JP2010215431A - Method for producing semiconductor single crystal - Google Patents

Method for producing semiconductor single crystal Download PDF

Info

Publication number
JP2010215431A
JP2010215431A JP2009061570A JP2009061570A JP2010215431A JP 2010215431 A JP2010215431 A JP 2010215431A JP 2009061570 A JP2009061570 A JP 2009061570A JP 2009061570 A JP2009061570 A JP 2009061570A JP 2010215431 A JP2010215431 A JP 2010215431A
Authority
JP
Japan
Prior art keywords
single crystal
resistivity
semiconductor single
dopant
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009061570A
Other languages
Japanese (ja)
Other versions
JP5029637B2 (en
Inventor
Satoshi Suzuki
聡 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2009061570A priority Critical patent/JP5029637B2/en
Publication of JP2010215431A publication Critical patent/JP2010215431A/en
Application granted granted Critical
Publication of JP5029637B2 publication Critical patent/JP5029637B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a semiconductor single crystal by an FZ method (a floating zone method or a floating zone melting method) controllable of an in-plane resistivity distribution of the produced semiconductor single crystal in the radial direction and particularly reducing the variation of in-plane resistivity. <P>SOLUTION: The method for producing the semiconductor single crystal by the FZ method using a gas doping technique for jetting at least a dopant gas toward a floating zone to dope the semiconductor single crystal with the dopant and obtain the desired resistivity. The semiconductor single crystal is produced beforehand and the in-plane resistivity distribution of the produced semiconductor single crystal in the radial direction is acquired at the least. When the semiconductor single crystal being a product is produced, the amount of the dopant to be used for doping the semiconductor single crystal being the product with the dopant by using the gas doping technique is adjusted according to the beforehand acquired in-plane resistivity distribution during the time to form a straight drum part thereof so that the in-plane resistivity distribution of the semiconductor single crystal being the product in the radial direction is controlled. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、FZ法(フローティングゾーン法または浮遊帯溶融法)による半導体単結晶の製造方法に関し、さらに詳しくは、ドーパントガスを溶融帯域に噴射して半導体結晶を所望の電気抵抗率(これ以降、単に抵抗率と呼ぶ)にするガスドーピングを使用したFZ法による半導体単結晶の製造方法に関する。   The present invention relates to a method for producing a semiconductor single crystal by the FZ method (floating zone method or floating zone melting method), and more specifically, a dopant gas is injected into the melting zone to cause the semiconductor crystal to have a desired electrical resistivity (hereinafter, The present invention relates to a method for manufacturing a semiconductor single crystal by an FZ method using gas doping.

FZ法は、半導体単結晶、例えば、現在半導体素子として最も多く使用されているシリコン単結晶の製造方法の一つとして、使用される。
通常、シリコン単結晶に所望の抵抗率を与えるためにはN型或いはP型の不純物のドーピングが必要である。FZ法においては、ドーパントガスを溶融帯域に噴射するガスドーピング法が知られている(非特許文献1参照)。
The FZ method is used as one of methods for producing a semiconductor single crystal, for example, a silicon single crystal that is currently most frequently used as a semiconductor element.
Usually, in order to give a desired resistivity to a silicon single crystal, doping with N-type or P-type impurities is necessary. In the FZ method, a gas doping method in which a dopant gas is injected into a melting zone is known (see Non-Patent Document 1).

ドーパントガスとして、例えばN型ドーパントであるP(リン)のドーピングにはPH等が、P型ドーパントであるB(ホウ素)のドーピングにはB等が用いられる。シリコン単結晶の抵抗率は、これらN型ドーパントとP型ドーパントの結晶中の濃度差により変化するが、通常の単結晶製造においてN型ドーパントのみ、或いはP型ドーパントのみをドーピングする場合には、抵抗率はドーパントのドープ量が増加するにつれて低くなる。 As the dopant gas, for example, PH 3 or the like is used for doping P (phosphorus) which is an N-type dopant, and B 2 H 6 or the like is used for doping B (boron) which is a P-type dopant. The resistivity of the silicon single crystal varies depending on the concentration difference in the crystals of the N-type dopant and the P-type dopant, but when doping only the N-type dopant or only the P-type dopant in normal single crystal production, The resistivity decreases with increasing dopant doping.

所望の抵抗率のシリコン単結晶を得るためには、原料の抵抗率を考慮して、所望の抵抗率となるようにドーパントのドープ量を適正に調整する必要がある。供給されるドーパントガスの濃度や流量(噴射量)等を調整することによりドーパントのドープ量を適正に保ちつつFZ法による単結晶製造を行った結果として、所望の抵抗率を持つFZシリコン単結晶を得ることができる。   In order to obtain a silicon single crystal having a desired resistivity, it is necessary to appropriately adjust the doping amount of the dopant so as to obtain a desired resistivity in consideration of the resistivity of the raw material. As a result of manufacturing a single crystal by the FZ method while adjusting the concentration and flow rate (injection amount) of the supplied dopant gas and maintaining the dopant doping amount appropriately, an FZ silicon single crystal having a desired resistivity is obtained. Can be obtained.

所望の抵抗率を有するFZ法による半導体単結晶(FZ単結晶と呼ぶことがある)を得るためのガスドープ方法の工夫として、1本の半導体単結晶棒の製造途中でドープガス濃度を変更することにより、複数の抵抗率部分を1本の単結晶棒中に形成するマルチドープFZ単結晶棒製造方法(特許文献1参照)や、原料棒としてCZシリコン単結晶を用いる場合に、原料棒の成長軸方向に沿った抵抗率の変化に応じてガスドープによるドーパントのドープ量も変化させるFZ法(特許文献2参照)等が提案されている。   As a device of a gas doping method for obtaining a semiconductor single crystal by FZ method having a desired resistivity (sometimes referred to as FZ single crystal), by changing the doping gas concentration during the production of one semiconductor single crystal rod A growth axis of a raw material rod when a multi-doped FZ single crystal rod manufacturing method (see Patent Document 1) in which a plurality of resistivity portions are formed in one single crystal rod, or when a CZ silicon single crystal is used as a raw material rod There has been proposed an FZ method (see Patent Document 2) or the like in which the dopant doping amount by gas doping is changed in accordance with the change in resistivity along the direction.

FZ法により得られたシリコン単結晶から製造されるウエーハは、ウエーハ面内での抵抗率バラツキが小さく面内全域で抵抗率ができる限り均一であることが望まれている。なお、ここでいうウエーハ面内抵抗率分布の均一化とは、FZ単結晶の成長軸方向に垂直な断面内(すなわち、径方向面内)の抵抗率分布の均一化である。   It is desired that a wafer manufactured from a silicon single crystal obtained by the FZ method has a small resistivity variation in the wafer surface and is as uniform as possible over the entire surface. Here, the uniformity of the in-wafer in-plane resistivity distribution is to make the in-plane resistivity distribution uniform in a cross section perpendicular to the growth axis direction of the FZ single crystal (that is, in the radial plane).

この要求を満たすために、結晶製造条件を所定の範囲に調整する方法(例えば特許文献3参照)や、単結晶の回転方向を交互に変更させながら成長させる方法(例えば特許文献4)等が提案され、ウエーハ面内の抵抗率の均一化が図られている。   In order to satisfy this requirement, a method of adjusting crystal manufacturing conditions within a predetermined range (for example, see Patent Document 3), a method of growing while alternately changing the rotation direction of a single crystal (for example, Patent Document 4), etc. are proposed. Thus, the resistivity in the wafer surface is made uniform.

特許第2617263号公報Japanese Patent No. 2617263 特開2008−87984号公報JP 2008-87984 A 特許第2621069号公報Japanese Patent No. 2621069 特許第2820027号公報Japanese Patent No. 2820027

WOLFGANG KELLER、ALFRED MUHLBAUER著「Floating−Zone Silicon」p.82−92、MARCEL DEKKER, INC.発行“Floating-Zone Silicon” by WOLFGAN KELLER, ALFRED MUHLBAUER, p. 82-92, MARCEL DEKKER, INC. Issue

近年はディスクリートデバイス等の分野でも製造コスト低減のため、その材料であるFZシリコン単結晶から得られるウエーハの直径の拡大も求められ、直径150mm以上の大直径のFZシリコン単結晶の需要が増加し続けている。   In recent years, in the field of discrete devices and the like, in order to reduce the manufacturing cost, it is also required to increase the diameter of the wafer obtained from the material FZ silicon single crystal, and the demand for FZ silicon single crystal having a large diameter of 150 mm or more has increased. continuing.

しかし、特に直径150mm以上のFZシリコン単結晶の場合では、上記特許文献3、特許文献4のような方法を用いた場合は面内の抵抗率のバラツキを低減するのにもちろん有効ではあるが不十分であり、直径125mm以下のFZシリコン単結晶の場合に比べると、面内での抵抗率のバラツキは大きくなる。また、FZシリコン単結晶の直径が拡大する/しないにかかわらず、面内の抵抗率のバラツキのより一層の低減は継続的に求められている。   However, especially in the case of an FZ silicon single crystal having a diameter of 150 mm or more, using the methods as described in Patent Document 3 and Patent Document 4 is of course effective in reducing in-plane resistivity variation. This is sufficient, and the in-plane resistivity variation is larger than in the case of an FZ silicon single crystal having a diameter of 125 mm or less. Further, regardless of whether the diameter of the FZ silicon single crystal is enlarged, further reduction in in-plane resistivity variation is continuously demanded.

そこで、本発明は、上記問題点に鑑みてなされたものであって、本発明の目的は、製造される半導体単結晶の径方向の面内抵抗率分布を制御することができ、特には面内での抵抗率のバラツキを低減することが可能なFZ法による半導体単結晶の製造方法を提供することにある。   Therefore, the present invention has been made in view of the above problems, and an object of the present invention is to control the in-plane resistivity distribution in the radial direction of a manufactured semiconductor single crystal, and particularly to a surface. An object of the present invention is to provide a method for manufacturing a semiconductor single crystal by the FZ method, which can reduce variation in resistivity.

