JP2012120523A - Method and apparatus for controlling environment of underground rooting zone of crop through forcible water and air flow and drainage - Google Patents

Method and apparatus for controlling environment of underground rooting zone of crop through forcible water and air flow and drainage Download PDF

Info

Publication number
JP2012120523A
JP2012120523A JP2010294664A JP2010294664A JP2012120523A JP 2012120523 A JP2012120523 A JP 2012120523A JP 2010294664 A JP2010294664 A JP 2010294664A JP 2010294664 A JP2010294664 A JP 2010294664A JP 2012120523 A JP2012120523 A JP 2012120523A
Authority
JP
Japan
Prior art keywords
soil
water
pipe
forced
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010294664A
Other languages
Japanese (ja)
Inventor
Chikashi Kamimura
親士 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JOHO KAGAKU KENKYUSHO KK
MARUTOKU KK
Information Science Research Institute
Original Assignee
JOHO KAGAKU KENKYUSHO KK
MARUTOKU KK
Information Science Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JOHO KAGAKU KENKYUSHO KK, MARUTOKU KK, Information Science Research Institute filed Critical JOHO KAGAKU KENKYUSHO KK
Priority to JP2010294664A priority Critical patent/JP2012120523A/en
Publication of JP2012120523A publication Critical patent/JP2012120523A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catching Or Destruction (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an underground environment controlling technology enabling low-cost and labor-saving high profitability in order to improve agricultural production.SOLUTION: An overall soil environment controlling apparatus which combines a method of simplified forcible water and air flow and forcible drainage of soil, a method for agricultural labor-saving type rooting zone soil environment control, and methods and apparatuses of forcible water and air flow and microbubble supply to rooting zone soil, drainage of a rooting zone in an over-humidity state, and soil disease and insect pest prevention, and handles many works by one system is provided.

Description

本発明は、圃場の根圏の土層における空気(酸素)、水及び培養液、更にマイクロバブルの強制的供給による農作物の収量、品質の飛躍的向上を図り、一方、集中豪雨等天候不順に伴う冠水による圃場の根圏土層の強制排水による湿害防止更には土壌病害虫窒息防除等に関する。  The present invention aims to dramatically improve the yield and quality of crops by forced supply of air (oxygen), water and culture solution, and microbubbles in the rhizosphere soil of the field. The present invention relates to the prevention of moisture damage by forced drainage of the rhizosphere soil layer of the field due to the flooding and the control of soil pests and suffocation.

土壌通気に関する技術としては、農作物の根圏環境の改善のため、心土を破砕し、土の団粒化と土の中に空気を送り、透水性を高める深耕鋤(ハロー)、深耕ローター、トレンチャー、サブソイラー等の深耕する技術や土層を穿孔して空気と肥料養分を深層まで貫注する技術が行われてきたが、いずれも、土層の深層耕運と深層への空気の供給を目指したものである。従って、堆厩肥の施用や酸度矯正の石灰施用による土壌の団粒化と合わせて「土づくり」の一環として行われている。  Soil aeration technologies include deep plowing (hello), deep plowing rotors, which increase the water permeability by crushing subsoils, aggregating the soil and sending air into the soil to improve the rhizosphere environment of the crops. Technology to deeply cultivate trenchers, subsoilers, etc. and technology to pierce the soil layer and infuse air and fertilizer nutrients to the deep layer, both of which aim to deeply cultivate the soil layer and supply air to the deep layer It is a thing. Therefore, it is carried out as part of “soil making” together with soil agglomeration by application of manure and acidity correction lime.

強制通気は、水耕栽培で行われており、バブリング通気、水気耕栽培等が行われ、最近ではマイクロバブルによる通気栽培が開発され、マイクロバブルには従来は知られていない生理的な活性を起こす効果があることが判明し、根に対する空気の供給が如何に重要なことであるかを示している。土耕の強制通気も開発されているが、多くは鉢植え用、又は防暑壁面、屋上のビオトープに関するもので、畑が対象ではない。  Forced aeration is carried out by hydroponics. Bubbling aeration, hydroponic cultivation, etc. have been carried out. Recently, aeration cultivation using microbubbles has been developed, and microbubbles have a physiological activity that has not been conventionally known. It proves to be effective and shows how important the supply of air to the roots is. Forced ventilation for soil cultivation has also been developed, but most are for potted plants, heat-resistant walls, rooftop biotopes, not fields.

潅水方法では、通水溝による導水に始まり、スプリンクラー、レインガンによる樹上潅水、防除を兼ねたスピードスプレーヤー等が主流である。乾燥地、ハウス栽培では、点滴栽培用の潅水チューブが用いられている。
土中潅水については、技術開発の数も少なく、多くが鉢やポットの栽培形式が多い。
今後、温暖化が進むと潅水も蒸散によるロスを如何に防止するかが課題である。
In the irrigation method, the mainstream is speeding sprayers, which start with water flow through water channels, sprinklers, tree irrigation with rain guns, and control. In dry land and house cultivation, irrigation tubes for drip cultivation are used.
Regarding soil irrigation, the number of technical developments is small, and most of them are cultivated in pots and pots.
In the future, as global warming progresses, the issue is how to prevent irrigation loss due to transpiration.

土壌病害虫防除については、メチルブロマイドの土壌注入による防除が行われてきたが、メチルブロマイドの製造禁止により現場では防除に支障を来たしている。
現状では、接ぎ木による作物の耐病害虫性を強化する方法、地表をシートで密封して穴にクロールピクリンを注いで土壌薫蒸する方法。殺菌剤を散布する方法、ボイラーの蒸気で殺菌殺虫する方法、バーナーで土壌を焼却し焼き殺す方法、黒いシートで地表を覆い太陽熱で蒸し殺す方法等が用いられている。
Soil pest control has been carried out by injecting methyl bromide into the soil, but the production of methyl bromide has been hindered in the field due to the ban on the production of methyl bromide.
At present, the method is to enhance the disease and pest resistance of crops by grafting, and the method is to seal the ground surface with a sheet and pour crawl picrin into the hole to fumigate the soil. A method of spraying a disinfectant, a method of sterilizing and killing with boiler steam, a method of incinerating and burning the soil with a burner, a method of covering the surface with a black sheet and steaming and killing with solar heat are used.

土壌環境制御技術としては、上記のような各種の技術を組み合わせることが重要である。実際には、温床など地温制御の技術、強制通気の技術、暗渠による強制排水の技術が開発されているが、何れも総合化されていないので、根圏土層の環境制御と言うには程遠いのが現状である。  As a soil environment control technology, it is important to combine the above various technologies. Actually, ground temperature control technology such as hotbeds, forced ventilation technology, and forced drainage technology using underdrains have been developed, but none of them are integrated, so it is far from environmental control of the rhizosphere soil layer. is the current situation.

作物の生育にとっては、根に対する酸素供給が最も重要で、これに養分の供給、温度の保持などを加え環境制御と称する発明が多い。酸素供給については水耕栽培については、以前から多くの研究がなされてきた。そこで最近の出願状況を調査した。
特許文献1は、ブドウの根に空気を触れさせながら、培養液を散水する水気耕栽培である。本出願は土耕栽培である。
For the growth of crops, oxygen supply to the roots is the most important, and there are many inventions called environmental control by adding nutrients, maintaining temperature, etc. to this. As for oxygen supply, many studies have been made on hydroponics. Therefore, the recent application status was investigated.
Patent document 1 is the hydroponic cultivation which sprinkles a culture solution, making air contact the grape root. This application is soil cultivation.

特許文献2は、水耕栽培の根圏周辺に画像処理装置及び根圏環境制御装置を設置し、温度、肥料濃度、イオン濃度を制御する技術である。本出願は土耕栽培である。  Patent Document 2 is a technique in which an image processing device and a rhizosphere environment control device are installed around the rhizosphere of hydroponics to control temperature, fertilizer concentration, and ion concentration. This application is soil cultivation.

特許文献3は、作物の栽培に於いて、根に溶液を噴霧しながら空中に曝し、温度、培養液を制御する環境制御装置で、水耕栽培であるが、本出願は土耕栽培である。  Patent Literature 3 is an environmental control device that controls the temperature and the culture solution by exposing the roots to the air while spraying a solution on the roots in the cultivation of crops, and this application is soil cultivation. .

特許文献4は、メタン発酵のエネルギーを利用して、植物への温度、光照射を制御する装置である。本出願は根の通気、養水分の制御が主要な目標である。  Patent Document 4 is an apparatus that controls the temperature and light irradiation of a plant using the energy of methane fermentation. The main goals of this application are root aeration and moisture control.

特許文献5は、根に溶液を噴霧しながら空中に曝し、熱媒体循環配管により温度を制御する環境制御装置で、一種の水耕栽培であり、本出願は土耕栽培である。  Patent document 5 is an environmental control device that exposes the roots to the air while spraying the solution on the roots and controls the temperature by means of a heat medium circulation pipe. This is a kind of hydroponics, and this application is soil cultivation.

特許文献6は、植物栽培環境医於いて、放熱体と植物体の熱交換を向上させる技術である。これは温度の制御が目的であり、本出願は根の通気、養水分の制御が主要な目標である。  Patent Document 6 is a technique for improving heat exchange between a radiator and a plant in a plant cultivation environmental physician. The purpose of this is to control the temperature, and the main goal of this application is to control root aeration and moisture.

特許文献7は、有機質培地で培地内に強制通気を行い地上部から散水する方法と装置あり、本出願と原理の点で一部類似しているが、鉢やプランターを対称としたものであり、本願の場合は樹木を含む広い圃場を対称としたものである。
技術的にも水の供給が土壌表面から行っているのに対し、本出願は水及び培養液を強制注入するので相違する。
また、本出願の場合は過湿状態になった圃場からの排水を行ったり、土壌病害虫防除行うなどの圃場の土壌環境の制御が目的であるので基本的に相違する。
Patent Document 7 is a method and apparatus for forcibly ventilating the medium with an organic medium and sprinkling water from the above-ground part, which is partially similar to the present application in terms of the principle, but with a symmetrical pot and planter. In the case of the present application, a wide field including trees is symmetric.
Technically, water is supplied from the soil surface, whereas the present application is different because water and culture solution are forcibly injected.
Further, in the case of the present application, since the purpose is to control the soil environment of the field such as draining from the field in an overhumid state or controlling the pest of the soil, it is basically different.

特許文献8は、温室ハウスで吸水性フィルム上に植物培養液を隔離し、点滴予定に組み込まれた条件の点滴装置と温室ハウスに設置されたカメラで撮影記録しながら自動製御する環境制御装置である。これは水耕栽培の根の監視技術であるが、本出願は根圏地下土壌環境の制御が主眼である。  Patent Document 8 discloses an environmental control device that automatically controls a plant culture solution on a water-absorbing film in a greenhouse house, and is automatically controlled while shooting and recording with a drip device that is incorporated in the drip schedule and a camera installed in the greenhouse house. It is. This is a technique for monitoring roots in hydroponics, but the main purpose of this application is to control the rhizosphere underground soil environment.

特許文献9は、リビング、屋外で土を使わず水と液肥だけで水気耕栽培を行う施設である。この出願は水気耕栽培であり、本出願は土耕で土中の環境制御が主眼である。  Patent Document 9 is a facility that performs hydroponic cultivation using only water and liquid fertilizer in the living room and outdoors without using soil. This application is hydroponics, and the main purpose of this application is soil cultivation and environmental control in the soil.

特許文献10は、垂直な壁面及び傾斜する屋根面の温度を下げ、環境を涼化するため、温度、潅水、肥料の管理による根圏環境制御である。これは、建造物の壁面や屋根の傾斜面が対称であるが、本出願は広い圃場を対称としたものである。  Patent document 10 is rhizosphere environment control by temperature, irrigation, and management of fertilizer in order to lower the temperature of a vertical wall surface and an inclined roof surface and cool the environment. This is because the wall surface of the building and the inclined surface of the roof are symmetric, but the present application symmetrics a wide field.

