JP2012119343A - Solar battery manufacturing method, solar battery manufacturing apparatus, and solar battery - Google Patents

Solar battery manufacturing method, solar battery manufacturing apparatus, and solar battery Download PDF

Info

Publication number
JP2012119343A
JP2012119343A JP2009084424A JP2009084424A JP2012119343A JP 2012119343 A JP2012119343 A JP 2012119343A JP 2009084424 A JP2009084424 A JP 2009084424A JP 2009084424 A JP2009084424 A JP 2009084424A JP 2012119343 A JP2012119343 A JP 2012119343A
Authority
JP
Japan
Prior art keywords
solar cell
electrode film
photoelectric conversion
film
conversion layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009084424A
Other languages
Japanese (ja)
Inventor
Hirotaka Koyama
博隆 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Mechatronics Corp
Original Assignee
Shibaura Mechatronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shibaura Mechatronics Corp filed Critical Shibaura Mechatronics Corp
Priority to JP2009084424A priority Critical patent/JP2012119343A/en
Priority to PCT/JP2010/055578 priority patent/WO2010113880A1/en
Priority to TW099109991A priority patent/TW201108447A/en
Publication of JP2012119343A publication Critical patent/JP2012119343A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0376Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors
    • H01L31/03762Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the cost of a thin film solar battery and that of a manufacturing apparatus to manufacture it, improve the quality of the thin film solar battery, and increase the power generation efficiency of the thin film solar battery.SOLUTION: A manufacturing method is provided which comprises a step in which, after a first electrode film is formed on a substrate in a reduced pressure atmosphere, a photoelectric conversion layer is formed on the first electrode film in a reduced pressure atmosphere, without being exposed to the atmospheric air and then a second electrode film is formed on the photoelectric conversion layer in a reduced pressure atmosphere, without being exposed to the atmospheric air, thereby forming a multilayer film; a step in which the multilayer film is divided into sections to form a plurality of juxtaposed solar battery cells on the substrate; and a step in which the second electrode film and the photoelectric conversion layer of a first solar battery cell out of the plurality of solar battery cells are selectively removed to make the first electrode film show up, and the second metal film of a second solar battery cell adjacent to the first solar battery cell and the first electrode film made to show up are electrically connected.

Description

本発明は、太陽電池の製造方法、太陽電池の製造装置及び太陽電池に関する。   The present invention relates to a solar cell manufacturing method, a solar cell manufacturing apparatus, and a solar cell.

近年、環境保護の立場から、クリーンなエネルギーの研究開発が進められている。中でも、太陽電池は資源となる太陽光が無限であること、無公害であることから注目を集めている。
同一基板上に形成された複数の太陽電池セルが、直列接続された太陽電池(光電変換装置)の代表例は、薄膜太陽電池である。
薄膜太陽電池は、薄型で軽量、製造コストの安さ、大面積化が容易であることから、今後の太陽電池の主流となると考えられている。また、薄膜太陽電池は、電力供給用以外に、建物の屋根や窓などにとりつけて利用される業務用、一般住宅用にも需要が広がってきている。
In recent years, research and development of clean energy has been promoted from the standpoint of environmental protection. Above all, solar cells are attracting attention because of the infinite amount of sunlight that is a resource and no pollution.
A typical example of a solar cell (photoelectric conversion device) in which a plurality of solar cells formed on the same substrate are connected in series is a thin film solar cell.
Thin film solar cells are considered to become the mainstream of future solar cells because they are thin and lightweight, inexpensive to manufacture, and easy to increase in area. In addition to power supply, thin-film solar cells are also in demand for business use and general residential use attached to roofs and windows of buildings.

従来の薄膜太陽電池は、ガラス基板を用いているものが一般的であった。このような薄膜太陽電池は、ガラス基板上に、その下層から下部電極、半導体層からなる光電変換層、上部電極が積層された光電変換素子(またはセル)が複数形成されている。そして、任意の光電変換素子の上部電極と、これに隣接する光電変換素子の下部電極とを電気的に接続する構成が繰り返されている。これにより、最初の光電変換素子の上部電極と最後の光電変換素子の下部電極との間に必要な電圧が出力される。   Conventional thin-film solar cells generally use a glass substrate. In such a thin film solar cell, a plurality of photoelectric conversion elements (or cells) in which a lower electrode, a photoelectric conversion layer made of a semiconductor layer, and an upper electrode are stacked are formed on a glass substrate. And the structure which electrically connects the upper electrode of arbitrary photoelectric conversion elements and the lower electrode of the photoelectric conversion element adjacent to this is repeated. Thereby, a necessary voltage is output between the upper electrode of the first photoelectric conversion element and the lower electrode of the last photoelectric conversion element.

このような光電変換素子間の直列接続は、電極層と光電変換層の成膜と各層のパターニング、およびこれらの組み合わせによりなされる。そして、最近では、基板上に積層された膜をレーザ加工により分断して、光電変換素子を直列接続する方法が開示されている(例えば、特許文献1参照)。   Such series connection between the photoelectric conversion elements is made by forming an electrode layer and a photoelectric conversion layer, patterning each layer, and a combination thereof. Recently, a method has been disclosed in which a film laminated on a substrate is divided by laser processing to connect photoelectric conversion elements in series (for example, see Patent Document 1).

特開2003−060219号公報JP 2003-060219 A

しかしながら、上述した方法は、直列接続するための配線工程や製造工程中での位置合わせが複雑になり、簡便な方法で太陽電池を製造したものではない。   However, the above-described method complicates the alignment in the wiring process and the manufacturing process for series connection, and the solar cell is not manufactured by a simple method.

本発明は、上述した直列接続を簡略化することにより、太陽電池及びそれを製造する製造装置の低コスト化を図ると共に、太陽電池の品質を向上し、太陽電池の発電効率が向上する太陽電池の製造方法、太陽電池の製造装置及び太陽電池を提供することを目的とする。   The present invention simplifies the series connection described above, thereby reducing the cost of the solar cell and the manufacturing apparatus for manufacturing the solar cell, improving the quality of the solar cell, and improving the power generation efficiency of the solar cell. An object of the present invention is to provide a manufacturing method, a solar cell manufacturing apparatus, and a solar cell.

本発明の一態様によれば、基板上に、複数の太陽電池セルが直列に接続された太陽電池の製造方法であって、前記基板上に、第1の電極膜を減圧雰囲気下で形成し、その後、大気に曝すことなく、前記第1の電極膜上に、光電変換層を減圧雰囲気下で形成し、その後大気に曝すことなく、前記光電変換層上に、第2の電極膜を減圧雰囲気下で形成して、積層膜を形成する工程と、前記積層膜を分断して、前記基板上に併設された前記複数の太陽電池セルを形成する工程と、前記複数の太陽電池セルのうちの第1の太陽電池セルの前記第2の電極膜及び前記光電変換層を選択的に除去して、前記第1の電極膜を表出させ、
前記第1の太陽電池セルに隣接する第2の太陽電池セルの前記第2の金属膜と、表出させた前記第1の電極膜と、を電気的に接続する工程と、を備えたことを特徴とする太陽電池の製造方法が提供される。
According to one aspect of the present invention, there is provided a solar cell manufacturing method in which a plurality of solar cells are connected in series on a substrate, wherein the first electrode film is formed on the substrate in a reduced-pressure atmosphere. Thereafter, the photoelectric conversion layer is formed on the first electrode film in a reduced pressure atmosphere without exposure to the air, and then the second electrode film is reduced on the photoelectric conversion layer without exposure to the air. Of the plurality of solar cells, a step of forming a laminated film by forming in an atmosphere, a step of dividing the laminated film to form the plurality of solar cells arranged on the substrate, and Selectively removing the second electrode film and the photoelectric conversion layer of the first solar cell to expose the first electrode film,
Electrically connecting the second metal film of the second solar cell adjacent to the first solar cell and the exposed first electrode film. A method for manufacturing a solar cell is provided.

また、本発明の一態様によれば、基板上に、複数の太陽電池セルが直列に接続された太陽電池の製造装置であって、前記基板上に、第1の電極膜を減圧雰囲気下で形成し、その後、大気に曝すことなく、前記第1の電極膜上に、光電変換層を減圧雰囲気下で形成し、その後大気に曝すことなく、前記光電変換層上に、第2の電極膜を減圧雰囲気下で形成して、積層膜を形成する第1の手段と、前記積層膜を分断して、前記基板上に併設された前記複数の太陽電池セルを形成する第2の手段と、前記併設された前記複数の太陽電池セルのうちの前記第1の太陽電池セルの前記第2の電極膜及び前記光電変換層を選択的に除去して、前記第1の電極膜を表出させ、前記第2の太陽電池セルの前記第2の金属膜と、表出させた前記第1の電極膜と、を接続する第3の手段と、を備えたことを特徴とする太陽電池の製造装置が提供される。   According to another aspect of the present invention, there is provided a solar cell manufacturing apparatus in which a plurality of solar cells are connected in series on a substrate, wherein the first electrode film is placed on the substrate in a reduced-pressure atmosphere. Forming a photoelectric conversion layer on the first electrode film in a reduced-pressure atmosphere without exposing to the air, and then exposing the second electrode film on the photoelectric conversion layer without exposing to the air. A first means for forming a laminated film, and a second means for dividing the laminated film to form the plurality of solar cells provided on the substrate; The first electrode film is exposed by selectively removing the second electrode film and the photoelectric conversion layer of the first solar battery cell among the plurality of solar battery cells provided side by side. , The second metal film of the second solar cell, and the exposed first electrode film, Apparatus for manufacturing a solar cell characterized by comprising a third means for connection is provided.

また、本発明の一態様によれば、基板上に形成された、第1の電極膜と、前記第1の電極膜の上に設けられた光電変換層と、前記光電変換層の上に設けられた第2の電極膜と、を含む積層膜が一括して分断されて前記基板上に併設された複数の太陽電池セルと、前記複数の太陽電池セルを直列に接続する接続部材と、を備えたことを特徴とする太陽電池が提供される。   According to one embodiment of the present invention, a first electrode film formed on a substrate, a photoelectric conversion layer provided on the first electrode film, and provided on the photoelectric conversion layer A plurality of solar cells provided on the substrate by dividing a laminated film including the second electrode film, and a connecting member for connecting the plurality of solar cells in series. There is provided a solar cell comprising the above.

本発明によれば、太陽電池及びそれを製造する製造装置の低コスト化がなされ、太陽電池の品質が向上し、太陽電池の発電効率が向上する。   ADVANTAGE OF THE INVENTION According to this invention, cost reduction of a solar cell and a manufacturing apparatus which manufactures it is made, the quality of a solar cell improves, and the power generation efficiency of a solar cell improves.

本実施の形態に係わる薄膜太陽電池を説明する要部図である。It is a principal part figure explaining the thin film solar cell concerning this Embodiment. 製造装置の構成を説明するための要部図である。It is a principal part figure for demonstrating the structure of a manufacturing apparatus. 薄膜太陽電池の製造方法を説明するための要部図である。It is a principal part figure for demonstrating the manufacturing method of a thin film solar cell. 薄膜太陽電池の製造方法を説明するための要部図である。It is a principal part figure for demonstrating the manufacturing method of a thin film solar cell. 薄膜太陽電池の製造方法を説明するための要部図である。It is a principal part figure for demonstrating the manufacturing method of a thin film solar cell. 薄膜太陽電池の製造方法を説明するための要部図である。It is a principal part figure for demonstrating the manufacturing method of a thin film solar cell. 薄膜太陽電池の比較例を説明するための要部図である。It is a principal part figure for demonstrating the comparative example of a thin film solar cell. 薄膜太陽電池の製造工程の変形例を説明するための要部図である。It is a principal part figure for demonstrating the modification of the manufacturing process of a thin film solar cell. 薄膜太陽電池の製造工程の変形例を説明するための要部図である。It is a principal part figure for demonstrating the modification of the manufacturing process of a thin film solar cell. 薄膜太陽電池の製造工程の別の変形例を説明するための要部図である。It is a principal part figure for demonstrating another modification of the manufacturing process of a thin film solar cell. 薄膜太陽電池の製造工程のさらに別の変形例を説明するための要部図である。It is a principal part figure for demonstrating another modification of the manufacturing process of a thin film solar cell. 薄膜太陽電池の製造工程のさらに別の変形例を説明するための要部図である。It is a principal part figure for demonstrating another modification of the manufacturing process of a thin film solar cell. 薄膜太陽電池の製造工程のさらに別の変形例を説明するための要部図である。It is a principal part figure for demonstrating another modification of the manufacturing process of a thin film solar cell. 本実施の形態に係る薄膜太陽電池の変形例を説明する要部図である。It is a principal part figure explaining the modification of the thin film solar cell which concerns on this Embodiment.

