JP5594257B2 - Single crystal manufacturing method - Google Patents

Single crystal manufacturing method Download PDF

Info

Publication number
JP5594257B2
JP5594257B2 JP2011179738A JP2011179738A JP5594257B2 JP 5594257 B2 JP5594257 B2 JP 5594257B2 JP 2011179738 A JP2011179738 A JP 2011179738A JP 2011179738 A JP2011179738 A JP 2011179738A JP 5594257 B2 JP5594257 B2 JP 5594257B2
Authority
JP
Japan
Prior art keywords
single crystal
oscillation frequency
diameter
resistivity
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011179738A
Other languages
Japanese (ja)
Other versions
JP2013040087A (en
Inventor
義博 児玉
佐藤  賢一
慶一 中澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2011179738A priority Critical patent/JP5594257B2/en
Publication of JP2013040087A publication Critical patent/JP2013040087A/en
Application granted granted Critical
Publication of JP5594257B2 publication Critical patent/JP5594257B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、高周波発振器から高周波電圧が供給される誘導加熱コイルで原料結晶を部分的に加熱溶融して浮遊帯域を形成し、浮遊帯域を移動させて単結晶を製造するFZ法(フローティングゾーン法又は浮遊帯溶融法)による単結晶製造方法に関する。   The present invention is an FZ method (floating zone method) in which a raw crystal is partially heated and melted by an induction heating coil to which a high frequency voltage is supplied from a high frequency oscillator to form a floating zone, and the floating zone is moved to produce a single crystal. Or a floating crystal melting method).

FZ法は、現在半導体素子用として多く使用されているシリコン単結晶の製造方法の一つである。FZ法による単結晶製造方法は、先ず、原料結晶棒(原料結晶)を、チャンバー内に設置された上軸の上部保持治具に保持する。一方、直径の小さい単結晶の種(種結晶)を、原料結晶棒の下方に位置する下軸の下部保持治具に保持する。   The FZ method is one of methods for producing a silicon single crystal that is currently widely used for semiconductor devices. In the single crystal manufacturing method by the FZ method, first, a raw material crystal rod (raw material crystal) is held by an upper holding jig on an upper shaft installed in a chamber. On the other hand, a single crystal seed (seed crystal) having a small diameter is held by a lower holding jig on the lower shaft located below the raw crystal rod.

次に、高周波発振器から誘導加熱コイルに高周波電圧が供給される事で、原料結晶棒を溶融して、種結晶に融着させる。供給される高周波電圧の発振周波数は、1〜3MHzであり(非特許文献1参照)、従来この発振周波数は、製造する単結晶の種類に関わらず同一発振周波数に設定していた。   Next, a high frequency voltage is supplied from the high frequency oscillator to the induction heating coil, so that the raw material crystal rod is melted and fused to the seed crystal. The oscillation frequency of the supplied high-frequency voltage is 1 to 3 MHz (see Non-Patent Document 1). Conventionally, this oscillation frequency has been set to the same oscillation frequency regardless of the type of single crystal to be manufactured.

その後、種絞りにより絞り部を形成して無転位化する。そして、上軸と下軸を回転させながら原料結晶棒と単結晶棒を下降させることで浮遊帯域(溶融帯あるいはメルトともいう。)を原料結晶棒と育成単結晶棒の間に形成しながら、結晶径を徐々に大きくし、コーン部分を形成する。その後、目標とする直径に達したら、その直径を維持して、直胴部を形成し、浮遊帯域を原料結晶棒の上端まで移動させてゾーニングを行う。尚、この単結晶成長は、Arガスに微量の窒素ガスを混合した雰囲気中で行われ、N型FZ単結晶を製造するためには、ドープノズルより、製造する抵抗率に応じた量のArベースのPHガスを流し、P型FZ単結晶を製造するためには、ドープノズルより、製造する抵抗率に応じた量のArベースのBガスを流す。 Thereafter, a squeezed portion is formed by seed squeezing to eliminate dislocation. And while forming the floating zone (also referred to as a melting zone or melt) between the source crystal rod and the grown single crystal rod by lowering the source crystal rod and the single crystal rod while rotating the upper shaft and the lower shaft, The crystal diameter is gradually increased to form a cone portion. Thereafter, when the target diameter is reached, the diameter is maintained, a straight body portion is formed, and the floating zone is moved to the upper end of the raw material crystal rod to perform zoning. This single crystal growth is performed in an atmosphere in which a small amount of nitrogen gas is mixed with Ar gas. In order to manufacture an N-type FZ single crystal, an amount of Ar base corresponding to the resistivity to be manufactured is produced from a dope nozzle. flowing the PH 3 gas, to produce a P-type FZ single crystal from Dopunozuru, flow Ar-based B 2 H 6 gas in an amount corresponding to the resistivity of manufacturing.

