the same as that of the straight body portion. By rotating alternately from the cone part, a stable in-plane resistivity distribution can be obtained from the starting position of the straight body part, and the required quality of the entire straight body can be obtained.

特開2012−148953号公報JP 2012-148953 A

ところが、単結晶の直胴部開始位置から安定した面内抵抗率分布を得ることを目的として、単結晶のコーン部から半導体単結晶(下軸側)を交互回転させると、正転から逆転、逆転から正転に切り替わるときに誘導加熱コイルのスリットの影響による非対称性加熱の周方向温度差により、単結晶コーン部において成長ムラが発生していることがわかった。従って、従来のように半導体単結晶の製品の取得ができないコーン部と、製品となる直胴部で同様の交互回転条件を使用たままでは、コーン部での単結晶成長ムラが大きくなってしまい、コーン部で有転位化する可能性が高くなるという問題が生じた。   However, for the purpose of obtaining a stable in-plane resistivity distribution from the starting position of the straight body of the single crystal, when the semiconductor single crystal (on the lower axis side) is rotated alternately from the cone portion of the single crystal, it is reversed from normal rotation, It was found that the growth unevenness occurred in the single crystal cone due to the temperature difference in the circumferential direction of asymmetric heating due to the influence of the slit of the induction heating coil when switching from reverse rotation to normal rotation. Therefore, if the same alternating rotation condition is used for the cone part where the product of the semiconductor single crystal cannot be obtained as in the prior art and the straight body part to be the product, the single crystal growth unevenness in the cone part becomes large. As a result, there is a problem that the possibility of dislocations in the cone portion increases.

本発明は、上記問題点に鑑みてなされたものであって、FZ法により単結晶の直胴部開始位置から安定した面内抵抗率分布を得ることを目的とした単結晶側の交互回転において、コーン部成長中、正転から逆転、逆転から正転に切り替わる際の誘導加熱コイルの非対称性加熱の影響による半導体単結晶の成長ムラを改善し、半導体単結晶を安定して製造できる半導体単結晶の製造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and in the alternate rotation on the single crystal side for the purpose of obtaining a stable in-plane resistivity distribution from the starting position of the straight body of the single crystal by the FZ method. During semiconductor cone growth, the semiconductor single crystal can be manufactured stably by improving the growth unevenness of the semiconductor single crystal due to the influence of asymmetric heating of the induction heating coil when switching from forward rotation to reverse rotation and from reverse rotation to forward rotation. It aims at providing the manufacturing method of a crystal | crystallization.

上記目的を達成するために、本発明は、誘導加熱コイルにより原料結晶を回転させながら部分的に加熱溶融して溶融帯を形成し、該溶融帯を前記原料結晶の一端部から他端部へ移動させることで半導体単結晶を成長させる際に、成長中の半導体単結晶の回転方向を交互に変更するFZ法による半導体単結晶の製造方法において、前記半導体単結晶のコーン部の成長における交互回転の正転と逆転の回転回数を、前記半導体単結晶の直胴部の成長における交互回転の正転と逆転の回転回数より増加させて半導体単結晶を成長させることを特徴とする半導体単結晶の製造方法を提供する。   In order to achieve the above-described object, the present invention forms a melting zone by partially heating and melting a raw material crystal while rotating it with an induction heating coil, and the melting zone is moved from one end portion to the other end portion of the raw material crystal. In the method of manufacturing a semiconductor single crystal by the FZ method in which the rotation direction of the growing semiconductor single crystal is alternately changed when growing the semiconductor single crystal by moving, the alternating rotation in the growth of the cone portion of the semiconductor single crystal The number of rotations of normal rotation and reverse rotation of the semiconductor single crystal is increased from the number of rotations of normal rotation and reverse rotation of alternating rotation in the growth of the straight body portion of the semiconductor single crystal, and the semiconductor single crystal is grown. A manufacturing method is provided.

このように、単結晶コーン部成長での交互回転条件における正転と逆転の回転回数を、単結晶直胴部成長での交互回転条件の正転と逆転の回転回数より増加させて半導体単結晶を成長させることで、単結晶コーン部における単結晶の成長ムラを改善しつつ、且つ、単結晶の直胴部においては直胴部開始位置から安定した面内抵抗率分布となった半導体単結晶を安定して製造することができる。   Thus, the number of rotations of normal rotation and reverse rotation under alternating rotation conditions in single crystal cone growth is increased from the number of rotations of normal rotation and reverse rotation in alternating rotation conditions in single crystal straight body growth to increase the number of rotations of the semiconductor single crystal. The semiconductor single crystal has improved in-plane resistivity distribution from the starting position of the straight body portion in the straight body portion of the single crystal while improving the uneven growth of the single crystal at the single crystal cone portion. Can be manufactured stably.