上記目的を達成するために、本発明は、少なくともドーパントガスを溶融帯域に噴出して半導体結晶にドーパントをドープし所望の抵抗率にするガスドーピングを使用したFZ法による半導体単結晶の製造方法において、少なくとも、予め前記半導体単結晶を製造して該半導体単結晶の径方向の面内抵抗率分布を取得し、製品となる半導体単結晶を製造するとき、直胴部を形成中に、該製品となる半導体単結晶への前記ガスドーピングによるドーパントのドープ量を、前記予め取得した径方向の面内抵抗率分布に応じて調節し、製品となる半導体単結晶の径方向の面内抵抗率分布を制御することを特徴とする半導体単結晶の製造方法を提供する。   In order to achieve the above object, the present invention provides a method for producing a semiconductor single crystal by FZ method using gas doping in which at least a dopant gas is injected into a melting zone to dope a semiconductor crystal with a dopant to obtain a desired resistivity. At least when the semiconductor single crystal is manufactured in advance to obtain the in-plane resistivity distribution in the radial direction of the semiconductor single crystal, and the semiconductor single crystal to be a product is manufactured, The amount of dopant doped by the gas doping into the semiconductor single crystal is adjusted according to the previously obtained radial in-plane resistivity distribution, and the in-plane resistivity distribution in the radial direction of the semiconductor single crystal to be the product There is provided a method for producing a semiconductor single crystal characterized by controlling the above.

このように、本発明は、ガスドーピングを使用したFZ法による半導体単結晶の製造方法であり、まず、予め半導体単結晶を製造し、その径方向の面内抵抗率分布を取得する。そして、実際に、製品となる半導体単結晶の製造時に、直胴部を形成中、該製品となる半導体単結晶へのガスドーピングによるドーパントのドープ量を、上述の予め取得した径方向の面内抵抗率分布に応じて調節し、製品となる半導体単結晶の径方向の面内抵抗率分布を制御する。   As described above, the present invention is a method for manufacturing a semiconductor single crystal by FZ method using gas doping. First, a semiconductor single crystal is manufactured in advance, and an in-plane resistivity distribution in the radial direction is obtained. Then, during the production of the semiconductor single crystal to be the product, the amount of dopant doped by gas doping to the semiconductor single crystal to be the product is formed in the above-mentioned radial in-plane. It adjusts according to the resistivity distribution, and controls the in-plane resistivity distribution in the radial direction of the semiconductor single crystal as a product.

このようにして実際に製品となる半導体単結晶を製造すれば、径方向の面内抵抗率分布を所望のように制御した半導体単結晶、さらには半導体ウエーハを得ることができる。例えば、面内での抵抗率のバラツキが低減され、面内抵抗率分布が従来よりも均一なものとすることができる。さらには、ウエーハから製造される素子の歩留りや生産性を向上させることが可能である。   Thus, if a semiconductor single crystal that is actually a product is manufactured, a semiconductor single crystal and a semiconductor wafer in which the in-plane resistivity distribution in the radial direction is controlled as desired can be obtained. For example, in-plane resistivity variation is reduced, and the in-plane resistivity distribution can be made more uniform than before. Furthermore, it is possible to improve the yield and productivity of elements manufactured from the wafer.

このとき、例えば径方向の面内抵抗率分布をより均一にするのであれば、前記予め取得した径方向の面内抵抗率分布が、前記半導体単結晶の中心部における抵抗率が低く周辺部における抵抗率が高い、下に凸の形状の分布の場合、前記製品となる半導体単結晶が結晶成長するにつれて、ドーパントのドープ量を減少するように調節して抵抗率を上昇させ、前記半導体単結晶の中心部における抵抗率が高く周辺部における抵抗率が低い、上に凸の形状の分布の場合、前記製品となる半導体単結晶が結晶成長するにつれて、ドーパントのドープ量を増加するように調節して抵抗率を低下させるのが好ましい。   At this time, for example, if the in-plane resistivity distribution in the radial direction is made more uniform, the previously obtained radial in-plane resistivity distribution has a low resistivity at the central portion of the semiconductor single crystal at the peripheral portion. In the case of a distribution having a downwardly convex shape with a high resistivity, the semiconductor single crystal that is the product is adjusted to decrease the doping amount of the dopant as the crystal grows, and the resistivity is increased. In the case of an upwardly convex distribution with a high resistivity at the center and a low resistivity at the periphery, the doping amount of the dopant is adjusted to increase as the semiconductor single crystal as the product grows. It is preferable to reduce the resistivity.

FZ法による結晶成長では結晶成長界面、すなわち溶融メルトと凝固した結晶の境界面(固液境界面)は下に凸な形状であり結晶中心部は相対的に遅れて凝固するため、予め取得した径方向の面内抵抗率分布の形状に応じ、上記のようにドーパントのドープ量を調節することによって、適切に、径方向の面内抵抗率分布を均一なものとすることができる。   In the crystal growth by the FZ method, the crystal growth interface, that is, the interface between the melt melt and the solidified crystal (solid-liquid interface) is convex downward, and the crystal center solidifies relatively late. By adjusting the doping amount of the dopant as described above according to the shape of the radial in-plane resistivity distribution, the radial in-plane resistivity distribution can be appropriately made uniform.

このとき、前記製品となる半導体単結晶の直径を150mm以上とすることができる。
本発明の半導体単結晶の製造方法により、従来は困難であった大直径を有する結晶の面内抵抗率分布の更なる均一化をなすことも可能になる。製造するFZ結晶の直径が150mm以上の場合にその効果がより発揮され、200mm以上の場合に更に顕著に発揮される。
At this time, the diameter of the semiconductor single crystal to be the product can be 150 mm or more.
According to the method for producing a semiconductor single crystal of the present invention, the in-plane resistivity distribution of a crystal having a large diameter, which has been difficult in the past, can be further uniformized. The effect is more exhibited when the diameter of the FZ crystal to be produced is 150 mm or more, and more prominently when the diameter is 200 mm or more.

また、前記製品となる半導体単結晶へのドーパントのドープ量の調節を、溶融帯域へ噴射するドーパントガスの噴射量および/または濃度を調整することにより行うことができる。
このようにすれば、簡便に製品となる半導体単結晶へのドーパントのドープ量を調節することができる。
Moreover, the adjustment of the doping amount of the dopant to the semiconductor single crystal as the product can be performed by adjusting the injection amount and / or concentration of the dopant gas injected into the melting zone.
If it does in this way, the doping amount of the dopant to the semiconductor single crystal used as a product can be adjusted simply.

また、前記製品となる半導体単結晶へのドーパントのドープ量の調節を、さらに、直胴部全体にわたって所定の範囲の抵抗率を有するように行うのが好ましい。
このようにしてドーパントのドープ量を調節すれば、直胴部全体にわたって、所定の範囲の抵抗率とすることができ、直胴部の全てを有効に利用することが可能になり、歩留りおよび生産性を向上させることができる。
Further, it is preferable to adjust the doping amount of the dopant to the semiconductor single crystal to be the product so as to have a predetermined range of resistivity over the entire straight body portion.
If the doping amount of the dopant is adjusted in this way, the resistivity within a predetermined range can be obtained over the entire straight body part, and all of the straight body part can be effectively used, and the yield and production can be improved. Can be improved.

以上、説明したように、本発明の半導体単結晶の製造方法であれば、径方向の面内抵抗率分布が制御された半導体単結晶を得ることができる。特には、大直径の単結晶の径方向の面内抵抗率分布の均一化を図ることができる。このことにより、当該結晶より製造されるウエーハの径方向面内での抵抗率の変動が低減され、更にはウエーハから素子を製造する際の歩留まり及び生産性が向上するため、結果として半導体単結晶供給安定性の向上も可能となる。   As described above, according to the method for producing a semiconductor single crystal of the present invention, a semiconductor single crystal having a controlled radial in-plane resistivity distribution can be obtained. In particular, the in-plane resistivity distribution in the radial direction of a single crystal having a large diameter can be made uniform. This reduces the variation in resistivity in the radial plane of the wafer manufactured from the crystal, and further improves the yield and productivity when manufacturing elements from the wafer. As a result, the semiconductor single crystal Supply stability can also be improved.