FZ法により得られたシリコン単結晶から製造されるウェーハには、ウェーハ面内での抵抗率のバラツキができる限り低減され、均一であることが望まれており、これはウェーハの原料であるFZ単結晶の抵抗率分布をより均一化することによってなされる。   Wafers manufactured from a silicon single crystal obtained by the FZ method are desired to have as uniform a resistivity variation as possible within the wafer surface, and this is desired to be uniform. This is done by making the resistivity distribution of the single crystal more uniform.

ウェーハ抵抗率バラツキを低減するため、原料結晶棒と単結晶棒の回転軸をずらし(以後、偏芯という)、融液の攪拌を非軸対称にし、また、特許文献1、特許文献2のような、単結晶の回転の方向を正転と逆転とで交互に行う方法(以後、交互回転という)が行われている。   In order to reduce the wafer resistivity variation, the rotation axes of the raw crystal rod and the single crystal rod are shifted (hereinafter referred to as eccentricity), the melt stirring is made non-axisymmetric, and Patent Document 1 and Patent Document 2 There is a method in which the direction of rotation of the single crystal is alternated between forward rotation and reverse rotation (hereinafter referred to as alternate rotation).

特開平7−315980号公報JP 7-315980 A 特開2008−266102号公報JP 2008-266102 A

阿部孝夫著:シリコン 結晶成長とウェーハ加工,倍風館(1994)Takao Abe: Silicon crystal growth and wafer processing, Baifukan (1994)

上述のように、抵抗率バラツキの改善のために、偏芯量、交互回転、成長速度等の操業条件の最適化が図られてきたが、直径及び方位により、抵抗率バラツキの挙動が異なるため、直径や方位の種類に関わらず、良好な抵抗率分布を得る事は困難である。   As described above, optimization of operating conditions such as eccentricity, alternate rotation, and growth rate has been attempted to improve resistivity variation, but the behavior of resistivity variation differs depending on the diameter and orientation. Regardless of the type of diameter and orientation, it is difficult to obtain a good resistivity distribution.

本発明は、上記問題点に鑑みなされたものであって、直径・方位の種類によらず、抵抗率バラツキが小さく品質が優れた単結晶を安定して製造することができる単結晶製造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and provides a single crystal production method capable of stably producing a single crystal having small resistivity variation and excellent quality regardless of the type of diameter and orientation. The purpose is to provide.

上記課題を解決するため、本発明では、高周波発振器から高周波電圧が供給される誘導加熱コイルで原料結晶を部分的に加熱溶融して浮遊帯域を形成し、該浮遊帯域を移動させて単結晶を製造するFZ法による単結晶製造方法であって、
予め、前記製造する単結晶と同一直径及び同一方位を有する単結晶に関して、供給する高周波電圧の発振周波数を変化させた場合の発振周波数毎の抵抗率バラツキを調べ、該発振周波数と抵抗率バラツキの関係に応じて前記製造する単結晶の直径及び方位毎の操業発振周波数を決定し、
該決定した操業発振周波数に合わせて前記高周波発振器の調整を行い、
該調整した高周波発振器を使用して単結晶を製造することを特徴とする単結晶製造方法を提供する。
In order to solve the above problems, in the present invention, a raw crystal is partially heated and melted by an induction heating coil to which a high frequency voltage is supplied from a high frequency oscillator to form a floating zone, and the single crystal is moved by moving the floating zone. A method for producing a single crystal by the FZ method,
For the single crystal having the same diameter and the same orientation as the single crystal to be manufactured, the variation in resistivity for each oscillation frequency when the oscillation frequency of the supplied high-frequency voltage is changed is examined, and the oscillation frequency and the variation in resistivity are Determine the operating oscillation frequency for each diameter and orientation of the single crystal to be manufactured according to the relationship,
Adjusting the high-frequency oscillator according to the determined operation oscillation frequency,
Provided is a method for producing a single crystal using the adjusted high-frequency oscillator to produce a single crystal.

このように、発振周波数により単結晶の抵抗率バラツキが変化するため、予め製造する単結晶の直径及び方位毎の適切な操業発振周波数を決定することにより、直径・方位の種類によらず、良好な抵抗率バラツキの単結晶を安定して製造する事が可能となる。   As described above, the resistivity variation of the single crystal changes depending on the oscillation frequency, so by determining an appropriate operation oscillation frequency for each diameter and orientation of the single crystal to be manufactured in advance, it is good regardless of the type of diameter and orientation. It is possible to stably produce single crystals with various resistivity variations.

またこのとき、前記予め発振周波数毎の抵抗率バラツキを調べる単結晶を、前記製造する単結晶と直径及び方位以外も同一条件で製造されたものとすることが好ましい。   At this time, it is preferable that the single crystal for examining the variation in resistivity for each oscillation frequency is manufactured under the same conditions as the single crystal to be manufactured except for the diameter and orientation.