特許文献11は、水流の旋回により中央の減圧で微細気泡を発生させる装置で、気泡のサイズ、扱い易い、持ち運び簡単、極めて堅牢など性能の高い装置で、実用上優れたマイクロバブルの発生装置である。ただ、発明の趣旨は、本発明の地下制御とは異なる。本発明のマイクロバブルを供給する発生装置として活用可能である。  Patent Document 11 is a device that generates fine bubbles by central pressure reduction by swirling water flow. It is a device with high performance such as bubble size, easy to handle, easy to carry, and extremely robust. is there. However, the gist of the invention is different from the underground control of the present invention. The present invention can be utilized as a generator for supplying microbubbles.

特許文献12は、本発明者が提案したキャビテーションによる減圧加圧条件で気泡を高速破砕してマイクロバブルを発生させる装置である。本装置は大量の水処理を可能としているので、大型の事業に向いている。発明の趣旨も、本発明の地下制御とは異なる。本発明のマイクロバブルを供給する発生装置として活用可能である。  Patent Document 12 is an apparatus that generates microbubbles by crushing bubbles at high speed under reduced pressure and pressure conditions by cavitation proposed by the present inventor. This device is suitable for large-scale business because it can process a large amount of water. The gist of the invention is also different from the underground control of the present invention. The present invention can be utilized as a generator for supplying microbubbles.

特許文献13は、水田への潅水に際し、フロートを用いて潅水の自動調節を行うものである。軽便で能率的な潅水施設ではあるが、水田の地下潅水を行うものではない。
本発明では、稲、レンコン、イ草などの水田に於ける地下潅水も可能としている。
Patent Document 13 performs automatic adjustment of irrigation using a float when irrigating a paddy field. Although it is a light and efficient irrigation facility, it does not irrigate the paddy field.
In the present invention, underground irrigation is also possible in paddy fields such as rice, lotus root, and grass.

特許文献14は、建物の外壁に近接して植裁域を設け、雨樋からの水を貯留する水槽と複数の小孔を有する管体で土中に水を供給する装置である。地中潅水と言う点では本発明と同じ発想であるが、対象がテラスやベランダであり、本発明の畑や水田とは相違する。また、強制通気、強制通水、強制排水、病害虫防除等の発想ではない。  Patent Document 14 is an apparatus that provides a planting area in the vicinity of an outer wall of a building and supplies water into the soil with a tubular body having a water tank for storing water from a rain gutter and a plurality of small holes. Although it is the same idea as the present invention in terms of underground irrigation, the objects are terraces and verandas, which are different from the fields and paddy fields of the present invention. Also, it is not an idea of forced ventilation, forced water flow, forced drainage, pest control, etc.

特許文献15は、特許文献14と同様雨水タンクを使用し、毛管現象を利用してウォーターディフュザーからパイプを通じて土中に潅水する装置である。これは乾燥地や屋上庭園を対象とするもので、本発明の畑や水田とは相違する。また、強制通気、強制通水、強制排水、病害虫防除等の発想ではない。  Patent Document 15 is a device that uses a rainwater tank as in Patent Document 14 and irrigates the soil through a pipe from a water diffuser using a capillary phenomenon. This is intended for dry land and roof gardens, and is different from the fields and paddy fields of the present invention. Also, it is not an idea of forced ventilation, forced water flow, forced drainage, pest control, etc.

特許文献16は、ポリプロピレン繊維の不織布により形成された管状体の表面にポリプロピレンの線状体を螺旋状に固着して形成した流水部の端部に給水口を取り付け、流水部を土壌に埋設して給水口より加えた潅水がスムースに植物根部へ効率よく給水する装置である。本発明の強制通気、強制通水、強制排水等の発想ではない。  In Patent Document 16, a water supply port is attached to an end portion of a flowing water portion formed by fixing a polypropylene linear body in a spiral shape on the surface of a tubular body formed of a nonwoven fabric of polypropylene fibers, and the flowing water portion is embedded in soil. The irrigation added from the water inlet smoothly and efficiently supplies water to the plant root. It is not an idea of forced ventilation, forced water flow, forced drainage or the like of the present invention.

特許文献17は、水源から圧送ポンプで、注水管を介して内径が2mm以下の流路を有する高圧ジェットのずるの固定ノズルから地中へ均等に潅水する装置である。
地中潅水の機能としては優れているが、本発明の強制通気、強制通水、強制排水等の発想ではない。
Patent Document 17 is an apparatus that evenly irrigates the ground from a fixed nozzle of a high-pressure jet having a flow path having an inner diameter of 2 mm or less through a water injection pipe with a pump from a water source.
Although it is excellent as a function of underground irrigation, it is not an idea of forced aeration, forced water flow, forced drainage or the like of the present invention.

特許文献18は、スギ、ヒノキの難腐敗性天然樹皮あるいは繊維と燃焼灰を混合し、これを土壌に施用、よく混合した植栽用のベッドを形成し、ここに定植した作物を土壌病害から保護する技術である。本発明の窒素ガスによる窒息防除とは異なる。  Patent Document 18 is a mixture of refractory natural bark of cedar and cypress or fiber and combustion ash, which is applied to the soil to form a well-mixed planting bed. It is a technology to protect. This is different from the control of suffocation with nitrogen gas of the present invention.

特許文献19は、クロールピクリン、ジクロルジイソプロピルエーテル、メチルイソチオシアネート等の殺菌殺虫剤をスティック状に密封又はリボン状に吸収固形化し、スティック状及びリボン状の殺菌殺虫剤を土耕中に埋設又は土壌表面に靜置し、土壌表面をプラスチック被覆材で覆い、薫蒸する方法である。土壌表面をプラスチック被覆材で覆う点は、本発明の趣旨と同じであるが、本発明では窒素ガスを使用する。  Patent Document 19 discloses that a bactericidal insecticide such as chlorpicrin, dichlorodiisopropyl ether, methyl isothiocyanate is sealed in a stick shape or absorbed and solidified in a ribbon shape, and the stick-shaped and ribbon-shaped bactericidal insecticide is buried in soil or This is a method of placing on the soil surface, covering the soil surface with a plastic coating, and fumigating. Although the point which covers the soil surface with a plastic coating | covering material is the same as the meaning of this invention, in this invention, nitrogen gas is used.

特許文献20は、パスツリア属細菌を水中で保存した後、超音波処理することにより、パスツリア属細菌の線虫に対する付着活性及び病原防除活性を増進させる方法である。  Patent Document 20 is a method for enhancing the adhesion activity and pathogen control activity of Pasteuria spp. Against nematodes by preserving Pasteuria spp.

特許文献21及び特許文献22は、土壌にエタノール及び酢酸希釈水溶液を含有させ、湛水状態とし、土壌表面をプラスチックフィルムもしくはシートで覆い、水とエタノールの蒸発を抑制しつつ保持して消毒する土壌還元消毒方法。一端が水供給源に接続され、他端が潅水チューブ入り口に接続された配水管と液肥混合器とエタノール水溶液貯蔵槽と多岐に枝分かれした潅水チューブを備える土壌消毒剤潅注システムである。
土壌中に埋設する配管及び潅水チューブと土壌表面を被覆するラスチックフィルムもしくはシートは本発明と発想が同じであるが、防除の主体が湛水状態にすることとアルコール、酢酸であることが本発明と相違する。本発明は、畑状態のまま窒素ガス及び/又はクロールピクリンを使用している。
Patent Document 21 and Patent Document 22 contain soil and ethanol-diluted aqueous solution so that the soil is flooded, the soil surface is covered with a plastic film or sheet, and the soil is disinfected by holding and suppressing evaporation of water and ethanol. Reduction disinfection method. A soil disinfectant irrigation system comprising a water distribution pipe having one end connected to a water supply source and the other end connected to an inlet of an irrigation tube, a liquid fertilizer mixer, an ethanol aqueous solution storage tank, and a multi-branched irrigation tube.
The pipes and irrigation tubes embedded in the soil and the plastic film or sheet covering the soil surface have the same idea as the present invention, but the main subject of the control is the flooded state, and the alcohol and acetic acid are the present invention. Is different. The present invention uses nitrogen gas and / or chlorpicrin in the field state.

特許文献23は、栽培ベッドへ園芸鉢の底面を水没させる水位まで一時的に給水する。即ち、給排水ポンプを用いて先のベッドへ給水を行い、設定水位まで給水が達成されれば、給排水ポンプを用いてベッドから強制排水する。給排水ポンプを用いる点は本発明と同じであるが、用途が園芸鉢であり、給排水の様式も相違する。  In Patent Literature 23, water is temporarily supplied to a cultivation bed up to a water level where the bottom of the garden pot is submerged. That is, water is supplied to the previous bed using the water supply / drainage pump, and if water supply is achieved to the set water level, the water is forcibly drained from the bed using the water supply / drainage pump. Although the point which uses a water supply / drainage pump is the same as this invention, the use is a garden pot and the style of water supply / drainage is also different.

特許文献24は、鉢栽培、ベッド栽培に於いて、溶液を培地から効率よく吸引排水するため、ベンチュリー式の吸引装置によって排水路から強制排水する。過湿水を除去する点では本発明と発想が同じであるが、方法が全く相違する。  In Patent Literature 24, in pot cultivation and bed cultivation, a solution is forcibly drained from a drainage channel by a venturi-type suction device in order to efficiently drain and drain the solution from the culture medium. Although the idea is the same as that of the present invention in terms of removing super-humid water, the method is completely different.

<強制通気、環境制御に関する文献>
特許公開平09−205911 特許公開平09−275782 特許公開平10−313704 特許公開平11−275965 特許公開2000−083489 特許公開2001−251971 特許公開2006−101724 特許公開2008−125479 特許公開2008−154822 特許公開2009−125048 <マイクロバブルに関する文献>
特許公開2003−181258 特許公開2004−344859 <土壌潅水に関する文献>
特許公開平09−23766 特許公開平11−89453 特許公開2003−23883 特許公開2004−73139 特許公開2010−187545 <土壌病害虫防除に関する文献>
特許公開平09−169603 特許公開平11−116420 特許公開2000−95627 WO2007/12967 特許公開2010−106034 <強制排水に関する文献>
特許公開平11−18599 特許公開2000−312539
<Documents on forced ventilation and environmental control>
Patent Publication No. 09-205911 Patent Publication 09-275782 Patent Publication 10-313704 Patent Publication 11-275965 Patent Publication 2000-083489 Patent Publication 2001-251971 Patent Publication 2006-101724 Patent Publication 2008-125479 Patent Publication 2008-154822 Patent Publication 2009-125048 <Literature about microbubbles>
Patent Publication 2003-181258 Patent Publication 2004-344859 <Literature about soil irrigation>
Patent Publication No. 09-23766 Patent Publication 11-89453 Patent Publication 2003-23883 Patent Publication 2004-73139 Patent Publication 2010-187545 <Literature about soil pest control>
Patent Publication No. 09-169603 Patent Publication 11-116420 Patent Publication 2000-95627 WO2007 / 12967 Patent Publication 2010-106034 <Documents on forced drainage>
Patent Publication 11-18599 Patent Publication 2000-312539