FZ法による半導体単結晶を製造するための装置の一例を示す概略図である。It is the schematic which shows an example of the apparatus for manufacturing the semiconductor single crystal by FZ method. FZ法による半導体単結晶の成長状態を示す模式図である。(A)結晶中心を通り結晶成長軸と平行な面で切り取った結晶断面の模式図である。(B)結晶中心を通り結晶成長軸と垂直な面で切り取った結晶断面の模式図である。It is a schematic diagram which shows the growth state of the semiconductor single crystal by FZ method. (A) It is the schematic diagram of the crystal | crystallization cross section cut off in the surface which passes along the crystal center and is parallel to a crystal growth axis. FIG. 4B is a schematic view of a crystal cross section taken along a plane passing through the crystal center and perpendicular to the crystal growth axis. 本発明の半導体単結晶の製造方法の手順の一例を示したフロー図である。It is the flowchart which showed an example of the procedure of the manufacturing method of the semiconductor single crystal of this invention. 予備試験における単結晶から取得した抵抗率分布を示すグラフである。(A)結晶成長軸方向に沿った抵抗率分布を示すグラフである。(B)直胴部の始点(L1)における径方向の面内抵抗率分布である。(C)直胴部の中間点(L2)における径方向の面内抵抗率分布である。(D)直胴部の終点(L3)における径方向の面内抵抗率分布である。It is a graph which shows the resistivity distribution acquired from the single crystal in a preliminary test. (A) It is a graph which shows the resistivity distribution along the crystal growth axis direction. (B) In-plane resistivity distribution in the radial direction at the start point (L1) of the straight body portion. (C) In-plane resistivity distribution in the radial direction at the midpoint (L2) of the straight body portion. (D) In-plane resistivity distribution in the radial direction at the end point (L3) of the straight body portion. 本試験における製品となる単結晶から取得した抵抗率分布を示すグラフである。(A)結晶成長軸方向に沿った抵抗率分布を示すグラフである。(B)直胴部の始点(L1)における径方向の面内抵抗率分布である。(C)直胴部の中間点(L2)における径方向の面内抵抗率分布である。(D)直胴部の終点(L3)における径方向の面内抵抗率分布である。It is a graph which shows the resistivity distribution acquired from the single crystal used as the product in this test. (A) It is a graph which shows the resistivity distribution along the crystal growth axis direction. (B) In-plane resistivity distribution in the radial direction at the start point (L1) of the straight body portion. (C) In-plane resistivity distribution in the radial direction at the midpoint (L2) of the straight body portion. (D) In-plane resistivity distribution in the radial direction at the end point (L3) of the straight body portion. 実施例の予備試験におけるシリコン単結晶から取得した抵抗率分布を示すグラフである。(A)結晶成長軸方向に沿った抵抗率分布を示すグラフである。(B)直胴部の0mmの位置における径方向の面内抵抗率分布である。(C)直胴部の350mmの位置における径方向の面内抵抗率分布である。(D)直胴部の700mmの位置における径方向の面内抵抗率分布である。It is a graph which shows the resistivity distribution acquired from the silicon single crystal in the preliminary test of an Example. (A) It is a graph which shows the resistivity distribution along the crystal growth axis direction. (B) In-plane resistivity distribution in the radial direction at a position of 0 mm in the straight body portion. (C) In-plane resistivity distribution in the radial direction at a position of 350 mm in the straight body portion. (D) In-plane resistivity distribution in the radial direction at a position of 700 mm in the straight body portion. 実施例の本試験におけるシリコン単結晶から取得した抵抗率分布を示すグラフである。(A)結晶成長軸方向に沿った抵抗率分布を示すグラフである。(B)直胴部の0mmの位置における径方向の面内抵抗率分布である。(C)直胴部の350mmの位置における径方向の面内抵抗率分布である。(D)直胴部の700mmの位置における径方向の面内抵抗率分布である。It is a graph which shows the resistivity distribution acquired from the silicon single crystal in this test of an Example. (A) It is a graph which shows the resistivity distribution along the crystal growth axis direction. (B) In-plane resistivity distribution in the radial direction at a position of 0 mm in the straight body portion. (C) In-plane resistivity distribution in the radial direction at a position of 350 mm in the straight body portion. (D) In-plane resistivity distribution in the radial direction at a position of 700 mm in the straight body portion.

以下では、本発明の実施の形態について、図を参照しながら詳細に説明するが、本発明はこれに限定されるものではない。
本発明者は、FZ法による半導体単結晶(FZ単結晶)の径方向の面内抵抗率のバラツキの低減を達成するため、FZ単結晶の製造方法について鋭意調査を行った。具体的には、まず、FZ単結晶を製造し、結晶内の結晶成長の状態、さらには抵抗率分布について調査した。
なお、以下ではシリコン単結晶を例に挙げて説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings, but the present invention is not limited thereto.
The present inventor has intensively investigated a method for producing an FZ single crystal in order to achieve a reduction in variation in the radial in-plane resistivity of the semiconductor single crystal (FZ single crystal) by the FZ method. Specifically, first, an FZ single crystal was manufactured, and the state of crystal growth in the crystal and further the resistivity distribution were investigated.
Hereinafter, a silicon single crystal will be described as an example.

図1にFZ法による半導体単結晶を製造するための装置の一例の概略を示す。FZ単結晶製造装置1は、チャンバー2を有しており、該チャンバー2内には、回転可能な上軸3および下軸4が設けられている。該上軸3には原料棒5として所定の直径のシリコン棒が取り付けられ、また該下軸4には種結晶6が取り付けられる。またチャンバー2内には、原料棒5を溶融するための高周波コイル7や、ガスドーピングの際に、原料棒5が溶融された溶融帯域8にドーパントガスを噴出するためのドープノズル9が配置されている。   FIG. 1 shows an outline of an example of an apparatus for manufacturing a semiconductor single crystal by the FZ method. The FZ single crystal manufacturing apparatus 1 has a chamber 2, and an upper shaft 3 and a lower shaft 4 that can rotate are provided in the chamber 2. A silicon rod having a predetermined diameter is attached to the upper shaft 3 as a raw material rod 5, and a seed crystal 6 is attached to the lower shaft 4. In the chamber 2, a high-frequency coil 7 for melting the raw material rod 5 and a dope nozzle 9 for ejecting a dopant gas into the melting zone 8 where the raw material rod 5 is melted during gas doping are arranged. Yes.

このようなFZ単結晶製造装置1を用いてFZ単結晶を製造するには、上軸3に取り付けた原料棒5の先端を高周波コイル7で溶融した後、下軸4に取り付けた種結晶6に融着させ、絞り10により無転位化し、上軸3および下軸4を回転させながら下降させ、溶融帯域8を原料棒5に対して相対的に移動させながらシリコン単結晶11を成長させる。この時、絞り後、所望の直径までシリコン単結晶11の直径を徐々に拡大させてコーン部12を形成し、所望直径まで達した後は所望直径を保ったまま結晶成長を行い、直胴部13を形成する。成長中に、ドープノズル9からドーパントガスを溶融帯域8に噴射してドーパントを供給し、所望の抵抗率を持つシリコン単結晶棒とする。溶融帯域8を原料棒5の上端まで移動させてシリコン単結晶11の製造を終える。   In order to manufacture an FZ single crystal using such an FZ single crystal manufacturing apparatus 1, the tip of the raw material rod 5 attached to the upper shaft 3 is melted by the high-frequency coil 7 and then the seed crystal 6 attached to the lower shaft 4. The silicon single crystal 11 is grown while moving the melting zone 8 relative to the raw material rod 5 while lowering the upper shaft 3 and the lower shaft 4 while rotating them. At this time, after squeezing, the diameter of the silicon single crystal 11 is gradually expanded to a desired diameter to form a cone portion 12, and after reaching the desired diameter, crystal growth is performed while maintaining the desired diameter, 13 is formed. During the growth, a dopant gas is injected from the dope nozzle 9 into the melting zone 8 to supply the dopant, thereby forming a silicon single crystal rod having a desired resistivity. The melting zone 8 is moved to the upper end of the raw material bar 5 to complete the production of the silicon single crystal 11.

このようにして得られたシリコン単結晶11の結晶内の結晶成長の状態を調べた。
図2(A)は、結晶中心を通り結晶成長軸と平行な面で切り取った結晶成長の状態を示す結晶断面の模式図である。原料棒5が溶融された溶融メルト14が再結晶化してシリコン単結晶11となる様子が示されており、溶融メルト14とシリコン単結晶11の境界には固液境界面15が存在する。シリコン単結晶11が成長するにつれて、固液境界面15は相対的に上方へ移動する。
The state of crystal growth in the crystal of the silicon single crystal 11 thus obtained was examined.
FIG. 2A is a schematic diagram of a crystal cross section showing a state of crystal growth taken along a plane passing through the crystal center and parallel to the crystal growth axis. The melt melt 14 in which the raw material rod 5 is melted is recrystallized to form the silicon single crystal 11, and a solid-liquid interface 15 exists at the boundary between the melt melt 14 and the silicon single crystal 11. As the silicon single crystal 11 grows, the solid-liquid interface 15 moves relatively upward.

FZ法によるシリコン単結晶の製造においては、製造単結晶の径方向の温度勾配が大きく、図2(A)に示す通り固液境界面15は下に凸な形状となる。固液境界面15において、結晶の周辺部と中心部との結晶成長軸方向における位置の差(固液境界面深さ16)は、製造するシリコン単結晶11の直径が大きくなるほど大きくなる。   In the production of a silicon single crystal by the FZ method, the temperature gradient in the radial direction of the production single crystal is large, and the solid-liquid boundary surface 15 has a downwardly convex shape as shown in FIG. In the solid-liquid interface 15, the difference in position in the crystal growth axis direction between the periphery and the center of the crystal (solid-liquid interface depth 16) increases as the diameter of the silicon single crystal 11 to be manufactured increases.

この製造するシリコン単結晶11の結晶部位による品質差異を無くすため、通常は単結晶製造中の状態をできるだけ一定に保つように製造条件が設定されており、固液境界面の形状は大きく変化することなく実質的に一定で推移する。
一方、製造したシリコン単結晶棒からウエーハを製造する場合は、結晶軸方位から指定方向、指定角度傾いた方位のウエーハを取得したい場合等の例外を除き、結晶成長軸方向に垂直(すなわち、結晶の径方向)に直線的に切断する(例えば、図2(A)の点線P参照)。このため1枚のウエーハ表面は結晶成長時の固液境界面とは一致しない。すなわち、ウエーハの径方向の面内において各位置は同時に生成されたわけではなく、該ウエーハ全体は所定の時間(固液境界面深さ÷結晶成長速度)をかけて生成されたものである。
In order to eliminate the quality difference due to the crystal part of the silicon single crystal 11 to be manufactured, the manufacturing conditions are usually set so as to keep the state during the single crystal manufacturing as constant as possible, and the shape of the solid-liquid interface greatly changes. It remains substantially constant without any change.
On the other hand, when manufacturing a wafer from the manufactured silicon single crystal rod, it is perpendicular to the crystal growth axis direction (that is, the crystal growth axis direction) (except for the case where it is desired to acquire a wafer having a specified direction and tilted angle from the crystal axis direction). (For example, see the dotted line P in FIG. 2A). For this reason, the surface of one wafer does not coincide with the solid-liquid interface at the time of crystal growth. That is, the positions are not generated simultaneously in the radial plane of the wafer, but the entire wafer is generated over a predetermined time (solid-liquid interface depth ÷ crystal growth rate).

