JP2012119212A - 固体酸化物形燃料電池および固体酸化物形燃料電池用単セル - Google Patents

固体酸化物形燃料電池および固体酸化物形燃料電池用単セル Download PDF

Info

Publication number
JP2012119212A
JP2012119212A JP2010269115A JP2010269115A JP2012119212A JP 2012119212 A JP2012119212 A JP 2012119212A JP 2010269115 A JP2010269115 A JP 2010269115A JP 2010269115 A JP2010269115 A JP 2010269115A JP 2012119212 A JP2012119212 A JP 2012119212A
Authority
JP
Japan
Prior art keywords
solid oxide
oxide fuel
cell
air electrode
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010269115A
Other languages
English (en)
Other versions
JP5443325B2 (ja
Inventor
Hiroaki Taguchi
博章 田口
Takeshi Komatsu
武志 小松
Reiichi Chiba
玲一 千葉
Hajime Arai
創 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2010269115A priority Critical patent/JP5443325B2/ja
Publication of JP2012119212A publication Critical patent/JP2012119212A/ja
Application granted granted Critical
Publication of JP5443325B2 publication Critical patent/JP5443325B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

【課題】クロムを含むセパレータを用いた場合であっても、低コストで発電効率の低下を防ぐことができる固体酸化物形燃料電池セル用単セルおよび固体酸化物形燃料電池を提供する。
【解決手段】空気極13が、活性層13aと、この活性層13aの電解質11と接触する面と反対側の面に設けられ、Srを含む材料からなる集電層13bとを備える。これにより、この集電層13bでクロムとの反応が優先的に行われるため、電解質11と空気極13との界面におけるクロムとの反応を抑制することができるので、結果として、低コストで発電効率の低下を防ぐことができる。
【選択図】図2