このように、前記予め発振周波数毎の抵抗率バラツキを調べる単結晶を、前記製造する単結晶と直径及び方位以外の条件(例えば、偏芯量、交互回転等)も同一条件で製造されたものとすることで、より確実に抵抗率バラツキの低い単結晶を製造することができる。   In this way, the single crystal whose resistivity variation for each oscillation frequency is previously examined is manufactured under the same conditions as the single crystal to be manufactured except for the diameter and orientation (for example, eccentricity, alternate rotation, etc.). By doing so, a single crystal having low resistivity variation can be manufactured more reliably.

以上説明したように、本発明の単結晶製造方法によれば、製造する単結晶の直径・方位の種類によらず、良好な抵抗率バラツキの結晶を安定して製造する事が可能となる。   As described above, according to the method for producing a single crystal of the present invention, it is possible to stably produce a crystal with favorable resistivity variation regardless of the diameter and orientation of the produced single crystal.

本発明の単結晶製造方法を説明するフロー図である。It is a flowchart explaining the single-crystal manufacturing method of this invention. 本発明の単結晶製造方法で用いる単結晶製造装置の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the single crystal manufacturing apparatus used with the single crystal manufacturing method of this invention. 本発明で用いる誘導加熱コイルの一例を示す概略図である。It is the schematic which shows an example of the induction heating coil used by this invention. 実施例における直径128mm、<100>方位のシリコン単結晶における、発振周波数による抵抗率バラツキの変化を示すグラフである。It is a graph which shows the change of the resistivity variation by the oscillation frequency in the silicon single crystal of diameter 128mm and <100> orientation in an Example. 実施例における直径128mm、<111>方位のシリコン単結晶における、発振周波数による抵抗率バラツキの変化を示すグラフである。It is a graph which shows the change of the resistivity variation by an oscillation frequency in the silicon single crystal of diameter 128mm and <111> orientation in an Example.

以下、本発明について詳述する。
本発明者らは、FZ単結晶の抵抗率バラツキ改善について鋭意検討を重ねた。その結果、本発明者らは、同一の発振周波数の下では、発振周波数以外の操業条件の最適化を図っても、全ての直径・方位で、抵抗率バラツキが小さい良好な品質の単結晶を製造する事は難しく、直径及び方位毎に、発振周波数を変更する必要がある事に想到した。
Hereinafter, the present invention will be described in detail.
The inventors of the present invention have made extensive studies on improving the resistivity variation of the FZ single crystal. As a result, under the same oscillation frequency, the present inventors have obtained a single crystal of good quality with a small resistivity variation in all diameters and orientations, even when operating conditions other than the oscillation frequency are optimized. It was difficult to manufacture, and the inventors came up with the need to change the oscillation frequency for each diameter and orientation.

例えば、<111>方位の単結晶は、中心部がファセット成長しやすいため、中心部の抵抗率が非常に低くなり、凹型の面内抵抗率分布になりやすい。この改善のためには、発振周波数を高くする事で中心部のメルト攪拌を強める事が効果的であるが、<111>方位の単結晶の面内抵抗率分布がフラットになる発振周波数を<100>方位の単結晶の製造に適用すると、中心部の抵抗率が高くなりすぎ凸型の面内抵抗率分布となり、抵抗率分布は悪化してしまう。   For example, a single crystal with <111> orientation tends to facet growth at the center, so that the resistivity at the center is very low, and a concave in-plane resistivity distribution tends to occur. In order to improve this, it is effective to increase the melt stirring at the center by increasing the oscillation frequency. However, the oscillation frequency at which the in-plane resistivity distribution of the <111> -oriented single crystal becomes flat is < When applied to the production of a 100> -oriented single crystal, the resistivity at the center portion becomes too high, resulting in a convex in-plane resistivity distribution, and the resistivity distribution deteriorates.

そこで、本発明者らは、予め、同一直径・方位において発振周波数を変化した場合の抵抗率バラツキの変化を調査し、直径及び方位毎の操業発振周波数を決定しておき、FZ法単結晶製造装置で結晶製造を行う直径及び方位に応じて、製造前に操業発振周波数に合わせるよう高周波発振器の調整を行えば、直径・方位の種類によらず、良好な抵抗率バラツキの単結晶を安定して製造する事が可能となる事を見出し、本発明を完成させた。   Therefore, the inventors previously investigated the change in resistivity variation when the oscillation frequency was changed at the same diameter and orientation, determined the operation oscillation frequency for each diameter and orientation, and manufactured the FZ method single crystal. By adjusting the high-frequency oscillator to match the operating oscillation frequency before production according to the diameter and orientation in which the crystal is produced by the equipment, a single crystal with good resistivity variation can be stabilized regardless of the type of diameter and orientation. As a result, the present invention has been completed.