以下、図面を参照しつつ、本発明の実施の形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本実施の形態に係る薄膜太陽電池を説明する要部図である。すなわち、図1は、薄膜太陽電池(太陽電池モジュール)1aの要部斜視図である。
薄膜太陽電池1aは、主に、基板10と、基板10に複数形成された太陽電池セル20と、それぞれの太陽電池セル20を電気的に直列状に接続する金属ワイヤ30と、を含む。
FIG. 1 is a main part diagram for explaining the thin film solar cell according to the present embodiment. That is, FIG. 1 is a perspective view of a main part of a thin film solar cell (solar cell module) 1a.
The thin film solar cell 1a mainly includes a substrate 10, a plurality of solar cells 20 formed on the substrate 10, and a metal wire 30 that electrically connects the solar cells 20 in series.

それぞれの太陽電池セル20は、その下層から、下部電極としての透明電極層20a、薄膜半導体材からなる光電変換層20b、金属電極層20cが積層されている。それぞれの太陽電池セル20には、局部的に透明電極層20aが表出した孔部20haが設けられている。そして、孔部20haの底における透明電極層20aと、隣接する太陽電池セル20の金属電極層20cとが、金属ワイヤ30により電気的に接続されている。   Each solar battery cell 20 has a transparent electrode layer 20a as a lower electrode, a photoelectric conversion layer 20b made of a thin film semiconductor material, and a metal electrode layer 20c laminated from the lower layer. Each solar battery cell 20 is provided with a hole 20ha where the transparent electrode layer 20a is locally exposed. The transparent electrode layer 20 a at the bottom of the hole 20 ha and the metal electrode layer 20 c of the adjacent solar battery cell 20 are electrically connected by a metal wire 30.

なお、このような太陽電池セル20は、図示する個数に限らず、必要とされる出力電圧に応じて、その数が調節される。そして、上述した電気的な接続を繰り返すことにより、直列接続の最初の太陽電池セルの上部電極と、直列接続の最後の太陽電池セルの下部電極と、の間で必要な電圧が出力される。   In addition, the number of such photovoltaic cells 20 is not limited to the number illustrated, and the number is adjusted according to the required output voltage. Then, by repeating the electrical connection described above, a necessary voltage is output between the upper electrode of the first solar cell in series connection and the lower electrode of the last solar cell in series connection.

なお、溝tr1を隔てた、それぞれの太陽電池セル20は、平面状の透明電極層20a、光電変換層20b及び金属電極層20cの積層体を一括でレーザスクライブなどの方法で分断することにより形成する(後述)。   Each solar battery cell 20 separated by the groove tr1 is formed by dividing the laminated body of the planar transparent electrode layer 20a, the photoelectric conversion layer 20b, and the metal electrode layer 20c at once by a method such as laser scribing. (Described later).

基板10の材質としては、例えば、ガラス、絶縁性樹脂フィルムが適用される。
また、透明電極層20aとしては、いわゆるTCO(Transparent Conductive Oxide)等が適用される。その代表的なものとして、ITO(Indium Tin Oxide)が挙げられる。
As a material of the substrate 10, for example, glass or an insulating resin film is applied.
As the transparent electrode layer 20a, so-called TCO (Transparent Conductive Oxide) or the like is applied. A typical example is ITO (Indium Tin Oxide).

また、光電変換層20bの材質としては、シリコン系、化合物系の半導体材が適用される。例えば、その代表的なものとして、アモルファスシリコン、CIGS(Cu(InGa)Se)等が挙げられる。このような光電変換層20bは、例えば、p型とn型の半導体層が接合した構造を有している。そして、光電変換層20bに光が吸収されると、光起電力効果により透明電極層20a−金属電極層20c間に電力(電圧)が発生する。 In addition, as a material of the photoelectric conversion layer 20b, a silicon-based or compound-based semiconductor material is applied. For example, amorphous silicon, CIGS (Cu (InGa) Se 2 ) and the like are typical examples. Such a photoelectric conversion layer 20b has, for example, a structure in which a p-type and an n-type semiconductor layer are joined. When light is absorbed by the photoelectric conversion layer 20b, electric power (voltage) is generated between the transparent electrode layer 20a and the metal electrode layer 20c due to the photovoltaic effect.

金属電極層20cの材質としては、銀(Ag)、アルミニウム(Al)、亜鉛(Zn)、ニッケル(Ni)が適用される。
透明電極層20aの膜厚は、例えば1μm程度であり、光電変換層20bの膜厚は、例えば2μm程度であり、金属電極層20cの膜厚は、例えば1μm程度である。
太陽電池セル20については、基本的な3層構造を例示したが、本実施の形態については、3層以上の構成であっても対応可能である。
また、溝tr1の幅は、例えば、50μmである。
As a material of the metal electrode layer 20c, silver (Ag), aluminum (Al), zinc (Zn), or nickel (Ni) is applied.
The film thickness of the transparent electrode layer 20a is, for example, about 1 μm, the film thickness of the photoelectric conversion layer 20b is, for example, about 2 μm, and the film thickness of the metal electrode layer 20c is, for example, about 1 μm.
Although the basic three-layer structure is illustrated for the solar battery cell 20, the present embodiment can be applied to a configuration of three or more layers.
The width of the trench tr1 is, for example, 50 μm.

次に、薄膜太陽電池製造装置(以下、製造装置)を用いて、薄膜太陽電池1aを製造する工程について説明する。
図2は、製造装置の構成を説明するための要部図である。すなわち、図2は、製造装置M1aのブロック図である。また、図3〜図6は、薄膜太陽電池1aの製造方法を説明するための要部図である。
Next, the process of manufacturing the thin film solar cell 1a using a thin film solar cell manufacturing apparatus (hereinafter referred to as manufacturing apparatus) will be described.
FIG. 2 is a main part diagram for explaining the configuration of the manufacturing apparatus. That is, FIG. 2 is a block diagram of the manufacturing apparatus M1a. Moreover, FIGS. 3-6 is a principal part figure for demonstrating the manufacturing method of the thin film solar cell 1a.

図2に示すように、製造装置M1aは、成膜ユニットU1と、レーザ加工ユニットU2と、配線加工ユニットU3と、を含む。成膜ユニットU1では、減圧雰囲気で基板10に成膜処理が行われる。レーザ加工ユニットU2では、大気中で被膜のレーザ加工が行われる。配線加工ユニットU3では、上述した直列接続のための配線が行われる。これらの各ユニットU1〜U3間は、相互に行き来することができる。また、これらの各ユニットU1〜U3を直線状に近接して配列することにより、製造装置M1aの小型化が実現できる。また、各ユニットU1〜U3内での処理を連続して行うことができる。   As shown in FIG. 2, the manufacturing apparatus M1a includes a film forming unit U1, a laser processing unit U2, and a wiring processing unit U3. In the film forming unit U1, a film forming process is performed on the substrate 10 in a reduced pressure atmosphere. In the laser processing unit U2, laser processing of the coating is performed in the atmosphere. In the wiring processing unit U3, wiring for the series connection described above is performed. Each of these units U1-U3 can go back and forth. Moreover, the size reduction of the manufacturing apparatus M1a is realizable by arranging each of these units U1-U3 close to linear form. Moreover, the process in each unit U1-U3 can be performed continuously.

次に、上述した製造装置M1aを用いて薄膜太陽電池1aを製造する方法を具体的に説明する。
まず、基板10を製造装置M1aの成膜ユニットU1内に設置し、図3(a)に示すように、矩形状の基板10上に、平面状(べた状)の透明電極層20a、光電変換層20b及び金属電極層20cをスパッタリング法、PVD(Physical Vapor Deposition)法あるいはCVD(Chemical Vapor Deposition)法などにより形成する。これにより、基板10上に、透明電極層20a、光電変換層20b及び金属電極層20cで構成される、平面状の積層体20lが形成される。これらの透明電極層20a、光電変換層20b及び金属電極層20cは、それぞれ大気に晒されることなく形成される。
Next, a method for manufacturing the thin-film solar cell 1a using the manufacturing apparatus M1a described above will be specifically described.
First, the substrate 10 is installed in the film forming unit U1 of the manufacturing apparatus M1a, and as shown in FIG. 3A, on the rectangular substrate 10, a planar (solid) transparent electrode layer 20a, photoelectric conversion is performed. The layer 20b and the metal electrode layer 20c are formed by sputtering, PVD (Physical Vapor Deposition), CVD (Chemical Vapor Deposition), or the like. As a result, a planar laminate 20l composed of the transparent electrode layer 20a, the photoelectric conversion layer 20b, and the metal electrode layer 20c is formed on the substrate 10. These transparent electrode layer 20a, photoelectric conversion layer 20b, and metal electrode layer 20c are each formed without being exposed to the atmosphere.

次に、積層体20l及び基板10をレーザ加工ユニットU2に移動して、図3(b)に示すように、積層体20lにレーザスクライブを施す。これにより、基板10上の積層体20lが所定の幅に短冊状に分断される。
すなわち、基板10上に形成された、透明電極層20a、光電変換層20b及び金属電極層20cに一括でレーザスクライブ加工を施して、レーザを照射した部分に溝tr1を形成する。
Next, the laminate 20l and the substrate 10 are moved to the laser processing unit U2, and laser scribe is applied to the laminate 20l as shown in FIG. Thereby, the laminate 20l on the substrate 10 is divided into strips having a predetermined width.
That is, laser scribing is collectively performed on the transparent electrode layer 20a, the photoelectric conversion layer 20b, and the metal electrode layer 20c formed on the substrate 10 to form the groove tr1 in the portion irradiated with the laser.

さらに、それぞれの短冊状の積層体20lにおける、光電変換層20b及び金属電極層20cの少なくとも1箇所にレーザ加工(レーザスクライブ)を施す。そして、透明電極層20a上の光電変換層20b及び金属電極層20cを選択的にスポット状に除去する。この状態を、図4(a)に示す。これにより、それぞれの短冊状の積層体20lに、透明電極層20aが露出された孔部20haが形成される。   Further, laser processing (laser scribing) is performed on at least one place of the photoelectric conversion layer 20b and the metal electrode layer 20c in each strip-shaped laminate 20l. Then, the photoelectric conversion layer 20b and the metal electrode layer 20c on the transparent electrode layer 20a are selectively removed in a spot shape. This state is shown in FIG. Thereby, the hole 20ha where the transparent electrode layer 20a is exposed is formed in each strip-shaped laminate 20l.

次に、短冊状の積層体20l及び基板10を配線加工ユニットU3に移動し、孔部20haにおいて露出している透明電極層20aと、これに隣接する積層体20lの金属電極層20cとを金属ワイヤ30を通じて電気的に接続する。この状態を、図4(b)に示す。
このような工程により、基板10上に複数の太陽電池セル20が設けられた薄膜太陽電池1aが形成される。
Next, the strip-shaped laminate 20l and the substrate 10 are moved to the wiring processing unit U3, and the transparent electrode layer 20a exposed in the hole 20ha and the metal electrode layer 20c of the laminate 20l adjacent thereto are made into metal. Electrical connection is made through the wire 30. This state is shown in FIG.
By such a process, the thin film solar cell 1a in which the plurality of solar cells 20 are provided on the substrate 10 is formed.