Description

本発明は、固体酸化物形燃料電池に関するものである。
近年、規模の大小にかかわらず高い効率が得られることから、燃料電池が次世代のコジェネレーションシステムに用いられる発電手段として注目されている。燃料電池は、酸素などの酸化剤ガスと水素などの燃料ガスとの化学反応を利用した電池であり、空気極と呼ばれる陽極と、燃料極と呼ばれる陰極とで電解質の層を挟んだ単セルを、複数重ね合わせたスタック構造を用いている。一組のセル(単セル)で発電を行う場合の電圧値は一般的に、約0.7V程度であるが、複数の単セルを重ね合わせて用いることで、発電出力の増大が期待できるとともに、昇圧回路等を使用しなくても所望とする電圧の供給が可能である。
このような燃料電池には、高分子材料を電解質層に用いる固体高分子型や、セラミックスなどの酸化物を電解質層に用いる固体酸化物形がある。
固体高分子形燃料電池では、作動温度が高々90℃であり、自動車用や家庭用コジェネレーションシステムに適用可能とされている。
これに対して、固体酸化物形燃料電池は、作動温度が600℃以上と高温であるが、発電効率が45%以上と高効率である。このため、複数の単セルを組み合わせたスタック構造の固体酸化物形燃料電池は、タービン発電などと組み合わせてより高効率のコジェネレーションシステムを構築できるという利点を有しており、発電所への用途などに期待されている。
このような固体酸化物形燃料電池において実用的な出力を得るためには、上述したように、複数の単セルを直列または並列に接続する必要がある。このため、単セルを収容し、単セルの燃料極と空気極に燃料ガスまたは酸化剤ガスを供給するととともに、各単セルを電気的に接続するセパレータやインターコネクタと呼ばれる部材(以下、「セパレータ」という。)が用いられている。このセパレータの材料には、上述したように固体酸化物形燃料電池の作動温度が600℃以上と高温であるので、燃料および空気ガス雰囲気下で安定な導電性セラミックス、または、耐熱性に優れた合金材料が使用されている。近年、800℃以下で動作する燃料電池の開発が促進されたことにより、耐熱性、導電性および加工性に優れかつ安価なクロムが16〜25%程度含まれているフェライト系の耐熱合金が一般的に用いられている。
T. Komatsu, et al., "Cr Poisoning Suppression in Solid Oxide Fuel Cells Using LaNi(Fe)O3 Electrodes", Electrochem. Solid-State Lett., Vol.9, pp.A9-A12, 2006 X. Chen, et al., "Protective coating on stainless interconnect for SOFCs: oxidation kinetics and electrical properties", / Solid State lonics 176 pp.425-433, 2005
しかしながら、クロムが含まれた合金材料をセパレータに用いると、固体酸化物形燃料電池の運転中は高温かつ酸素雰囲気の状態となるためにセパレータの表面に酸化クロムの膜が形成され、この酸化クロムが蒸発してCrO3(g)またはCrO(OH2)等のクロム種となって電極表面に付着してしまう。一般的に広く用いられている空気極材料であるLa0.8Sr0.23(以下、「LSM」という。)を用いた場合、クロム種が他の物質よりも優先的に空気極の表面に付着して電気化学反応を阻害するため、空気極において過電圧が生じるので、セルの発電特性に大きな影響を及ぼすことが報告されている(例えば、非特許文献1参照。)。この問題を抑制するため、セパレータの表面にコーティングを施すことによりクロム種の飛散を抑制する方法や、セパレータの表面上にCVD法やEVD法によって緻密な薄膜をコーティングして気相中の酸素との接触を遮断し酸化クロムの生成自体を抑制する方法が提案されている(例えば、非特許文献2参照。)。ところが、非特許文献2に示すようなセパレータ表面にコーティングを施す方法では、コーティング剤の緻密性向上のために加圧する必要があるので、費用がかさんで高コストであった。また、セパレータの表面上に緻密な薄膜をコーティングする方法では、専用機器が必要なため、さらに高コストであった。
そこで、本願発明は、クロムを含むセパレータを用いた場合であっても、低コストで発電効率の低下を防ぐことができる体酸化物形燃料電池セル用単セルおよび固体酸化物形燃料電池を提供することを目的とする。
上述したような課題を解決するために、本発明に係る固体酸化物形燃料電池セル用単セルは、板状の電解質と、この電解質の一方の面に設けられた燃料極と、電解質の他方の面に設けられた空気極とを備え、この空気極は、当該空気極の材料、すなわち空気極反応が進行するための触媒作用を有する材料からなる第1の層と、この第1の層の電解質と接触する面と反対側の面に設けられ、Srを含む材料からなる第2の層とから構成されることを特徴とするものである。
上記固体酸化物形燃料電池用単セルにおいて、第1の層は、La0.8Sr0.2MnO3からなり、第2の層は、LaSrCoO3とLa0.8Sr0.2MnO3の混合物、LaSrCoFeO3、および、SmSrCoO3の何れか1つから構成されるようにしてもよい。
ここで、混合物は、LaSrCoO3の割合がLa0.8Sr0.2MnO3の重量の50%よりも少ないようにしてもよい。
また、本発明に係る固体酸化物形燃料電池は、単セルと、この単セルを収容しかつ単セルに燃料ガスおよび酸化剤ガスを供給するセパレータとを備えた固体酸化物形燃料電池であって、単セルは、上述した固体酸化物形燃料電池用単セルから構成され、セパレータは、クロムを含む合金から構成されることを特徴とするものである。
本発明によれば、空気極が、この空気極の材料からなる第1の層と、この第1の層の電解質と接触する面と反対側の面に設けられ、Srを含む材料からなる第2の層を備えることにより、この第2の層に含まれるSrが他の物質よりも優先的にクロムと反応するため、電解質と空気極との界面におけるクロムとの反応を抑制することができるので、結果として、低コストで発電効率の低下を防ぐことができる。
図1は、本発明に係る固体酸化物形燃料電池の構成を模式的に示す断面図である。 図2は、本発明に係る固体酸化物形燃料電池用単セルの構成を模式的に示す断面図である。 図3は、界面抵抗値の測定状態を模式的に示す図である。 図4は、界面抵抗値の測定結果を示す図である。