本発明の単結晶製造方法について図面を参照しながら説明するが、本発明はこれらに限定されるものではない。図1は、本発明の単結晶製造方法の一例を説明するフロー図である。   The single crystal production method of the present invention will be described with reference to the drawings, but the present invention is not limited thereto. FIG. 1 is a flowchart for explaining an example of the method for producing a single crystal of the present invention.

まず、本発明では、予め、前記製造する単結晶と同一直径及び同一方位を有する単結晶に関して、供給する高周波電圧の発振周波数を変化させた場合の発振周波数毎の抵抗率バラツキを調べる(図1(A))。
本発明において、抵抗率バラツキは、RRG(Radial Resistivity Gradient)やロット内バラツキから求めることができる。
尚、この予め発振周波数毎の抵抗率バラツキを調べる単結晶を、製造する(目的とする)単結晶と直径及び方位以外も同一条件で製造されたものとすることによって、より抵抗率バラツキの低い単結晶を製造することができる。ここで、直径及び方位以外の条件とは、偏芯量、交互回転、成長速度等のことをいう。
First, in the present invention, for a single crystal having the same diameter and the same orientation as the single crystal to be produced, the resistivity variation for each oscillation frequency when the oscillation frequency of the supplied high-frequency voltage is changed is examined (FIG. 1). (A)).
In the present invention, the resistivity variation can be obtained from RRG (Radial Resistivity Gradient) or in-lot variation.
It should be noted that the single crystal for checking the variation in resistivity for each oscillation frequency is manufactured under the same conditions as the single crystal to be manufactured (target) except for the diameter and orientation, thereby lowering the resistivity variation. Single crystals can be produced. Here, conditions other than the diameter and orientation refer to eccentricity, alternate rotation, growth rate, and the like.

次いで、調べた発振周波数と抵抗率バラツキの関係に応じて前記製造する単結晶の直径及び方位毎の操業発振周波数を決定する(図1(B))。
この際、抵抗率バラツキが最も低い最適発振周波数を選ぶことが好ましいが、抵抗率バラツキ以外の単結晶品質や単結晶化率等のファクターも考慮して抵抗率バラツキが従来より改善するような発振周波数を選ぶ場合も、本発明の範囲内である。
Next, the operation oscillation frequency for each diameter and orientation of the single crystal to be manufactured is determined according to the relationship between the investigated oscillation frequency and resistivity variation (FIG. 1B).
At this time, it is preferable to select the optimum oscillation frequency with the lowest resistivity variation. However, in consideration of factors other than resistivity variation, such as single crystal quality and single crystallization rate, the oscillation in which the resistivity variation is improved compared to the conventional one. The choice of frequency is also within the scope of the present invention.

そして、目的とする単結晶を製造するが(図1中、結晶製造指示)、上記決定した直径及び方位に応じた操業発振周波数に合わせて高周波発振器の調整を行い(図1(C))、該調整した高周波発振器を使用して単結晶を製造する(図1(D))。
単結晶の製造は、従来のFZ単結晶製造装置を用いて行うことができる。以下に、図2に示すFZ単結晶製造装置20を用いて、単結晶を製造する方法について説明する。
And although the target single crystal is manufactured (in FIG. 1, the crystal manufacturing instruction), the high frequency oscillator is adjusted in accordance with the operation oscillation frequency according to the determined diameter and orientation (FIG. 1 (C)), A single crystal is manufactured using the adjusted high-frequency oscillator (FIG. 1D).
A single crystal can be produced using a conventional FZ single crystal production apparatus. Below, the method to manufacture a single crystal using the FZ single crystal manufacturing apparatus 20 shown in FIG. 2 is demonstrated.

先ず、原料結晶棒(原料結晶)1を、チャンバー2内に設置された上軸3の上部保持治具4に保持する。一方、直径の小さい単結晶の種(種結晶)5を、原料結晶棒1の下方に位置する下軸6の下部保持治具7に保持する。
次に、高周波発振器8から誘導加熱コイル9に上記で決定した操業発振周波数の高周波電圧が供給される事で、原料結晶棒1を溶融して、種結晶5に融着させる。
尚、高周波発振器の発振周波数の調整は、発振回路を構成するコンデンサの数の変更、容量の異なるコンデンサへの交換、及び、径やターン数の異なる変流器(CT)へ交換することで行うことができる。
First, the raw material crystal rod (raw material crystal) 1 is held by the upper holding jig 4 of the upper shaft 3 installed in the chamber 2. On the other hand, a single crystal seed (seed crystal) 5 having a small diameter is held by a lower holding jig 7 of a lower shaft 6 located below the raw crystal rod 1.
Next, the high frequency voltage of the operation oscillation frequency determined above is supplied from the high frequency oscillator 8 to the induction heating coil 9, so that the raw material crystal rod 1 is melted and fused to the seed crystal 5.
The oscillation frequency of the high-frequency oscillator is adjusted by changing the number of capacitors constituting the oscillation circuit, exchanging with a capacitor having a different capacity, or exchanging with a current transformer (CT) having a different diameter or number of turns. be able to.