作物の根圏へ酸素を供給する技術は、作物の生育、収量に加え品質に与える影響も極めて大きいものがある。特に水耕栽培では、溶存酸素の影響が極めて深刻な影響を有するので、多くの研究により技術開発が行われている。
広い畑やハウスの圃場における土耕栽培では、土層の孔隙に含まれる空気の影響もあって水耕栽培のようには、酸素欠乏による深刻な影響は起こらないが、粘土質の地帯、高地下水の地帯では、土壌通気が栽培上重要な意味を有する。
また、集中豪雨などで冠水したり、過湿になった場合やハウスで高炭酸ガス栽培を行う場合は、酸素が不足するので同様に土壌通気が栽培上重要な意味を有する。
通常上記のような悪条件がない場合でも、実際には土壌中の空気は、低気圧が来ると表層の空気が外気へ吸い出され、高気圧が来ると外気が土中へ押し込まれる過程を通じ、一種の受動的呼吸が多行われている。しかし、土壌の微細な孔隙内での気体の交換であるので、土中空気は深さによっても異なるが、極めて高濃度の炭酸ガスを含む。それで、土壌への強制的な通気は、作物の生育、収量、品質を著しく向上させる。その上、メチルブロマイドの生産禁止に伴う防除困難な土壌病害虫の効率的防除についても、地表を密封して窒素ガスとクロールピクリンを送入する新しい防除法が可能であり、病害虫防除を含めた総合的な技術開発が望まれる。
しかし、強制通水、強制通気など圃場の装置化は、一般に施設費が嵩み、農業経営上採算が取れ難い場合がしばしばであるので、低コストで高生産の技術が要求される。
そこで、本発明では、低コストの地下環境制御技術と省力的で高い収益性を可能とする地下環境制御技術が農業生産の向上を図る重要な課題として提案した。
Some techniques for supplying oxygen to the crop rhizosphere have a significant impact on the quality in addition to the growth and yield of the crop. Especially in hydroponic cultivation, the effect of dissolved oxygen has a very serious effect, and therefore, technical development has been carried out through many studies.
In soil cultivation in large fields and house fields, there is an influence of the air contained in the pores of the soil layer, so that there is no serious effect due to oxygen deficiency as in hydroponics. In the groundwater zone, soil aeration is important for cultivation.
Also, when flooding due to heavy rain, over-humidity, or when growing high carbon dioxide gas in a house, soil aeration is important for cultivation because oxygen is insufficient.
Normally, even if there are no adverse conditions as described above, the air in the soil is actually exhausted to the outside air when the low pressure comes, and through the process where the outside air is pushed into the soil when the high pressure comes, There is a lot of passive breathing. However, since it is an exchange of gas within the fine pores of the soil, the air in the soil contains a very high concentration of carbon dioxide, although it varies depending on the depth. Thus, forced aeration into the soil significantly improves crop growth, yield and quality. In addition, for effective control of difficult soil pests due to the ban on methyl bromide production, a new control method is possible that seals the ground surface and feeds nitrogen gas and chlorpicrin. Technical development is desired.
However, the installation of fields such as forced water and forced ventilation generally requires high facility technology and high production technology at low cost because the facility cost is generally high and it is often difficult to make a profit in agricultural management.
Therefore, in the present invention, a low-cost underground environment control technology and a labor-saving and highly profitable underground environment control technology have been proposed as important issues for improving agricultural production.

前記課題を解決するため、簡易型の土壌の強制通水気及び強制排水の方法、農業の省力型根圏土壌環境制御の方法及び、根圏土壌への強制通水気とマイクロバブル供給及び、過湿状態の根圏の排水及び、土壌病害虫の防除の方法と装置を組み合わせた、一つのシステムで多くの作業をこなす総合的な土壌環境制御装置を提案した。  In order to solve the above problems, a simple method of forced air flow and forced drainage of soil, a labor-saving method of agricultural rhizosphere soil environment control, forced water flow and microbubble supply to rhizosphere soil, and excessive humidity We proposed a comprehensive soil environment control device that can perform many tasks in one system, combining the drainage of the rhizosphere in the state and the methods and devices for controlling pests of the soil.

簡易短作期型の土壌の強制通水気並びに土壌病害虫防除の方法と装置
図1には、請求項1の簡易型の土壌の強制通水、強制通気及び難防除性土壌病害虫防除を可能とする地下埋設の短期間栽培簡易型の環境制御装置を示した。
原理は、図1に示すように、野菜の畑、ハウス栽培において、圃場の作畝に添って地下5〜30cmの深さの溝を掘り、溝中 へ直径12mmで径1mmの小孔を有する多孔パイプ1又はピンホールを有する潅水チューブ1又は複数のノズルを有する直径10mm以下の耐圧通水気チューブ1を埋設する。
多孔パイプ1又は潅水チューブ1の両端は、地上への立上がりパイプ3、6を取り付け、パイプ出口に開閉バルブ4,7を取り付ける。パイプ両端に配した水、培養液の注入口、排水口を設け、注入口、排水口末端には、防除用噴射ポンプのホースとの接続や送気ポンプとの接続及び排水ポンプと接続するコネクター5、8を装備する。
強制通水及び培養液供給を行う場合は、コネクター5に加圧給水ポンプ又は農薬散布用の加圧送水ポンプの接続ホースと連結し、反対側のパイプ出口の開閉バルブ7を全開して送水し、排水口8から水、培養液が吐出して多孔パイプに空気が排除されたことを確認して開閉バルブ7を閉じて地中の根圏へ水、培養液を供給する。
強制通気を行う場合は、コネクター5に加圧空気ポンプの接続ホースと連結し、反対側のパイプ出口の開閉バルブ7を閉じて地中へ空気を供給する。
土壌病害虫防除を行う場合は、図5に示すように、土壌表面を密封するシート35で覆い、コネクター5からクロールピクリンを注入し、コネクター5へ窒素ボンベ34の接続ホースと連結し、反対側のパイプ出口の開閉バルブ7を閉じて窒素供給装置から窒素で地中へクロールピクリンを押し込みながら供給し、併せて窒素ガスで線虫その他の害虫を窒息させて防除する。この装置は長期設置を続ければ、小孔やピンホールが水黴等の微生物、土壌、植物根などで目詰まりを起こすので、その時点で掘り上げ、再度設置する必要がある。
Method and Apparatus for Forced Water Flow and Soil Pest Control of Simple Short-Circulation Type Soil Fig. 1 enables forced water flow, forced aeration and difficult-to-control soil pest control of claim 1 in FIG. A simple environmental control device for short-term cultivation buried underground was shown.
In principle, as shown in Fig. 1, in a vegetable field or house cultivation, a groove with a depth of 5 to 30 cm underground is dug along with the field cultivation, and a small hole with a diameter of 12 mm and a diameter of 1 mm is inserted into the groove. A perforated pipe 1 or an irrigation tube 1 having a pinhole or a pressure-resistant water-permeable tube 1 having a diameter of 10 mm or less having a plurality of nozzles is embedded.
At both ends of the perforated pipe 1 or the irrigation tube 1, rising pipes 3 and 6 to the ground are attached, and opening and closing valves 4 and 7 are attached to pipe outlets. Water and culture solution inlets and drain outlets are provided at both ends of the pipe, and at the inlet and drain outlet ends, there is a connection to the control injection pump hose, connection to the air supply pump, and connection to the drainage pump. Equip 5 and 8.
For forced water supply and culture medium supply, connect the connector 5 to the connection hose of the pressurized water supply pump or the pressurized water supply pump for spraying agricultural chemicals, and open the open / close valve 7 on the opposite pipe outlet to supply water. After confirming that water and culture solution are discharged from the drainage port 8 and the air is excluded from the porous pipe, the open / close valve 7 is closed to supply water and culture solution to the underground rhizosphere.
When forced ventilation is performed, the connector 5 is connected to a connection hose of a pressurized air pump, and the open / close valve 7 at the pipe outlet on the opposite side is closed to supply air to the ground.
When soil pest control is performed, as shown in FIG. 5, the soil surface is covered with a sheet 35 that seals, crawl picrin is injected from the connector 5, connected to the connector hose of the nitrogen cylinder 34, and connected to the opposite side. The opening / closing valve 7 at the outlet of the pipe is closed, and nitrogen is supplied from the nitrogen supply device while pushing crawl picrin into the ground. At the same time, nematodes and other harmful insects are suffocated with nitrogen gas to control. If this device is installed for a long period of time, small holes and pinholes will become clogged with microorganisms such as chickenpox, soil, and plant roots, so it is necessary to dig up and install again at that time.

簡易常設型圃場地下根圏の環境制御方法と装置
図2には、請求項2の簡易型で常設の土壌の強制通水、強制通気及び強制排水を可能とする地下埋設の簡易常設型地下環境制御装置を示した。
原理は、図2に示すように、水田、野菜の畑、ハウス栽培において、圃場の作畝に添って地下30〜40cmの深さの溝を掘り、溝中へ外側に防根布膜袋2を施した直径12mmで径1mmの小孔を有する多孔パイプ1を埋設する。
多孔パイプ1両端は、地上への立上がりパイプ3、6を取り付け、パイプ出口に開閉バルブ4,7を取り付ける。パイプ両端に配した水、培養液の注入口、排水口を設け、注入口、排水口末端には、防除用噴射ポンプのホースとの接続や送気ポンプとの接続及び排水ポンプと接続するコネクター5、8を装備している。
多孔パイプは、図7に示す通り、設置する上面に直径2mm以下の細い孔を5cm間隔で、小孔9を1列に配置している。小孔9を上面に配置するのは溶液を通水する場合に末端まで均等に通水するためである。
図8に示した通り多孔パイプの外側を目の細かい、耐腐食性の防根布膜袋で覆い、多孔パイプに作物根が侵入することを防止している。
強制通水、培養液供給を行う場合は、コネクター5に加圧給水ポンプ又は農薬散布用の加圧送水ポンプ又は図9に示す簡易手動型強制通水・過湿土壌水吸引除去兼用ポンプと接続ホースと連結し、反対側のパイプ出口の開閉バルブ7を全開して送水し、排水口8から水、培養液が吐出して多孔パイプに空気が排除されたことを確認して開閉バルブ7を閉じて地中の根圏へ水、培養液を供給する。
強制通気を行う場合は、コネクター5に加圧空気ポンプの接続ホースと連結し、反対側のパイプ出口の開閉バルブ7を閉じて地中へ空気を供給する。
強制排水を行う場合は、パイプの一端の注入口の開閉バルブ4を閉め、排水口のコネクター8に図9に示した手動排水ポンプの接続ホースと連結して手動ポンプで排水を行う。
Simple Permanent Field Subterraneosphere Environmental Control Method and Device FIG. 2 shows a simple permanent underground environment that allows forced water flow, forced ventilation and forced drainage of the simple and permanent soil of claim 2. The control device is shown.
As shown in FIG. 2, the principle is that, in paddy fields, vegetable fields, and house cultivation, a groove with a depth of 30 to 40 cm is dug along the farming field, and the anti-root cloth membrane bag 2 is formed outside the groove. A perforated pipe 1 having a diameter of 12 mm and a small hole of 1 mm in diameter is embedded.
At both ends of the perforated pipe 1, rising pipes 3 and 6 to the ground are attached, and opening and closing valves 4 and 7 are attached to pipe outlets. Water and culture solution inlets and drain outlets are provided at both ends of the pipe, and at the inlet and drain outlet ends, there is a connection to the control injection pump hose, connection to the air supply pump, and connection to the drainage pump. Equipped with 5 and 8.
In the perforated pipe, as shown in FIG. 7, narrow holes having a diameter of 2 mm or less are arranged at 5 cm intervals on the upper surface to be installed, and small holes 9 are arranged in a row. The small holes 9 are arranged on the upper surface in order to allow water to flow evenly to the end when the solution is passed.
As shown in FIG. 8, the outside of the perforated pipe is covered with a fine, corrosion-resistant root cloth membrane bag to prevent crop roots from entering the perforated pipe.
When forced water supply or culture solution supply is performed, connect the connector 5 with a pressurized water supply pump, a pressurized water supply pump for spraying agricultural chemicals, or a simple manual type forced water supply / superhumid soil water suction / removal pump shown in FIG. Connect to the hose, open the open / close valve 7 on the opposite pipe outlet, and supply water. Check that the water and culture solution are discharged from the drain port 8 and the air is removed from the porous pipe. Close and supply water and culture solution to the underground rhizosphere.
When forced ventilation is performed, the connector 5 is connected to a connection hose of a pressurized air pump, and the open / close valve 7 at the pipe outlet on the opposite side is closed to supply air to the ground.
When performing forced drainage, the opening / closing valve 4 at the inlet of one end of the pipe is closed, and the drainage port 8 is connected to the connection hose of the manual drainage pump shown in FIG.