以下図面を参照して、本発明の実施の形態について詳細に説明する。
<固体酸化物形燃料電池の構成>
図1および図2に示すように、本実施の形態に係る固体酸化物形燃料電池は、単セル1と、板状の燃料極セパレータ2と、燃料極セパレータ2上に配設される板状の部材であって、その中央に形成された開口と燃料極セパレータ2の上面とから形成される凹部に単セル1を収容するセルホルダ3と、中央に開口が形成された板状の部材であって、その開口を上記凹部に対応させた状態で単セル1の電解質およびセルホルダ3の上面に配設されたシール部材4と、シール部材4の上面に配設された板状の空気極セパレータ5と、単セル1の燃料極と燃料極セパレータ2との間に配設された第1の集電体6と、単セル1の空気極と空気極セパレータ5との間に配設された第2の集電体7と、シール部材4と燃料極セパレータ5との間に配設された絶縁部材8とを備え、これらを1組とするセルを単数または複数組重ねて設けた構造を有する。
単セル1は、図2に示すように、平板状の電解質11、この電解質11の一方の面に形成された平板状の燃料極12、および電解質11の他方の面に形成された平板状の空気極13から構成された燃料極支持型の構成を有する。
電解質11は、例えば、スカンジア安定化ジルコニア(ScSZ)、イットリア安定化ジルコニア(YSZ)、サマリア添加セリア(またはガドリニウム添加セリア)、アルミナ添加スカンジア安定化ジルコニア(SASZ)、コバルト添加ランタンガレート系酸化物(LSGMC)などのジルコニア系の材料から構成される。
燃料極12は、例えば、ニッケル添加イットリア安定化ジルコニア(Ni−YSZ)、ニッケル添加アルミナ添加スカンジア安定化ジルコニア(Ni−SASZ)、ニッケル添加スカンジア安定化ジルコニア(Ni−ScSZ)などの金属Niと上述した電解質1を構成する材料との混合物などから構成される。
空気極13は、電解質上に形成された活性層13aと、この活性層13a上に形成された集電層13bとから構成される。
ここで、活性層13aは、LSMなど、空気極反応が進行するための触媒作用を有する材料から構成される。
一方、集電層13bは、クロム種と反応性が高いSrを含む材料から構成される。例えば、LSCとのLSM混合物、LaSrCoFeO3、SmSrCoO3などから構成される。ここで、集電層13bがLSCとLSMの混合物から構成される場合、LSCの熱膨張係数の影響を受けて電極の形成が困難になるため、LSMの重量の50%よりも少ない割合でLSCが混合されるのが望ましい。
燃料極セパレータ2は、板の形状を有し、上面の中央部に形成され、外部から供給された燃料ガスを第1の集電体6を介して燃料極12に向けて送出したり、単セル1で酸化されなかった(未反応の)燃料ガス(以下、「未反応ガス」という)等を外部に排出したりする燃料流路2aと、この燃料流路2aに外部から供給された燃料を送出したり、燃料流路2aから未反応ガスを外部に導出したりする燃料ガス配管2bとを備えている。このような燃料極セパレータ2は、例えば、クロムが16〜25%程度含まれているフェライト系の耐熱合金から構成されている。
セルホルダ3は、例えば、クロムが16〜25%程度含まれているフェライト系の耐熱合金から構成されている。
シール部材4は、例えば、ホウ珪酸ガラスなどの軟化点が動作温度付近のガラス材料から構成されている。このようなシール部材4を設けることにより、燃料ガスや排気ガスが固体酸化物形燃料電池の外部に漏れるのを防ぐことができる。
空気極セパレータ5は、板の形状を有し、下面の中央部に形成され、外部から供給された酸化剤ガスを絶縁部材8を介して空気極13に向けて送出したり、単セル1で未反応の酸化剤ガス等を外部に排出したりする酸化剤流路5aと、この酸化剤流路8aに外部から供給される酸化剤ガスを送出する酸化剤ガス配管5bとを備えている。このような空気極セパレータ5は、例えば、クロムが16〜25%程度含まれているフェライト系の耐熱合金から構成されている。
第1の集電体6、第2の集電体7は、白金、銀、金、パラジウム、イリジウム、ロジウム等の金属、フェライト系耐熱合金の細線からなるメッシュや不織布、エキスパンドメタル、発泡金属など、電子伝導性が高く、600〜1000℃で化学的に安定な材料から構成される。
絶縁部材8は、例えばアルミナなどの高温でも絶縁性のあるセラミックスや、マイカなどの絶縁材料から構成される。このような絶縁部材8を設けることにより、燃料極側セパレータ2と空気極セパレータ5との短絡を防止することができる。
<固体酸化物形燃料電池の組立方法>
固体酸化物形燃料電池の組立方法の一例について説明する。
まず、耐熱合金からなる台座の上に、燃料流路2aおよび燃料ガス配管2bとが形成された燃料極セパレータ2を配設する。この燃料極セパレータ2の燃料流路2aが形成されている面上に、例えばニッケルの発泡体である発泡ニッケルからなる第1の集電体6配設した後、この第1の集電体6上に燃料極12が位置するように、単セル1を第1の集電体6上に配設する。
単セル1を配設すると、セルホルダ3を、その内側に単セル1および第1の集電体6が位置するように、燃料極セパレータ2上に配設する。
セルホルダを配設すると、単セル1の電解質11の上面からセルホルダ3の上面にかけて、ガラス粉末と有機溶媒からなるペースト状のシール部材4を配設する。このとき、セルホルダ3と空気極セパレータ5との電気的絶縁を得るために、シール部材4の上に厚さが0.5mmのマイカからなる絶縁部材8を配設する。
絶縁部材8を配設すると、単セル1の集電層14の上に、例えば発泡ニッケルからなる第2の集電体7を配設する。
第2の集電体7を配設すると、酸化剤流路5aおよび酸化剤ガス配管5bが形成された空気極セパレータ5を用意し、第2の集電体7と空気極セパレータ5とが接触するように、シール部材4上に空気極セパレータ5を配設する。
空気極セパレータ5を配設すると、空気極セパレータ5から燃料極セパレータ2に向けて荷重をかける。これにより、第2の集電体7が、集電層14および空気極セパレータ5に圧接されるので、集電層14と空気極セパレータ5との電気的接続が良好となる。
荷重をかけた後、例えば発電状態まで加熱すると、単セル1が、第1の集電体6および第2の集電体7を介して燃料極セパレータ2と空気極セパレータ5との間に保持された1つのセルからなる固体酸化物形燃料電池が完成する。