図2(B)は結晶成長軸と垂直な面で切り取った、ある位置・ある時点(図2(A)の点線Pに示す部分)での結晶断面(径方向の断面)を示す。結晶断面で見たときの生成履歴を考えると、図2(B)の断面のように、周辺部から同心円状に内側に向かって徐々に凝固していき、最後に中心部が凝固するような履歴となっているはずである。これは切断後に製品仕様に応じてウエーハに研磨等の処理を行った後の表面についても同じことである。   FIG. 2B shows a crystal cross section (radial cross section) at a certain position and at a certain point (portion indicated by a dotted line P in FIG. 2A) cut along a plane perpendicular to the crystal growth axis. Considering the generation history when viewed in the crystal cross section, as shown in the cross section of FIG. 2 (B), it gradually solidifies from the peripheral portion inward in a concentric shape, and finally the central portion solidifies. It should be a history. The same applies to the surface after the wafer has been subjected to a treatment such as polishing according to the product specifications after cutting.

ところで、面内抵抗率分布は以下の様なプロセスにより決定されると考えられる。
1. FZ単結晶製造中は溶融帯域内にメルトの対流が発生するが、メルト対流はFZ製造条件毎に異なる。
2. メルト対流はメルト全体で一様ではなく、結晶径方向の位置により差異が存在する。
3. メルト中のドーパント濃度はマクロ的にはメルト全体で一様であるが、メルト対流の差異の影響で、固液境界面から結晶中に取り込まれるドーパント量にも差異が生ずる。
4. 固液境界面上においても径方向の各位置での抵抗率の差異があり、抵抗率分布(=固液境界面内抵抗率分布)が生ずる。
5. FZ単結晶製造中は継続してドーパントが供給されるため、メルト中のドーパント濃度が一定に保たれ、かつFZ製造条件も保たれるためメルト対流は実質的に不変であることから、結晶成長が進んでも固液境界面内抵抗率分布は軸方向では不変であり、結晶径方向の各位置における抵抗率も経時的変化は少なく、結晶成長軸方向ではほぼ同じ径方向分布を有したまま一定に保たれる。
By the way, it is considered that the in-plane resistivity distribution is determined by the following process.
1. While the FZ single crystal is produced, melt convection occurs in the melting zone, but the melt convection varies depending on the FZ production conditions.
2. Melt convection is not uniform throughout the melt, and there are differences depending on the position in the crystal diameter direction.
3. The dopant concentration in the melt is macroscopically uniform throughout the melt, but due to the difference in melt convection, the amount of dopant taken into the crystal from the solid-liquid interface also varies.
4). Even on the solid-liquid boundary surface, there is a difference in resistivity at each position in the radial direction, and a resistivity distribution (= solid-liquid boundary surface resistivity distribution) occurs.
5). Since the dopant is continuously supplied during the FZ single crystal production, the dopant concentration in the melt is kept constant, and the FZ production conditions are also kept, so that the melt convection is substantially unchanged. However, the resistivity distribution in the solid-liquid interface is not changed in the axial direction, and the resistivity at each position in the crystal diameter direction is little changed with time, and the crystal growth axis direction has almost the same radial distribution. To be kept.

このため、前記のように、例え結晶中のある部分の径方向の断面全体が同時に生成されておらず、面内の位置によって生成タイミングにズレが存在していたとしても、結晶径方向の各位置における抵抗率は、結晶成長軸方向で変動無く実質的に均一となり、面内抵抗率分布はバラツキを有したまま変化せず同じものが得られる。   For this reason, as described above, even if the entire radial cross section of a portion in the crystal is not generated at the same time, even if there is a deviation in the generation timing depending on the position in the plane, The resistivity at the position is substantially uniform without variation in the crystal growth axis direction, and the in-plane resistivity distribution remains unchanged and remains the same.

ここで、本発明者は、結晶成長するにつれて供給するドーパント量を変化させることにより、面内抵抗率分布を変化させることに想到した。
結晶成長中に供給するドーパント量を変化させても、単結晶製造中の固液境界における面内抵抗率の分布形状自体はメルト対流が不変であるため変化しない。しかしながら、メルト中のドーパント濃度の変化及び抵抗率の変化が生ずるため、結晶径方向における各位置の成長軸方向に沿った抵抗率は、供給するドーパント量の変化の前後で変化する。後のウエーハ面となる単結晶成長軸に垂直な結晶断面は、同時にではなく所定の時間をかけて生成されるため、ある断面の一部を生成(凝固)中に、供給するドーパント量を変化させた場合、当該断面内のそれ以降生成される部分の抵抗率は、供給するドーパント量の変化に応じて変化する。よって実際に得られる当該断面の抵抗率分布は、供給するドーパント量の変化時の既生成部分が生成された時点で予想される面内抵抗率分布から変化する。
Here, the present inventor has conceived to change the in-plane resistivity distribution by changing the amount of dopant supplied as the crystal grows.
Even if the amount of dopant supplied during crystal growth is changed, the distribution shape itself of the in-plane resistivity at the solid-liquid boundary during the production of the single crystal does not change because the melt convection is unchanged. However, since the change of the dopant concentration in the melt and the change of the resistivity occur, the resistivity along the growth axis direction at each position in the crystal diameter direction changes before and after the change of the supplied dopant amount. Since the crystal cross section perpendicular to the single crystal growth axis that becomes the later wafer surface is generated over a predetermined time rather than simultaneously, the amount of dopant supplied is changed during the generation (solidification) of a part of the cross section. When it is made, the resistivity of the part produced | generated after that in the said cross section changes according to the change of the dopant amount to supply. Therefore, the actually obtained resistivity distribution of the cross section changes from the in-plane resistivity distribution expected at the time when the already-generated part at the time of change of the supplied dopant amount is generated.

さらには、所定のFZ単結晶製造条件を用い、実際に製品となる単結晶を製造するに先立って、予め、その所定のFZ単結晶製造条件を用いて得られる単結晶における径方向の面内抵抗率分布を求めておく。そして、その分布に基づき、実際に製品となる単結晶を製造するときに供給するドーパント量を調節すれば、有効に面内抵抗率分布を変化させることができ、所望の分布に制御することが可能であることを本発明者は見出し、本発明を完成させた。   Further, prior to manufacturing a single crystal that is actually a product using predetermined FZ single crystal manufacturing conditions, in-plane in the radial direction of the single crystal obtained using the predetermined FZ single crystal manufacturing conditions in advance. Obtain the resistivity distribution. Based on the distribution, if the amount of dopant supplied when actually producing a single crystal as a product is adjusted, the in-plane resistivity distribution can be effectively changed and controlled to a desired distribution. The inventor has found that this is possible, and has completed the present invention.

図3に、本発明の半導体単結晶の製造方法の具体的な手順の一例を示す。
なお、製造する半導体単結晶の種類は特に限定されず、以下に例として示すシリコン単結晶の他、適宜、所望の半導体単結晶を製造することができる。
また、結晶の直径のサイズ等も特に限定されない。特に直径が150mm以上、さらには200mm以上の場合、従来では例えば径方向の面内抵抗率分布の均一化を図るのは困難であったが、本発明であれば均一に制御することも可能であり、より顕著に本発明の効果を発揮することができる。製造する単結晶の直径が大きくなるほど、固液境界面深さは増大し、また面内抵抗率バラツキ低減の必要性が高まるため、本発明の適用は特に大直径結晶の製造時に効果的である。
また、図1に示すFZ単結晶製造装置1を用いて製造する例について説明するが、これに限定されず、その都度適切なFZ単結晶製造装置を用いることが可能である。
FIG. 3 shows an example of a specific procedure of the method for producing a semiconductor single crystal according to the present invention.
In addition, the kind of semiconductor single crystal to manufacture is not specifically limited, In addition to the silicon single crystal shown as an example below, a desired semiconductor single crystal can be manufactured suitably.
Also, the size of the crystal diameter is not particularly limited. In particular, when the diameter is 150 mm or more, further 200 mm or more, for example, it has been difficult to achieve uniform in-plane resistivity distribution in the radial direction in the past. However, in the present invention, uniform control is possible. Yes, the effect of the present invention can be exhibited more remarkably. As the diameter of the single crystal to be produced increases, the solid-liquid interface depth increases, and the necessity for reducing in-plane resistivity variation increases. Therefore, the application of the present invention is particularly effective when producing large-diameter crystals. .
Moreover, although the example manufactured using the FZ single crystal manufacturing apparatus 1 shown in FIG. 1 is demonstrated, it is not limited to this, It is possible to use a suitable FZ single crystal manufacturing apparatus each time.

(予備試験)
まず、後に実際に製品となるシリコン単結晶を製造するときと同様の製造条件(ただし、ガスドーピングの条件は除く)により、シリコン単結晶を製造する(単結晶の製造)。
このように、予備試験用のシリコン単結晶を製造するにあたり、製品となるシリコン単結晶を製造するときと同様の製造条件とすることで、当然、より有効な予備試験を行うことができ、最終的に、製品となるシリコン単結晶の径方向の面内抵抗率分布を一層精密に制御することが可能になるので好ましい。
(Preliminary test)
First, a silicon single crystal is manufactured (manufacturing a single crystal) under the same manufacturing conditions (except for gas doping conditions) as when manufacturing a silicon single crystal that is actually a product later.
In this way, in producing a silicon single crystal for preliminary testing, it is possible to perform a more effective preliminary test by using the same production conditions as those for producing a silicon single crystal as a product. In particular, the in-plane resistivity distribution in the radial direction of the silicon single crystal as a product can be controlled more precisely, which is preferable.