省力型農業に対応した根圏土壌環境制御の方法と装置
図3及び図4には、請求項3及び請求項4の農作業の省力化を目指し、土壌の強制通水、強制通気及び強制排水を可能とする圃場地下埋設の地下環境制御装置を示した。
原理は簡易型の強制通水気及び強制排水と同じである。
図3及び図4に示すように水田、果樹園、広い畑作で作畝に添って30〜100cmの深さの溝を掘り、溝中に外側に防根布膜袋2を施した直径20〜200mmの多孔パイプ1を埋設する。パイプは深さの異なる位置に多段設置する場合は効果がより高まる。
省力型では、図4に示すよう埋設多孔パイプの径も簡易型より太く、各畝に配水する畝を横断する太い横断パイプを有するので、送水量、送気量、排水量が多く、同時に幾畝にも亘る強制的通気、配水、及び排水が可能で、給排水ポンプの場所一箇所の作業で、広大な面積の、地下根圏環境制御と省力的施肥管理を行うことが可能である。
多孔パイプ1の一端の注水気側には、地上への立上がりパイプ3を取り付け、パイプ3には、バルブ4を通じて送気ポンプ13と接続し、一方でバルブ12を通じて水・培養液槽16と接続した水・培養液送付ポンプ14と接続する。
図3に示すように、パイプ排水側の端には、余剰地下水を溜めるドレン槽11を設け、ドレン槽から排水用パイプ6を地上に立ち上げる。排水用パイプ6は、2方向に分岐し、一方は排水・排気パイプとして外気出口に向け開閉バルブ7を設け外気に開口し、一方は過湿水排除の排水ポンプ18へ開閉バルブ17を通して接続し、排水口19へ通じている。
多孔パイプは、図7に示す通り、設置する上面に直径1mmの最適な小孔を5cm間隔で、1列に配置している。又大容量注水が必要な場合は、上半分のパイプにピンホールが無数に配置される。小孔を上面に配置するのは溶液を通水する場合に末端まで均等に通水するためである。図8に示した通り多孔パイプの外側を目の細かい、耐腐食性の防根布膜袋で取り巻き、多孔パイプに作物根が侵入することを防止している。
強制通水、培養液供給を行う場合は、開閉バルブ4を閉じて、開閉バルブ12を開き、反対側の排水ポンプへ通ずる開閉バルブ17を閉じ、加圧給水ポンプを作動して送水し、排水口8から水、培養液が吐出して多孔パイプに空気が排除されたことを確認して開閉バルブ7を閉じて地中へ水、培養液を供給する。
強制通気を行う場合は、パイプ出口の開閉バルブ7、12、17を閉じて、送気ポンプ13で地中へ空気を供給する。
強制排水を行う場合は、パイプ出口の開閉バルブ4、7、12を閉じて、排水側の開閉バルブ17を開き、排水ポンプ18で吸水を行い排水口19から排水する。
Method and apparatus for rhizosphere soil environment control corresponding to labor-saving agriculture Figures 3 and 4 show the forced water flow, forced ventilation and forced drainage of the soil with the aim of saving labor in the agricultural work of claims 3 and 4. A possible underground environment control device for field underground is shown.
The principle is the same as the simple forced air flow and forced drainage.
As shown in FIG. 3 and FIG. 4, a paddy field, orchard, and a wide field crop, a groove with a depth of 30 to 100 cm is dug along with the cropping, and a root cloth membrane bag 2 is applied to the outside in the groove. A 200 mm porous pipe 1 is buried. When pipes are installed in multiple stages at different depths, the effect is further enhanced.
In the labor-saving type, as shown in FIG. 4, the diameter of the buried porous pipe is thicker than the simple type, and it has a thick crossing pipe that crosses the trough that distributes water to each trough. It is possible to perform forced ventilation, water distribution, and drainage, and it is possible to control the underground rhizosphere environment control and labor-saving fertilization management in a single area of the water supply / drainage pump.
A rising pipe 3 to the ground is attached to the water injection side of one end of the perforated pipe 1, and the pipe 3 is connected to an air supply pump 13 through a valve 4, while being connected to a water / culture tank 16 through a valve 12. The water / culture solution delivery pump 14 is connected.
As shown in FIG. 3, a drain tank 11 for storing excess ground water is provided at the end of the pipe drain side, and the drain pipe 6 is raised from the drain tank to the ground. The drainage pipe 6 branches in two directions, one is a drainage / exhaust pipe, and an open / close valve 7 is provided to the outside air outlet to open to the outside air, and the other is connected to the drainage pump 18 for removing excessive moisture through the open / close valve 17. , Leading to the drain 19.
As shown in FIG. 7, in the perforated pipe, optimal small holes having a diameter of 1 mm are arranged in a row at intervals of 5 cm on the upper surface to be installed. When large-volume water injection is required, an infinite number of pinholes are arranged in the upper half of the pipe. The reason why the small holes are arranged on the upper surface is to allow water to flow evenly to the end when the solution is passed. As shown in FIG. 8, the outer periphery of the perforated pipe is surrounded by a fine, corrosion-resistant root cloth membrane bag to prevent crop roots from entering the perforated pipe.
When forced water supply and culture solution supply are performed, the open / close valve 4 is closed, the open / close valve 12 is opened, the open / close valve 17 connected to the drainage pump on the opposite side is closed, the pressurized water supply pump is operated, and water is supplied. After confirming that water and culture solution are discharged from the mouth 8 and the air is removed to the perforated pipe, the open / close valve 7 is closed to supply water and culture solution to the ground.
When forced ventilation is performed, the opening and closing valves 7, 12, and 17 at the pipe outlet are closed and air is supplied to the ground by the air supply pump 13.
When forced drainage is performed, the open / close valves 4, 7, and 12 at the pipe outlet are closed, the open / close valve 17 on the drain side is opened, water is absorbed by the drain pump 18, and the water is discharged from the drain port 19.

マイクロバブル供給並びに地下根圏の環境制御方法と制御システム装置
図5には、請求項5のマイクロバブルによる省力型の土壌の強制通水、強制通気及び強制排水を可能とする地下埋設の地下環境制御装置を示した。原理は、簡易型の土壌の強制通水気と同じである。
図4及び図5に示すように、水田、果樹園や広大な面積の畑作では作畝に添って30〜100cmの深さの溝を掘り、溝中に外側に防根布膜袋2を施した直径20〜200mmの多孔パイプ1を埋設する。
多孔パイプ1の一端の注水気側には、地上への立上がりパイプ3を取り付け、パイプ3には、バルブ4を通じて送気ポンプ13と接続し、一方でバルブ12を通じて水・培養液槽16と接続した水・培養液のマイクロバブル送付ポンプ15と接続する。
パイプ排水端には、余剰地下水を溜めるドレン槽11を設け、ドレン槽から排水用パイプ6を地上に立ち上げる。排水用パイプ6は、2方向に分岐し、一方は排水・排気パイプの外気出口に向け開閉バルブ7を設け外気に開口し、一方は過湿水排除の排水ポンプ18へ開閉バルブ17を通して接続し、排水口19へ通じている。
多孔パイプは、図7に示す通り、設置する上面に直径1mmの小孔9を5cm間隔で、1列に配置している。又大容量注水が必要な場合は、上半分のパイプにピンホールが無数に配置することも効果的である。細孔を上面に配置するのは溶液を通水する場合に末端まで均等に通水するためである。
図8に示した通り多孔パイプの外側を目の細かい、耐腐食性の防根布膜袋で取り巻き、多孔パイプに作物根が侵入することを防止している。
マイクロバブルによる強制通水、培養液供給を行う場合は、開閉バルブ4を閉じて、開閉バルブ12を開き、反対側の排水ポンプへ通ずる開閉バルブ17を閉じ、マイクロバブル加圧給水ポンプ15を作動して送水し、排水口8から水、培養液が吐出して多孔パイプに空気が排除されたことを確認して開閉バルブ7を閉じて地中へ水、培養液を供給する。
強制通気を行う場合は、パイプ出口の開閉バルブ7、12、17を閉じて、送気ポンプ13で地中へ空気を供給する。
強制排水を行う場合は、パイプ出口の開閉バルブ4、7、12を閉じて、排水側の開閉バルブ17を開き、排水ポンプ18で吸水を行い排水口19から排水する。
本装置で用いるマイクロバブル発生装置は、発明者が考案した特許第3843361号の装置を使用しているが、他の発明によるマイクロバブル発生装置も利用できる。
Microbubble supply and underground rhizosphere environmental control method and control system apparatus FIG. 5 shows an underground underground environment that enables forced water-saving, forced-ventilation and forced-drainage of labor-saving soil by microbubbles according to claim 5 The control device is shown. The principle is the same as forced water flow of simple soil.
As shown in FIGS. 4 and 5, in paddy fields, orchards and large-scale field crops, a groove with a depth of 30 to 100 cm is dug along the field, and a root-proof cloth membrane bag 2 is applied to the outside in the groove. The perforated pipe 1 having a diameter of 20 to 200 mm is embedded.
A rising pipe 3 to the ground is attached to the water injection side of one end of the perforated pipe 1, and the pipe 3 is connected to an air supply pump 13 through a valve 4, while being connected to a water / culture tank 16 through a valve 12. It connects with the microbubble sending pump 15 of the water and culture solution which were made.
A drain tank 11 for storing excess ground water is provided at the pipe drain end, and the drain pipe 6 is raised from the drain tank to the ground. The drainage pipe 6 branches in two directions, one is provided with an opening / closing valve 7 toward the outside air outlet of the drainage / exhaust pipe and is opened to the outside air, and the other is connected to the drainage pump 18 for removing excessive moisture through the opening / closing valve 17. , Leading to the drain 19.
In the perforated pipe, as shown in FIG. 7, small holes 9 having a diameter of 1 mm are arranged in a line at an interval of 5 cm on the upper surface to be installed. When large-volume water injection is required, it is also effective to arrange an infinite number of pinholes in the upper half pipe. The reason why the pores are arranged on the upper surface is that when the solution is passed through, the pores are evenly passed to the end.
As shown in FIG. 8, the outer periphery of the perforated pipe is surrounded by a fine, corrosion-resistant root cloth membrane bag to prevent crop roots from entering the perforated pipe.
When performing forced water flow or culture medium supply by microbubbles, the open / close valve 4 is closed, the open / close valve 12 is opened, the open / close valve 17 leading to the drainage pump on the opposite side is closed, and the microbubble pressurized water supply pump 15 is activated. Then, after confirming that water and culture solution are discharged from the drain port 8 and the air is excluded from the porous pipe, the open / close valve 7 is closed and water and culture solution are supplied to the ground.
When forced ventilation is performed, the opening and closing valves 7, 12, and 17 at the pipe outlet are closed and air is supplied to the ground by the air supply pump 13.
When forced drainage is performed, the open / close valves 4, 7, and 12 at the pipe outlet are closed, the open / close valve 17 on the drain side is opened, water is absorbed by the drain pump 18, and the water is discharged from the drain port 19.
The microbubble generator used in this apparatus uses the apparatus of Japanese Patent No. 3843361 devised by the inventor, but microbubble generators according to other inventions can also be used.