なお、このようなセルを複数積層したスタックでは、燃料極セパレータ2と空気極セパレータ5とは、それぞれ上下に隣接するセルの空気極セパレータ2または燃料極セパレータ5に電気的に接続されている。したがって、固体酸化物形燃料電池スタックの上端の空気極セパレータ5と下端の燃料極セパレータ2とを端子として負荷回路に接続することにより、電力を取り出すことができることとなる。
<固体酸化物形燃料電池の発電動作>
次に、上述したような手順で組み立てられる固体酸化物形燃料電池の発電動作は、以下に示す手順で行われる。
まず、ドライ水素等の燃料ガスは、燃料極セパレータ5の燃料ガス配管2bから燃料流路2aを通り、第1の集電体6を経由して、単セル1の燃料極12に供給される。一方、空気等の酸化剤ガスは、空気極セパレータ5の酸化剤ガス配管5bから酸化剤流路5aを通り、絶縁部材8を経由して、単セル1の接続層14から空気極13に供給される。このように燃料ガスおよび酸化剤ガスが所定の温度下において単セル1に供給されると、燃料極12と空気極13とにおいて電気化学反応が発生する。このような状態で、固体酸化物形燃料電池スタックの上端の空気極セパレータ5と下端の燃料極セパレータ2とを端子として負荷回路に接続すると、電力を取り出すことができる。
<単セル1の製造方法>
次に、単セル1の製造方法の一例について説明する。
まず、電解質11の材料として8YSZ(0.92ZrO2−0.08Y23)を、ドクターブレード法により、後述する空気極11の材料との一体焼結時に30μm程度の厚さになるようにシート状に形成する。
また、燃料極12の材料としてNiO−8YSZのスラリ(平均粒径が約0.6μmの8mol%、Y23添加ジルコニア粉末、平均粒径が約0.2μmのNiO粉末が60wt%)を、電解質11の場合と同様にドクターブレード法を用いて一体焼結時1.0mm程度の厚さになるようにシート状に形成する。
電解質11および燃料極12のシートを作成すると、これらを貼り合わせ、成形および脱脂をした後に1300〜1400℃の熱処理条件で電解質11と燃料極12一体焼結させる。なお、これにより一体成形された電解質11および燃料極12を、ハーフセルという。
ハーフセルを生成すると、活性層13aの材料として平均粒径が1.0μmのLa0.8Sr0.2MnO3粉末のスラリを作製し、このスラリをハーフセルの電解質11上にスクリーン印刷法により塗布する。焼成後に形成される活性層13aの厚さが10μmとなるようにスラリの厚さを調整した後、1000℃で2時間の熱処理条件で焼成する。
ここで、比較例として、空気極13が活性層13aのみからなる単セル(#1−0−0)を用意する。この場合、焼成後に形成される空気極の厚さが100μmとなるように上記スラリの厚さを調整すればよい。
活性層13aを作成すると、集電層13bの材料としてLSC粉末およびLSM粉末を重量比1:10,1:5,1:2で混合し作製したスラリを、スクリーン印刷法により活性層13a上に塗布する。焼成後に形成される空気極13の厚さが100μmとなるようにスラリの厚さを調整し、1000℃、2時間の熱処理条件で焼成する。
ここで、活性層13aにおけるLSM粉末およびLSC粉末を重量比を2:1までにしたのは、LSC粉末の割合がこれ以上になると、LSCの熱膨張係数の影響を受け、電極形成が困難となる恐れがあるからである。また、集電層13bの焼成温度を1000℃という低温にすることにより、活性層13aと集電層13bとの間での相互拡散を防止することができる。
このような手順で作成された単セル1を#1−0−1〜#1−0−3(LSC粉末とLSM粉末の重量比が1:10のものが#1−0−1、1:5のものが#1−0−2、1:2のものが#1−0−3)とする。
このように生成した単セル1(#1−0−1〜#1−0−3)と比較例(#1−0−0)について、空気極の界面抵抗を図3に示すような状態で測定した。すなわち、1つの単セルの空気極13上に集電層13bに用いたスラリを塗布して熱クロム系耐熱合金(ZMG232)メッシュ集電体を載せることにより生成した測定セルに、電流線31および電圧線32を接続した上で燃料極11に室温加湿水素ガス、空気極13に酸素を供給して動作させた際の電解質11と空気極13と間の界面の界面抵抗を、交流インピーダンス法により測定した。この測定結果を、図4に示す。なお、上記メッシュ集電体は、クロムを含むインターコネクタを使用した状況を擬似的に再現するために用いている。また、図4に示す界面抵抗は、燃料極12と空気極13との間で測定したので、空気極13の界面抵抗と燃料極12の界面抵抗を合計した値となっているが、空気極13の界面抵抗がほとんどを占めるほど大きいため、実質的に空気極13の値と言ってよい。
初期のインピーダンスを測定した後、電流値を一定(0.3A/cm2)とし、100時間の通電を行った後、インピーダンス測定器によって計測した開放起電力条件下における界面抵抗値を比較することにより電極特性を評価した。図4に示すように、本実施の形態に係るセル#1−0−1〜#1−0−3は、比較例であるセル#1−0−0に比べて、100時間の通電後の特性が良好である。これは、セパレータ側に設けられた集電層13bにクロムとの反応性が高い物質(Sr)が含まれており、集電層13bでクロムの反応が優先的に行われるため、活性層13aとクロムとの反応が抑制されることとなり、結果として、電解質11と空気極13(活性層13a)との界面におけるクロム種との反応が抑制されるためである。
また、本実施の形態に係るセル#1−0−1〜#1−0−3は、上述したように、従来のようにコーティング剤の緻密性向上のために加圧したり、専用機器を使用したりしなくてよいので、低コストで製造することができる。
以上説明したように、本実施の形態によれば、空気極13が、活性層13aと、この活性層13aの電解質11と接触する面と反対側の面に設けられ、Srを含む材料からなる集電層13bとを備えることにより、この集電層13bでクロムとの反応が優先的に行われるため、電解質11と空気13極との界面におけるクロムとの反応を抑制することができるので、結果として、低コストで発電効率の低下を防ぐことができる。
本発明は、固体酸化物形燃料電池の単セルに適用することができる。
1…単セル、2…燃料極セパレータ、2a…燃料流路、2b…燃料ガス配管、3…セルホルダ、4…シール部材、5…空気極セパレータ、5a…酸化剤流路、5b…酸化剤ガス配管、6…第1の集電体、7…第2の集電体、8…絶縁部材、11…単セル、12…燃料極、13…空気極、13a…活性層、13b…集電層、31…電流線、32…電圧線。