また本発明において、前記半導体単結晶のコーン部の成長中に、連続的に交互回転の条件を変更しながら前記半導体単結晶の直胴部の成長における交互回転の条件に移行させることが好ましい。
このように、単結晶コーン部の成長工程において、コーン部形成の途中から直胴部の直前にかけて、連続的に交互回転の条件を変更しながら単結晶直胴部の成長における交互回転の条件に移行させることで、より安定した単結晶の製造が可能となる。
Moreover, in this invention, it is preferable to make it transfer to the conditions of the alternating rotation in the growth of the straight body part of the said semiconductor single crystal, changing the conditions of alternating rotation continuously during the growth of the cone part of the said semiconductor single crystal.
In this way, in the growth process of the single crystal cone part, the condition of the alternating rotation in the growth of the single crystal straight cylinder part is continuously changed from the middle of the cone part formation to immediately before the straight cylinder part while changing the condition of the alternating rotation continuously. By shifting, it becomes possible to produce a more stable single crystal.

さらに本発明において、前記半導体単結晶のコーン部の成長中に、前記半導体単結晶の成長中のコーン部の直径に応じて自動で交互回転の条件を変更するプログラムを用いることができる。
これにより、コーン部から直胴部にかけての交互回転条件の変更を容易に行うことができる。
Furthermore, in the present invention, during the growth of the cone portion of the semiconductor single crystal, a program for automatically changing the conditions for alternating rotation according to the diameter of the cone portion during the growth of the semiconductor single crystal can be used.
Thereby, the change of the alternating rotation conditions from a cone part to a straight body part can be performed easily.

以上のように、本発明によれば、単結晶側の交互回転により単結晶の直胴部開始位置から安定した面内抵抗率分布を得ることができ、且つ、コーン部成長中、正転から逆転、逆転から正転に切り替わる際の誘導加熱コイルの非対称性加熱の影響による半導体単結晶の成長ムラを改善し、半導体単結晶を安定して製造できる半導体単結晶の製造方法を提供することができる。   As described above, according to the present invention, it is possible to obtain a stable in-plane resistivity distribution from the starting position of the straight body portion of the single crystal by alternating rotation on the single crystal side, and from forward rotation during the cone portion growth. To provide a method for manufacturing a semiconductor single crystal that can improve the unevenness of growth of a semiconductor single crystal due to the influence of asymmetric heating of an induction heating coil when switching from reverse rotation to reverse rotation, and that can stably manufacture a semiconductor single crystal. it can.

単結晶の直径に対する単結晶(下軸側)の回転回数の関係について実施例と比較例とを比較するために表1をグラフで示した図である。It is the figure which showed Table 1 in the graph in order to compare an Example and a comparative example about the relationship of the rotation frequency of the single crystal (lower shaft side) with respect to the diameter of a single crystal. 従来技術における誘導加熱コイルの一例を示す概略図である。It is the schematic which shows an example of the induction heating coil in a prior art. 本発明と従来技術の単結晶の直径に対するコーン部成長中での3分間当たりの反転回数の関係の一例をグラフで示した図である。It is the figure which showed an example of the relationship of the frequency | count of inversion per 3 minutes during cone part growth with respect to the diameter of the single crystal of this invention and a prior art. 本発明での単結晶直径150mm〜160mmまでの浮遊帯域の変動をグラフで示した図である。It is the figure which showed the fluctuation | variation of the floating zone to single crystal diameter 150mm-160mm in this invention with the graph. 従来技術での単結晶直径150mm〜160mmまでの浮遊帯域の変動をグラフで示した図である。It is the figure which showed the fluctuation | variation of the floating zone to the single crystal diameter 150mm-160mm in a prior art with a graph. 従来技術におけるFZ法単結晶製造装置の一例を示す概略図である。It is the schematic which shows an example of the FZ method single crystal manufacturing apparatus in a prior art.

以下、本発明の実施形態について図面を参照しながらより詳細に説明するが、本発明はこれらに限定されるものではない。ちなみに、本発明の半導体単結晶の製造方法において使用される単結晶製造装置は、図6に示されるような従来のものを用いることができるため、装置に関しては本発明においても図6を参照することとする。   Hereinafter, embodiments of the present invention will be described in more detail with reference to the drawings, but the present invention is not limited thereto. Incidentally, since the single crystal manufacturing apparatus used in the method for manufacturing a semiconductor single crystal according to the present invention can be a conventional apparatus as shown in FIG. 6, the apparatus also refers to FIG. 6 in the present invention. I will do it.