図5は、薄膜太陽電池1aの上面図である。
図5に示すように、薄膜太陽電池1aの各太陽電池セル20の少なくとも一箇所には、透明電極層20aが表出した孔部20haが設けられている。そして、ある太陽電池セル20の孔部20haにおいて露出した透明電極層20aと、これに隣接する太陽電池セル20の金属電極層20cと、が金属ワイヤ30を通じて電気的に接続されている。このような電気的な接続の繰り返しによって、直列接続の最初の太陽電池セル20の透明電極層20aと、直列接続の最後の太陽電池セル20の金属電極層20cとの間に、必要な電圧が出力される。
FIG. 5 is a top view of the thin-film solar cell 1a.
As shown in FIG. 5, at least one portion of each solar battery cell 20 of the thin-film solar battery 1 a is provided with a hole 20 ha where the transparent electrode layer 20 a is exposed. The transparent electrode layer 20 a exposed in the hole 20 ha of a certain solar battery cell 20 and the metal electrode layer 20 c of the solar battery cell 20 adjacent thereto are electrically connected through the metal wire 30. By repeating such electrical connection, a necessary voltage is generated between the transparent electrode layer 20a of the first solar cell 20 in series connection and the metal electrode layer 20c of the last solar cell 20 in series connection. Is output.

なお、図5では、1個の太陽電池セル20に対し、2個の孔部20haを設けた例を示している。しかし、本実施の形態では、この数に限定する必要はない。必要に応じて、孔部20haの数を2個より増減してもよい。
また、図5においては、隣接する孔部20ha及び金属ワイヤ30を直線状に配置した例を示した。しかし、本実施の形態では、その配置に限定する必要はない。
FIG. 5 shows an example in which two holes 20 ha are provided for one solar battery cell 20. However, in this embodiment, it is not necessary to limit to this number. If necessary, the number of holes 20ha may be increased or decreased from two.
Moreover, in FIG. 5, the example which has arrange | positioned the adjacent hole part 20ha and the metal wire 30 linearly was shown. However, in the present embodiment, it is not necessary to limit the arrangement.

例えば、図6(a)に示すように、1個おきに孔部20ha及び金属ワイヤ30の位置をずらして配置してもよい。これにより、金属電極層20cに接合する金属ワイヤ30の自由度が増加する。また、図5に示す形態よりも、太陽電池セル20の幅(溝tr1に対し略垂直方向の幅)をより狭くしても、金属ワイヤ30の接合部分の自由度が増す。従って、図6(a)では、図5に示す形態よりも、太陽電池セル20の数の増加を図ることができる。   For example, as shown in FIG. 6A, the positions of the holes 20ha and the metal wires 30 may be shifted every other. Thereby, the freedom degree of the metal wire 30 joined to the metal electrode layer 20c increases. Moreover, even if the width of the solar battery cell 20 (the width in the direction substantially perpendicular to the groove tr1) is made narrower than the form shown in FIG. 5, the degree of freedom of the joint portion of the metal wire 30 is increased. Therefore, in Fig.6 (a), the increase in the number of the photovoltaic cells 20 can be aimed at rather than the form shown in FIG.

また、それぞれの太陽電池セル20においては、図6(b)に示すように、溝tr1に対し略垂直となる溝tr2を複数個形成して、短冊状の太陽電池セル20を、その長手方向に複数に分断し格子状としてもよい。そして、透明電極層20aを露出するための孔部20hbを溝tr2に対し略平行に形成して、格子状に分断した太陽電池セル20同士を金属ワイヤ30により直列状に接続してもよい。このような構成によれば、薄膜太陽電池1aの発電単位がさらに小さくなる。これにより、所望の出力電圧に応じて、チップ状の太陽電池セルの数を自由に選択することができる。すなわち、チップ状の太陽電池セルの個数を適宜変更して、それらを直列状に接続することにより、出力電圧の異なる薄膜太陽電池を容易に形成することができる。
なお、配線加工ユニットU3で行われる電気的な接続は、上述した金属ワイヤ30の他、導電性ペースト、導電性塗料、導電性テープ等の接続手段に依ってもよい。
Further, in each solar battery cell 20, as shown in FIG. 6B, a plurality of grooves tr <b> 2 that are substantially perpendicular to the groove tr <b> 1 are formed, and the strip-shaped solar battery cells 20 are arranged in the longitudinal direction. It may be divided into a plurality of grids. And the hole part 20hb for exposing the transparent electrode layer 20a may be formed substantially parallel with respect to the groove | channel tr2, and the photovoltaic cells 20 parted in the grid | lattice form may be connected in series by the metal wire 30. FIG. According to such a configuration, the power generation unit of the thin-film solar cell 1a is further reduced. Thereby, the number of chip-shaped solar cells can be freely selected according to a desired output voltage. That is, thin film solar cells having different output voltages can be easily formed by appropriately changing the number of chip-like solar cells and connecting them in series.
The electrical connection performed in the wiring processing unit U3 may depend on connection means such as a conductive paste, a conductive paint, or a conductive tape in addition to the metal wire 30 described above.

このように、本実施の形態では、積層体20lを予め形成した後、一括で積層体20lのレーザスクライブを行っている。このような方法では、薄膜太陽電池1aを製造する際、真空開放は、レーザスクライブを行う1回のみで足りる。また、この1回のみのレーザスクライブは、積層体20lが上述した3層よりも、さらに多層となっても実現可能である。   As described above, in this embodiment, after the stacked body 20l is formed in advance, the laser scribing of the stacked body 20l is performed collectively. In such a method, when manufacturing the thin film solar cell 1a, the vacuum release is only required once for laser scribing. Further, this one-time laser scribing can be realized even if the laminated body 20l has a multi-layer structure as compared with the above-described three layers.

その結果、各層においては、各層の成膜とパターニング(レーザスクライブ)とを交互に繰り返さないので、レーザスクライブの際にスプラッシュ等で発生するゴミの太陽電池セル20への再付着が最小限に抑制される。その結果、薄膜太陽電池1aの製品歩留まりが向上する。   As a result, in each layer, film formation and patterning (laser scribing) of each layer are not repeated alternately, so that the reattachment of dust generated by splash or the like during laser scribing to the solar battery cell 20 is minimized. Is done. As a result, the product yield of the thin film solar cell 1a is improved.

また、レーザスクライブにおいては、透明電極層20a、光電変換層20b及び金属電極層20cで構成される積層体20lを一括でレーザスクライブすることから、複雑な位置決め精度を要しない。また、一括加工により、製造工程数が減少することから、薄膜太陽電池1a及び製造装置M1aのコスト高を招来することがない。   In laser scribing, the laminated body 20l composed of the transparent electrode layer 20a, the photoelectric conversion layer 20b, and the metal electrode layer 20c is collectively laser-scribed, so that no complicated positioning accuracy is required. Moreover, since the number of manufacturing steps is reduced by the batch processing, the cost of the thin-film solar cell 1a and the manufacturing apparatus M1a is not increased.

また、それぞれの太陽電池セル20は、一本の溝tr1により分断されていることから、発電に寄与しない部分の面積を減らすことができる(後述)。これにより、発電効率が向上する。   Moreover, since each photovoltaic cell 20 is divided by one groove tr1, the area of a portion that does not contribute to power generation can be reduced (described later). Thereby, power generation efficiency improves.

例えば、図7は、薄膜太陽電池の比較例を説明するための要部図である。
この薄膜太陽電池100では、基板10にまで貫通する溝traと、透明電極層20aにまで貫通する溝trb及び溝trcが形成されている。そして、溝traにより透明電極層20aが互いに分離されている。また、溝trb内に金属電極層20cが埋設されている。これにより、隣接する太陽電池セル200同士が直列状に電気的に接続されている。
このような形態では、レーザスクライブを行うための真空開放は、透明電極層20aを形成してから溝traを形成する1回目と、光電変換層20bを形成してから溝trbを形成する2回目と、金属電極層20cを形成してから溝trcを形成する3回目という、計3回の真空開放を要する。
For example, FIG. 7 is a main part diagram for explaining a comparative example of a thin film solar cell.
In the thin film solar cell 100, a groove tra that penetrates to the substrate 10, and a groove trb and a trc that penetrate to the transparent electrode layer 20a are formed. The transparent electrode layers 20a are separated from each other by the groove tra. A metal electrode layer 20c is embedded in the trench trb. Thereby, adjacent photovoltaic cells 200 are electrically connected in series.
In such a form, the vacuum opening for laser scribing is performed for the first time after forming the transparent electrode layer 20a and then forming the groove tra, and for the second time when forming the groove trb after forming the photoelectric conversion layer 20b. Then, a total of three times of vacuum opening is required, that is, the third time when the groove trc is formed after the metal electrode layer 20c is formed.

従って、レーザスクライブの際にスプラッシュ等で発生するゴミの太陽電池セル200の各層への再付着の頻度が太陽電池セル20を形成する際より多くなってしまう。   Therefore, the frequency of redeposition of dust generated by splash or the like to each layer of the solar battery cell 200 during laser scribing is higher than when the solar battery cell 20 is formed.

また、薄膜太陽電池100では、その都度、レーザスクライブを実行する必要があることから、各レーザスクライブ工程において複雑な位置決め精度が必要とされる。また、レーザスクライブ工程が一括加工でないので、製造工程数が増加していまい、薄膜太陽電池及び製造装置のコスト高を招来してしまう。   Further, in the thin film solar cell 100, since it is necessary to execute laser scribing each time, complicated positioning accuracy is required in each laser scribing process. In addition, since the laser scribing process is not batch processing, the number of manufacturing processes increases, resulting in high costs of the thin film solar cell and the manufacturing apparatus.

また、それぞれの太陽電池セル200は、発電に寄与しない部分(図中のAの部分)が残存している。その分、各セル幅の狭小化を図ることができない。このAの部分の長さは、溝traに略垂直な方向で、例えば、300μmから400μmとなり、溝tr1にくらべ幅広い。これに対し、薄膜太陽電池1aでは、図7に示すAの部分が存在せず、溝tr1を隔てて、太陽電池セル20が基板10上に設けられている。
このように、本実施の形態では、上述したような有利な効果を有している。
Moreover, each solar cell 200 has a portion that does not contribute to power generation (portion A in the figure) remains. Accordingly, each cell width cannot be reduced. The length of the portion A is in a direction substantially perpendicular to the groove tra, for example, 300 μm to 400 μm, and is wider than the groove tr1. On the other hand, in the thin film solar cell 1a, the portion A shown in FIG. 7 does not exist, and the solar cells 20 are provided on the substrate 10 with the groove tr1 therebetween.
Thus, the present embodiment has the advantageous effects as described above.

なお、図示はしないが、太陽電池セル20は、略正方形としてもよく、その際の太陽電池セル20の配列を碁盤目状としてもよい。また、各溝tr1は、それぞれ並行である必要もなく、必要に応じて、非平行としてもよい。また、各太陽電池セル20の幅、形状は、それぞれ同一である必要もない。また、太陽電池セル20における電気的な接続部分は、各太陽電池セル20において何箇所あっても構わない。また、各太陽電池セル20において、その接続部分の位置が異なっていてもよい。   Although not shown, the solar cells 20 may be substantially square, and the arrangement of the solar cells 20 at that time may be a grid. Further, the grooves tr1 do not need to be parallel to each other, and may be non-parallel as necessary. Further, the width and shape of each solar battery cell 20 need not be the same. In addition, there may be any number of electrical connection portions in each solar battery cell 20 in each solar battery cell 20. Moreover, in each photovoltaic cell 20, the position of the connection part may differ.

また、上記の構成では、太陽電池セル20の構成を3層構造としたが、さらに多層の膜を形成した太陽電池(タンデム型、トリプル形)についても対応可能であり、レーザスクライブ加工時の積層膜の層数に制約がない。   Further, in the above configuration, the configuration of the solar battery cell 20 is a three-layer structure, but a solar cell (tandem type, triple type) in which a multilayer film is formed can also be supported, and lamination at the time of laser scribing processing. There is no restriction on the number of layers of the film.

次に、薄膜太陽電池製造装置を用いた薄膜太陽電池の製造工程の変形例について説明する。
図8、図9は、薄膜太陽電池の製造工程の変形例を説明するための要部図である。
Next, the modification of the manufacturing process of the thin film solar cell using a thin film solar cell manufacturing apparatus is demonstrated.
8 and 9 are main part views for explaining a modification of the manufacturing process of the thin film solar cell.