その後、種絞りにより絞り部10を形成して無転位化する。そして、上軸3と下軸6を回転させながら原料結晶棒1と単結晶棒11を下降させることで浮遊帯域(溶融帯あるいはメルトともいう。)12を原料結晶棒1と育成単結晶棒11の間に形成しながら、結晶径を徐々に大きくし、コーン部分11−aを形成する。その後、目標とする直径に達したら、その直径を維持して、直胴部11−bを形成し、浮遊帯域12を原料結晶棒1の上端まで移動させてゾーニングを行う。尚、この単結晶成長は、例えば、Arガスに微量の窒素ガスを混合した雰囲気中で行われ、N型FZ単結晶を製造するためには、ドープノズル13より、製造する抵抗率に応じた量のArベースのPHガスを流し、P型FZ単結晶を製造するためには、ドープノズル13より、製造する抵抗率に応じた量のArベースのBガスを流す。 Thereafter, the narrowed portion 10 is formed by seed narrowing to eliminate dislocation. Then, the raw crystal rod 1 and the single crystal rod 11 are lowered while rotating the upper shaft 3 and the lower shaft 6, so that the floating zone (also referred to as a melting zone or a melt) 12 is formed in the raw crystal rod 1 and the grown single crystal rod 11. While forming, the crystal diameter is gradually increased to form the cone portion 11-a. Thereafter, when the target diameter is reached, the diameter is maintained, the straight body portion 11-b is formed, and the floating zone 12 is moved to the upper end of the raw crystal rod 1 to perform zoning. This single crystal growth is performed, for example, in an atmosphere in which a small amount of nitrogen gas is mixed with Ar gas. In order to manufacture an N-type FZ single crystal, the amount corresponding to the resistivity to be manufactured is obtained from the dope nozzle 13. In order to manufacture a P-type FZ single crystal by flowing the Ar-based PH 3 gas, an amount of Ar-based B 2 H 6 gas corresponding to the resistivity to be manufactured is flowed from the dope nozzle 13.

誘導加熱コイル9としては、銅または銀からなる単巻または複巻の冷却用の水を流通させた誘導加熱コイル9が用いられており、例えば図3に示すものが知られている(例えば、特許文献1参照)。この誘導加熱コイル9は、スリット14を有するリング状のコイルで、コイル外周面15からコイル内周面16に向かって断面先細り状に形成されている。また、コイル外周面15には、コイル端部17に対応する位置に電源端子18が設けられている。この両端子18が接続されたコイル端部17の対向面を、スリット14を介して極力接近させるようにしており、これにより、誘導加熱コイル9の周方向における電流回路の対称性を維持し、ほぼ均一な電界分布が得ることができる。   As the induction heating coil 9, an induction heating coil 9 in which single or multiple winding water made of copper or silver is circulated is used. For example, the one shown in FIG. 3 is known (for example, Patent Document 1). The induction heating coil 9 is a ring-shaped coil having a slit 14 and has a tapered cross section from the coil outer peripheral surface 15 toward the coil inner peripheral surface 16. The coil outer peripheral surface 15 is provided with a power supply terminal 18 at a position corresponding to the coil end portion 17. The opposing surface of the coil end 17 to which both the terminals 18 are connected is made as close as possible through the slit 14, thereby maintaining the symmetry of the current circuit in the circumferential direction of the induction heating coil 9, A substantially uniform electric field distribution can be obtained.

また、単結晶製造後に別の単結晶を製造する場合は、製造する別の単結晶の直径及び方位に応じて決定した適切な操業発振周波数に合わせて再度高周波発振器の調整を行い、その後再度調整した高周波発振器を用いて別の単結晶の製造を行う。   If another single crystal is manufactured after the single crystal is manufactured, the high-frequency oscillator is adjusted again according to the appropriate operating oscillation frequency determined according to the diameter and orientation of the other single crystal to be manufactured, and then adjusted again. Another single crystal is manufactured using the high frequency oscillator.

以下、実施例、比較例を示して本発明をより具体的に説明するが、本発明はこれに限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated more concretely, this invention is not limited to this.