まず、原料結晶棒の溶融を開始する部分をコーン形状に加工し、加工歪みを除去するために表面のエッチングを行うことで、原料結晶1を準備する。
原料結晶1の直径については例えば100〜205mmとすることができるが、これに限定されるわけではなく当業者が適宜選択して決定することができる。
First, a raw material crystal 1 is prepared by processing a portion of the raw material crystal rod that starts melting into a cone shape and etching the surface in order to remove processing distortion.
The diameter of the raw crystal 1 can be set to, for example, 100 to 205 mm, but is not limited thereto, and can be determined and selected by those skilled in the art.

次に、図6に示すFZ法による単結晶製造装置60のチャンバー11内に先ほど準備した原料結晶1を収容し、チャンバー11内に設置された上軸3の上部保持治具4にネジ等で固定する。
一方、下軸5の下部保持治具6には種結晶8を取り付け、高周波発振機12には誘導加熱コイル7を電気的に接続する。次に原料結晶1のコーン部分の下端をカーボンリング(不図示)で予備加熱し、その後、チャンバー11に不活性ガスを供給し、加圧の状態とする。
Next, the prepared raw material crystal 1 is accommodated in the chamber 11 of the single crystal manufacturing apparatus 60 by the FZ method shown in FIG. 6, and the upper holding jig 4 of the upper shaft 3 installed in the chamber 11 is screwed or the like. Fix it.
On the other hand, a seed crystal 8 is attached to the lower holding jig 6 of the lower shaft 5, and an induction heating coil 7 is electrically connected to the high-frequency oscillator 12. Next, the lower end of the cone portion of the raw crystal 1 is preheated with a carbon ring (not shown), and then an inert gas is supplied to the chamber 11 to make it pressurized.

そして、原料結晶1を誘導加熱コイル7で加熱溶融した後、原料結晶のコーン部先端を種結晶8に融着させ、絞り部9により無転位化し、上軸3と下軸5を回転させながら原料結晶1と育成単結晶2を例えば1〜5mm/minの速度で下降させることで浮遊帯域10を原料結晶1の上端まで移動させてゾーニングし、単結晶2を成長させる。   Then, after the raw material crystal 1 is heated and melted by the induction heating coil 7, the tip of the cone portion of the raw material crystal is fused to the seed crystal 8, the dislocation is made by the narrowed portion 9, and the upper shaft 3 and the lower shaft 5 are rotated. The single crystal 2 is grown by moving the floating zone 10 to the upper end of the raw crystal 1 by lowering the raw crystal 1 and the grown single crystal 2 at a speed of, for example, 1 to 5 mm / min.

また、n型FZ単結晶またはp型FZ単結晶を製造するために、ドープノズル(不図示)により、製造する導電型、抵抗率に応じた量の不活性ガスベースのPH又はBを流してもよい。
尚、製造する単結晶2の抵抗率、直径、直胴長さは、例えば単結晶の抵抗率を1〜5000Ωcm、単結晶の直径を100〜205mm、直胴長さを10〜150cmとすることができるが、これらに限定されるわけではなく当業者が適宜選択して決定することができる。
Further, in order to manufacture an n-type FZ single crystal or a p-type FZ single crystal, an inert gas base PH 3 or B 2 H 6 in an amount corresponding to the conductivity type and resistivity to be manufactured by a dope nozzle (not shown). May be used.
In addition, the resistivity, diameter, and straight cylinder length of the single crystal 2 to be manufactured are, for example, a single crystal resistivity of 1 to 5000 Ωcm, a single crystal diameter of 100 to 205 mm, and a straight cylinder length of 10 to 150 cm. However, the present invention is not limited to these and can be appropriately selected and determined by those skilled in the art.

このとき、単結晶を育成する際に原料結晶1の回転中心となる上軸3と、単結晶化の際に育成単結晶2の回転中心となる下軸5をずらして(偏芯させて)単結晶を育成することが好ましい。このように両中心軸をずらすことにより単結晶化の際に溶融部を撹拌させ、製造する単結晶の品質を均一化させることができる。尚、上記偏芯における偏芯量は、単結晶の直径に応じて当業者が適宜選択して設定することなので、これに限定されるわけではないが、例えば10mmとすることができる。   At this time, the upper shaft 3 serving as the rotation center of the raw crystal 1 when growing the single crystal and the lower shaft 5 serving as the rotation center of the growing single crystal 2 during the single crystallization are shifted (eccentric). It is preferable to grow a single crystal. By shifting both the central axes in this manner, the melted portion can be stirred during single crystallization, and the quality of the single crystal to be produced can be made uniform. The eccentricity in the eccentricity is appropriately selected and set by those skilled in the art according to the diameter of the single crystal, and is not limited thereto, but can be set to, for example, 10 mm.