シリコン単結晶の製造方法としては、上述したように、FZ単結晶製造装置1を用い、上軸3に取り付けた原料棒5(シリコン多結晶棒)の先端を高周波コイル7で溶融した後、下軸4に取り付けた種結晶6に融着させ、絞り10により無転位化し、上軸3および下軸4を回転させながら下降させ、溶融帯域8を原料棒5に対して相対的に移動させながらシリコン単結晶11を成長させる。この時、絞り後、所望の直径までコーン部12を形成し、さらに直胴部13を形成する。溶融帯域8を原料棒5の上端まで移動させてシリコン単結晶11の製造を終える。
成長中に、ドープノズル9からドーパントガスを溶融帯域8に噴射してドーパントを供給し、所望の抵抗率を持つシリコン単結晶棒とする。ここでは、簡単のため、ドーパントガスの噴射量および濃度は一定とするが特には限定されない。
As described above, the silicon single crystal is manufactured by using the FZ single crystal manufacturing apparatus 1 and melting the tip of the raw material bar 5 (silicon polycrystalline bar) attached to the upper shaft 3 with the high-frequency coil 7. Fused to the seed crystal 6 attached to the shaft 4, dislocation-free by the throttle 10, lowered while rotating the upper shaft 3 and the lower shaft 4, and moved the melting zone 8 relative to the raw material rod 5 A silicon single crystal 11 is grown. At this time, after the drawing, the cone portion 12 is formed to a desired diameter, and the straight body portion 13 is further formed. The melting zone 8 is moved to the upper end of the raw material bar 5 to complete the production of the silicon single crystal 11.
During the growth, a dopant gas is injected from the dope nozzle 9 into the melting zone 8 to supply the dopant, thereby forming a silicon single crystal rod having a desired resistivity. Here, for simplicity, the injection amount and concentration of the dopant gas are constant, but are not particularly limited.

次に、製造したシリコン単結晶11について、径方向の面内抵抗率分布を取得する(製造した単結晶の径方向の面内抵抗率分布の取得)。
径方向の面内抵抗率分布の取得方法は、例えば、シリコン単結晶11の直胴部13からウエーハを切り出し、各ウエーハにおいて径方向の面内抵抗率分布を得る。これが、シリコン単結晶11のウエーハを切り出した位置における径方向の面内抵抗率分布に該当する。そして、各ウエーハにおける面内抵抗率分布の情報を集積すれば、シリコン単結晶11の直胴部13全体の径方向の面内抵抗率分布を得ることができる。抵抗率の測定方法等は、既存の方法を用いれば良い。
なお、このとき固液境界面の形状についても取得する。固液境界面の形状により、例えば結晶の径方向の中心部と周辺部を比較してどちらが先に凝固して再結晶化されるのかを把握することができる。ただし、上述したように、FZ法によるシリコン単結晶の製造では、一般に固液境界面は下に凸な形状となる。
Next, the in-plane resistivity distribution in the radial direction is acquired for the manufactured silicon single crystal 11 (acquisition of the in-plane resistivity distribution in the radial direction of the manufactured single crystal).
As a method for obtaining the radial in-plane resistivity distribution, for example, a wafer is cut out from the straight body portion 13 of the silicon single crystal 11, and the in-plane resistivity distribution in the radial direction is obtained for each wafer. This corresponds to the in-plane resistivity distribution in the radial direction at the position where the wafer of the silicon single crystal 11 is cut out. If the information of the in-plane resistivity distribution in each wafer is accumulated, the in-plane resistivity distribution in the radial direction of the entire straight body portion 13 of the silicon single crystal 11 can be obtained. An existing method may be used as a method for measuring the resistivity.
At this time, the shape of the solid-liquid interface is also acquired. Depending on the shape of the solid-liquid boundary surface, for example, the central portion and the peripheral portion in the radial direction of the crystal can be compared to determine which is first solidified and recrystallized. However, as described above, in the production of a silicon single crystal by the FZ method, the solid-liquid interface generally has a downwardly convex shape.

このようにして取得した径方向の面内抵抗率分布の例を図4に示す。図4(A)は、結晶成長軸方向に沿った抵抗率分布(径方向の面内抵抗率分布の各平均を結晶成長軸方向に沿って示したもの)であり、図4(B)〜(D)は、それぞれ直胴部13の始点(L1)、中間点(L2)、終点(L3)における径方向の面内抵抗率分布である。   An example of the radial in-plane resistivity distribution thus obtained is shown in FIG. FIG. 4A is a resistivity distribution along the crystal growth axis direction (each average of radial in-plane resistivity distributions is shown along the crystal growth axis direction). (D) is an in-plane resistivity distribution in the radial direction at the start point (L1), the intermediate point (L2), and the end point (L3) of the straight body part 13, respectively.

図4(A)に示すように、この例では、直胴部13の始めから終わりまでの、各径方向の面内における抵抗率の平均はほぼ一定である。すなわち、ドーパントのドープ量は終始ほぼ一定となっている。   As shown in FIG. 4A, in this example, the average of the resistivity in each radial direction from the beginning to the end of the straight body portion 13 is substantially constant. That is, the doping amount of the dopant is almost constant from start to finish.

また、図4(B)〜(D)に示すように、この例では、各L1、L2、L3の位置において、径方向の面内における抵抗率は、結晶の中心部では低く、周辺部では高くなっているため、下に凸の形状になっている。これは、上述したように、径方向の位置により差異が生じるメルト対流のため、固液境界面から結晶中に取り込まれるドーパントのドーパント量にも差異が生じているためと考えられる。   In addition, as shown in FIGS. 4B to 4D, in this example, at the positions of L1, L2, and L3, the in-plane resistivity in the radial direction is low at the center of the crystal and at the periphery. Since it is higher, it has a downwardly convex shape. As described above, this is considered to be due to the difference in the dopant amount of the dopant taken into the crystal from the solid-liquid interface because of the melt convection that varies depending on the position in the radial direction.

(本試験)
次に、実際に製品となるシリコン単結晶を製造する(製品となる単結晶の製造)。
このとき、予備試験で取得した単結晶の径方向の面内抵抗率分布(図4(B)〜(D)参照)に応じ、ガスドーピングの条件を調節することにより、ドーパントのドープ量を調節する。そしてこれによって、製品となるシリコン単結晶の径方向の面内抵抗率分布を所望のように制御する。
(main exam)
Next, a silicon single crystal that is actually a product is manufactured (manufacture of a single crystal that is a product).
At this time, the doping amount of the dopant is adjusted by adjusting the gas doping conditions according to the in-plane resistivity distribution in the radial direction of the single crystal obtained in the preliminary test (see FIGS. 4B to 4D). To do. Thus, the in-plane resistivity distribution in the radial direction of the silicon single crystal to be the product is controlled as desired.

例えば、市場での要求に応じるため、径方向の面内抵抗率分布が均一なシリコン単結晶を製造するのであれば、図4(B)〜(D)のような下に凸の分布形状の上下幅を狭めるように、ドーパントのドープ量を調節する。
具体的には、図4(B)〜(D)の分布から、後から成長する径方向の中心の方が抵抗率が低いことから、この場合は、結晶成長するにつれてドーパントのドープ量を減少させ、結晶成長軸方向で抵抗率を上昇させながら製品となるシリコン単結晶の製造を行うのが効果的である。すなわち、先に凝固する周辺部の生成時よりも中心部の生成時の抵抗率を上げることにより、径方向の面内における抵抗率のバラツキを低減することができる。
For example, if a silicon single crystal having a uniform in-plane resistivity distribution in the radial direction is manufactured in order to meet market demands, a downwardly convex distribution shape as shown in FIGS. The dopant doping amount is adjusted so as to narrow the vertical width.
Specifically, from the distribution of FIGS. 4B to 4D, since the resistivity is lower in the radial center that grows later, in this case, the doping amount of the dopant is reduced as the crystal grows. It is effective to manufacture a silicon single crystal as a product while increasing the resistivity in the crystal growth axis direction. That is, by increasing the resistivity at the time of generating the central portion rather than at the time of generating the peripheral portion that solidifies first, it is possible to reduce the variation in resistivity in the radial plane.

なお、このときの結晶成長軸方向に沿った抵抗率分布(径方向の面内抵抗率分布の各平均を結晶成長軸方向に沿って示したもの)を図5(A)、直胴部13の始点(L1)、中間点(L2)、終点(L3)における径方向の面内抵抗率分布を図5(B)〜(D)に示す。   The resistivity distribution along the crystal growth axis direction at this time (the average of the radial in-plane resistivity distributions shown along the crystal growth axis direction) is shown in FIG. The in-plane resistivity distributions in the radial direction at the start point (L1), the intermediate point (L2), and the end point (L3) are shown in FIGS.

図4(B)〜(D)とは逆に、中心部の抵抗率が高く、周辺部の抵抗率が低い、上に凸の径方向の面内抵抗率分布が得られるシリコン単結晶の製造条件を用いる場合は、結晶成長するにつれてドーパントのドープ量を増加させ、抵抗率を結晶成長軸方向で低下させながら製品となるシリコン単結晶の製造を行うのが効果的である。   Contrary to FIGS. 4B to 4D, a silicon single crystal having a high resistivity in the central portion and a low resistivity in the peripheral portion and an upward convex radial in-plane resistivity distribution can be obtained. In the case of using the conditions, it is effective to increase the doping amount of the dopant as the crystal grows and manufacture a silicon single crystal as a product while decreasing the resistivity in the crystal growth axis direction.

ガスドーピングによるドーパントのドープ量を調節するにあたっては、例えば、ドープノズル9から噴射するドーパントガスの噴射量や、濃度を調整することによって行うことができる。これらの調整方法であれば、簡単に結晶へのドーパントのドープ量を調節することが可能であり好ましい。この他、適切にドーパントのドープ量を調節することができる方法であれば、特に限定されず、適宜用いることができる。   In adjusting the doping amount of the dopant by gas doping, for example, it can be performed by adjusting the injection amount and concentration of the dopant gas injected from the dope nozzle 9. These adjustment methods are preferable because the amount of dopant doped into the crystal can be easily adjusted. In addition, the method is not particularly limited as long as it can adjust the doping amount of the dopant appropriately, and can be used as appropriate.