まず、図8(a)に示すように、基板10を製造装置M1aの成膜ユニットU1内に設置し、基板10上に、平面状の透明電極層20a、光電変換層20b及び金属電極層20cを形成する。すなわち、基板10上に、透明電極層20a、光電変換層20b及び金属電極層20cで構成される、平面状の積層体20lを形成する。積層体20lは、PVD法あるいはCVD法により形成する。   First, as shown in FIG. 8A, the substrate 10 is installed in the film forming unit U1 of the manufacturing apparatus M1a, and the planar transparent electrode layer 20a, the photoelectric conversion layer 20b, and the metal electrode layer 20c are formed on the substrate 10. Form. That is, a planar laminate 20l composed of the transparent electrode layer 20a, the photoelectric conversion layer 20b, and the metal electrode layer 20c is formed on the substrate 10. The laminate 20l is formed by a PVD method or a CVD method.

次に、積層体20l及び基板10をレーザ加工ユニットU2に移動して、図8(b)に示すように、積層体20lにレーザスクライブを施す。これにより、積層体20lの中、光電変換層20b及び金属電極層20cのみが所定の幅に分断される。すなわち、光電変換層20b及び金属電極層20cとを、所定の間隔で分断する溝tr3を形成する。これにより、透明電極層20aの表面の一部が露出する。   Next, the laminate 20l and the substrate 10 are moved to the laser processing unit U2, and laser scribe is applied to the laminate 20l as shown in FIG. 8B. Thereby, only the photoelectric conversion layer 20b and the metal electrode layer 20c are divided into a predetermined width in the stacked body 20l. That is, the trench tr3 that divides the photoelectric conversion layer 20b and the metal electrode layer 20c at a predetermined interval is formed. Thereby, a part of surface of the transparent electrode layer 20a is exposed.

次に、図8(c)に示すように、溝tr3内で露出した透明電極層20aの一部にレーザスクライブを施し、露出した透明電極層20aの一部を所定の幅に分断する。これにより、基板10の表面の一部が露出する。
なお、図8(c)に示す工程は、波長の異なる2つのレーザを備えたレーザ加工装置を用いて処理してもよい。例えば、光電変換層20b及び金属電極層20cを加工する際のレーザの波長と、透明電極層20aを加工する際のレーザの波長を連続で切り替えて、図8(c)に示す工程を一括で処理してもよい。
Next, as shown in FIG. 8C, laser scribe is applied to a part of the transparent electrode layer 20a exposed in the groove tr3, and the exposed part of the transparent electrode layer 20a is divided into a predetermined width. As a result, a part of the surface of the substrate 10 is exposed.
In addition, you may process the process shown in FIG.8 (c) using the laser processing apparatus provided with two lasers from which a wavelength differs. For example, the process shown in FIG. 8C is collectively performed by continuously switching the laser wavelength when processing the photoelectric conversion layer 20b and the metal electrode layer 20c and the laser wavelength when processing the transparent electrode layer 20a. It may be processed.

次に、溝tr3を形成した積層体20l、及び基板10を配線加工ユニットU3に移動し、図9(a)に示すように、溝tr3内において露出している透明電極層20aの一部が表出したまま、溝tr3の両側の側面20lw及び角部20lc近傍を選択的に絶縁部材40で被覆する。これにより、図中の矢印aで示す積層体20lの透明電極層20aの一部、側面20lw及び角部20lc近傍が絶縁部材40で被覆される。また、図中の矢印bで示す積層体20lの側面20lw及び角部20lc近傍が絶縁部材40で被覆される。このような絶縁部材40の被覆は、例えば、インクジェット塗布法、ディスペンス塗布法、転写法、印刷法のいずれかよって行う。また、このような処理に従えば、絶縁部材40の被覆が迅速かつ低コストになる。なお、絶縁部材40の材質は、無機材ペースト、有機樹脂、有機塗料等が該当する。   Next, the laminate 20l in which the groove tr3 is formed and the substrate 10 are moved to the wiring processing unit U3, and as shown in FIG. 9A, a part of the transparent electrode layer 20a exposed in the groove tr3 is removed. The insulating member 40 selectively covers the vicinity of the side surface 20lw and the corner portion 20lc on both sides of the groove tr3 while being exposed. Thus, a part of the transparent electrode layer 20a, the side surface 20lw, and the vicinity of the corner 20lc shown in the drawing by the arrow a are covered with the insulating member 40. Also, the insulating member 40 covers the vicinity of the side surface 20lw and the corner portion 20lc of the laminate 20l indicated by the arrow b in the figure. Such covering of the insulating member 40 is performed by, for example, any one of an ink jet coating method, a dispense coating method, a transfer method, and a printing method. Moreover, if such a process is followed, the covering of the insulating member 40 will be quick and low cost. The material of the insulating member 40 corresponds to an inorganic material paste, an organic resin, an organic paint, or the like.

そして、図9(b)に示すように、矢印aで示す積層体20lと、矢印bで示す積層体20lに形成された絶縁部材40の間隙から、矢印bで示す積層体20lの金属電極層20c表面まで連続するように、導電性接続部材50を形成して、矢印aで示す積層体20lの透明電極層20aと、矢印bで示す積層体20lの金属電極層20cとを電気的に接続する。   Then, as shown in FIG. 9B, the metal electrode layer of the laminate 20l indicated by the arrow b from the gap between the laminate 20l indicated by the arrow a and the insulating member 40 formed in the laminate 20l indicated by the arrow b. The conductive connection member 50 is formed so as to continue to the surface of 20c, and the transparent electrode layer 20a of the laminate 20l indicated by the arrow a is electrically connected to the metal electrode layer 20c of the laminate 20l indicated by the arrow b. To do.

このような導電性接続部材50の形成は、例えば、インクジェット塗布法、ディスペンス塗布法、転写法、印刷法、貼り付け法のいずれかよって行う。また、このような処理に従えば、導電性接続部材50の形成を迅速かつ低コストで行うことができる。なお、導電性接続部材50の材質は、導電性ペースト、導電性塗料、低温半田、ナノ銀微粒子、カーボンナノチューブ、ナノ銀微粒子含有導電性ペースト、カーボンナノチューブ含有導電性ペースト等が該当する。   The conductive connection member 50 is formed by any one of an ink jet coating method, a dispense coating method, a transfer method, a printing method, and a pasting method, for example. Moreover, according to such a process, the conductive connection member 50 can be formed quickly and at low cost. The material of the conductive connecting member 50 corresponds to conductive paste, conductive paint, low-temperature solder, nano silver fine particles, carbon nanotubes, nano silver fine particle-containing conductive paste, carbon nanotube-containing conductive paste, and the like.

このような工程により、基板10上に形成された、矢印aで示す太陽電池セル20と、矢印bで示す太陽電池セル20とが直列に接続される。   Through such a process, the solar battery cell 20 indicated by the arrow a and the solar battery cell 20 indicated by the arrow b formed on the substrate 10 are connected in series.

また、実施例2においても、真空開放は1回のみなので、実施例1と同様の効果が得られる。特に、実施例2では、絶縁部材40、導電性接続部材50の形成をインクジェット塗布法、ディスペンス塗布法、転写法、印刷法のいずれかよって実施している、従って、配線加工が迅速かつ低コストになる。これにより、薄膜太陽電池の生産性がさらに向上する。   In the second embodiment, the same effect as that of the first embodiment can be obtained because the vacuum is released only once. In particular, in the second embodiment, the insulating member 40 and the conductive connection member 50 are formed by any one of the ink jet coating method, the dispense coating method, the transfer method, and the printing method. become. Thereby, the productivity of the thin film solar cell is further improved.

次に、薄膜太陽電池製造装置を用いた薄膜太陽電池の製造工程のさらに別の変形例について説明する。この実施例3では、積層体20lのレーザスクライブ加工については、図8と同様なので、その次の工程から説明する。   Next, still another modification of the manufacturing process of the thin film solar cell using the thin film solar cell manufacturing apparatus will be described. In Example 3, the laser scribing process of the laminate 20l is the same as that in FIG. 8, and will be described from the next step.

上述した溝tr3を形成した積層体20l、及び基板10を配線加工ユニットU3に移動し、図10(a)に示すように、溝tr3内に絶縁部材40を埋設する。このような絶縁部材40の埋設は、例えば、インクジェット塗布法、ディスペンス塗布法、転写法、印刷法のいずれかよって行う。このような処理に従えば、絶縁部材40の被覆が迅速かつ低コストになる。なお、絶縁部材40の材質は、無機材ペースト、有機樹脂、有機塗料等が該当する。これにより、矢印aで示す積層体20lの透明電極層20a、側面20lw及び角部20lc近傍が絶縁部材40で被覆される。また、矢印bで示す積層体20lの側面20lw及び角部20lc近傍が絶縁部材40で被覆される。   The laminate 20l formed with the groove tr3 and the substrate 10 are moved to the wiring processing unit U3, and the insulating member 40 is embedded in the groove tr3 as shown in FIG. The burying of the insulating member 40 is performed by any one of an ink jet coating method, a dispense coating method, a transfer method, and a printing method, for example. If such a process is followed, the covering of the insulating member 40 is quick and low cost. The material of the insulating member 40 corresponds to an inorganic material paste, an organic resin, an organic paint, or the like. Thereby, the transparent electrode layer 20a, the side surface 20lw, and the corner | angular part 20lc vicinity of the laminated body 20l shown by the arrow a are coat | covered with the insulating member 40. In addition, the insulating member 40 covers the vicinity of the side surface 20lw and the corner portion 20lc of the laminate 20l indicated by the arrow b.

次に、積層体20l及び基板10を再びレーザ加工ユニットU2に移動し、図10(b)に示すように、絶縁部材40にレーザスクライブ加工を施す。これにより、絶縁部材40の中央部に溝tr4が形成され、図中の矢印aで示す積層体20lの透明電極層20aが露出する。なお、絶縁部材40の中央部のみに溝tr4を形成したことから、図中の矢印a,bで示す積層体20lの透明電極層20aの一部、側面20lw及び角部20lc近傍は、絶縁部材40で被覆されている。   Next, the laminate 20l and the substrate 10 are moved again to the laser processing unit U2, and the insulating member 40 is subjected to laser scribing as shown in FIG. As a result, a groove tr4 is formed in the central portion of the insulating member 40, and the transparent electrode layer 20a of the laminate 20l indicated by the arrow a in the drawing is exposed. Since the groove tr4 is formed only in the central portion of the insulating member 40, a part of the transparent electrode layer 20a, the side surface 20lw and the corner portion 20lc in the vicinity of the laminated body 20l indicated by arrows a and b in the figure are insulated members. 40.

そして、積層体20l及び基板10を、再び配線加工ユニットU3に移動し、図10(c)に示すように、溝tr4内から矢印bで示す積層体20lの金属電極層20c表面まで連続するように、導電性接続部材50を形成する。これにより、矢印aで示す積層体20lの透明電極層20aと、矢印bで示す積層体20lの金属電極層20cとが電気的に接続される。   Then, the laminate 20l and the substrate 10 are moved again to the wiring processing unit U3, and, as shown in FIG. 10C, continue from the trench tr4 to the surface of the metal electrode layer 20c of the laminate 20l indicated by the arrow b. Next, the conductive connection member 50 is formed. Thereby, the transparent electrode layer 20a of the laminate 20l indicated by the arrow a and the metal electrode layer 20c of the laminate 20l indicated by the arrow b are electrically connected.

このような導電性接続部材50の形成は、例えば、インクジェット塗布法、ディスペンス塗布法、転写法、印刷法、貼り付け法のいずれかよって行う。このような処理に従えば、導電性接続部材50の形成が迅速かつ低コストになる。なお、導電性接続部材50の材質は、導電性ペースト、導電性塗料、低温半田、ナノ銀微粒子、カーボンナノチューブ、ナノ銀微粒子含有導電性ペースト、カーボンナノチューブ含有導電性ペースト等が該当する。   The conductive connection member 50 is formed by any one of an ink jet coating method, a dispense coating method, a transfer method, a printing method, and a pasting method, for example. If such a process is followed, formation of the conductive connection member 50 is quick and low cost. The material of the conductive connecting member 50 corresponds to conductive paste, conductive paint, low-temperature solder, nano silver fine particles, carbon nanotubes, nano silver fine particle-containing conductive paste, carbon nanotube-containing conductive paste, and the like.