そして、図1のように、単結晶のコーン部2aの成長における交互回転の正転と逆転の回転回数を、半導体単結晶の直胴部2bの成長における交互回転の正転と逆転の回転回数より増加させて半導体単結晶2を成長させる。即ち、コーン部2aの反転回数を直胴部2bの反転回数よりも少なくする(図3参照)。但し、直胴部の成長にスムーズに移行するために、直胴部直前においてはコーン部2aの交互回転による正転と逆転の回転回数(又は反転回数)と、直胴部2bの交互回転による正転と逆転の回転回数(又は反転回数)とが同数となる場合があってもよい。   As shown in FIG. 1, the number of rotations of alternating rotation and rotation in the growth of the single crystal cone portion 2a is the same as the number of rotations of alternating rotation and rotation in the growth of the straight body portion 2b of the semiconductor single crystal. The semiconductor single crystal 2 is grown further. That is, the number of inversions of the cone part 2a is made smaller than the number of inversions of the straight body part 2b (see FIG. 3). However, in order to smoothly shift to the growth of the straight body portion, immediately before the straight body portion, the number of forward and reverse rotations (or the number of inversions) due to the alternate rotation of the cone portion 2a and the alternate rotation of the straight body portion 2b. There may be a case where the number of forward rotations and the number of rotations of reverse rotation (or the number of reverse rotations) are the same.

これにより、FZ法により単結晶を成長させる際に直胴部開始位置から安定した面内抵抗率分布を得ることを目的として単結晶側を交互回転させる場合、従来は製品の取得できないコーン部の交互回転条件が直胴部の交互回転条件と同様であったため、誘導加熱コイルの非対称性加熱の影響による交互回転において正転から逆転、逆転から正転に切り替わる時の単結晶コーン部での成長ムラの発生頻度が直胴部と同様であり、有転位化し易いコーン部では直胴部より有転位化する頻度が高いという問題があったが、上記のように本発明の技術を採用することで、コーン部における正転から逆転、逆転から正転となる反転頻度を直胴部よりも減少させるとともに成長ムラの程度を改善させることが可能となり、コーン部での有転位化を減少させることができる。   As a result, when the single crystal side is rotated alternately for the purpose of obtaining a stable in-plane resistivity distribution from the starting position of the straight body portion when growing the single crystal by the FZ method, the cone portion where the product cannot be obtained conventionally is obtained. Since the alternate rotation condition was the same as the alternate rotation condition of the straight body part, the growth at the single crystal cone part when switching from normal rotation to reverse rotation and from reverse rotation to normal rotation in the alternate rotation due to the influence of asymmetric heating of the induction heating coil The frequency of occurrence of unevenness is the same as that of the straight body part, and there is a problem that the cone part is more likely to be dislocated and the dislocation frequency is higher than that of the straight body part. Therefore, it is possible to reduce the reversal frequency from the forward rotation to the reverse rotation and from the reverse rotation to the normal rotation in the cone portion, and to improve the degree of growth unevenness, and to reduce the dislocation in the cone portion. It is possible.

半導体単結晶のコーン部の成長中に交互回転させる際は、図1のように単結晶のコーン部2aの成長における交互回転の正転と逆転の回転回数を、半導体単結晶の直胴部2bの成長における交互回転の正転と逆転の回転回数より増加させつつ、連続的に交互回転の条件を変更しながら半導体単結晶の直胴部の成長における交互回転の条件に移行させることが好ましい。
このように、単結晶コーン部の成長工程において、コーン部形成の途中から直胴部の直前にかけて、連続的に交互回転の条件を変更しながら単結晶直胴部の成長における交互回転の条件に移行させることで、より安定した単結晶の製造が可能となる。
When alternately rotating during the growth of the semiconductor single crystal cone portion, as shown in FIG. 1, the number of rotations of the alternating rotation in the normal rotation and the reverse rotation in the growth of the single crystal cone portion 2a is set as the straight body portion 2b of the semiconductor single crystal. It is preferable to shift to the condition of the alternating rotation in the growth of the straight body portion of the semiconductor single crystal while continuously changing the condition of the alternating rotation while increasing the number of rotations of the alternating rotation in the normal rotation and the reverse rotation.
In this way, in the growth process of the single crystal cone part, the condition of the alternating rotation in the growth of the single crystal straight cylinder part is continuously changed from the middle of the cone part formation to immediately before the straight cylinder part while changing the condition of the alternating rotation continuously. By shifting, it becomes possible to produce a more stable single crystal.

また、半導体単結晶のコーン部の成長中に、上記のように連続的に交互回転の条件を変更しながら単結晶直胴部の成長における交互回転の条件に移行させる場合、成長中の半導体単結晶のコーン部の直径に応じて自動で交互回転の条件を変更するプログラムを用いることにより、コーン部から直胴部にかけての交互回転条件の変更を容易に行うことができる。
このプログラムは、下軸の回転回数を制御している制御手段に組み込まれてもよく、または、別途該プログラムが入っている制御手段を用意してもよい。
In addition, during the growth of the cone portion of the semiconductor single crystal, when shifting to the alternate rotation condition in the growth of the single crystal straight body portion while continuously changing the alternate rotation condition as described above, By using a program that automatically changes the conditions of alternating rotation according to the diameter of the cone portion of the crystal, it is possible to easily change the alternating rotation conditions from the cone portion to the straight body portion.
This program may be incorporated in a control unit that controls the number of rotations of the lower shaft, or a control unit that separately contains the program may be prepared.