(実施例)<100>及び<111>シリコン単結晶(直径128m)の製造
予め、直径128mm、直胴長さ150cmの<100>及び<111>シリコン単結晶を成長させ、供給する高周波電圧の発振周波数を変化させた場合の発振周波数毎の抵抗率バラツキを調べた(偏芯量:10mm、結晶回転速度:20rpm交互回転)。
図4に、直径128mm、<100>シリコン単結晶における、発振周波数による抵抗率バラツキの変化を調べた結果を示す。図5に、直径128mm、<111>シリコン単結晶における、発振周波数による抵抗率バラツキの変化を調べた結果を示す。
尚、抵抗率バラツキは、以下のように計測した。
製造したインゴットから30枚のウェーハを切り出し、平面研削後、XY方向に2.5mmピッチで抵抗率を測定した。図中のRRGave.は、各ウェーハ毎に算出したRRG[RRG(%)=(ρ最大値―ρ最小値)/ρ最小値×100]の平均値であり、ロット内バラツキは、全抵抗率測定値の標準偏差である。
(Example) Production of <100> and <111> silicon single crystals (diameter 128 m) A high-frequency voltage to be supplied by growing <100> and <111> silicon single crystals having a diameter of 128 mm and a straight body length of 150 cm in advance. The resistivity variation for each oscillation frequency when the oscillation frequency was changed was examined (eccentricity: 10 mm, crystal rotation speed: 20 rpm alternating rotation).
FIG. 4 shows the results of examining the variation in resistivity variation with the oscillation frequency in a <100> silicon single crystal with a diameter of 128 mm. FIG. 5 shows the result of examining the variation in resistivity variation with the oscillation frequency in a <111> silicon single crystal having a diameter of 128 mm.
The resistivity variation was measured as follows.
Thirty wafers were cut out from the manufactured ingot, and after surface grinding, the resistivity was measured at a pitch of 2.5 mm in the XY direction. RRGave. Is an average value of RRG [RRG (%) = (ρ maximum value−ρ minimum value) / ρ minimum value × 100] calculated for each wafer, and the variation within a lot is the standard deviation of all resistivity measurement values. It is.

次いで、上記で調べた発振周波数と抵抗率バラツキの関係に応じて操業発振周波数を決定する。<100>シリコン単結晶を製造する際の操業発振周波数は、図4に示されたように、抵抗率バラツキが最も低い2.3MHzに決定した。同様に、<111>シリコン単結晶を製造する際の操業発振周波数は、図5に示されたように、抵抗率バラツキが最も低い3.0MHzに決定した。   Next, the operation oscillation frequency is determined according to the relationship between the oscillation frequency and the resistivity variation investigated above. As shown in FIG. 4, the operation oscillation frequency when producing the <100> silicon single crystal was determined to be 2.3 MHz, which has the lowest resistivity variation. Similarly, as shown in FIG. 5, the operating oscillation frequency when producing the <111> silicon single crystal was determined to be 3.0 MHz with the lowest resistivity variation.

決定した操業発振周波数(2.3MHz)に合わせて高周波発振器の調整を行い、直径130mmのシリコン原料棒を、FZ法によりゾーニングを行い、N型100Ωcm以下の直径128mm、直胴長さ150cmの<100>シリコン単結晶を製造し、次いで、同様に、決定した操業発振周波数(3.0MHz)に合わせて高周波発振器の調整を行い<111>シリコン単結晶を製造した。
これらのシリコン単結晶の製造の際には、偏芯量を10mmとし、結晶回転速度は20rpm交互回転とした。
この条件でFZ単結晶の製造を実施した所、<100>シリコン単結晶のロット内バラツキは1.62%、RRGは8.3%となり、<111>シリコン単結晶のロット内バラツキは1.59%、RRGは9.7%と、いずれも良好な抵抗率バラツキであった。
The high frequency oscillator is adjusted in accordance with the determined operation oscillation frequency (2.3 MHz), and a silicon raw material rod having a diameter of 130 mm is zoned by the FZ method, and an N-type having a diameter of 100 mm or less, a diameter of 128 mm, and a straight body length of 150 cm <100> silicon single crystal was manufactured, and similarly, the high frequency oscillator was adjusted in accordance with the determined operation oscillation frequency (3.0 MHz) to manufacture <111> silicon single crystal.
In the production of these silicon single crystals, the amount of eccentricity was 10 mm, and the crystal rotation speed was 20 rpm alternating rotation.
When the FZ single crystal was manufactured under these conditions, the variation in the lot of <100> silicon single crystal was 1.62%, the RRG was 8.3%, and the variation in lot of <111> silicon single crystal was 1. 59% and RRG were 9.7%, both of which were excellent in resistivity variation.