このような工程により、基板10上に形成された、矢印aで示す太陽電池セル20と、矢印bで示す太陽電池セル20とが直列に接続される。   Through such a process, the solar battery cell 20 indicated by the arrow a and the solar battery cell 20 indicated by the arrow b formed on the substrate 10 are connected in series.

また、実施例3においても、真空開放は1回のみなので、実施例1と同様の効果が得られる。特に、実施例3では、絶縁部材40、導電性接続部材50の形成をインクジェット塗布法、ディスペンス塗布法、転写法、印刷法のいずれかよって実施していることから、配線加工が迅速かつ低コストになる。これにより、薄膜太陽電池の生産性がさらに向上する。   In the third embodiment, the same effect as that of the first embodiment can be obtained because the vacuum is released only once. In particular, in Example 3, since the insulating member 40 and the conductive connection member 50 are formed by any one of the ink jet coating method, the dispensing coating method, the transfer method, and the printing method, wiring processing is quick and low cost. become. Thereby, the productivity of the thin film solar cell is further improved.

次に、薄膜太陽電池製造装置を用いた薄膜太陽電池の製造工程のさらに別の変形例について説明する。この実施例4では、積層体20lのレーザスクライブ加工については、図8と同様なので、その次の工程から説明する。   Next, still another modification of the manufacturing process of the thin film solar cell using the thin film solar cell manufacturing apparatus will be described. In Example 4, the laser scribing process of the laminate 20l is the same as in FIG. 8, and will be described from the next step.

上述した溝tr3を形成した積層体20l、及び基板10を配線加工ユニットU3に移動し、図11(a)に示すように、溝tr3内及び積層体20l上に平面状の絶縁部材41を形成する。このような絶縁部材41の形成は、例えば、インクジェット塗布法、ディスペンス塗布法、転写法、印刷法、貼り付け法のいずれかよってなされる。また、このような処理に従えば、絶縁部材41の形成が迅速かつ低コストになる。なお、絶縁部材41の材質は、樹脂フィルム、有機樹脂、有機塗料、無機材ペースト等が該当する。これにより、図中の矢印aで示す積層体20lの透明電極層20a、側面20lw及び角部20lc近傍が絶縁部材41で被覆される。また、図中の矢印bで示す積層体20lの側面20lw及び角部20lc近傍が絶縁部材41で被覆される。   The laminate 20l formed with the groove tr3 and the substrate 10 are moved to the wiring processing unit U3, and a planar insulating member 41 is formed in the trench tr3 and on the laminate 20l as shown in FIG. To do. The insulating member 41 is formed by any one of, for example, an ink jet coating method, a dispense coating method, a transfer method, a printing method, and a pasting method. Moreover, if such a process is followed, formation of the insulating member 41 will be quick and low cost. The material of the insulating member 41 corresponds to a resin film, an organic resin, an organic paint, an inorganic material paste, or the like. Thereby, the transparent electrode layer 20a, the side surface 20lw, and the corner | angular part 20lc vicinity of the laminated body 20l shown by the arrow a in a figure are coat | covered with the insulating member 41. FIG. In addition, the insulating member 41 covers the vicinity of the side surface 20lw and the corner portion 20lc of the laminate 20l indicated by the arrow b in the drawing.

次に、積層体20l及び基板10を、再びレーザ加工ユニットU2に移動し、図11(b)に示すように、絶縁部材41の2箇所にレーザスクライブ加工を施す。これにより、溝tr3内に形成した絶縁部材41の中央部に溝tr4が形成され、矢印aで示す積層体20lの透明電極層20aが露出する。また、矢印bで示す積層体20l上の絶縁部材41にも溝tr5が形成され、金属電極層20cが露出する。   Next, the laminate 20l and the substrate 10 are moved again to the laser processing unit U2, and laser scribing is performed at two locations on the insulating member 41 as shown in FIG. As a result, the groove tr4 is formed at the center of the insulating member 41 formed in the groove tr3, and the transparent electrode layer 20a of the laminate 20l indicated by the arrow a is exposed. Further, the groove tr5 is also formed in the insulating member 41 on the stacked body 20l indicated by the arrow b, and the metal electrode layer 20c is exposed.

なお、溝tr3内に形成した絶縁部材41の中央部のみに溝tr4を形成したことから、矢印aで示す積層体20lの透明電極層20aの一部、側面20lw及び角部20lc近傍は、絶縁部材41で被覆されている。また、矢印bで示す積層体20lの側面20lw及び角部20lc近傍は、絶縁部材41で被覆されている。   Since the groove tr4 is formed only in the central part of the insulating member 41 formed in the groove tr3, a part of the transparent electrode layer 20a, the side surface 20lw, and the corner part 20lc in the vicinity of the laminated body 20l indicated by the arrow a are insulated. Covered with a member 41. Further, the vicinity of the side surface 20lw and the corner portion 20lc of the laminate 20l indicated by the arrow b is covered with an insulating member 41.

そして、積層体20l及び基板10を、再び配線加工ユニットU3に移動し、図11(c)に示すように、溝tr4内から溝tr5内に連続するように、導電性接続部材50を形成する。これにより、矢印aで示す積層体20lの透明電極層20aと、矢印bで示す積層体20lの金属電極層20cとが電気的に接続される。   Then, the laminate 20l and the substrate 10 are moved again to the wiring processing unit U3, and the conductive connection member 50 is formed so as to be continuous from the groove tr4 to the groove tr5 as shown in FIG. 11C. . Thereby, the transparent electrode layer 20a of the laminate 20l indicated by the arrow a and the metal electrode layer 20c of the laminate 20l indicated by the arrow b are electrically connected.

このような導電性接続部材50の形成は、例えば、インクジェット塗布法、ディスペンス塗布法、転写法、印刷法、貼り付け法のいずれかよって行う。このような処理に従えば、導電性接続部材50の形成が迅速かつ低コストになる。なお、導電性接続部材50の材質は、導電性ペースト、導電性塗料、低温半田、ナノ銀微粒子、カーボンナノチューブ、ナノ銀微粒子含有導電性ペースト、カーボンナノチューブ含有導電性ペースト等が該当する。   The conductive connection member 50 is formed by any one of an ink jet coating method, a dispense coating method, a transfer method, a printing method, and a pasting method, for example. If such a process is followed, formation of the conductive connection member 50 is quick and low cost. The material of the conductive connecting member 50 corresponds to conductive paste, conductive paint, low-temperature solder, nano silver fine particles, carbon nanotubes, nano silver fine particle-containing conductive paste, carbon nanotube-containing conductive paste, and the like.

このような工程により、基板10上に形成された、矢印aで示す太陽電池セル20と、矢印bで示す太陽電池セル20とが直列に接続される。   Through such a process, the solar battery cell 20 indicated by the arrow a and the solar battery cell 20 indicated by the arrow b formed on the substrate 10 are connected in series.

また、実施例4においても、真空開放は1回のみなので、実施例1と同様の効果が得られる。特に、実施例4では、絶縁部材41、導電性接続部材50の形成をインクジェット塗布法、ディスペンス塗布法、転写法、印刷法、貼り付け法のいずれかよって実施していることから、配線加工が迅速かつ低コストで行われる。絶縁部材41が積層体20lの保護層となるので、電池としての信頼性が高まる。また、別途、保護膜を設ける工程が不要になる。これにより、薄膜太陽電池の生産性がさらに向上する。   In the fourth embodiment, the same effect as that of the first embodiment can be obtained because the vacuum is released only once. In particular, in Example 4, since the insulating member 41 and the conductive connection member 50 are formed by any one of the ink jet coating method, the dispense coating method, the transfer method, the printing method, and the pasting method, the wiring processing is performed. Done quickly and at low cost. Since the insulating member 41 serves as a protective layer for the laminate 20l, the reliability of the battery is enhanced. In addition, a separate step of providing a protective film becomes unnecessary. Thereby, the productivity of the thin film solar cell is further improved.

次に、薄膜太陽電池製造装置を用いた薄膜太陽電池の製造工程のさらに別の変形例について説明する。この実施例5では、積層体20lのレーザスクライブ加工については、図8と同様なので、その次の工程から説明する。   Next, still another modification of the manufacturing process of the thin film solar cell using the thin film solar cell manufacturing apparatus will be described. In Example 5, the laser scribing process of the laminate 20l is the same as that in FIG. 8, and will be described from the next step.

上述した溝tr3を形成した積層体20l、及び基板10を配線加工ユニットU3に移動し、図12(a)に示すように、溝tr3内に形成した透明電極層20aの一部、及び矢印bで示す積層体20lの金属電極層20cの一部に、撥水部材60を形成する。すなわち、これらの部分において撥水化処理が施される。撥水部材60は、例えば、撥水加工用の薬剤が該当する。また、撥水化処理は、上述した撥水部材60を形成するほか、この部分に選択的にレーザ処理、プラズマ処理(表面撥水基形成)等を施して、撥水化させてもよい。   The laminate 20l formed with the groove tr3 and the substrate 10 are moved to the wiring processing unit U3, and as shown in FIG. 12A, a part of the transparent electrode layer 20a formed in the groove tr3 and the arrow b A water repellent member 60 is formed on a part of the metal electrode layer 20c of the laminate 20l shown in FIG. That is, a water repellent treatment is performed on these portions. The water repellent member 60 corresponds to, for example, a chemical for water repellent processing. In addition, the water repellent treatment may be performed by selectively performing laser treatment, plasma treatment (formation of surface water repellent groups), or the like on this portion in addition to forming the above-described water repellent member 60.

次に、図12(b)に示すように、平面状の絶縁部材41を形成する。このような絶縁部材41の形成は、例えば、インクジェット塗布法、ディスペンス塗布法、転写法、印刷法のいずれかよってなされる。但し、溝tr3内に形成された透明電極層20aの一部、及び矢印bで示す積層体20lの金属電極層20cの一部には撥水化加工が施されている。 従って、これらの部分への絶縁部材41の付着は抑制されて、図示するように、溝tr3内に形成した絶縁部材41の中央部に溝tr4が生成され、矢印aで示す積層体20lの透明電極層20aの一部が露出する。また、矢印bで示す積層体20l上の絶縁部材41にも溝tr5が生成され、金属電極層20cが露出する。すなわち、透明電極層20aと金属電極層20cとを電機的に接続する部分以外に絶縁部材41が形成される。なお、絶縁部材41の材質は、有機樹脂、有機塗料、無機材ペースト等が該当する。   Next, as shown in FIG. 12B, a planar insulating member 41 is formed. The insulating member 41 is formed by any one of an inkjet coating method, a dispense coating method, a transfer method, and a printing method, for example. However, a part of the transparent electrode layer 20a formed in the groove tr3 and a part of the metal electrode layer 20c of the laminated body 20l indicated by the arrow b are subjected to water repellent processing. Accordingly, the adhesion of the insulating member 41 to these portions is suppressed, and as shown in the figure, a groove tr4 is generated at the center of the insulating member 41 formed in the groove tr3, and the transparent body 20l indicated by the arrow a is transparent. A part of the electrode layer 20a is exposed. Further, the groove tr5 is also generated in the insulating member 41 on the stacked body 20l indicated by the arrow b, and the metal electrode layer 20c is exposed. That is, the insulating member 41 is formed in addition to the portion where the transparent electrode layer 20a and the metal electrode layer 20c are electrically connected. The material of the insulating member 41 corresponds to an organic resin, an organic paint, an inorganic material paste, or the like.

なお、溝tr3内に形成した絶縁部材41の中央部のみに溝tr4が生成することから、矢印aで示す積層体20lの透明電極層20aの一部、側面20lw及び角部20lc近傍は、絶縁部材41で被覆されている。また、矢印bで示す積層体20lの側面20lw及び角部20lc近傍は、絶縁部材41で被覆されている。   Since the trench tr4 is generated only in the central portion of the insulating member 41 formed in the trench tr3, a part of the transparent electrode layer 20a, the side surface 20lw, and the vicinity of the corner portion 20lc indicated by the arrow a are insulated. Covered with a member 41. Further, the vicinity of the side surface 20lw and the corner portion 20lc of the laminate 20l indicated by the arrow b is covered with an insulating member 41.