以下、実施例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例)
図6に示す単結晶製造装置60を使用し、1000Ωcm以上のCZシリコン単結晶を原料結晶棒として、FZ法によりゾーニングを行い、20本の直径200mmのシリコン単結晶を製造する。
まず、チャンバー11内に不活性ガスを流し、炉内圧は加圧とし、成長速度を2.0mm/min以下、下軸5を偏芯させた。ドープはドープノズル(不図示)により不活性ガスベースのPHを浮遊帯域に吹き掛け、n型50Ωcmのシリコン単結晶の製造を行った。
このとき、製品の取得できないコーン部において下記表1に示すように直胴部と異なる交互回転条件を採用した。
EXAMPLES Hereinafter, although an Example is shown and this invention is demonstrated more concretely, this invention is not limited to these.
(Example)
Using the single crystal manufacturing apparatus 60 shown in FIG. 6, zoning is performed by the FZ method using a CZ silicon single crystal of 1000 Ωcm or more as a raw material crystal rod, and 20 silicon single crystals having a diameter of 200 mm are manufactured.
First, an inert gas was flowed into the chamber 11, the furnace pressure was increased, the growth rate was 2.0 mm / min or less, and the lower shaft 5 was eccentric. Doping was performed by spraying an inert gas-based PH 3 onto the floating zone with a dope nozzle (not shown) to produce an n-type silicon single crystal of 50 Ωcm.
At this time, as shown in Table 1 below, alternate rotation conditions different from those of the straight body portion were adopted in the cone portion where the product could not be acquired.

Figure 0005888264
Figure 0005888264

具体的には、コーン部の成長条件は、直胴部より反転頻度を少なくする条件として、表1に示すようにコーン部の直径が150mmのときに単結晶の交互回転を開始し、この時の回転回数は正転での回転量を20回転、逆転では19.2回転、回転速度は20rpmとした。その後、表1のように連続的に交互回転条件を変更し直胴部における交互回転条件に近づけるように移行させた。そして、単結晶の直胴部での交互回転条件は、正転での回転量は1.0回転、逆転では0.2回転、回転速度は20rpmとした。この条件の場合、平均時間として約3秒に一度反転させた。また、単結晶の直径に応じて自動で交互回転条件を変更するプログラムを使用した。   Specifically, the growth condition of the cone part is a condition that the reversal frequency is less than that of the straight body part, and as shown in Table 1, when the diameter of the cone part is 150 mm, the single crystal starts to rotate alternately. The number of rotations of the rotation was 20 rotations in the forward rotation, 19.2 rotations in the reverse rotation, and the rotation speed was 20 rpm. Thereafter, as shown in Table 1, the alternating rotation condition was continuously changed to shift to the alternating rotation condition in the straight body portion. The alternating rotation conditions in the straight body of the single crystal were 1.0 rotation for forward rotation, 0.2 rotation for reverse rotation, and a rotation speed of 20 rpm. In this condition, the average time was reversed once every about 3 seconds. Moreover, the program which changes an alternating rotation condition automatically according to the diameter of a single crystal was used.

評価項目として、単結晶の3分間当たりの反転回数、成長ムラ(浮遊帯域長さの変動)の程度、コーン部の交互回転が始まる直径150mmからコーン部終わりの直径200mmまでの成功率を調査した。
コーン部の直径が150mmのとき、平均時間として約60秒に一度反転(回転回数を正転での回転量を20回転、逆転では19.2回転、回転速度は20rpm)となり、直胴部の条件(正転での回転量は1.0回転、逆転では0.2回転、回転速度は20rpm)に比べ、コーン部での単結晶の成長ムラの発生頻度が約1/20となった。
As evaluation items, the number of inversions per 3 minutes of the single crystal, the degree of growth unevenness (fluctuation in the floating zone length), and the success rate from the diameter of 150 mm at which the cone portion alternately starts to the diameter at the end of the cone portion of 200 mm were investigated. .
When the diameter of the cone portion is 150 mm, the average time is reversed once every about 60 seconds (the rotation amount is 20 rotations in the normal rotation, 19.2 rotations in the reverse rotation, and the rotation speed is 20 rpm). Compared with the conditions (rotation amount in forward rotation is 1.0 rotation, rotation in reverse rotation is 0.2 rotation, rotation speed is 20 rpm), the frequency of occurrence of single crystal growth unevenness in the cone portion is about 1/20.