なお、事前に取得した径方向の面内抵抗率分布に応じて、上記ドーパントのドープ量を調節するにあたっては、コンピュータ等を用いてドーパントガスの噴射量の変化等を計算し、ガスドーピングの条件を設定しパターン化しておくと良い。このようにすれば、より適正かつ簡便に、所望の抵抗率分布が得られるようにドープ量を調節することが可能である。   In addition, in adjusting the doping amount of the dopant according to the radial in-plane resistivity distribution obtained in advance, a change in the injection amount of the dopant gas is calculated using a computer or the like, and the gas doping conditions It is good to set and pattern. In this way, it is possible to adjust the doping amount so as to obtain a desired resistivity distribution more appropriately and simply.

以上のようにして、シリコン単結晶、さらにはそれから切り出したウエーハの径方向の面内における抵抗率の変動(抵抗率の分布の上下幅)を最小限にするドーパントのドープ量の変化を求め、調節することが可能であるが、一方では結晶成長軸方向の抵抗率の変化は避けられない(図5(A)参照)。   As described above, the change in the doping amount of the dopant that minimizes the variation in resistivity (upper and lower width of the resistivity distribution) in the radial direction of the silicon single crystal and the wafer cut out from the single crystal is obtained. Although it is possible to adjust, on the other hand, a change in resistivity in the direction of the crystal growth axis is unavoidable (see FIG. 5A).

このため、結晶製造の際には、面内抵抗率の変動の程度の他、さらに所望とする抵抗率範囲、直胴部長さ等の条件を鑑みて、ドーパントのドープ量を調節して結晶成長軸方向における抵抗率の変化の度合を調整するのが好ましい。
特には、直胴部13の全体にわたって、抵抗率が狙いの所定の範囲内(例えば規格内)に収めることができるように調節すれば(図5(A)参照)、直胴部の全てを有効に利用することが可能になり、径方向の面内抵抗率分布が優れており、かつ歩留りおよび生産性高く素子を製造することができるシリコン単結晶を得ることができる。
For this reason, in crystal production, in addition to the degree of variation in in-plane resistivity, crystal growth can be achieved by adjusting the dopant doping amount in consideration of the desired resistivity range, straight body length, etc. It is preferable to adjust the degree of change in resistivity in the axial direction.
In particular, if the resistivity is adjusted so that the resistivity can fall within a predetermined range (for example, within the standard) over the entire straight body portion 13 (see FIG. 5A), all of the straight body portions are adjusted. It is possible to obtain a silicon single crystal that can be effectively used, has an excellent in-plane resistivity distribution in the radial direction, and can manufacture elements with high yield and productivity.

以上のような本発明によって、径方向の面内抵抗率分布を所望のように制御することができ、目的(特には径方向の面内抵抗率分布の均一化)に一層適した半導体単結晶を得ることが可能である。そして、その結果、素子製造の歩留りおよび生産性を高めることができる。   By the present invention as described above, the in-plane resistivity distribution in the radial direction can be controlled as desired, and the semiconductor single crystal is more suitable for the purpose (particularly, the uniformity of the in-plane resistivity distribution in the radial direction). It is possible to obtain As a result, the yield and productivity of device manufacture can be increased.

以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例)
本発明の半導体単結晶の製造方法を用いてFZシリコン単結晶を製造する。結晶直径150mm、直胴部長さ700mm、導電型N型、狙い抵抗率範囲45−75Ωcm(狙い中心値60Ωcm)のシリコン単結晶(直胴部長さが700mm)の製造を行う。
EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated more concretely, this invention is not limited to these.
(Example)
An FZ silicon single crystal is manufactured using the method for manufacturing a semiconductor single crystal of the present invention. A silicon single crystal having a crystal diameter of 150 mm, a straight body length of 700 mm, a conductivity type N type, and a target resistivity range of 45 to 75 Ωcm (target center value of 60 Ωcm) is manufactured.

まず、予備試験として、製造するシリコン単結晶の抵抗率が、結晶成長軸方向で一定となるようにガスドーピングの条件を調整した。そして、得られた単結晶の抵抗率分布について調査した。なお、固液境界面形状は下に凸であった。
図6(A)はこの時のシリコン単結晶の結晶成長軸方向に沿った抵抗率分布(径方向の面内抵抗率分布の各平均を結晶成長軸方向に沿って示したもの)を示す。また、図6(B)〜(D)はこの時の単結晶から切り出したウエーハの径方向の面内抵抗率分布である。図6(B)は単結晶直胴部の始点である0mmの位置から、図6(C)は350mmの位置から、図6(D)は終点である700mmの位置から、それぞれ切り出したウエーハの径方向の面内抵抗率分布を示す。
First, as a preliminary test, the gas doping conditions were adjusted so that the resistivity of the silicon single crystal to be produced was constant in the crystal growth axis direction. And the resistivity distribution of the obtained single crystal was investigated. In addition, the solid-liquid interface shape was convex downward.
FIG. 6A shows a resistivity distribution along the crystal growth axis direction of the silicon single crystal at this time (each average of radial in-plane resistivity distributions is shown along the crystal growth axis direction). 6B to 6D show the in-plane resistivity distribution in the radial direction of the wafer cut out from the single crystal at this time. FIG. 6B shows the wafer cut out from the position of 0 mm, which is the starting point of the single crystal straight body, FIG. 6C shows the position of 350 mm, and FIG. The in-plane resistivity distribution in the radial direction is shown.

図6(B)〜(D)に示すように、この時の径方向の面内抵抗率分布は製造した単結晶全体にわたって、単結晶(ウエーハ)の中心部の抵抗率が低く周辺部の抵抗率が高い、下に凸のすり鉢状の分布形状となった。
ここで、RRG=((ウエーハ面内の抵抗率最大値−ウエーハ面内の抵抗率最小値)/(ウエーハ面内の抵抗率最小値))×100
と定義すると、この場合のRRG値は、単結晶直胴部の0mmの位置で10.5%、350mmの位置で11.8%、700mmの位置で12.3%であった。また、単結晶直胴部全体において、RRG値の最低値は10.5%であった。このRRGの値が大きいほど、径方向の面内における抵抗率の変動が大きい。
As shown in FIGS. 6 (B) to 6 (D), the in-plane resistivity distribution in the radial direction at this time has a low resistivity at the center of the single crystal (wafer) throughout the manufactured single crystal and the resistance at the peripheral portion. It became a mortar-like distribution shape with a high rate and a downward convexity.
Here, RRG = ((maximum resistivity in the wafer plane−minimum resistivity in the wafer plane) / (minimum resistivity in the wafer plane)) × 100
In this case, the RRG value in this case was 10.5% at the position of 0 mm, 11.8% at the position of 350 mm, and 12.3% at the position of 700 mm. Moreover, in the entire single crystal straight body, the lowest RRG value was 10.5%. The larger the value of RRG, the greater the variation in resistivity in the radial plane.

そこで、径方向の面内における抵抗率の変動が、予備試験用に製造した単結晶よりも低減されるように、図6の抵抗率の分布に基づいて、次に行う本試験の製品となる単結晶の製造において、実際に、結晶成長軸方向でガスドーピングの条件を変化させてドーパントのドープ量を調節した。すなわち、次に製造する製品となるシリコン単結晶の径方向の面内抵抗率分布がより均一になるように制御した。   Therefore, based on the distribution of resistivity shown in FIG. 6, the product of this test to be performed next is obtained so that the variation in resistivity in the radial plane is reduced as compared with the single crystal manufactured for the preliminary test. In the production of a single crystal, the doping amount of the dopant was actually adjusted by changing the gas doping conditions in the crystal growth axis direction. That is, the in-plane resistivity distribution in the radial direction of the silicon single crystal to be manufactured next was controlled to be more uniform.

より具体的には、元となる径方向の面内抵抗率分布(図6(B)〜(D)参照)は、中心部の抵抗率が低く周辺部の抵抗率が高い、下に凸形状であるため、結晶成長するにつれてドーパントガスの噴射量を低減していき、ドーパントのドープ量を減少するように調節した。また、狙い抵抗率範囲45−75Ωcmもさらに考慮し、結晶の直胴部全体がその範囲内で収まるようにドーパントのドープ量を調節した。
なお、ガスドーピングの条件以外は予備試験と同様の製造条件とした。
以上のような条件で、製品となるシリコン単結晶を製造し、抵抗率分布について調査した。
More specifically, the radial radial in-plane resistivity distribution (see FIGS. 6B to 6D) has a low convexity at the center and a low resistivity at the periphery. Therefore, the injection amount of the dopant gas was reduced as the crystal was grown, and the doping amount of the dopant was adjusted to be reduced. Further, in consideration of the target resistivity range of 45 to 75 Ωcm, the doping amount of the dopant was adjusted so that the entire straight body of the crystal was within the range.
The production conditions were the same as in the preliminary test except for the gas doping conditions.
Under the conditions as described above, a silicon single crystal as a product was manufactured, and the resistivity distribution was investigated.