そして、図12(c)に示すように、溝tr4内から溝tr5内に連続するように、導電性接続部材50を形成する。これにより、矢印aで示す積層体20lの透明電極層20aと、矢印bで示す積層体20lの金属電極層20cとが電気的に接続される。   Then, as shown in FIG. 12C, the conductive connection member 50 is formed so as to be continuous from the inside of the groove tr4 to the inside of the groove tr5. Thereby, the transparent electrode layer 20a of the laminate 20l indicated by the arrow a and the metal electrode layer 20c of the laminate 20l indicated by the arrow b are electrically connected.

このような導電性接続部材50の形成は、例えば、インクジェット塗布法、ディスペンス塗布法、転写法、印刷法、貼り付け法のいずれかよって行う。また、このような処理に従えば、導電性接続部材50の形成が迅速かつ低コストになる。なお、導電性接続部材50の材質は、導電性ペースト、導電性塗料、低温半田、ナノ銀微粒子、カーボンナノチューブ、ナノ銀微粒子含有導電性ペースト、カーボンナノチューブ含有導電性ペースト等が該当する。   The conductive connection member 50 is formed by any one of an ink jet coating method, a dispense coating method, a transfer method, a printing method, and a pasting method, for example. Moreover, if such a process is followed, formation of the conductive connection member 50 is quick and low cost. The material of the conductive connecting member 50 corresponds to conductive paste, conductive paint, low-temperature solder, nano silver fine particles, carbon nanotubes, nano silver fine particle-containing conductive paste, carbon nanotube-containing conductive paste, and the like.

このような工程により、基板10上に形成された、矢印aで示す太陽電池セル20と、矢印bで示す太陽電池セル20とが直列に接続される。
また、実施例5においても、真空開放は1回のみなので、実施例1と同様の効果が得られる。特に、実施例5では、絶縁部材41、導電性接続部材50の形成をインクジェット塗布法、ディスペンス塗布法、転写法、印刷法、貼り付け法のいずれかよって実施していることから、配線加工が迅速かつ低コストになる。また、実施例4のように絶縁材をレーザスクライブで除去せずに実施可能となるので、より生産性が高い。これにより、薄膜太陽電池の生産性がさらに向上する。
Through such a process, the solar battery cell 20 indicated by the arrow a and the solar battery cell 20 indicated by the arrow b formed on the substrate 10 are connected in series.
In the fifth embodiment, the same effect as that of the first embodiment can be obtained because the vacuum is released only once. In particular, in Example 5, since the insulating member 41 and the conductive connection member 50 are formed by any one of the inkjet coating method, the dispense coating method, the transfer method, the printing method, and the pasting method, the wiring processing is performed. Quick and low cost. Moreover, since it becomes possible to carry out without removing the insulating material by laser scribing as in the fourth embodiment, the productivity is higher. Thereby, the productivity of the thin film solar cell is further improved.

次に、薄膜太陽電池製造装置を用いた薄膜太陽電池の製造工程のさらに別の変形例について説明する。
図13は、薄膜太陽電池の製造工程のさらに別の変形例を説明するための要部図である。
Next, still another modification of the manufacturing process of the thin film solar cell using the thin film solar cell manufacturing apparatus will be described.
FIG. 13 is a main part view for explaining still another modification of the manufacturing process of the thin film solar cell.

まず、上述したように、基板10上に、平面状の透明電極層20a、光電変換層20b及び金属電極層20cを形成した後、この積層体20l及び基板10をレーザ加工ユニットU2に移動する。そして、図13(a)に示すように、積層体20lの上方からレーザスクライブを施す。これにより、積層体20lが溝tr3を隔てて分断される。但し、実施例6では、矢印a、bで示す積層体20lの透明電極層20aと光電変換層20bとのあいだと、光電変換層20bと金属電極層20cとの間に段差が形成されるようにレーザ加工を施す。   First, as described above, the planar transparent electrode layer 20a, the photoelectric conversion layer 20b, and the metal electrode layer 20c are formed on the substrate 10, and then the laminate 20l and the substrate 10 are moved to the laser processing unit U2. Then, as shown in FIG. 13A, laser scribing is performed from above the stacked body 20l. Thereby, the stacked body 20l is divided across the groove tr3. However, in Example 6, a step is formed between the photoelectric conversion layer 20b and the metal electrode layer 20c between the transparent electrode layer 20a and the photoelectric conversion layer 20b of the laminate 20l indicated by arrows a and b. Is subjected to laser processing.

例えば、図13(a)に表したように、分断された積層体20lの側面において、金属電極層20cの側面20cwは、光電変換層20bの側面20bwよりも後退している。また例えば、光電変換層20bの側面20bwは、透明電極層20aの側面20awよりも後退している。   For example, as illustrated in FIG. 13A, the side surface 20 cw of the metal electrode layer 20 c recedes from the side surface 20 bw of the photoelectric conversion layer 20 b on the side surface of the divided stacked body 20 l. Further, for example, the side surface 20bw of the photoelectric conversion layer 20b is set back relative to the side surface 20aw of the transparent electrode layer 20a.

このような加工を実施することにより、例えば、積層体20lの側面に露出する光電変換層20bの沿面距離を長くして、透明電極層20aと金属電極層20cとの間のリークを抑制できる。また、例えば、金属電極層20cを加工した後に光電変換層20bをレーザ加工する際には、金属電極層20cの側面20cwと光電変換層20bの側面20bwとの距離が離れた状態になる。従って、光電変換層20bをレーザスクライブする際に、積層体20lの側面での熱変質によるリークが抑制される。   By performing such processing, for example, the creeping distance of the photoelectric conversion layer 20b exposed on the side surface of the stacked body 20l can be increased, and leakage between the transparent electrode layer 20a and the metal electrode layer 20c can be suppressed. In addition, for example, when the photoelectric conversion layer 20b is laser processed after the metal electrode layer 20c is processed, the distance between the side surface 20cw of the metal electrode layer 20c and the side surface 20bw of the photoelectric conversion layer 20b is increased. Therefore, when laser scribing the photoelectric conversion layer 20b, leakage due to thermal alteration on the side surface of the stacked body 20l is suppressed.

そして、この後においては、上述したように、絶縁部材40と導電性接続部材50を形成して、矢印aで示す積層体20lの透明電極層20aと、矢印bで示す積層体20lの金属電極層20cとが電気的に接続される。この状態を、図13(a)に示す。
このような工程により、基板10上に形成された、矢印aで示す太陽電池セル20と、矢印bで示す太陽電池セル20とが直列に接続される。
After that, as described above, the insulating member 40 and the conductive connection member 50 are formed, and the transparent electrode layer 20a of the laminate 20l indicated by the arrow a and the metal electrode of the laminate 20l indicated by the arrow b. The layer 20c is electrically connected. This state is shown in FIG.
Through such a process, the solar battery cell 20 indicated by the arrow a and the solar battery cell 20 indicated by the arrow b formed on the substrate 10 are connected in series.

また、実施例6においても、真空開放は1回のみなので、実施例1と同様の効果が得られる。特に、実施例6では、上述した段差を設けながらレーザ加工を施すので、積層体20lの側面20lwへのスプラッシュの再付着が抑制されて、高品質の薄膜太陽電池が形成される。   Also in the sixth embodiment, the same effect as that of the first embodiment can be obtained because the vacuum opening is performed only once. In particular, in Example 6, since laser processing is performed while providing the above-described steps, the reattachment of splash to the side surface 20lw of the laminate 20l is suppressed, and a high-quality thin-film solar cell is formed.

なお、実施例1〜実施例6においては、金属ワイヤ30、導電性接続部材50を接合する箇所に、これらの導電材の濡れ性(密着性)を向上させるために、親水化処理を施してもよい。例えば、プラズマ処理、超音波処理、薬剤塗布、水洗等を施して、接合部分に親水化処理を施してもよい。   In Examples 1 to 6, a hydrophilic treatment is applied to the portion where the metal wire 30 and the conductive connection member 50 are joined in order to improve the wettability (adhesion) of these conductive materials. Also good. For example, plasma treatment, ultrasonic treatment, chemical application, washing with water, etc. may be performed to perform hydrophilic treatment on the joint portion.

このような処理をすることにより、(1)図12に例示した場合とは逆に、導電性接続部材を形成したい部分のみが親水化される。(2)また、撥水化処理、親水化処理の両方を行うことにより、より確実に金属ワイヤ30、導電性接続部材50の接続を達成でき、さらに絶縁性も良好になる。   By performing such a treatment, (1) Contrary to the case illustrated in FIG. 12, only the portion where the conductive connecting member is to be formed is hydrophilized. (2) Further, by performing both the water repellency treatment and the hydrophilic treatment, the connection of the metal wire 30 and the conductive connection member 50 can be achieved more reliably, and the insulation is also improved.

また、レーザ加工の代わりに、エッチング(例えば、ウェットエッチング、ドライエッチング)によって、それぞれの太陽電池セルに分断する溝を形成してもよい。
また、本実施の形態では、基板10として透明基板を用いているので、レーザ光を入射する方向は、積層体20lの金属電極層20cから透明電極層20aの方向でもよく、透明電極層20aから金属電極層20cの方向でもよい。特に、透明電極層20aから金属電極層20cの方向に入射する場合には、例えば、図3に例示する積層膜20lの積層順序を逆に形成した積層膜に対し有効である。また、レーザ光の入射は、基板10に対し、素直入射、斜め入射も含む。さらに、基板10及び積層膜20lを地面に対し、立てかけて、上述したレーザスクライブ処理を施してもよい。また、予め基板10に透明電極層20aが形成された透明導電ガラスを用いてもよい。このような基板を用いても、上述した実施の形態と同様の効果が得られる。
Moreover, you may form the groove | channel divided to each photovoltaic cell by etching (for example, wet etching, dry etching) instead of laser processing.
In this embodiment, since a transparent substrate is used as the substrate 10, the direction in which the laser light is incident may be the direction from the metal electrode layer 20c of the stacked body 20l to the transparent electrode layer 20a, and from the transparent electrode layer 20a. The direction of the metal electrode layer 20c may also be used. In particular, when the light is incident in the direction from the transparent electrode layer 20a to the metal electrode layer 20c, it is effective, for example, for a laminated film in which the laminated order of the laminated films 20l illustrated in FIG. 3 is reversed. Further, the incidence of laser light includes normal incidence and oblique incidence on the substrate 10. Further, the above-described laser scribing process may be performed by leaning the substrate 10 and the laminated film 20l against the ground. Moreover, you may use the transparent conductive glass in which the transparent electrode layer 20a was previously formed in the board | substrate 10. FIG. Even if such a substrate is used, the same effects as those of the above-described embodiment can be obtained.

また、電気的な接続を図る前に、積層膜20lを分断して形成された溝内の少なくとも一部、または複数の太陽電池セル20のそれぞれの表面の少なくとも一部に洗浄処理を施して、レーザスクライブ、エッチングによって発生し、積層膜20lに付着したゴミ等を除去してもよい。
例えば、図14は、本実施の形態に係る薄膜太陽電池の変形例を説明する要部図である。
Prior to electrical connection, at least a part of the groove formed by dividing the laminated film 20l, or at least a part of each surface of the plurality of solar cells 20 is subjected to a cleaning process, Dust and the like generated by laser scribing and etching and adhering to the laminated film 20l may be removed.
For example, FIG. 14 is a main part diagram for explaining a modification of the thin film solar cell according to the present embodiment.