また、図4に示すようにコーン部の直径150mm〜160mmまでの浮遊帯域長さ(単結晶側)20の変動、すなわち単結晶の成長ムラの変動幅が4.4%であった。これは回転回数を増やしていることで浮遊帯域であるメルト部の回転速度が速くなり、誘導加熱コイルの非対称性加熱の周方向温度差の影響を受けにくいことから単結晶の成長ムラの程度が小さくなったためである。
さらに本実施例では、コーン部の交互回転が始まる直径150mmからコーン部終わりの直径200mmまでの成功率は20回中17回成功であった(成功率85%)。
Further, as shown in FIG. 4, the variation of the floating zone length (single crystal side) 20 from 150 to 160 mm in diameter of the cone portion, that is, the variation width of the single crystal growth unevenness was 4.4%. By increasing the number of rotations, the rotational speed of the melt part, which is a floating zone, is increased, and the degree of uneven growth of the single crystal is less affected by the circumferential temperature difference of the asymmetric heating of the induction heating coil. This is because it has become smaller.
Further, in this example, the success rate from the diameter of 150 mm at which the cone portion began to rotate to the diameter at the end of the cone portion of 200 mm was 17 out of 20 times (success rate 85%).

但し、単結晶の成長ムラの程度については以下の内容で測定した。すなわち、単結晶の交互回転において正転から逆転、逆転から正転に切り替わるときに誘導加熱コイルの加熱の非対称性が顕著に現れ、浮遊帯域長さ(単結晶側)が周方向でばらつく(成長ムラ)傾向があるため、この程度をCCDカメラにより測定することで単結晶の成長ムラの程度を測定した。   However, the degree of uneven growth of the single crystal was measured as follows. In other words, when the single crystal is rotated alternately from forward to reverse and from reverse to forward, the asymmetry of the heating of the induction heating coil becomes significant, and the floating zone length (single crystal side) varies in the circumferential direction (growth). The degree of unevenness of single crystal growth was measured by measuring this degree with a CCD camera.

(比較例)
図6に示す単結晶製造装置60を使用し、1000Ωcm以上のCZシリコン単結晶を原料結晶棒として、FZ法によりゾーニングを行い、20本の直径200mmのシリコン単結晶を製造した。
まず、チャンバー11内に不活性ガスを流し、炉内圧は加圧とし、成長速度を2.0mm/min以下、下軸5を偏芯させた。ドープはドープノズル(不図示)により不活性ガスベースのPHを浮遊帯域に吹き掛け、n型50Ωcmのシリコン単結晶の製造を行った。
(Comparative example)
Using the single crystal manufacturing apparatus 60 shown in FIG. 6, zoning was performed by FZ method using a CZ silicon single crystal of 1000 Ωcm or more as a raw material crystal rod, and 20 silicon single crystals having a diameter of 200 mm were manufactured.
First, an inert gas was flowed into the chamber 11, the furnace pressure was increased, the growth rate was 2.0 mm / min or less, and the lower shaft 5 was eccentric. Doping was performed by spraying an inert gas-based PH 3 onto the floating zone with a dope nozzle (not shown) to produce an n-type silicon single crystal of 50 Ωcm.

製品の取得できないコーン部において上記表1のように直胴部と同様の交互回転条件を使用し、コーン部の直径が150mmとなったときに単結晶の交互回転を開始した。コーン部、直胴部での単結晶の交互回転条件は、正転での回転量は1.0回転、逆転では0.2回転、回転速度は20rpmとした。この条件の場合、平均時間として約3秒に一度反転することとなる。   In the cone part where the product could not be obtained, the same alternating rotation conditions as in the case of the straight body part were used as shown in Table 1, and when the diameter of the cone part reached 150 mm, the single crystal alternate rotation was started. The alternating rotation conditions of the single crystal in the cone part and the straight body part were 1.0 rotation for forward rotation, 0.2 rotation for reverse rotation, and a rotation speed of 20 rpm. In the case of this condition, the average time is reversed once every about 3 seconds.

評価項目として、単結晶の3分間当たりの反転回数、成長ムラ(浮遊帯域長さ(単結晶側)20の変動)の程度、コーン部の交互回転が始まる直径150mmからコーン部終わりの直径200mmまでの成功率を調査した。
図3のように単結晶の3分間当たりの反転頻度は、交互回転が始まったコーン部の直径150mmから直胴まで同様の27回程度である。
Evaluation items are the number of inversions per 3 minutes of single crystal, the degree of growth unevenness (fluctuation of floating zone length (single crystal side) 20), the diameter of 150 mm from the start of alternate rotation of the cone part to the diameter of 200 mm at the end of cone part The success rate was investigated.
As shown in FIG. 3, the reversal frequency of the single crystal per 3 minutes is about 27 times from the diameter of the cone portion where the alternate rotation starts to 150 mm to the straight body.