Claims (4)

  1. 板状の電解質と、
    この電解質の一方の面に設けられた燃料極と、
    前記電解質の他方の面に設けられた空気極とを備え、
    この空気極は、当該空気極の材料からなる第1の層と、この第1の層の前記電解質と接触する面と反対側の面に設けられ、Srを含む材料からなる第2の層とから構成される
    ことを特徴とする固体酸化物形燃料電池用単セル。
  2. 前記第1の層は、La0.8Sr0.2MnO3からなり、
    前記第2の層は、LaSrCoO3とLa0.8Sr0.2MnO3の混合物、LaSrCoFeO3、および、SmSrCoO3の何れか1つから構成される
    ことを特徴とする請求項1記載の固体酸化物形燃料電池用単セル。
  3. 前記混合物は、LaSrCoO3の割合がLa0.8Sr0.2MnO3の重量の50%よりも少ない
    ことを特徴とする請求項2記載の固体酸化物形燃料電池用単セル。
  4. 単セルと、この単セルを収容しかつ前記単セルに燃料ガスおよび酸化剤ガスを供給するセパレータとを備えた固体酸化物形燃料電池であって、
    前記単セルは、請求項1乃至3の何れか1項に記載された固体酸化物形燃料電池用単セルから構成され、
    前記セパレータは、クロムを含む合金から構成される
    ことを特徴とする固体酸化物形燃料電池。
JP2010269115A 2010-12-02 2010-12-02 固体酸化物形燃料電池および固体酸化物形燃料電池用単セル Expired - Fee Related JP5443325B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010269115A JP5443325B2 (ja) 2010-12-02 2010-12-02 固体酸化物形燃料電池および固体酸化物形燃料電池用単セル