図7(A)はこの時のシリコン単結晶の結晶成長軸方向に沿った抵抗率分布(径方向の面内抵抗率分布の各平均を結晶成長軸方向に沿って示したもの)を示す。また、図7(B)〜(D)はこの時の単結晶から切り出したウエーハの径方向の面内抵抗率分布である。図7(B)は単結晶直胴部の始点である0mmの位置から、図7(C)は350mmの位置から、図7(D)は終点である700mmの位置から、それぞれ切り出したウエーハの径方向の面内抵抗率分布を示す。
また、表1に、結晶成長軸方向における抵抗率上昇率を示す。
FIG. 7A shows the resistivity distribution along the crystal growth axis direction of the silicon single crystal at this time (each average of the radial in-plane resistivity distributions shown along the crystal growth axis direction). 7B to 7D show the in-plane resistivity distribution in the radial direction of the wafer cut out from the single crystal at this time. 7B shows the wafer cut out from the position of 0 mm, which is the starting point of the single crystal straight body, FIG. 7C shows the position of 350 mm, and FIG. 7D shows the wafer cut out from the position of 700 mm, which is the end point. The in-plane resistivity distribution in the radial direction is shown.
Table 1 shows the rate of increase in resistivity in the crystal growth axis direction.

Figure 2010215431
Figure 2010215431

まず、図7(B)〜(D)に示すように、得られたウエーハの径方向の面内抵抗率分布は、依然として中心部の抵抗率が周辺部の抵抗率より低い、下に凸の分布形状ではあるが、図6(B)〜(D)に示す予備試験における抵抗率の分布形状と比較すると抵抗率のバラツキは格段に小さくなり、目標としていたように、径方向の面内抵抗率分布の形状をより均一になるようにすることができたことがわかる。RRG値を計算すると、結晶成長軸方向の抵抗率の上昇率が最も大きい単結晶直胴部の0mmの位置で4.7%、結晶成長軸方向の抵抗率の上昇率が小さい350mm、700mmの位置でそれぞれ6.0%、5.5%であった。したがって、予備試験における単結晶と本試験における単結晶のRRG値の変化に関して、単結晶直胴部から0mmの位置では−5.8%(4.7%−10.5%)、350mmの位置では−5.8%(6.0%−11.8%)、700mmの位置では−6.8%(5.5%−12.3%)であり全て減少させることができた。
なお、全体的には、結晶成長軸方向の抵抗率の上昇率が大きい方が、よりRRG値の減少の程度が大きくなる傾向があった。
First, as shown in FIGS. 7B to 7D, the in-plane resistivity distribution in the radial direction of the obtained wafer is still lower than the resistivity in the central portion, which is lower than the resistivity in the peripheral portion. Although it is a distribution shape, as compared with the distribution shape of the resistivity in the preliminary test shown in FIGS. 6B to 6D, the variation in the resistivity is remarkably reduced, and the in-plane resistance in the radial direction is the target. It can be seen that the shape of the rate distribution could be made more uniform. When the RRG value is calculated, the rate of increase in resistivity in the crystal growth axis direction is 4.7% at the position of 0 mm of the single crystal straight body, and the rate of increase in resistivity in the crystal growth axis direction is 350 mm and 700 mm. The position was 6.0% and 5.5%, respectively. Therefore, regarding the change in the RRG value of the single crystal in the preliminary test and the single crystal in the main test, the position of -5.8% (4.7% -10.5%) at the position of 0 mm from the single crystal straight body portion, the position of 350 mm -5.8% (6.0% -11.8%) at the position of 700 mm and -6.8% (5.5% -12.3%) at the position of 700 mm, all of which could be reduced.
As a whole, there was a tendency that the degree of decrease in the RRG value increased as the resistivity increase rate in the crystal growth axis direction increased.

また、本試験での単結晶直胴部全体において、RRG値の最高値は6.0%であった。すなわち、直胴部全体にわたって予備試験時の値(最低値10.5%)よりも小さくすることができ、直胴部全体にわたって径方向の面内の抵抗率の変動を低減することができた。
さらには、直胴部全体を、狙い抵抗率範囲45−75Ωcmに収めることができた。
Further, in the whole single crystal straight body part in this test, the maximum value of the RRG value was 6.0%. That is, it was possible to make it smaller than the value at the preliminary test (minimum value of 10.5%) over the entire straight body portion, and to reduce the variation of the resistivity in the radial direction over the entire straight body portion. .
Furthermore, the entire straight body was able to be within a target resistivity range of 45 to 75 Ωcm.

すなわち、径方向の面内抵抗率分布がより均一であり、品質面でより優れているとともに、直胴部全体が、所望の抵抗率の範囲内に収まっていて全て利用可能なシリコン単結晶を得ることができた。   That is, the in-plane resistivity distribution in the radial direction is more uniform, the quality is superior, and the entire straight body portion is within the desired resistivity range, and all usable silicon single crystals are obtained. I was able to get it.

(比較例)
従来の半導体単結晶の製造方法を用いてFZシリコン単結晶を製造する。結晶直径150mm、結晶長さ700mm、導電型N型、狙い抵抗率範囲45−75Ωcm(狙い中心値60Ωcm)のシリコン単結晶の製造を行う。
(Comparative example)
An FZ silicon single crystal is manufactured using a conventional method for manufacturing a semiconductor single crystal. A silicon single crystal having a crystal diameter of 150 mm, a crystal length of 700 mm, a conductivity type N type, and a target resistivity range of 45 to 75 Ωcm (target center value of 60 Ωcm) is manufactured.

実施例の予備試験と同様の製造条件でシリコン単結晶の製造を行った。そして、得られた単結晶の抵抗率分布について調査した。なお、固液境界面形状は下に凸であった。
その結果、図6と同様の結果が得られた。RRG値も同様の値であった。
A silicon single crystal was produced under the same production conditions as in the preliminary test of the example. And the resistivity distribution of the obtained single crystal was investigated. In addition, the solid-liquid interface shape was convex downward.
As a result, the same results as in FIG. 6 were obtained. The RRG value was similar.

以上のように、従来法による比較例では、直胴部全体が狙い抵抗率範囲内であるものの(図6(A)参照)、結晶成長軸方向の各位置における径方向の面内抵抗率分布を見ると、抵抗率の変動が比較的大きくなってしまう(図6(B)〜(D)参照)。一方、本発明の製造方法を用いれば、実施例のように所望のように径方向の面内抵抗率の分布を制御することができ、特にはその均一化を図ることが可能であり、実際に、結晶成長軸方向の各位置における径方向の面内の抵抗率の変動を比較例に比べて格段に小さくすることができる(図7参照)。しかも、同時に、直胴部全体を狙い抵抗率範囲内に収めることもできる。   As described above, in the comparative example according to the conventional method, although the entire straight body portion is within the target resistivity range (see FIG. 6A), the in-plane resistivity distribution in the radial direction at each position in the crystal growth axis direction. , The resistivity variation is relatively large (see FIGS. 6B to 6D). On the other hand, if the manufacturing method of the present invention is used, the distribution of the in-plane resistivity in the radial direction can be controlled as desired as in the embodiment, and in particular, it can be made uniform. In addition, the variation in the in-plane resistivity at each position in the crystal growth axis direction can be significantly reduced as compared with the comparative example (see FIG. 7). Moreover, at the same time, the entire straight body portion can be aimed and kept within the resistivity range.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

1…FZ単結晶製造装置、 2…チャンバー、 3…上軸、 4…下軸、
5…原料棒、 6…種結晶、 7…高周波コイル、 8…溶融帯域、
9…ドープノズル、 10…絞り、 11…シリコン単結晶、
12…コーン部、 13…直胴部、 14…溶融メルト、
15…固液境界面、 16…固液境界面深さ。
DESCRIPTION OF SYMBOLS 1 ... FZ single crystal manufacturing apparatus, 2 ... Chamber, 3 ... Upper axis, 4 ... Lower axis,
5 ... Raw material rod, 6 ... Seed crystal, 7 ... High frequency coil, 8 ... Melting zone,
9 ... Dope nozzle, 10 ... Aperture, 11 ... Silicon single crystal,
12 ... cone part, 13 ... straight body part, 14 ... melt melt,
15 ... solid-liquid interface, 16 ... solid-liquid interface depth.

Claims (5)

少なくともドーパントガスを溶融帯域に噴出して半導体結晶にドーパントをドープし所望の抵抗率にするガスドーピングを使用したFZ法による半導体単結晶の製造方法において、
少なくとも、予め前記半導体単結晶を製造して該半導体単結晶の径方向の面内抵抗率分布を取得し、製品となる半導体単結晶を製造するとき、直胴部を形成中に、該製品となる半導体単結晶への前記ガスドーピングによるドーパントのドープ量を、前記予め取得した径方向の面内抵抗率分布に応じて調節し、製品となる半導体単結晶の径方向の面内抵抗率分布を制御することを特徴とする半導体単結晶の製造方法。
In a method for producing a semiconductor single crystal by FZ method using gas doping in which at least a dopant gas is injected into a melting zone to dope a semiconductor crystal with a dopant to obtain a desired resistivity,
At least when the semiconductor single crystal is manufactured in advance and the in-plane resistivity distribution in the radial direction of the semiconductor single crystal is obtained, and the semiconductor single crystal to be a product is manufactured, The doping amount of the dopant by the gas doping to the semiconductor single crystal is adjusted according to the previously acquired radial in-plane resistivity distribution, and the in-plane resistivity distribution in the radial direction of the semiconductor single crystal to be a product is adjusted. A method for producing a semiconductor single crystal, comprising controlling the semiconductor single crystal.
前記予め取得した径方向の面内抵抗率分布が、
前記半導体単結晶の中心部における抵抗率が低く周辺部における抵抗率が高い、下に凸の形状の分布の場合、前記製品となる半導体単結晶が結晶成長するにつれて、ドーパントのドープ量を減少するように調節して抵抗率を上昇させ、
前記半導体単結晶の中心部における抵抗率が高く周辺部における抵抗率が低い、上に凸の形状の分布の場合、前記製品となる半導体単結晶が結晶成長するにつれて、ドーパントのドープ量を増加するように調節して抵抗率を低下させることを特徴とする請求項1に記載の半導体単結晶の製造方法。
The previously obtained radial in-plane resistivity distribution is
In the case of a downwardly convex distribution with a low resistivity in the central portion of the semiconductor single crystal and a high resistivity in the peripheral portion, the dopant doping amount is reduced as the product semiconductor single crystal grows. To increase the resistivity,
In the case of an upward convex distribution with a high resistivity at the center of the semiconductor single crystal and a low resistivity at the periphery, the dopant doping amount is increased as the semiconductor single crystal as the product grows. The method of manufacturing a semiconductor single crystal according to claim 1, wherein the resistivity is reduced by adjusting the resistance in such a manner.
前記製品となる半導体単結晶の直径を150mm以上とすることを特徴とする請求項1または請求項2に記載の半導体単結晶の製造方法。   3. The method for producing a semiconductor single crystal according to claim 1, wherein a diameter of the semiconductor single crystal to be the product is 150 mm or more. 前記製品となる半導体単結晶へのドーパントのドープ量の調節を、溶融帯域へ噴射するドーパントガスの噴射量および/または濃度を調整することにより行うことを特徴とする請求項1から請求項3のいずれか一項に記載の半導体単結晶の製造方法。   The amount of dopant doped into the semiconductor single crystal as the product is adjusted by adjusting the injection amount and / or concentration of the dopant gas injected into the melting zone. The manufacturing method of the semiconductor single crystal as described in any one. 前記製品となる半導体単結晶へのドーパントのドープ量の調節を、さらに、直胴部全体にわたって所定の範囲の抵抗率を有するように行うことを特徴とする請求項1から請求項4のいずれか一項に記載の半導体単結晶の製造方法。   5. The method according to claim 1, wherein the doping amount of the dopant to the semiconductor single crystal to be the product is further adjusted so as to have a resistivity within a predetermined range over the entire straight body portion. A method for producing a semiconductor single crystal according to one item.
JP2009061570A 2009-03-13 2009-03-13 Manufacturing method of semiconductor single crystal Active JP5029637B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009061570A JP5029637B2 (en) 2009-03-13 2009-03-13 Manufacturing method of semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009061570A JP5029637B2 (en) 2009-03-13 2009-03-13 Manufacturing method of semiconductor single crystal