簡易手動型強制通水、過湿土壌水吸引除去兼用ポンプ装置
図9には、請求項6の簡易手動型強制通水、過湿土壌水吸引除去兼用のポンプ装置の構造を示した。
動力は手動による人力である。作動は、人が踏み台の上20に乗り、上部の梶棒に取り付けた把手(ハンドル)21を前後に動かすと梶棒22に接続したポンプ室23のピストン24が作動して吸引口30から水を吸い出し、吐出口33から水を吐出する。
各部の説明を加えると作動部は、踏み台20、把手(ハンドル)21、往復梶棒22、ポンプ室23、ピストン24、ピストンの往復の押棒25、往復梶棒作動支点26から成り、往復梶に連結作動する上側のピストン作動支点27は作動を潤滑にするため支点自体が上下に動く構造である。
強制通水、過湿土壌水吸引除去部は、過湿土壌水吸い出し口30で多孔パイプ1のコネクター8と接続する。
吸引した過湿土壌水は地下水吸い出し誘導パイプ31で前後のポンプ室23へ導く。
ポンプ室23はピストンシリンダー容器で、踏み台20と強固に固定されている。強制通水と過湿土壌水は、土壌水吸い出し口30から、吸い出した水を誘導パイプ31でポンプ室23に導く。ポンプ室23は前後のポンプ室に分かれ、ピストンの動きにつれ一方が吸引、一方が排出の役割を受け持ち、常時排水が継続して持続する仕組みになっている。
従って、それぞれのポンプ室23には、ポンプ入り口側の逆流防止弁28とポンプ出口側の逆流防止弁29が装備されている。ポンプ室23から注入する通水と排出される土壌水は、2ポンプ室それぞれに接続している土壌水の排出誘導パイプ32を通って排出口33からパイプへの強制通水する場合とパイプから強制排水する場合に使い分けられる。
FIG. 9 shows a structure of a pump device for both simple manual forced water passing and overhumid soil water suction and removal according to claim 6.
The power is manual manpower. As for the operation, when a person rides on the top 20 and moves a handle (handle) 21 attached to the upper club, the piston 24 of the pump chamber 23 connected to the club 22 operates to suck out water from the suction port 30. Then, water is discharged from the discharge port 33.
When the description of each part is added, the operating part comprises a step 20, a handle (handle) 21, a reciprocating bar 22, a pump chamber 23, a piston 24, a piston reciprocating push bar 25, and a reciprocating bar operating fulcrum 26. The upper piston operating fulcrum 27 has a structure in which the fulcrum itself moves up and down to lubricate the operation.
The forced water / superhumidity soil water suction / removal section is connected to the connector 8 of the perforated pipe 1 through the superhumidity soil water suction port 30.
The sucked overhumid soil water is guided to the front and rear pump chambers 23 by the groundwater suction guide pipe 31.
The pump chamber 23 is a piston cylinder container and is firmly fixed to the step platform 20. The forced water flow and the excessively humid soil water lead the sucked-out water from the soil water sucking port 30 to the pump chamber 23 through the induction pipe 31. The pump chamber 23 is divided into front and rear pump chambers, one of which is responsible for suctioning and one of which is discharging as the piston moves, so that drainage is continuously maintained.
Accordingly, each pump chamber 23 is equipped with a backflow prevention valve 28 on the pump inlet side and a backflow prevention valve 29 on the pump outlet side. The water flow injected from the pump chamber 23 and the discharged soil water pass through the soil water discharge induction pipe 32 connected to each of the two pump chambers, and when the forced flow from the discharge port 33 to the pipe. It can be used properly for forced drainage.

土壌病害虫窒息防除方法及び土壌病害虫防除システム装置
図6には請求項1と請求項8の土壌病害虫防除システムを示した。畑作に於ける夜盗虫、根切り虫の被害は大きく、連作障害による線虫の被害、立ち枯れ病、青枯病等の土壌病害も深刻である。
地下環境制御技術は、窒素ガス単独による窒息死又はクロールピクリン及び窒素ガスの吹き込みによる薫蒸の省力化が可能である。
方法は、図2、図3、図4に示す多孔パイプ1を用い、図6に示すように土壌表面を機密性のシート35で覆い、多孔パイプコネクター8に窒素ガスボンベ34を連結して窒素ガスを供給し、地下根圏土壌に窒素ガスを送り、線虫・土壌病害を窒息死させる機能を有している。又同様に多孔パイプのコネクター8からクロールピクリンを送入して、更に窒素ガスで浸透させ病害虫を窒息死させ、省力的に土壌薫蒸を行い効果の高い病害虫防除を行うこともできる。防除時のクロールピクリン注入と窒素ガス通気に伴うロールピクリンとガスの噴出方向は図6の矢印の方向である。
防除が難しい線虫等は、作物の栽培期間に根の活性が高まる本通水気のパイプ周辺に集まり増殖するので、栽培終了後に次の作物を植えるまでの1〜2週間くらいの短期間で死ぬので栽培期間中パイプ周辺に集まり増殖した線虫を窒息死させると効果が高い。
また、その時点で難防除性の青枯病、立枯病に対しても、クロールピクリンの注入の際、窒素ガスでパイプ周辺の広い土層空間へ押込み、効果的なクロールピクリン薫蒸を行う。これにより次作の作物根圏の青枯病、立枯病を除去することが可能である。
この方法の有利な点は、図5の矢印の方向に深層の土層まで分布する青枯病、立枯病、線虫等の防除を従来は困難な深層の土層まで殺虫、殺菌が可能なことである。
さらに、処理後土壌を堀り上げたり、耕運する等の移動させることがないので、新たな菌汚染が起こり難いことである。
作物の栽培に際しては、土壌表面の機密性のシート35を剥がし、エアーポンプで長時間空気を強制的に送り、窒素ガスとクロールピクリンを完全に除去し、土壌へ酸素を十分に与えて健全な栽培を行う。畑が使用できるまでの期間も大幅に短縮される。
このように一つのシステムによって防除困難な土壌病害虫の防除と強制通気、強制通水、省力施肥を交互に繰り返し装置を有効に使用することを可能としている。
Soil pest control method and soil pest control system apparatus FIG. 6 shows a soil pest control system according to claim 1 and claim 8. The damage of night worms and root-cutting insects in field crops is significant, and nematode damage due to continuous cropping failures, soil diseases such as withering and bacterial wilt are also serious.
Underground environment control technology can save labor for suffocation by nitrogen gas alone or fumigation by blowing crawl picrin and nitrogen gas.
The method uses the perforated pipe 1 shown in FIGS. 2, 3 and 4, covers the soil surface with a confidential sheet 35 as shown in FIG. 6, and connects the perforated pipe connector 8 with a nitrogen gas cylinder 34 to connect nitrogen gas. It has a function of sending nitrogen gas to the underground rhizosphere soil and suffocating nematodes and soil diseases. Similarly, chlorpicrin can be fed from the connector 8 of the perforated pipe and further infiltrated with nitrogen gas to suffocate and kill pests, and soil fumigation can be carried out labor-saving for highly effective pest control. The direction of jetting of roll picrine and gas accompanying the injection of chlorpicrin and nitrogen gas ventilation during the control is the direction of the arrow in FIG.
Nematodes, etc. that are difficult to control gather and grow around the permeation pipe where the root activity increases during the cultivation period of the crop, so they die in a short period of about one to two weeks after the cultivation until the next crop is planted Therefore, if the nematodes gathered and proliferated around the pipe during the cultivation period are choked and killed, the effect is high.
At the time, even for difficult-to-control bacterial wilt and blight, when chlorpicrin is injected, nitrogen gas is pushed into a large soil layer around the pipe and effective chlorpicrin fumigation is performed. . As a result, it is possible to eliminate bacterial wilt and wilt of the next crop rhizosphere.
The advantage of this method is that it is possible to kill and sterilize deep soil layers, which were difficult to control in the past, such as bacterial wilt, leaf blight and nematodes distributed in the deep soil layer in the direction of the arrow in FIG. It is a thing.
Furthermore, since the soil is not dug up or cultivated after treatment, new bacterial contamination is unlikely to occur.
When cultivating crops, the confidential sheet 35 on the soil surface is peeled off, air is forcibly sent for a long time with an air pump, nitrogen gas and chlorpicrin are completely removed, and oxygen is sufficiently applied to the soil to ensure a healthy condition. Cultivate. The period until the field can be used is also greatly shortened.
Thus, it is possible to effectively use the device by alternately repeating control of soil pests that are difficult to control, forced ventilation, forced water flow, and labor-saving fertilization by one system.

地下環境制御技術は、地下潅水により効率的灌漑が可能であり、培養液の地下供給で施肥が省力化され、地下への強制通気により作物根が活性化され、成長が助長されて高生産で高品質になることが主目的である。
高生産で高品質になること、強制排水は制御し難い地下の過湿を除去して湿害防止に役立つこと、省力的防除等は周知の事実で、これらの機能を新めて実証試験をする必要はない。実施例としては通常知られていない未知の事柄を示した。
Underground environmental control technology enables efficient irrigation by underground irrigation, fertilization is saved by supplying the culture solution underground, crop roots are activated by forced aeration to the ground, growth is promoted, and high production is achieved. High quality is the main purpose.
It is a well-known fact that high production and high quality, forced drainage helps to prevent moisture damage by removing underground overhumidities that are difficult to control, and labor-saving control is a well-known fact. do not have to. As an example, an unknown matter that is not generally known is shown.

実施例1 お茶の香気成分を改善し高品質化試験Example 1 Quality improvement test by improving aroma components of tea

試験の方法
実証が難しい茶の品質向上を目指し、茶園畝間中心の畝に添って深さ40cmの位置に簡易型強制通水及び強制通気の装置の通気パイプを埋設し、強制通気による茶の栽培試験を行った。香気の改善は栽培技術に基づくので茶の香気に関する試験を、春の1番茶で試験した。
製茶は、茶葉を蒸しぐり煎茶の製造法で実施し、香気成分の品質評価を行った。
Test method Aiming to improve the quality of tea, which is difficult to verify, cultivating tea by forced aeration by burying a vent pipe of a simple forced water and forced ventilation device at a depth of 40 cm along the center of the tea garden. A test was conducted. Since the fragrance improvement is based on cultivation technology, the test on the fragrance of tea was tested with No. 1 tea in spring.
For tea making, the tea leaves were steamed using the manufacturing method of sencha, and the quality of the aroma components was evaluated.

茶成分は、基本的には表中の清香青葉アルコール、リナロール、ゲラニオール、ヘキサノール等が含まれ、条件が良いとフェニル・エチル・アルコール(バラの香り)など花の香りが含まれる。高級な茶葉ほど、香りが深く製茶に際して花の香りがする。
結果の概要
強制通気を行って、茶根を活性化すれば、茶の成長が向上し、生体内代謝が活発になるので、製茶の段階で茶葉内の芳気成分とされる、各種の精油が増加し、特にバラの花の香気とされるフェニル・エチル・アルコール等が増加し、茶の香気の面からも品質向上が起こるものと考えられる。
The tea component basically includes Kiyoka Aoba alcohol, linalool, geraniol, hexanol and the like in the table, and if the conditions are good, it includes a floral scent such as phenyl ethyl alcohol (rose scent). The higher the quality of tea leaves, the deeper the aroma, and the scent of flowers when making tea.
Summary of results If forced aeration is performed to activate tea roots, the growth of tea is improved and the metabolism in the living body becomes active, so various essential oils that are considered to be aromatic components in tea leaves at the tea making stage In particular, phenyl, ethyl, alcohol, etc., which are considered to be the fragrance of rose flowers, increase, and it is considered that quality improvement occurs from the aspect of tea fragrance.

実施例2 マイクロバブルに供給による野菜の高収穫、高品質化試験
試験の方法
マイクロバブルによる作物の高生産と高品質化は余り知られていないので、その証明を行った。試験は水耕栽培により、同一組成の培養液で一方を100〜500μm程度の気泡、一方を10〜100μm程度の気泡の泡のサイズの違う2種類のマイクロバブルを供給し、カキチシャを栽培した。
生長量と根系のデヒドロゲナーゼ活性で根の活力を比較した。
Example 2 Method of High Harvest and High Quality Test of Vegetables by Supplying to Micro Bubbles High production and quality improvement of crops by micro bubbles are not well known, so they were proved. The test was carried out by hydroponics, and cultivated oysters by supplying two types of microbubbles having different sizes of bubbles of about 100 to 500 μm and one of about 10 to 100 μm with one culture medium having the same composition.
The vitality of roots was compared by the amount of growth and dehydrogenase activity of root system.