この図に示されたように、製造装置M1bは、成膜ユニットU1と、レーザ加工ユニットU2と、配線加工ユニットU3と、表面処理ユニットU4を含む。このような表面処理ユニットU4を、製造装置M1b内に組み込むことで、上述した表面処理を行うことができる。なお、表面処理ユニットU4では、洗浄処理のほか、上述した撥水化処理、親水化処理も併せて実施できる。このように、表面処理ユニットU4では、積層膜20lを分断して形成された溝内の少なくとも一部、または複数の太陽電池セル20のそれぞれの表面の少なくとも一部に表面処理が施され、その部分の表面改質が行われる。   As shown in this figure, the manufacturing apparatus M1b includes a film forming unit U1, a laser processing unit U2, a wiring processing unit U3, and a surface treatment unit U4. By incorporating such a surface treatment unit U4 into the manufacturing apparatus M1b, the above-described surface treatment can be performed. In the surface treatment unit U4, in addition to the cleaning treatment, the water repellent treatment and the hydrophilic treatment described above can be performed together. Thus, in the surface treatment unit U4, surface treatment is performed on at least a part of the groove formed by dividing the laminated film 20l or at least a part of each surface of the plurality of solar cells 20, Surface modification of the part is performed.

また、本実施の形態では、絶縁部材41の材質が親水性であっても、撥水性であっても、対応可能である。
例えば、図12には、導電性接続部材50を透明電極層20a、金属電極層20cに接合させる部分以外に絶縁部材41を形成している。そして、導電性接続部材50を透明電極層20a、金属電極層20cに接合させる部分、すなわち、絶縁部材41を配置しない部分に、選択的に撥水部材60を形成させている。
ここで、親水性の絶縁部材41を用いる場合は、絶縁部材41を形成する下地に選択的に親水化処理を施してもよい。また、撥水性の絶縁部材41を用いる場合は、絶縁部材41を形成しない部分に、選択的に撥水化処理を施してもよい。
Moreover, in this Embodiment, it can respond, even if the material of the insulating member 41 is hydrophilic or water-repellent.
For example, in FIG. 12, the insulating member 41 is formed in addition to the portion where the conductive connecting member 50 is joined to the transparent electrode layer 20a and the metal electrode layer 20c. And the water-repellent member 60 is selectively formed in the part which joins the electroconductive connection member 50 to the transparent electrode layer 20a and the metal electrode layer 20c, ie, the part which does not arrange | position the insulating member 41. FIG.
Here, when the hydrophilic insulating member 41 is used, a hydrophilic treatment may be selectively performed on a base on which the insulating member 41 is formed. In the case where the water-repellent insulating member 41 is used, the portion where the insulating member 41 is not formed may be selectively subjected to water repellent treatment.

また、本実施の形態では、金属ワイヤ30、導電性接続部材50の材質が親水性であっても、撥水性であっても対応可能である。
例えば、親水性の金属ワイヤ30、導電性接続部材50を用いる場合は、金属ワイヤ30、導電性接続部材50を接合する下地に、親水化処理を施してもよい。また、撥水性の金属ワイヤ30、導電性接続部材50を用いる場合には、金属ワイヤ30、導電性接続部材50を接合する下地以外の部分に、撥水化処理を施してもよい。
Moreover, in this Embodiment, even if the material of the metal wire 30 and the electroconductive connection member 50 is hydrophilic, it can respond.
For example, when the hydrophilic metal wire 30 and the conductive connection member 50 are used, a hydrophilization treatment may be performed on a base on which the metal wire 30 and the conductive connection member 50 are bonded. In the case where the water repellent metal wire 30 and the conductive connection member 50 are used, the water repellent treatment may be performed on a portion other than the base to which the metal wire 30 and the conductive connection member 50 are joined.

以上、具体例を参照しつつ本発明の実施の形態について説明した。しかし、本実施の形態はこれらの具体例に限定されるものではない。すなわち、以上の具体例に、当業者が適宜設計変更を加えたものも、本発明の特徴を備えている限り、本発明の範囲に包含される。例えば、前述した各具体例が備える各要素およびその形成、材料、条件、形状、サイズなどは、例示したものに限定されるわけではなく適宜変更することができる。
また、前述した各実施の形態が備える各要素は、技術的に可能な限りにおいて複合することができ、これらを組み合わせたものも本発明の特徴を含む限り本発明の範囲に包含される。
その他、本発明の思想の範疇において、当業者であれば、各種の変更例及び修正例に想到し得るものも含まれる。
The embodiments of the present invention have been described above with reference to specific examples. However, the present embodiment is not limited to these specific examples. In other words, those obtained by appropriately modifying the design of the above specific examples by those skilled in the art are also included in the scope of the present invention as long as they have the characteristics of the present invention. For example, each element included in each of the specific examples described above and its formation, material, condition, shape, size, and the like are not limited to those illustrated, and can be changed as appropriate.
In addition, each element included in each of the above-described embodiments can be combined as long as technically possible, and a combination thereof is also included in the scope of the present invention as long as it includes the features of the present invention.
In addition, in the category of the idea of the present invention, those skilled in the art can include various changes and modifications.

1a 薄膜太陽電池
10 基板
20 太陽電池セル
20a 透明電極層
20b 光電変換層
20c 金属電極層
20ha、20hb 孔部
20l 積層体
20lw、20aw、20bw、20cw 側面
20lc 角部
30 金属ワイヤ
40、41 絶縁部材
50 導電性接続部材
60 撥水部材
M1a、M1b 製造装置
U1 成膜ユニット
U2 レーザ加工ユニット
U3 配線加工ユニット
U4 表面処理ユニット
tr1、tr2、tr3、tr4、tr5、tra、trb、trc 溝
1a Thin film solar cell
10 Substrate
20 Solar cells
20a Transparent electrode layer
20b Photoelectric conversion layer
20c metal electrode layer
20ha, 20hb hole
20 l laminate
20lw, 20aw, 20bw, 20cw side
20lc corner 30 metal wire
40, 41 Insulating member 50 Conductive connecting member 60 Water repellent member M1a, M1b Manufacturing apparatus
U1 Deposition unit
U2 Laser processing unit
U3 Wiring processing unit
U4 surface treatment unit tr1, tr2, tr3, tr4, tr5, tra, trb, trc groove

Claims (14)

基板上に、複数の太陽電池セルが直列に接続された太陽電池の製造方法であって、
前記基板上に、第1の電極膜を減圧雰囲気下で形成し、その後、大気に曝すことなく、前記第1の電極膜上に、光電変換層を減圧雰囲気下で形成し、その後大気に曝すことなく、前記光電変換層上に、第2の電極膜を減圧雰囲気下で形成して、積層膜を形成する工程と、
前記積層膜を分断して、前記基板上に併設された前記複数の太陽電池セルを形成する工程と、
前記複数の太陽電池セルのうちの第1の太陽電池セルの前記第2の電極膜及び前記光電変換層を選択的に除去して、前記第1の電極膜を表出させ、
前記第1の太陽電池セルに隣接する第2の太陽電池セルの前記第2の金属膜と、表出させた前記第1の電極膜と、を電気的に接続する工程と、
を備えたことを特徴とする太陽電池の製造方法。
A method of manufacturing a solar cell in which a plurality of solar cells are connected in series on a substrate,
A first electrode film is formed on the substrate in a reduced-pressure atmosphere, and then a photoelectric conversion layer is formed on the first electrode film in a reduced-pressure atmosphere without being exposed to the air, and then exposed to the air. Without forming a second electrode film in a reduced-pressure atmosphere on the photoelectric conversion layer, and forming a laminated film;
Dividing the laminated film to form the plurality of solar cells provided on the substrate;
Selectively removing the second electrode film and the photoelectric conversion layer of the first solar battery cell of the plurality of solar battery cells to expose the first electrode film;
Electrically connecting the second metal film of the second solar battery cell adjacent to the first solar battery cell and the exposed first electrode film;
A method for producing a solar cell, comprising:
前記積層膜の分断をレーザスクライブにより実施することを特徴とする請求項1に記載の太陽電池の製造方法。   The method for manufacturing a solar cell according to claim 1, wherein the laminated film is divided by laser scribing. 前記第2の電極膜及び前記光電変換層の選択的な除去を前記レーザスクライブにより実施することを特徴とする請求項1または2に記載の太陽電池の製造方法。   The method for manufacturing a solar cell according to claim 1 or 2, wherein the selective removal of the second electrode film and the photoelectric conversion layer is performed by the laser scribe. 前記接続する前に、前記積層膜を分断して形成された溝内の少なくとも一部、または前記複数の太陽電池セルのそれぞれの表面の少なくとも一部に表面処理を施して、その表面改質をすることを特徴とする請求項1〜3のいずれか1つに記載の太陽電池の製造方法。   Before the connection, at least a part of the groove formed by dividing the laminated film or at least a part of the surface of each of the plurality of solar cells is subjected to a surface treatment to modify the surface. The manufacturing method of the solar cell as described in any one of Claims 1-3 characterized by the above-mentioned. 前記表面処理として、前記第2の金属膜と前記第1の電極膜とを接続する部分に親水化処理を施し、または、接続する前記部分以外に撥水化処理を施すことを特徴とする請求項1〜4のいずれか1つに記載の太陽電池の製造方法。   The surface treatment includes applying a hydrophilization treatment to a portion connecting the second metal film and the first electrode film, or applying a water repellency treatment to a portion other than the connecting portion. Item 5. The method for producing a solar cell according to any one of Items 1 to 4. 前記第2の金属膜と前記第1の電極膜とを接続する前記部分以外に絶縁部材を形成する前に、前記絶縁部材を形成する部分に親水化処理を施し、または、前記絶縁部材を形成する前記部分以外に撥水化処理を施すことを特徴とする請求項1〜5のいずれか1つに記載の太陽電池の製造方法。   Prior to forming an insulating member other than the portion connecting the second metal film and the first electrode film, the portion where the insulating member is formed is subjected to a hydrophilic treatment or the insulating member is formed. The method for producing a solar cell according to claim 1, wherein a water repellent treatment is applied to a portion other than the portion to be performed. 前記親水化処理または前記撥水化処理を施した後、前記第2の金属膜と前記第1の電極膜とを接続する前記部分以外を前記絶縁部材で被覆することを特徴とする請求項6に記載の太陽電池の製造方法。   7. The insulating member covers the portion other than the portion connecting the second metal film and the first electrode film after the hydrophilic treatment or the water repellency treatment. The manufacturing method of the solar cell of description. 前記表面処理として、前記積層膜を分断して形成された溝内の少なくとも一部、または前記複数の太陽電池セルのそれぞれの表面の少なくとも一部を洗浄することを特徴とする請求項4に記載の太陽電池の製造方法。   The said surface treatment wash | cleans at least one part in the groove | channel formed by parting the said laminated film, or at least one part of each surface of these several photovoltaic cell. Solar cell manufacturing method. 基板上に、複数の太陽電池セルが直列に接続された太陽電池の製造装置であって、
前記基板上に、第1の電極膜を減圧雰囲気下で形成し、その後、大気に曝すことなく、前記第1の電極膜上に、光電変換層を減圧雰囲気下で形成し、その後大気に曝すことなく、前記光電変換層上に、第2の電極膜を減圧雰囲気下で形成して、積層膜を形成する第1の手段と、
前記積層膜を分断して、前記基板上に併設された前記複数の太陽電池セルを形成する第2の手段と、
前記併設された前記複数の太陽電池セルのうちの前記第1の太陽電池セルの前記第2の電極膜及び前記光電変換層を選択的に除去して、前記第1の電極膜を表出させ、
前記第2の太陽電池セルの前記第2の金属膜と、表出させた前記第1の電極膜と、を接続する第3の手段と、
を備えたことを特徴とする太陽電池の製造装置。
A solar cell manufacturing apparatus in which a plurality of solar cells are connected in series on a substrate,
A first electrode film is formed on the substrate in a reduced-pressure atmosphere, and then a photoelectric conversion layer is formed on the first electrode film in a reduced-pressure atmosphere without being exposed to the air, and then exposed to the air. Without forming a second electrode film in a reduced-pressure atmosphere on the photoelectric conversion layer, to form a laminated film,
A second means for dividing the laminated film to form the plurality of solar cells provided on the substrate;
The first electrode film is exposed by selectively removing the second electrode film and the photoelectric conversion layer of the first solar battery cell among the plurality of solar battery cells provided side by side. ,
A third means for connecting the second metal film of the second solar battery cell and the exposed first electrode film;
An apparatus for manufacturing a solar cell, comprising:
前記第2の手段による分断をレーザスクライブにより実施することを特徴とする請求項9に記載の太陽電池の製造装置。   10. The solar cell manufacturing apparatus according to claim 9, wherein the division by the second means is performed by laser scribing. 前記第2の電極膜及び前記光電変換層の選択的な除去を前記レーザスクライブにより実施することを特徴とする請求項9または10に記載の太陽電池の製造装置。   The solar cell manufacturing apparatus according to claim 9 or 10, wherein the selective removal of the second electrode film and the photoelectric conversion layer is performed by the laser scribe. 前記接続する前に、前記積層膜を分断して形成された溝内の少なくとも一部、または前記複数の太陽電池セルのそれぞれの表面の少なくとも一部に表面処理を施して、その表面改質をする第4の手段を、さらに備えたことを特徴とする請求項9〜11のいずれか1つに記載の太陽電池の製造装置。   Before the connection, at least a part of the groove formed by dividing the laminated film or at least a part of the surface of each of the plurality of solar cells is subjected to a surface treatment to modify the surface. The solar cell manufacturing apparatus according to any one of claims 9 to 11, further comprising a fourth means. 基板上に形成された、第1の電極膜と、前記第1の電極膜の上に設けられた光電変換層と、前記光電変換層の上に設けられた第2の電極膜と、を含む積層膜が一括して分断されて前記基板上に併設された複数の太陽電池セルと、
前記複数の太陽電池セルを直列に接続する接続部材と、
を備えたことを特徴とする太陽電池。
A first electrode film formed on the substrate; a photoelectric conversion layer provided on the first electrode film; and a second electrode film provided on the photoelectric conversion layer. A plurality of solar cells that are laminated together on the substrate, the laminated film being divided at once;
A connecting member for connecting the plurality of solar cells in series;
A solar cell comprising:
前記複数の太陽電池セルのうちの第1の太陽電池セルの前記第2の電極膜及び前記光電変換層が選択的に除去されて前記第1の電極膜が表出され、
前記接続部材は、前記第1の太陽電池セルに隣接する第2の太陽電池セルの前記第2の金属膜と、前記第1の太陽電池セルの前記表出された前記第1の電極膜と、を接続することを特徴とする請求項13記載の太陽電池。
The first electrode film is exposed by selectively removing the second electrode film and the photoelectric conversion layer of the first solar cell among the plurality of solar cells,
The connection member includes the second metal film of the second solar cell adjacent to the first solar cell, and the exposed first electrode film of the first solar cell. The solar cell according to claim 13, which is connected.
JP2009084424A 2009-03-31 2009-03-31 Solar battery manufacturing method, solar battery manufacturing apparatus, and solar battery Pending JP2012119343A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009084424A JP2012119343A (en) 2009-03-31 2009-03-31 Solar battery manufacturing method, solar battery manufacturing apparatus, and solar battery
PCT/JP2010/055578 WO2010113880A1 (en) 2009-03-31 2010-03-29 Method for manufacturing solar cell, apparatus for manufacturing solar cell, and solar cell
TW099109991A TW201108447A (en) 2009-03-31 2010-03-31 Method for manufacturing solar cell, apparatus for manufacturing solar cell, and solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009084424A JP2012119343A (en) 2009-03-31 2009-03-31 Solar battery manufacturing method, solar battery manufacturing apparatus, and solar battery