図5に示すようにコーン部の直径150mm〜160mmまでの浮遊帯域長さ(単結晶側)20の変動、すなわち単結晶の成長ムラの変動幅が5.3%であった。
また、コーン部の交互回転が始まる直径150mmからコーン部終わりの直径200mmまでの成功率は20回中13回成功であった(成功率65%)。
但し、単結晶の成長ムラの程度については実施例と同様に測定した。
As shown in FIG. 5, the variation of the floating zone length (single crystal side) 20 from the cone portion diameter of 150 mm to 160 mm, that is, the variation width of the single crystal growth unevenness was 5.3%.
In addition, the success rate from the diameter of 150 mm at which alternate rotation of the cone portion started to the diameter of 200 mm at the end of the cone portion was 13 out of 20 successes (success rate 65%).
However, the degree of uneven growth of the single crystal was measured in the same manner as in the examples.

実施例と比較例を比較すると、本発明のコーン部での交互回転の条件を採用することで、コーン部の直径が150mmのとき単結晶の3分間当たりの反転回数が約1/20となった。併せて回転回数の増加により浮遊帯域であるメルト部の回転速度が速くなり、誘導加熱コイルの非対称性加熱の周方向温度差の影響を受けにくくなることで浮遊帯域長さ(単結晶側)20の周方向でばらつき(成長ムラ)が0.9%改善した(図4と図5の比較)。これらの効果でコーン部の交互回転が始まる直径150mmからコーン部終わりの直径200mmまでの成功率が20%改善する結果となり、かつ、直胴部においては単結晶の交互回転により従来と同様に単結晶の直胴部開始位置から安定した面内抵抗率分布を得ることができた。   Comparing the example and the comparative example, by adopting the condition of the alternate rotation in the cone part of the present invention, when the cone part has a diameter of 150 mm, the number of inversions per 3 minutes of the single crystal becomes about 1/20. It was. At the same time, the rotation speed of the melt part, which is the floating zone, increases due to the increase in the number of rotations, and the floating zone length (single crystal side) 20 becomes less susceptible to the influence of the circumferential temperature difference of the asymmetric heating of the induction heating coil. The variation (growth unevenness) in the circumferential direction was improved by 0.9% (comparison between FIG. 4 and FIG. 5). These effects result in a 20% improvement in the success rate from the diameter of 150 mm at which the cone portion begins to rotate to the diameter at the end of the cone portion of 200 mm. A stable in-plane resistivity distribution was obtained from the starting position of the straight body of the crystal.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

1…原料結晶、 2…半導体単結晶、 2a…コーン部、 2b…直胴部、
3…上軸、 4…上部保持治具、 5…下軸、 6…下部保持治具、
7…誘導加熱コイル、 8…種結晶、 9…絞り部、 10…浮遊帯域、
11…チャンバー、 12…高周波発振機、 20…浮遊帯域長さ(単結晶側)、
30…高周波発振機との接続部、 31…スリット、 60…単結晶製造装置。
DESCRIPTION OF SYMBOLS 1 ... Raw material crystal, 2 ... Semiconductor single crystal, 2a ... Cone part, 2b ... Straight trunk | drum part,
3 ... Upper shaft, 4 ... Upper holding jig, 5 ... Lower shaft, 6 ... Lower holding jig,
7 ... Induction heating coil, 8 ... Seed crystal, 9 ... Drawing part, 10 ... Floating zone,
11 ... chamber, 12 ... high frequency oscillator, 20 ... floating zone length (single crystal side),
30 ... Connection part with high frequency oscillator, 31 ... Slit, 60 ... Single crystal manufacturing apparatus.

Claims (3)