結果の概要
カキチシャの生育は、100〜500マイクロメートルのマイクロサイズの気泡では1株平均約400g、10〜100マイクロメートルのナノサイズの気泡では1株平均約700gであって、気泡のサイズの小さいほど作物生育を助長することが明確である。生育量の相違は写真1に示した。
写真1では、aは100〜500マイクロメートルのマイクロバブルで生育したカキチシャ、bは10〜100マイクロメートルのナノサイズのナノバブルにより生育したカキチシャの生長量である。
酵素活性については、カキチシャの根の活性を調査した。
調査結果の単位は、1グラムの生体が1分間に呼吸によって何マイクロモルの水素を出し、指示薬のメチレンブルーを還元するかを調べる分析方法である。
単位は、生重1グラム当たり、1分間に発生する水素のマイクロモルで表示される。
このように、根の活性は、100〜500マイクロメートルのマイクロサイズの気泡の示す活性1μM/gFW/minより10〜100マイクロメートルのナノサイズの気泡の示す2μM/gFW/minの方が高かった。
その為写真1に見られるようにマイクロサイズの気泡aでは、根の還元力が弱く、根の表面に酸化鉄が沈着し、褐変して黒っぽくなっているのに対し、ナノサイズの気泡bでは根の還元力が強く、鉄の沈着もなく色が白くなっている。
写真2では、根の酵素活性を調査する、メチレンブルーの標準液の色素比較液と、調査飼料の反応液の比較を示した。写真の中でcはメチレンブルーの標準液、dは酵素反応比較液、eは温度計である。
このように、何れも通気をしているが、気泡のサイズによって成長促進効果が相違することがわかる。従って根圏の土壌環境制御する場合もサイズの小さい気泡を溶液と一緒に供給することが重要である。
この結果は、マイクロバブルによる酸素の供給が如何に根の活動に影響するかを示している。同様に、マイクロバブルは土耕栽培でも同様の結果を与えるが、土耕では根の調査が観察的に不鮮明になるので水耕栽培で代行した。
Summary of results Growth of oysters is about 400 g per strain for 100-500 micrometer micro-sized bubbles and about 700 g per strain for nano-sized bubbles of 10-100 micrometer, and the size of the bubbles is small It is clear that it promotes crop growth. Differences in growth are shown in Photo 1.
In Photo 1, a is the amount of growth of oysters grown with microbubbles of 100 to 500 micrometers, and b is the amount of growth of oysters grown with nanosized nanobubbles of 10 to 100 micrometers.
Regarding the enzyme activity, the activity of roots of oyster was investigated.
The unit of the survey result is an analysis method for investigating how many micromoles of hydrogen per minute by breathing per minute and reducing the indicator methylene blue.
Units are expressed in micromoles of hydrogen generated per minute per gram of raw weight.
Thus, the activity of roots was higher at 2 μM / g FW / min exhibited by nano-sized bubbles of 10 to 100 μm than the activity 1 μM / g FW / min exhibited by micro-sized bubbles of 100 to 500 μm. .
Therefore, as shown in Photo 1, the micro-sized bubble a has a weak root reducing power and iron oxide is deposited on the surface of the root, browning and darkening, whereas in the nano-sized bubble b The roots have strong reducing power, and there is no iron deposition and the color is white.
Photo 2 shows the comparison of the methylene blue standard dye comparison solution and the survey feed reaction solution to investigate the root enzyme activity. In the photograph, c is a standard solution of methylene blue, d is an enzyme reaction comparison solution, and e is a thermometer.
Thus, although all are ventilating, it turns out that the growth promotion effect changes with bubble sizes. Therefore, when controlling the soil environment in the rhizosphere, it is important to supply small bubbles together with the solution.
This result shows how the supply of oxygen by microbubbles affects root activity. Similarly, microbubbles give similar results in soil cultivation, but in soil cultivation, the root survey was obscured by observation, so it was substituted by hydroponics.

現在、世界的規模で農業生産の生産力が低下している。穀物や野菜など農業生産を支える土台は、畑の地力である。作物が健康で旺盛な生育をする地力を引き出すには、根の活性を如何に高めるかが重要である。作物根は、根圏の土壌空気、養水分の供給、過湿の防止など土壌環境を制御することができれば、極めて健全に活動し、本来土壌が有する養分と供給される養分を効率的に吸収し、健全で旺盛な生育により、高品質で多収穫をもたらすことが出来る。
本発明による、根圏土壌の強制通気は、土壌中に貯まりやすい炭酸ガスを追い出し、酸素を供給するので、根の活性が極めて高くなる。根圏への強制通水、培養液供給は、地下制御パイプ周辺に作物根を集め、効率的灌漑、効率的施肥を行うものである。
また、連作障害など防除困難な土壌病害虫の新しい防除を可能にする技術でもある。
温暖化する今後の世界に於いては、砂漠化が進み、貴重な水を樹上冠水などで行うと蒸散によって折角の灌水を失うなど効率が悪い。従って樹上灌水は望ましくない。マイクロバブルなどの供給も可能な新しい効率の良い灌漑が必要である。
マイクロバブルの供給は作物根の活性を高め、温暖化による作物の高温障害を防止することも判明しており、今後の農業には欠かせない技術である。
温暖化による気象変動は、干魃をもたらす一方で集中豪雨による圃場の冠水、過湿条件をもたらせ、過湿の害による極端な生育抑制が起こる。強制排水は根圏の過湿水を除去して湿害の被害を広大な圃場で防止する効果がある。
根圏土壌の環境制御技術は、これら土壌の強制通気、強制通水、培養液供給、強制排水、土壌病害虫防除を一つのシステムで、省力的多角的に管理できる新技術であり、生産面でも今後の畑作農業、施設型農業生産の飛躍的向上と品質向上が期待される。
本根圏土壌の環境制御技術は、世界的食糧不足が進行する今後の社会に於いては、効率的な食糧生産の推進上重要な役割を有する技術である。
Currently, productivity of agricultural production is declining on a global scale. The foundation of agricultural production such as cereals and vegetables is the strength of the field. It is important how to increase the activity of the roots in order to bring out the healthy and vigorous growth of crops. Crop roots are very healthy if they can control the soil environment, such as the supply of soil air in the rhizosphere, the supply of nutrients, and the prevention of overhumidity, and efficiently absorb the nutrients that the soil originally has and the nutrients supplied. However, due to healthy and vigorous growth, high quality and high yield can be brought about.
The forced aeration of the rhizosphere soil according to the present invention expels the carbon dioxide gas that is easily stored in the soil and supplies oxygen, so that the activity of the root becomes extremely high. Forced water flow to the rhizosphere and supply of culture solution collect crop roots around the underground control pipes for efficient irrigation and efficient fertilization.
It is also a technology that enables new control of soil pests that are difficult to control, such as continuous cropping failures.
In the future of global warming, desertification is progressing, and if precious water is used for flooding on trees, the efficiency of water loss is lost due to transpiration. Therefore, tree irrigation is not desirable. New and efficient irrigation that can supply microbubbles is necessary.
The supply of microbubbles has been shown to increase the activity of crop roots and to prevent high-temperature damage to crops due to global warming, and is an indispensable technology for future agriculture.
Climate change due to global warming brings drought, while flooding the field due to torrential rain and overhumidity conditions, resulting in extreme growth suppression due to overhumidity. Forced drainage has the effect of removing excessively humid water in the rhizosphere and preventing damage from moisture damage in vast fields.
The environmental control technology for rhizosphere soil is a new technology that can manage these soils for forced ventilation, forced water flow, culture solution supply, forced drainage, and soil pest control in a single system. Future field farming and facility-type agricultural production are expected to dramatically improve and improve quality.
The environmental control technology of the root rhizosphere soil is a technology that plays an important role in promoting efficient food production in the future society where global food shortages progress.

は簡易型の土壌の強制通水気及び土壌病害虫防除装置横断面モデルである。Is a cross-sectional model of a simple forced-air and soil pest control device for soil. は常設簡易型の土壌の強制通水気及び過湿土壌排水装置横断面モデルである。Is a cross-sectional model of a forced and forced air drainage and a super-humid soil drainage device for permanent and simple soil. は省力的根圏土壌環境制御装置横断面モデルである。Is a labor-saving rhizosphere soil environment controller cross-sectional model. は省力的根圏土壌環境制御装置平面モデルであるIs a labor-saving rhizosphere soil environment controller planar model はマイクロバブル供給による根圏土壌環境制御装置横断面モデルである。Is a cross-sectional model of rhizosphere soil environment control device with microbubble supply. は土壌病害虫防除システム装置横断面モデルである。Is a soil pest control system cross-sectional model. は多孔パイプ装置である。Is a perforated pipe device. は多孔パイプに作物根の侵入すを防止する耐腐食性の防根布膜袋である。Is a corrosion-resistant root cloth membrane bag that prevents crop roots from entering the perforated pipe. は簡易手動型強制通水、過湿土壌水吸引除去兼用ポンプ装置である。Is a simple manual-type forced water flow and super-humid soil water suction removal combined use pump device.

写真の説明Photo description

写真1Photo 1

はマイクロバブルの供給による野菜の高収穫、高品質化試験である。Is a high-yield and high-quality test of vegetables by supplying microbubbles.

写真2Photo 2

はメチレンブルー脱色による根の酵素活性調査状況である。Is the investigation of the enzyme activity of roots by methylene blue decolorization.

1 多孔パイプ
2 作物根侵入防止耐腐敗性の防根布膜袋
3 立ち上がりパイプ
4 パイプ出入口の開閉バルブ又は強制通気用開閉バルブ
5 通気ポンプ、通水ポンプコネクター
6 立ち上がりパイプ
7 パイプ出入口の開閉バルブ
8 簡易排水ポンプコネクター
9 多孔パイプ小孔
10 栽培作物
11 排水用ドレン槽
12 水、培養液、マイクロバブル供給用開閉バルブ
13 強制通気ポンプ(エアーポンプ)
14 強制通水ポンプ(加圧給水ポンプ)
15 マイクロバブル加圧給水ポンプ
16 水、培養液供給タンク
17 強制排水用開閉バルブ
18 強制排水ポンプ
19 強制排水口
20 簡易手動型強制通水・過湿土壌水吸引除去兼用ポンプ装置踏み板
21 簡易手動型強制通水・過湿土壌水吸引除去兼用ポンプ装置の作動ハンドル
22 簡易手動型強制通水・過湿土壌水吸引除去兼用ポンプの人力で前後に往復する梶棒
23 簡易手動型強制通水・過湿土壌水吸引除去兼用ポンプ装置のポンプ室
24 簡易手動型強制通水・過湿土壌水吸引除去兼用ポンプ装置のピストン
25 簡易手動型強制通水・過湿土壌水吸引除去兼用ポンプ装置のピストン押棒
26 簡易手動型強制通水・過湿土壌水吸引除去兼用ポンプ装置の踏み板装着支点
27 簡易手動型強制通水・過湿土壌水吸引除去兼用ポンプ装置のピストン押棒装着支点
28 簡易手動型強制通水・過湿土壌水吸引除去兼用ポンプ装置室の吸入側逆流防止弁
29 簡易手動型強制通水・過湿土壌水吸引除去兼用ポンプ装置室の排出側逆流防止弁
30 簡易手動型強制通水・過湿土壌水吸引除去兼用ポンプ装置強制通水の水の供給口及 び土壌溶液吸い出し口
31 簡易手動型強制通水・過湿土壌水吸引除去兼用ポンプ装置強制通水及び強制通気吸 入の誘導パイプ及び土壌溶液吸入のための誘導パイプ
32 簡易手動型強制通水・過湿土壌水吸引除去兼用ポンプ装置強制通水及び強制通気の 送り出し誘導パイプ及び土壌溶液排出のための誘導パイプ
33 簡易手動型強制通水・過湿土壌水吸引除去兼用ポンプ装置強制通水及び強制通気の 送り込み口及び土壌溶液排出口
34 窒素ガスボンベ
35 土壌表面被覆密封シート
a 100〜500μmの大きなサイズのマイクロバブルで生育したカキチシャ
b 10〜100μmの小さなサイズのナノバブルで生育したカキチシャ
c メチレンブルー標準溶液比較液シリーズ
d メチレンブルー反応溶液へ採取したカキチシャ根を浸漬した活性測定液
e 活性測定液の温度測定装置
DESCRIPTION OF SYMBOLS 1 Perforated pipe 2 Crop root invasion prevention Corrosion-resistant root cloth membrane bag 3 Standing pipe 4 Pipe opening / closing valve or opening / closing valve for forced ventilation 5 Aeration pump, water pump connector 6 Starting pipe 7 Pipe opening / closing valve 8 Simple drainage pump connector 9 Porous pipe hole 10 Cultivation crop 11 Drain tank 12 for drainage 12 Open / close valve for supplying water, culture solution, microbubble 13 Forced ventilation pump (air pump)
14 Forced water pump (pressurized water pump)
15 Micro Bubble Pressurized Water Supply Pump 16 Water / Culture Supply Tank 17 Forced Drain Opening / Closing Valve 18 Forced Drain Pump 19 Forced Drain Port 20 Simple Manual Type Forced Water Flow / Excessive Soil Water Suction and Removal Pump Device Tread 21 Simple Manual Type Actuation handle 22 of the pumping device for both forced water and over-humid soil water suction and removal The club 23 that reciprocates back and forth with the manual operation of the simple manual type forced water and over-humid soil water suction and removal pump. Pump chamber 24 of the soil water suction / combination pump device Piston 25 of the simple manual type forced water flow / superhumidity soil water suction removal / combination pump device Piston push rod 26 of the simple manual type forced water flow / superhumidity soil water suction / removal pump device Simple manual type forced water flow / excessive soil water suction removal combined use pump device tread mounting fulcrum 27 Simple manual type forced water flow / excessive soil water suction removal combined use pump device piss Ton push rod mounting fulcrum 28 Simple manual type forced water flow / excessive soil water suction removal combined use pump device room suction side backflow prevention valve 29 Simple manual type forced water flow / excessive soil water suction removal combined use pump device room discharge side reverse flow Prevention valve 30 Simple manual type forced water / overhumidity soil water suction / removal pump device Forced water supply port and soil solution suction port 31 Simple manual type forced water / overhumidity soil water suction / removal pump device Forced water and forced aeration suction pipe and soil solution suction pipe 32 Simple manual type forced water flow and super-humid soil water suction and removal pump device Forced water flow and forced air flow induction pipe and soil solution Induction pipe 33 for discharge Simple manual type forced water flow / excessive soil water suction / removal pump device Forced water flow and forced air inlet and soil solution discharge port 34 Nitrogen gas cylinder 35 Soil surface Covered sealing sheet a oysters grown with 100-500 μm large microbubbles b oysters grown with 10-100 μm small nanobubbles c methylene blue standard solution comparison solution series Measuring solution e Temperature measuring device for activity measuring solution