(比較例)<100>及び<111>シリコン単結晶(直径128m)の製造
直径130mmのシリコン原料棒を、FZ法によりゾーニングを行い、N型100Ωcm以下の直径128mm、直胴長さ150cmの<100>及び<111>シリコン単結晶を製造した。
このシリコン単結晶の製造の際には、偏芯量を10mmとし、結晶回転速度は20rpm交互回転とした。また、発振周波数は、結晶製造前に調整せず、2.3MHz一定とした。この条件でFZ単結晶を製造した結果、<100>シリコン単結晶のロット内バラツキは、1.65%、RRGは、8.0%となり、<111>シリコン単結晶のロット内バラツキは、2.62%、RRGは、12.2%と、<111>シリコン単結晶の抵抗率バラツキは大きかった。
(Comparative example) <100> and <111> Manufacture of silicon single crystals (diameter 128 m) A silicon raw material rod having a diameter of 130 mm is subjected to zoning by the FZ method, an N-type having a diameter of 100 Ωcm or less, a diameter of 128 mm, and a straight body length of 150 cm. 100> and <111> silicon single crystals were produced.
In the production of this silicon single crystal, the amount of eccentricity was 10 mm, and the crystal rotation speed was 20 rpm alternating rotation. Also, the oscillation frequency was not adjusted before crystal production and was kept constant at 2.3 MHz. As a result of manufacturing the FZ single crystal under these conditions, the variation in the lot of <100> silicon single crystal was 1.65%, the RRG was 8.0%, and the variation in lot of <111> silicon single crystal was 2 The resistivity variation of <111> silicon single crystal was large, 0.62% and RRG 12.2%.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

1…原料結晶棒(原料結晶)、 2…チャンバー、 3…上軸、 4…上部保持治具、 5…種結晶、 6…下軸、 7…下部保持治具、 8…高周波発振器、 9…誘導加熱コイル、 10…絞り部、 11…単結晶棒、 11−a…コーン部、 11−b…直胴部、 12…浮遊帯域、 13…ドープノズル、 14…スリット、 15…コイル外周面、 16…コイル内周面、 17…コイル端部、 18…電源端子、 20…FZ単結晶製造装置。
DESCRIPTION OF SYMBOLS 1 ... Raw material crystal | crystallization rod (raw material crystal), 2 ... Chamber, 3 ... Upper shaft, 4 ... Upper holding jig, 5 ... Seed crystal, 6 ... Lower shaft, 7 ... Lower holding jig, 8 ... High frequency oscillator, 9 ... Induction heating coil, 10 ... throttle part, 11 ... single crystal rod, 11-a ... cone part, 11-b ... straight body part, 12 ... floating zone, 13 ... dope nozzle, 14 ... slit, 15 ... outer peripheral surface of coil, 16 DESCRIPTION OF SYMBOLS ... Coil inner peripheral surface, 17 ... Coil end, 18 ... Power supply terminal, 20 ... FZ single crystal manufacturing apparatus.

Claims (2)

高周波発振器から高周波電圧が供給される誘導加熱コイルで原料結晶を部分的に加熱溶融して浮遊帯域を形成し、該浮遊帯域を移動させて単結晶を製造するFZ法による単結晶製造方法であって、
予め、前記製造する単結晶と同一直径及び同一方位を有する単結晶に関して、供給する高周波電圧の発振周波数を変化させた場合の発振周波数毎の抵抗率バラツキを調べ、該発振周波数と抵抗率バラツキの関係に応じて前記製造する単結晶の直径及び方位毎の操業発振周波数を決定し、
該決定した操業発振周波数に合わせて、発振回路を構成するコンデンサの数の変更、容量の異なるコンデンサへの交換、及び、径やターン数の異なる変流器(CT)への交換のいずれかを行うことで前記高周波発振器の調整を行い、
該調整した高周波発振器を使用して単結晶を製造することを特徴とする単結晶製造方法。
This is a single crystal manufacturing method based on the FZ method in which a raw crystal is partially heated and melted by an induction heating coil supplied with a high frequency voltage from a high frequency oscillator to form a floating zone, and the floating zone is moved to manufacture a single crystal. And
For the single crystal having the same diameter and the same orientation as the single crystal to be manufactured, the variation in resistivity for each oscillation frequency when the oscillation frequency of the supplied high-frequency voltage is changed is examined, and the oscillation frequency and the variation in resistivity are Determine the operating oscillation frequency for each diameter and orientation of the single crystal to be manufactured according to the relationship,
In accordance with the determined operation oscillation frequency, either change of the number of capacitors constituting the oscillation circuit, replacement with a capacitor having a different capacity, or replacement with a current transformer (CT) having a different diameter or number of turns is performed. To adjust the high-frequency oscillator,
A method for producing a single crystal using the adjusted high-frequency oscillator.
前記予め発振周波数毎の抵抗率バラツキを調べる単結晶を、前記製造する単結晶と直径及び方位以外も同一条件で製造されたものとすることを特徴とする請求項1に記載の単結晶製造方法。

2. The method for manufacturing a single crystal according to claim 1, wherein the single crystal for checking the resistivity variation for each oscillation frequency is manufactured under the same conditions as the single crystal to be manufactured except for the diameter and orientation. .