Publications (1)

Publication Number Publication Date
JP2012119343A true JP2012119343A (en) 2012-06-21

Family

ID=42828169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009084424A Pending JP2012119343A (en) 2009-03-31 2009-03-31 Solar battery manufacturing method, solar battery manufacturing apparatus, and solar battery

Country Status (3)

Country Link
JP (1) JP2012119343A (en)
TW (1) TW201108447A (en)
WO (1) WO2010113880A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014239086A (en) * 2013-06-05 2014-12-18 三菱化学株式会社 Process of manufacturing organic thin-film solar cell
WO2015098608A1 (en) * 2013-12-26 2015-07-02 シャープ株式会社 Touch panel manufacturing method
WO2016009829A1 (en) * 2014-07-16 2016-01-21 富士フイルム株式会社 Conductive film for touch panel sensor, touch panel sensor, and touch panel
US9608156B2 (en) 2015-07-09 2017-03-28 SolAcro Technologies Corp. Assembly and mounting of solar cells on space panels
US9748432B2 (en) 2015-06-05 2017-08-29 Solaero Technologies Corp. Automated assembly and mounting of solar cells on space panels
JP2017152509A (en) * 2016-02-24 2017-08-31 積水化学工業株式会社 Solar cell module and method of manufacturing the same
EP3117466A4 (en) * 2014-03-14 2018-03-21 First Solar, Inc Photovoltaic device interconnection and method of manufacturing
US20180108794A1 (en) * 2014-04-07 2018-04-19 Solaero Technologies Corp. Space-qualified solar cell module with interconnection of neighboring solar cells on a common back plane
US10263131B2 (en) 2014-04-07 2019-04-16 Solaero Technologies Corp. Parallel interconnection of neighboring solar cells with dual common back planes
JP2019520705A (en) * 2016-06-03 2019-07-18 アメリカ合衆国 Ultra-thin, flexible, radiation-resistant, shading-compatible photovoltaic device
US10790406B2 (en) 2014-04-07 2020-09-29 Solaero Technologies Corp. Parallel interconnection of neighboring space-qualified solar cells via a common back plane
JP2022503477A (en) * 2018-07-20 2022-01-12 ダイソン・テクノロジー・リミテッド Stack for energy storage equipment

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009020482A1 (en) * 2009-05-08 2010-11-11 Forschungszentrum Jülich GmbH Process for the production and series connection of photovoltaic elements to a solar module and solar module
JP2013102070A (en) * 2011-11-09 2013-05-23 Fujifilm Corp Method of manufacturing integrated solar cell
US9525097B2 (en) 2013-03-15 2016-12-20 Nthdegree Technologies Worldwide Inc. Photovoltaic module having printed PV cells connected in series by printed conductors
JP6264750B2 (en) * 2013-06-03 2018-01-24 トヨタ自動車株式会社 Solar cell module
GB201322572D0 (en) 2013-12-19 2014-02-05 Oxford Photovoltaics Ltd Connection of photoactive regions in an optoelectronic device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2798772B2 (en) * 1990-02-28 1998-09-17 三洋電機株式会社 Method for manufacturing photovoltaic device
JP3537196B2 (en) * 1994-11-08 2004-06-14 松下電器産業株式会社 Method of manufacturing solar cell module
WO2000007249A1 (en) * 1998-07-27 2000-02-10 Citizen Watch Co., Ltd. Solar cell and method of producing the same, and mask for photolithography for producing solar cell
JP2000252502A (en) * 1999-03-02 2000-09-14 Kanegafuchi Chem Ind Co Ltd Optoelectric transducer device and producing method therefor
JP4781111B2 (en) * 2005-01-14 2011-09-28 株式会社半導体エネルギー研究所 Manufacturing method of solar cell
US20070079866A1 (en) * 2005-10-07 2007-04-12 Applied Materials, Inc. System and method for making an improved thin film solar cell interconnect
EP2054927A1 (en) * 2006-08-22 2009-05-06 Timothy Michael Walsh Thin-film solar module
EP2320474B1 (en) * 2008-07-04 2014-09-10 Ulvac, Inc. Solar cell and method for manufacturing the same

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014239086A (en) * 2013-06-05 2014-12-18 三菱化学株式会社 Process of manufacturing organic thin-film solar cell
WO2015098608A1 (en) * 2013-12-26 2015-07-02 シャープ株式会社 Touch panel manufacturing method
EP3117466A4 (en) * 2014-03-14 2018-03-21 First Solar, Inc Photovoltaic device interconnection and method of manufacturing
US10790406B2 (en) 2014-04-07 2020-09-29 Solaero Technologies Corp. Parallel interconnection of neighboring space-qualified solar cells via a common back plane
US10283662B2 (en) 2014-04-07 2019-05-07 Solaero Technologies Corp. Parallel interconnection of neighboring solar cells with dual common back planes
US10263131B2 (en) 2014-04-07 2019-04-16 Solaero Technologies Corp. Parallel interconnection of neighboring solar cells with dual common back planes
US20180108794A1 (en) * 2014-04-07 2018-04-19 Solaero Technologies Corp. Space-qualified solar cell module with interconnection of neighboring solar cells on a common back plane
JPWO2016009829A1 (en) * 2014-07-16 2017-04-27 富士フイルム株式会社 Conductive film for touch panel sensor, touch panel sensor, touch panel
WO2016009829A1 (en) * 2014-07-16 2016-01-21 富士フイルム株式会社 Conductive film for touch panel sensor, touch panel sensor, and touch panel
US9748432B2 (en) 2015-06-05 2017-08-29 Solaero Technologies Corp. Automated assembly and mounting of solar cells on space panels
US10333020B2 (en) 2015-06-05 2019-06-25 Solaero Technologies Corp. Automated assembly and mounting of solar cells on space panels
US11817523B2 (en) 2015-06-05 2023-11-14 Solaero Technologies Corp. Automated assembly and mounting of solar cells on space panels
US9608156B2 (en) 2015-07-09 2017-03-28 SolAcro Technologies Corp. Assembly and mounting of solar cells on space panels
JP2017152509A (en) * 2016-02-24 2017-08-31 積水化学工業株式会社 Solar cell module and method of manufacturing the same
JP2019520705A (en) * 2016-06-03 2019-07-18 アメリカ合衆国 Ultra-thin, flexible, radiation-resistant, shading-compatible photovoltaic device
JP2022503477A (en) * 2018-07-20 2022-01-12 ダイソン・テクノロジー・リミテッド Stack for energy storage equipment
JP7125538B2 (en) 2018-07-20 2022-08-24 ダイソン・テクノロジー・リミテッド stack for energy storage
US11990587B2 (en) 2018-07-20 2024-05-21 Dyson Technology Limited Stack for an energy storage device

Also Published As

Publication number Publication date
WO2010113880A1 (en) 2010-10-07
TW201108447A (en) 2011-03-01

Similar Documents

Publication Publication Date Title
WO2010113880A1 (en) Method for manufacturing solar cell, apparatus for manufacturing solar cell, and solar cell
JP6328606B2 (en) Semiconductor wafer cell and module processing for back contact photovoltaic modules
JP5901656B2 (en) SOLAR CELL AND MANUFACTURING METHOD THEREOF {SOLARCELLANDMANUFACTURERINGMETHODFOFTHEME
JP5735474B2 (en) Solar cell and manufacturing method thereof
WO2004064167A1 (en) Transparent thin-film solar cell module and its manufacturing method
JP5283749B2 (en) Photoelectric conversion module and manufacturing method thereof
JP5273728B2 (en) Solar cell with wiring sheet and solar cell module
US9818897B2 (en) Device for generating solar power and method for manufacturing same
JP2010045332A (en) Thin-film solar cell and method of manufacturing the same
WO2016158299A1 (en) Solar cell, method for manufacturing same, solar cell module and wiring sheet
JP2010062185A (en) Photoelectric converter and method of manufacturing the same
WO2017047375A1 (en) Photoelectric conversion element, solar cell module provided with same, and photovoltaic power generation system
US9761752B2 (en) Solar cell, solar cell module, method for manufacturing solar cell, and method for manufacturing solar cell module
KR101243877B1 (en) solar cell and method for manufacturing the same
WO2010150749A1 (en) Solar cell, solar cell with wiring sheet attached, and solar cell module
KR101295547B1 (en) Thin film type solar cell module and manufacturing method thereof
KR101283163B1 (en) Solar cell and manufacturing method of the same
KR101189368B1 (en) Solar cell and manufacturing method of the same
JP5440439B2 (en) Method for manufacturing thin film photoelectric conversion device
JP2004342768A (en) Thin film solar cell module
KR101203917B1 (en) Flexible thin film type Solar Cell and Method for manufacturing the same
JP2019067843A (en) Solar battery module
CN116648792A (en) Flexible solar panel and photovoltaic device, and production methods and systems thereof
KR101130965B1 (en) Solar Cell and method of manufacturing the same
CN116782682A (en) Perovskite photovoltaic module and preparation method thereof