Claims (9)

農地圃場地下5〜30cmの深さまで作畝にそってトレンチャーで溝を掘り、
溝底に直径12mmで径7mm以下の小孔を有する多孔塩化ビニルパイプ又はピンホール潅水チューブ又は複数のノズルを有する直径10mm以下の耐圧通水気チューブを埋設し、
パイプ又はチューブの末端に地上へ導くパイプと開閉バルブ及び接続コネクターを設け、
作物栽培期間中は接続コネクターと給水ポンプ又はエアーポンプを用途に応じて接続して水、培養液及び空気を必要に応じて根圏土壌内へ強制的に送り込んで作物の健康で旺盛な生育管理を行い、
栽培終了後の土壌病害虫防除に際しては土壌表面をシートで覆い密封して接続コネクターからクロールピクリンの注入をおこない窒素ガス供給装置を用いて窒素ガス噴射で強制的に薫蒸ガスを根圏土壌内へ送り込んで薫蒸を行うか、又は窒素ガスの単独噴射で強制的にガスを根圏土壌内へ送り込んで窒息させることにより、作物の生育及び農産物の収量及び品質を向上させる管理と土壌病害虫防除管理を目的にそって別々の時期に同一装置を用いて行うことを特徴とする圃場地下根圏の簡易短作期型の強制通水及び強制通気及び土壌病害虫窒息防除の方法。
A trencher digs a trench along the farm to a depth of 5-30 cm below the farmland field,
A porous vinyl chloride pipe having a small hole with a diameter of 12 mm and a diameter of 7 mm or less or a pinhole irrigation tube or a pressure-resistant water-permeable tube with a diameter of 10 mm or less having a plurality of nozzles is embedded in the groove bottom,
A pipe that leads to the ground at the end of the pipe or tube, an open / close valve, and a connector are provided.
During the crop cultivation period, the connection connector and water supply pump or air pump are connected depending on the application, and water, culture solution and air are forcibly fed into the rhizosphere soil as necessary to maintain healthy and vigorous growth of the crop. And
When controlling pests of soil after cultivation, cover the soil surface with a sheet, seal it, inject chlorpicrin from the connection connector, and forcibly supply fumigation gas into the rhizosphere soil by nitrogen gas injection using a nitrogen gas supply device Management to improve crop growth and yield and quality of crops and soil pest control by feeding and fumigating or forcing nitrogen into the rhizosphere soil with a single injection of nitrogen gas to suffocate A simple short-period forced flow and forced aeration and soil pest control of soil pests, characterized by using the same device at different times according to the purpose.
請求項1において圃場地下30〜40cmの深さまでトレンチャーで溝を掘り、
溝底に直径12mmで径7mm以下の小孔を有する多孔の塩化ビニルパイプを作畝にそって埋設し、
パイプの外側を被覆する耐腐敗性で通水、通気が可能な目の細かい布の防根布膜袋で覆い、
パイプ又はチューブの末端に地上へ導くパイプと開閉バルブ及び接続コネクターを設け、
通常の栽培ではコネクターと加圧給水ポンプ又はエアーポンプを接続して水、培養液及び空気をそれぞれパイプを通して根圏土壌内へ強制的に送り込み、
集中豪雨等で冠水又は過湿になった場合はコネクターと排水ポンプを接続して排水し、
作物の生育及び農産物の品質を向上させる強制通水及び強制通気及び強制排水を併せ行うことを特徴とする簡易常設型圃場地下根圏の環境制御方法。
In Claim 1, digging a trench with a trencher to a depth of 30-40 cm below the field,
A porous vinyl chloride pipe having a small hole with a diameter of 12 mm and a diameter of 7 mm or less at the groove bottom is buried along the operation,
Cover the outside of the pipe with a anti-corrosion rooting membrane bag that is septic and water-permeable and finely permeable,
A pipe that leads to the ground at the end of the pipe or tube, an open / close valve, and a connector are provided.
In normal cultivation, a connector and a pressurized water supply pump or air pump are connected to forcibly feed water, culture solution and air into the rhizosphere soil through pipes.
If it becomes flooded or overhumidity due to heavy rain, etc., connect the connector and drain pump to drain,
An environmental control method for a simple permanent field subsurface rhizosphere characterized by performing forced water flow, forced air flow and forced drainage to improve crop growth and agricultural product quality.
請求項1及び請求項2において圃場地下30〜100cmの深さまで作畝にそって溝をほり、
この作畝にそった溝の両端にこれらの溝を横断的に繋ぐ溝を掘り、
作畝にそった溝には溝底に直径15〜200mmで径7mm以下の小孔を有する多孔のプラスティックパイプ又は多孔の硬質ゴムチューブを埋設し、
横断する溝には太いパイプを埋設して作畝にそって設置したパイプ又はチューブと連結し、
作畝の多孔パイプ又はチューブは外側を耐腐敗性で通水気性の目の細かい布の防根布膜袋で被覆し、
横断パイプの一端と接続した加圧給水ポンプ又はエアーポンプ又はマイクロバブル送水機で強制的に水、培養液、マイクロバブル及び空気をそれぞれ多孔パイプから根圏土壌内へ送り込み、
作物の生育及び農産物の品質を向上させる強制通気及びマイクロバブル強制通水に加え、
培養液を強制供給する施肥管理の省力化と、
パイプ又はチューブと連結した横断パイプの一端に接続した排水ポンプで、豪雨水害時の畑の冠水による土壌過湿水を強制排水して湿害の被害を防止することと、
を合わせ機能することを特徴とする省力型農業の根圏土壌環境制御の方法。
In claim 1 and claim 2, the groove is broken along the cultivation to a depth of 30 to 100 cm under the field.
We dug a groove that crosses these grooves across the groove along this work,
A porous plastic pipe or a porous hard rubber tube having a small hole with a diameter of 15 to 200 mm and a diameter of 7 mm or less is embedded in the groove along the operation,
A thick pipe is buried in the crossing groove and connected to the pipe or tube installed along the operation,
The outer perforated pipe or tube is covered with an anti-corrosion and water-permeable fine-grained root-proof fabric bag,
Forcibly feed water, culture solution, microbubble and air from the perforated pipe into the rhizosphere soil with a pressurized water pump or air pump or microbubble water feeder connected to one end of the transverse pipe,
In addition to forced aeration and microbubble forced water to improve crop growth and agricultural product quality,
Labor-saving in fertilizer management that forcibly supplies culture solution,
A drainage pump connected to one end of a cross pipe connected to a pipe or a tube to prevent drainage damage by forcibly draining soil-humidified water from flooding in the field during heavy rains,
A method of rhizosphere soil environment control of labor-saving agriculture, characterized by combining and functioning.
請求項1、請求項2及び請求項3において、
地下5〜100cmの深さの位置まで作畝にそって溝を掘り、
溝底に埋設する直径12〜200mmで径7mm以下の小孔を有する多孔のプラスティックパイプ又はゴムチューブ又は潅水チューブと、
パイプ又はチューブと末端で接続してパイプ内に溜まる水の集水ドレンと、
パイプ又はチューブの外側を被覆する耐腐敗性で通気性の目の細かい防根布膜袋と、
パイプ又はチューブに接続してパイプ内へ水を強制給水して加圧する給水ポンプと、
パイプ又はチューブに接続してパイプ内へ空気を強制通気する加圧エアーポンプと、
パイプ又はチューブと繋がった集排水ドレンに接続した排水ポンプと、
ドレン排水口の開閉を行うバルブとからなる装置で、
農地圃場の根圏へ水と空気及び培養液を強制的に供給し、
冠水時の土壌中の過湿水を強制的に排除する機能を有し、
強制通水気及び強制排水を特徴とする根圏土壌環境制御システム装置。
In claim 1, claim 2 and claim 3,
Dig a ditch along the work to a depth of 5-100cm underground,
A porous plastic pipe or rubber tube or irrigation tube having a small hole with a diameter of 12 to 200 mm and a diameter of 7 mm or less embedded in the groove bottom;
A water drainage connected to the pipe or tube at the end and collected in the pipe;
A fine anti-corrosion rooting membrane bag that covers the outside of the pipe or tube,
A water supply pump connected to a pipe or tube to force water into the pipe and pressurize it;
A pressurized air pump connected to a pipe or tube to forcibly vent air into the pipe;
A drainage pump connected to a drainage drain connected to a pipe or tube;
A device consisting of a valve that opens and closes a drain outlet.
Forcibly supplying water, air and culture solution to the rhizosphere of the farmland field,
It has the function of forcibly removing excessive moisture in the soil during flooding,
A rhizosphere soil environment control system device characterized by forced air flow and forced drainage.
請求項4において、装置のパイプ又はゴムチュ−ブに接続加設し、
パイプ又はゴムチュ−ブ内へマイクロバブルを強制的に送付する装置を取り付け、
マイクロバブルによる土壌への水の浸透力と酸素の浸透力を高め、
作物の生育収量と品質向上をさらに促進するためマイクロバブルの強制通水、強制通気及び強制排水を行うことを特徴とするマイクロバブルを供給する地下根圏の環境制御装置。
In claim 4, connecting and adding to the pipe or rubber tube of the device,
Install a device that forcibly sends microbubbles into pipes or rubber tubes,
Increase the water permeability and oxygen permeability to the soil by microbubbles,
An environmental control device for underground rhizosphere that supplies microbubbles, which performs forced flow, forced ventilation, and forced drainage of microbubbles to further promote growth and yield and quality improvement of crops.
請求項1及び請求項2における強制通水及び強制排水兼用の手動ポンプで、
人が乗って作業する踏み台と、
人が操作する把手のハンドルと、
てこの機能でピストンを動かし往復振幅する梶棒と、
シリンダー容器で踏み台に固定している二つのポンプ室と、
シリンダー容器に密着して気密性のピストンと、
振幅する梶棒と連結してピストンを動かす押し棒と、
踏み台と振幅する梶棒を連結する支点ベアリングと、
ピストンの押し棒と振幅する擢棒を連結する上下可動の支点ベアリングと、
給水時は給水タンクから過湿土壌水吸引時は多孔パイプからコネクターと接続して給水・配水のポンプへの吸引口と、
吸引した水を二つのポンプ室へ導く誘導パイプと
ポンプ室の入り口側の逆流防止弁と、
ポンプ室の出口側の逆流防止弁と、
二つのポンプ室から排出される水を排出口へ導く排出誘導パイプと、
排出口とから構成し、
排出口では給水時は給水タンクへ過湿土壌水吸引時は多孔パイプへコネクターと接続し、
人力で往復梶を前後に押し引きして、土中へ水や培養液を強制的に送水したり、過湿土壌溶液を吸い出すことが可能であることを特徴とする土壌の簡易手動型強制通水、過湿土壌溶液吸引排出兼用ポンプ。
A manual pump for both forced water flow and forced drainage according to claim 1 and claim 2,
A step on which people ride and work,
A handle of a handle operated by a person,
A lever that reciprocally swings by moving the piston with the lever function,
Two pump chambers fixed to the platform with cylinder containers,
An airtight piston in close contact with the cylinder container,
A push rod that moves in conjunction with an oscillating bar
A fulcrum bearing that connects the step and the swinging bar,
A fulcrum bearing that is movable up and down to connect the push rod of the piston and the bar that swings;
When water is being supplied, a suction port to the water supply / distribution pump is connected to the connector from the perforated pipe when suctioning overhumid soil water from the water supply tank.
A guide pipe for leading the sucked water to the two pump chambers, a backflow prevention valve on the inlet side of the pump chamber,
A check valve on the outlet side of the pump chamber;
A discharge induction pipe for guiding water discharged from the two pump chambers to the discharge port;
Consisting of a discharge port,
At the discharge port, connect the connector to the perforated pipe to the water tank when supplying water to the water tank when sucking overhumid soil water,
Simple manual forced passage of soil, characterized in that it is possible to forcibly feed water and culture solution into the soil and suck out overhumid soil solution by pushing and pulling the reciprocating dredge back and forth manually. Pump for suction and discharge of water and super-humid soil solution.
請求項2、請求項3、請求項4、請求項5において、耐腐敗性の防根布膜袋で周囲を覆ったパイプを深さの異なる位置に2〜数段設置する多段方式の地下根圏の環境制御方法。6. A multi-stage underground root according to claim 2, 3, 4, or 5, wherein two or more pipes, which are covered with a rot-resistant root cloth membrane bag, are placed at different depths. Environmental control method for the service area. 請求項2、請求項3、請求項4、請求項5及び請求項7において、土壌表面を機密性のシートで覆い、強制通気システムで地下根圏に窒素ガスを送り、窒素ガス単独で線虫及び土壌棲息害虫を窒息死させる機能、或いは窒素ガスとクロールピクリンで省力的に薫蒸することを特徴とする土壌病害虫窒息防除の方法。In claim 2, claim 3, claim 4, claim 5 and claim 7, the soil surface is covered with a confidential sheet, nitrogen gas is sent to the underground rhizosphere by a forced ventilation system, and nitrogen gas alone is a nematode. And a method for controlling suffocation of soil pests, characterized by suffocating and suffocating the soil pests, or by fumigating laborably with nitrogen gas and chlorpicrin. 基本的装備として、請求項1、請求項2、請求項3、請求項4、請求項5、請求項7及び請求項8における強制通水、強制通気、土壌害虫窒息防除、強制排水等の根圏地下環境制御の方法と装置を採用する農業栽培技術。As basic equipment, roots of forced water flow, forced ventilation, soil pest control, forced drainage, etc. in claim 1, claim 2, claim 3, claim 4, claim 5, claim 7 and claim 8 Agricultural cultivation technology that employs methods and equipment for controlling underground underground environments.
JP2010294664A 2010-12-09 2010-12-09 Method and apparatus for controlling environment of underground rooting zone of crop through forcible water and air flow and drainage Pending JP2012120523A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010294664A JP2012120523A (en) 2010-12-09 2010-12-09 Method and apparatus for controlling environment of underground rooting zone of crop through forcible water and air flow and drainage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010294664A JP2012120523A (en) 2010-12-09 2010-12-09 Method and apparatus for controlling environment of underground rooting zone of crop through forcible water and air flow and drainage