JP2011179738A 2011-08-19 2011-08-19 Single crystal manufacturing method Active JP5594257B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011179738A JP5594257B2 (en) 2011-08-19 2011-08-19 Single crystal manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011179738A JP5594257B2 (en) 2011-08-19 2011-08-19 Single crystal manufacturing method

Publications (2)

Publication Number Publication Date
JP2013040087A JP2013040087A (en) 2013-02-28
JP5594257B2 true JP5594257B2 (en) 2014-09-24

Family

ID=47888836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011179738A Active JP5594257B2 (en) 2011-08-19 2011-08-19 Single crystal manufacturing method

Country Status (1)

Country Link
JP (1) JP5594257B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5892527B1 (en) * 2015-01-06 2016-03-23 信越化学工業株式会社 Method for producing FZ silicon single crystal for solar cell and method for producing solar cell
JP7116411B2 (en) * 2017-06-29 2022-08-10 株式会社タムラ製作所 SINGLE CRYSTAL GROWING APPARATUS, RESISTANCE HEATING ELEMENT, AND SINGLE CRYSTAL GROWING METHOD

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4930201A (en) * 1972-07-13 1974-03-18
JPS5852958B2 (en) * 1979-09-27 1983-11-26 電気化学工業株式会社 Single crystal manufacturing method
JPH05213688A (en) * 1992-01-31 1993-08-24 Komatsu Denshi Kinzoku Kk Controller for apparatus for producing single crystal
JP2820027B2 (en) * 1994-05-24 1998-11-05 信越半導体株式会社 Semiconductor single crystal growth method
JP2000068039A (en) * 1998-08-27 2000-03-03 Uchino:Kk Induction heating device
JP2000203982A (en) * 1999-01-08 2000-07-25 Komatsu Electronic Metals Co Ltd Method for growing single crystal and device therefor
JP2005035816A (en) * 2003-07-17 2005-02-10 Shin Etsu Handotai Co Ltd Method for manufacturing silicon single crystal and silicon single crystal
CA2688739C (en) * 2007-04-13 2015-05-26 Topsil Simiconductor Materials A/S Method and apparatus for producing a single crystal
JP4957600B2 (en) * 2008-03-18 2012-06-20 信越半導体株式会社 Semiconductor crystal manufacturing method and semiconductor crystal manufacturing apparatus by FZ method
JP5201730B2 (en) * 2008-12-02 2013-06-05 Sumco Techxiv株式会社 Manufacturing method of FZ method silicon single crystal
JP2010204267A (en) * 2009-03-02 2010-09-16 Konica Minolta Business Technologies Inc Induction heating fixing apparatus and image forming apparatus equipped with the same
JP5029637B2 (en) * 2009-03-13 2012-09-19 信越半導体株式会社 Manufacturing method of semiconductor single crystal
JP4831203B2 (en) * 2009-04-24 2011-12-07 信越半導体株式会社 Semiconductor single crystal manufacturing method and semiconductor single crystal manufacturing apparatus

Also Published As

Publication number Publication date
JP2013040087A (en) 2013-02-28

Similar Documents

Publication Publication Date Title
JP6491763B2 (en) Method for producing silicon single crystal ingot
JP5029637B2 (en) Manufacturing method of semiconductor single crystal
KR20150094628A (en) Method for producing monocrystalline silicon
JP6102927B2 (en) Cutting method of high hardness material with multi-wire saw
JP5375889B2 (en) Single crystal manufacturing method
JP5594257B2 (en) Single crystal manufacturing method
WO2012114375A1 (en) Method for manufacturing n-type silicon single crystal, and phosphorus-doped n-type silicon single crystal
JP6248816B2 (en) Single crystal manufacturing method
JP5126267B2 (en) Silicon single crystal manufacturing method and silicon single crystal manufacturing apparatus
JPH07315980A (en) Method for growing semiconductor single crystal
JP5803729B2 (en) Induction heating coil and method for producing single crystal using the coil
JP5924181B2 (en) Manufacturing method of FZ single crystal silicon
JP6233182B2 (en) Single crystal manufacturing method and single crystal manufacturing apparatus
JP5888264B2 (en) Manufacturing method of semiconductor single crystal
JP5880415B2 (en) Single crystal manufacturing method
KR100639177B1 (en) Method for fabricating silicon single crystal
JP5505362B2 (en) Compound winding induction heating coil, single crystal manufacturing apparatus having the same, and single crystal manufacturing method using the same
JP2012126593A (en) Apparatus for producing semiconductor single crystal and method for producing semiconductor single crystal
JP6954083B2 (en) Method for manufacturing silicon raw material rod for FZ and method for manufacturing FZ silicon single crystal
JP2621069B2 (en) Method for producing semiconductor silicon single crystal by FZ method
JP6996477B2 (en) Single crystal manufacturing method
JP5505365B2 (en) Insulating member for preventing discharge in induction heating coil, single crystal manufacturing apparatus and single crystal manufacturing method using the same
JP5895875B2 (en) Manufacturing method of semiconductor single crystal
WO2023243357A1 (en) Method for producing silicon single crystal
JP6777013B2 (en) Single crystal manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140721

R150 Certificate of patent or registration of utility model

Ref document number: 5594257

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250