誘導加熱コイルにより原料結晶を回転させながら部分的に加熱溶融して溶融帯を形成し、該溶融帯を前記原料結晶の一端部から他端部へ移動させることで半導体単結晶を成長させる際に、成長中の半導体単結晶の回転方向を交互に変更するFZ法による半導体単結晶の製造方法において、
前記半導体単結晶のコーン部の成長における交互回転の正転と逆転の回転回数を、前記半導体単結晶の直胴部の成長における交互回転の正転と逆転の回転回数より増加させて半導体単結晶を成長させることを特徴とする半導体単結晶の製造方法。
When growing a semiconductor single crystal by forming a melt zone by partially heating and melting the raw material crystal while rotating it with an induction heating coil, and moving the melt zone from one end to the other end of the raw material crystal In the method of manufacturing a semiconductor single crystal by the FZ method in which the rotation direction of the growing semiconductor single crystal is alternately changed,
The number of rotations of alternating rotation and reverse rotation in the growth of the cone portion of the semiconductor single crystal is increased from the number of rotations of alternating rotation and reverse rotation in the growth of the straight body portion of the semiconductor single crystal. A method for producing a semiconductor single crystal, characterized in that:
前記半導体単結晶のコーン部の成長中に、連続的に交互回転の条件を変更しながら前記半導体単結晶の直胴部の成長における交互回転の条件に移行させることを特徴とする請求項1に記載の半導体単結晶の製造方法。   2. The condition of alternating rotation in the growth of the straight body portion of the semiconductor single crystal is shifted to the condition of alternating rotation during continuous growth of the cone portion of the semiconductor single crystal. The manufacturing method of the semiconductor single crystal of description. 前記半導体単結晶のコーン部の成長中に、前記半導体単結晶の成長中のコーン部の直径に応じて自動で交互回転の条件を変更するプログラムを用いることを特徴とする請求項2に記載の半導体単結晶の製造方法。   3. The program according to claim 2, wherein during the growth of the cone portion of the semiconductor single crystal, a program for automatically changing the condition of alternating rotation according to the diameter of the cone portion during the growth of the semiconductor single crystal is used. A method for producing a semiconductor single crystal.
JP2013038139A 2013-02-28 2013-02-28 Manufacturing method of semiconductor single crystal Active JP5888264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013038139A JP5888264B2 (en) 2013-02-28 2013-02-28 Manufacturing method of semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013038139A JP5888264B2 (en) 2013-02-28 2013-02-28 Manufacturing method of semiconductor single crystal

Publications (2)

Publication Number Publication Date
JP2014162717A JP2014162717A (en) 2014-09-08
JP5888264B2 true JP5888264B2 (en) 2016-03-16

Family

ID=51613655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013038139A Active JP5888264B2 (en) 2013-02-28 2013-02-28 Manufacturing method of semiconductor single crystal

Country Status (1)

Country Link
JP (1) JP5888264B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6248816B2 (en) * 2014-06-05 2017-12-20 株式会社Sumco Single crystal manufacturing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4072556A (en) * 1969-11-29 1978-02-07 Siemens Aktiengesellschaft Device for crucible-free floating-zone melting of a crystalline rod and method of operating the same
US20100107968A1 (en) * 2007-04-13 2010-05-06 Topsil Simiconductor Materials A/S Method and apparatus for producing a single crystal
JP5375889B2 (en) * 2010-12-28 2013-12-25 信越半導体株式会社 Single crystal manufacturing method

Also Published As

Publication number Publication date
JP2014162717A (en) 2014-09-08

Similar Documents

Publication Publication Date Title
JP5029637B2 (en) Manufacturing method of semiconductor single crystal
JP6467056B2 (en) Silicon single crystal ingot growth equipment
JP6491763B2 (en) Method for producing silicon single crystal ingot
JP5375889B2 (en) Single crystal manufacturing method
JP2005306653A (en) Method for manufacturing silicon single crystal
JP6248816B2 (en) Single crystal manufacturing method
JP4831203B2 (en) Semiconductor single crystal manufacturing method and semiconductor single crystal manufacturing apparatus
WO2012114375A1 (en) Method for manufacturing n-type silicon single crystal, and phosphorus-doped n-type silicon single crystal
JP5888264B2 (en) Manufacturing method of semiconductor single crystal
JP5126267B2 (en) Silicon single crystal manufacturing method and silicon single crystal manufacturing apparatus
JP6756244B2 (en) Manufacturing method of semiconductor silicon single crystal
JP5768764B2 (en) Manufacturing method of semiconductor single crystal rod
JP5716689B2 (en) Silicon single crystal manufacturing method and silicon single crystal manufacturing apparatus
JP5594257B2 (en) Single crystal manufacturing method
US10344395B2 (en) Apparatus and method for growing silicon single crystal ingot
JP6233182B2 (en) Single crystal manufacturing method and single crystal manufacturing apparatus
JP5924181B2 (en) Manufacturing method of FZ single crystal silicon
JP5895875B2 (en) Manufacturing method of semiconductor single crystal
JP5234148B2 (en) Semiconductor single crystal manufacturing method and semiconductor single crystal manufacturing apparatus
JP5365617B2 (en) Semiconductor single crystal manufacturing apparatus and semiconductor single crystal manufacturing method
JP2010132470A (en) Method for producing silicon single crystal by fz method
JP2621069B2 (en) Method for producing semiconductor silicon single crystal by FZ method
JP6777013B2 (en) Single crystal manufacturing method
JP6488975B2 (en) Pulling method of silicon single crystal
JP5246209B2 (en) Manufacturing method of semiconductor single crystal rod

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160201

R150 Certificate of patent or registration of utility model

Ref document number: 5888264

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250