Publications (1)

Publication Number Publication Date
JP2012120523A true JP2012120523A (en) 2012-06-28

Family

ID=46502687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010294664A Pending JP2012120523A (en) 2010-12-09 2010-12-09 Method and apparatus for controlling environment of underground rooting zone of crop through forcible water and air flow and drainage

Country Status (1)

Country Link
JP (1) JP2012120523A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014039538A (en) * 2012-07-23 2014-03-06 Kazuji Hiraoka Water supply device for cultivation tank
JP2014187985A (en) * 2013-03-28 2014-10-06 Kubota-C. I Co Ltd Subirrigation system
WO2015120740A1 (en) * 2014-02-12 2015-08-20 上海旎逊投资管理有限公司 Underground farm
CN104969789A (en) * 2015-07-03 2015-10-14 湖北省农业科学院粮食作物研究所 Field humidifying device for inducing wheat scab and use method thereof
EP3172960A1 (en) * 2015-11-25 2017-05-31 Aircleanup Modular pollution-removing plant wall
CN108156922A (en) * 2018-01-12 2018-06-15 中国农业科学院农田灌溉研究所 Suitability identification method and identification systems are irrigated in a kind of crop aerating
CN108668683A (en) * 2018-07-27 2018-10-19 河北农业大学 A kind of close type cultivation irrigates oxygenating and heats integrated feed system
JP2018166505A (en) * 2018-03-19 2018-11-01 鹿島建設株式会社 Irrigation system
JP2018532431A (en) * 2015-11-03 2018-11-08 ジュン, ピル ホJUNG, Pil Ho Agricultural air injection equipment
JP2019054759A (en) * 2017-09-21 2019-04-11 株式会社テヌート Activating method of plant root, and cultivation method
JP2020061962A (en) * 2018-10-16 2020-04-23 有限会社タイヨー種苗 Crop greenhouse culture method
JP2020063382A (en) * 2018-10-18 2020-04-23 株式会社田中金属製作所 Agent for preventing or improving soil trouble
CN111758426A (en) * 2020-07-30 2020-10-13 黑龙江省农业科学院园艺分院 Control system for supplementing oxygen to vegetable root system by utilizing drip irrigation pipeline equipment
CN117256440A (en) * 2023-11-22 2023-12-22 东川区耀春种植专业合作社 Water irrigation device suitable for crop planting

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014039538A (en) * 2012-07-23 2014-03-06 Kazuji Hiraoka Water supply device for cultivation tank
JP2014187985A (en) * 2013-03-28 2014-10-06 Kubota-C. I Co Ltd Subirrigation system
WO2015120740A1 (en) * 2014-02-12 2015-08-20 上海旎逊投资管理有限公司 Underground farm
CN104969789A (en) * 2015-07-03 2015-10-14 湖北省农业科学院粮食作物研究所 Field humidifying device for inducing wheat scab and use method thereof
CN104969789B (en) * 2015-07-03 2017-05-03 湖北省农业科学院粮食作物研究所 Field humidifying device for inducing wheat scab and use method thereof
JP2018532431A (en) * 2015-11-03 2018-11-08 ジュン, ピル ホJUNG, Pil Ho Agricultural air injection equipment
EP3172960A1 (en) * 2015-11-25 2017-05-31 Aircleanup Modular pollution-removing plant wall
JP2019054759A (en) * 2017-09-21 2019-04-11 株式会社テヌート Activating method of plant root, and cultivation method
JP7036362B2 (en) 2017-09-21 2022-03-15 株式会社テヌート Plant root activation method and cultivation method
CN108156922B (en) * 2018-01-12 2023-07-18 中国农业科学院农田灌溉研究所 Identification method and identification system for suitability of crop aerated irrigation
CN108156922A (en) * 2018-01-12 2018-06-15 中国农业科学院农田灌溉研究所 Suitability identification method and identification systems are irrigated in a kind of crop aerating
JP7112861B2 (en) 2018-03-19 2022-08-04 鹿島建設株式会社 Irrigation system
JP2018166505A (en) * 2018-03-19 2018-11-01 鹿島建設株式会社 Irrigation system
CN108668683A (en) * 2018-07-27 2018-10-19 河北农业大学 A kind of close type cultivation irrigates oxygenating and heats integrated feed system
JP2020061962A (en) * 2018-10-16 2020-04-23 有限会社タイヨー種苗 Crop greenhouse culture method
JP7080153B2 (en) 2018-10-16 2022-06-03 有限会社タイヨー種苗 How to grow crops in a house
JP2020063382A (en) * 2018-10-18 2020-04-23 株式会社田中金属製作所 Agent for preventing or improving soil trouble
JP7327922B2 (en) 2018-10-18 2023-08-16 株式会社Tks Agent for preventing or improving soil damage
CN111758426A (en) * 2020-07-30 2020-10-13 黑龙江省农业科学院园艺分院 Control system for supplementing oxygen to vegetable root system by utilizing drip irrigation pipeline equipment
CN117256440A (en) * 2023-11-22 2023-12-22 东川区耀春种植专业合作社 Water irrigation device suitable for crop planting
CN117256440B (en) * 2023-11-22 2024-02-02 东川区耀春种植专业合作社 Water irrigation device suitable for crop planting

Similar Documents

Publication Publication Date Title
JP2012120523A (en) Method and apparatus for controlling environment of underground rooting zone of crop through forcible water and air flow and drainage
KR101644630B1 (en) Agricultural Air injection apparatus
US20060150497A1 (en) Method of hydroponic cultivation and components for use therewith
US7243459B2 (en) Method of cultivation and components for use therewith
CN108157028A (en) Agricultural booth and greenhouse gardening method
JP2006320296A (en) Method for raising tea seedling
KR20100109751A (en) Water culture apparatus
WO2006018909A1 (en) Chemical-free soil culture method for plant using simplified facility
CN108029415B (en) Timely regulation and control drip irrigation cultivation method for water-saving conditioning of dwarf close-planted fruit trees
CN202565823U (en) Combined cultivation box
CN106797827A (en) Photovoltaic agricultural greenhouse system and greenhouse gardening method
JP2005060296A (en) Method and apparatus for sterilizing soil
CN108849128A (en) A kind of facility celery pest and disease damage green prevention and control method
CN105557467A (en) Ecological-permeation network pipe fertilization and irrigation system
CN209749289U (en) Farming big-arch shelter with watering function
CN103535250A (en) Pinelia ternata and grape organic planting composite farm
CN109874524A (en) Golden Bell Tree cultural method
CN109197229A (en) A kind of cultivating container
TWI535372B (en) Ecological Penetration Network Management Fertilizer Irrigation System
KR101759179B1 (en) Removable growth bed system for cultivating ginseng
KR101663865B1 (en) Nutrient solution soil flowerpot and flowerpot supporting member applied at the nutrient solution soil flowerpot and flowerpot inner member
CN210694917U (en) Device for planting organic vegetables in foreign soil pot
CN103503755B (en) Organic composite plantation farm
CN216821081U (en) Improved water-saving no-tillage accurate irrigation system
KR102620968B1 (en) Nutrient solution cultivation device for green house that supplies nutrient solution with bellows straw

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120507