Publications (2)

Publication Number Publication Date
JP2010215431A true JP2010215431A (en) 2010-09-30
JP5029637B2 JP5029637B2 (en) 2012-09-19

Family

ID=42974691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009061570A Active JP5029637B2 (en) 2009-03-13 2009-03-13 Manufacturing method of semiconductor single crystal

Country Status (1)

Country Link
JP (1) JP5029637B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012114375A1 (en) * 2011-02-23 2012-08-30 信越半導体株式会社 Method for manufacturing n-type silicon single crystal, and phosphorus-doped n-type silicon single crystal
JP2013040087A (en) * 2011-08-19 2013-02-28 Shin Etsu Handotai Co Ltd Method for producing single crystal
CN105177699A (en) * 2015-10-19 2015-12-23 天津市环欧半导体材料技术有限公司 Refection ring for improving uniformity of axial and radial resistivities of float zone silicon single crystal
JP2016039169A (en) * 2014-08-05 2016-03-22 信越半導体株式会社 Method for guaranteeing resistivity of single crystal substrate
JP2016079065A (en) * 2014-10-17 2016-05-16 株式会社Sumco Production method and production device of monocrystal
JP2017069492A (en) * 2015-10-01 2017-04-06 信越半導体株式会社 Evaluation method for silicon single crystal substrate
CN110872726A (en) * 2018-09-03 2020-03-10 胜高股份有限公司 Method and apparatus for producing single crystal, and single crystal silicon ingot
CN112899771A (en) * 2019-12-04 2021-06-04 胜高股份有限公司 Single crystal manufacturing apparatus and method of manufacturing single crystal
CN115341268A (en) * 2021-05-13 2022-11-15 内蒙古中环协鑫光伏材料有限公司 Method for automatically controlling resistivity of monocrystalline silicon

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02275621A (en) * 1989-04-17 1990-11-09 Kyushu Electron Metal Co Ltd Method of controlling uniformity of in-plane p-distribution of p-type silicon crystal
JP2005035816A (en) * 2003-07-17 2005-02-10 Shin Etsu Handotai Co Ltd Method for manufacturing silicon single crystal and silicon single crystal
JP2005306653A (en) * 2004-04-21 2005-11-04 Shin Etsu Handotai Co Ltd Method for manufacturing silicon single crystal
WO2006003782A1 (en) * 2004-06-30 2006-01-12 Shin-Etsu Handotai Co., Ltd. Silicon single crystal manufacturing method and apparatus
JP2007314374A (en) * 2006-05-26 2007-12-06 Shin Etsu Handotai Co Ltd Manufacturing method of fz single crystal silicon using silicon crystal rod manufactured by cz method as raw material
JP2008087984A (en) * 2006-09-29 2008-04-17 Sumco Techxiv株式会社 Method for production of silicon single crystal, apparatus for controlling production of silicon single crystal, and program

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02275621A (en) * 1989-04-17 1990-11-09 Kyushu Electron Metal Co Ltd Method of controlling uniformity of in-plane p-distribution of p-type silicon crystal
JP2005035816A (en) * 2003-07-17 2005-02-10 Shin Etsu Handotai Co Ltd Method for manufacturing silicon single crystal and silicon single crystal
JP2005306653A (en) * 2004-04-21 2005-11-04 Shin Etsu Handotai Co Ltd Method for manufacturing silicon single crystal
WO2006003782A1 (en) * 2004-06-30 2006-01-12 Shin-Etsu Handotai Co., Ltd. Silicon single crystal manufacturing method and apparatus
JP2007314374A (en) * 2006-05-26 2007-12-06 Shin Etsu Handotai Co Ltd Manufacturing method of fz single crystal silicon using silicon crystal rod manufactured by cz method as raw material
JP2008087984A (en) * 2006-09-29 2008-04-17 Sumco Techxiv株式会社 Method for production of silicon single crystal, apparatus for controlling production of silicon single crystal, and program

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012114375A1 (en) * 2011-02-23 2012-08-30 信越半導体株式会社 Method for manufacturing n-type silicon single crystal, and phosphorus-doped n-type silicon single crystal
JP2013040087A (en) * 2011-08-19 2013-02-28 Shin Etsu Handotai Co Ltd Method for producing single crystal
JP2016039169A (en) * 2014-08-05 2016-03-22 信越半導体株式会社 Method for guaranteeing resistivity of single crystal substrate
JP2016079065A (en) * 2014-10-17 2016-05-16 株式会社Sumco Production method and production device of monocrystal
JP2017069492A (en) * 2015-10-01 2017-04-06 信越半導体株式会社 Evaluation method for silicon single crystal substrate
CN105177699A (en) * 2015-10-19 2015-12-23 天津市环欧半导体材料技术有限公司 Refection ring for improving uniformity of axial and radial resistivities of float zone silicon single crystal
CN110872726A (en) * 2018-09-03 2020-03-10 胜高股份有限公司 Method and apparatus for producing single crystal, and single crystal silicon ingot
CN110872726B (en) * 2018-09-03 2021-08-27 胜高股份有限公司 Method and apparatus for producing single crystal, and single crystal silicon ingot
CN112899771A (en) * 2019-12-04 2021-06-04 胜高股份有限公司 Single crystal manufacturing apparatus and method of manufacturing single crystal
CN112899771B (en) * 2019-12-04 2023-12-29 胜高股份有限公司 Single crystal production apparatus and single crystal production method
CN115341268A (en) * 2021-05-13 2022-11-15 内蒙古中环协鑫光伏材料有限公司 Method for automatically controlling resistivity of monocrystalline silicon

Also Published As

Publication number Publication date
JP5029637B2 (en) 2012-09-19

Similar Documents

Publication Publication Date Title
JP5029637B2 (en) Manufacturing method of semiconductor single crystal
KR101997565B1 (en) Method for producing monocrystalline silicon
KR101680215B1 (en) Method for manufacturing silicone single crystal ingot and silicone single crystal ingot manufactured by the method
JP2009221079A (en) Method and apparatus for manufacturing semiconductor crystal by fz method
JP6248816B2 (en) Single crystal manufacturing method
JP3601328B2 (en) Method for producing silicon single crystal and silicon single crystal and silicon wafer produced by this method
JP5953884B2 (en) Method for producing sapphire single crystal
JP4831203B2 (en) Semiconductor single crystal manufacturing method and semiconductor single crystal manufacturing apparatus
JP6119642B2 (en) Manufacturing method of semiconductor single crystal
CN110872726B (en) Method and apparatus for producing single crystal, and single crystal silicon ingot
JP6756244B2 (en) Manufacturing method of semiconductor silicon single crystal
JP6152784B2 (en) Manufacturing method of semiconductor crystal
JP5716689B2 (en) Silicon single crystal manufacturing method and silicon single crystal manufacturing apparatus
JP5201730B2 (en) Manufacturing method of FZ method silicon single crystal
JP2018080084A (en) Production method of semiconductor silicon single crystal
JP4218460B2 (en) Graphite heater for single crystal production, single crystal production apparatus and single crystal production method
JP5234148B2 (en) Semiconductor single crystal manufacturing method and semiconductor single crystal manufacturing apparatus
JP4433865B2 (en) Method for producing silicon single crystal
JP5888264B2 (en) Manufacturing method of semiconductor single crystal
JP5895875B2 (en) Manufacturing method of semiconductor single crystal
JP4134800B2 (en) Graphite heater for single crystal production, single crystal production apparatus and single crystal production method
JP6488975B2 (en) Pulling method of silicon single crystal
JP2621069B2 (en) Method for producing semiconductor silicon single crystal by FZ method
JP4148059B2 (en) Graphite heater for single crystal production, single crystal production apparatus and single crystal production method
JP2014169211A (en) Method for producing semiconductor single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120611

R150 Certificate of patent or registration of utility model

Ref document number: 5029637

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250