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010269115A JP5443325B2 (ja) 2010-12-02 2010-12-02 固体酸化物形燃料電池および固体酸化物形燃料電池用単セル

Publications (2)

Publication Number Publication Date
JP2012119212A true JP2012119212A (ja) 2012-06-21
JP5443325B2 JP5443325B2 (ja) 2014-03-19

Family

ID=46501811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010269115A Expired - Fee Related JP5443325B2 (ja) 2010-12-02 2010-12-02 固体酸化物形燃料電池および固体酸化物形燃料電池用単セル

Country Status (1)

Country Link
JP (1) JP5443325B2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016076078A1 (ja) * 2014-11-13 2017-08-17 住友電気工業株式会社 セル構造体、その製造方法、および、燃料電池
WO2020049888A1 (ja) * 2018-09-05 2020-03-12 住友電気工業株式会社 燃料電池
WO2020158339A1 (ja) * 2019-01-30 2020-08-06 日本碍子株式会社 電気化学セル
WO2020158346A1 (ja) * 2019-01-30 2020-08-06 日本碍子株式会社 電気化学セル
WO2020158341A1 (ja) * 2019-01-30 2020-08-06 日本碍子株式会社 電気化学セル
US11984627B2 (en) 2018-09-05 2024-05-14 Sumitomo Electric Industries, Ltd. Chromium adsorption material and fuel cell

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0562688A (ja) * 1991-09-04 1993-03-12 Murata Mfg Co Ltd 固体電解質型燃料電池
JPH0745291A (ja) * 1993-07-30 1995-02-14 Sanyo Electric Co Ltd 固体電解質型燃料電池
JPH08180885A (ja) * 1994-12-26 1996-07-12 Tokyo Gas Co Ltd 空気極の集電効率を向上させた固体電解質型燃料電池
JP2005135889A (ja) * 2003-10-31 2005-05-26 Kyocera Corp 燃料電池セル及び燃料電池
JP2009016351A (ja) * 2007-07-05 2009-01-22 General Electric Co <Ge> 改良電極を有する固体酸化物型電気化学デバイス
JP2010033747A (ja) * 2008-07-25 2010-02-12 Nissan Motor Co Ltd 固体酸化物形燃料電池スタック及びその製造方法
JP2010080151A (ja) * 2008-09-25 2010-04-08 Kyocera Corp セルスタックおよびそれを具備する燃料電池モジュールならびに燃料電池装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0562688A (ja) * 1991-09-04 1993-03-12 Murata Mfg Co Ltd 固体電解質型燃料電池
JPH0745291A (ja) * 1993-07-30 1995-02-14 Sanyo Electric Co Ltd 固体電解質型燃料電池
JPH08180885A (ja) * 1994-12-26 1996-07-12 Tokyo Gas Co Ltd 空気極の集電効率を向上させた固体電解質型燃料電池
JP2005135889A (ja) * 2003-10-31 2005-05-26 Kyocera Corp 燃料電池セル及び燃料電池
JP2009016351A (ja) * 2007-07-05 2009-01-22 General Electric Co <Ge> 改良電極を有する固体酸化物型電気化学デバイス
JP2010033747A (ja) * 2008-07-25 2010-02-12 Nissan Motor Co Ltd 固体酸化物形燃料電池スタック及びその製造方法
JP2010080151A (ja) * 2008-09-25 2010-04-08 Kyocera Corp セルスタックおよびそれを具備する燃料電池モジュールならびに燃料電池装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN6007006233; 大木道則、外3名編: 化学大辞典 第1版, 19891020, 1233, 株式会社東京化学同人 *
JPN6013046309; 固体酸化物燃料電池と地球環境 第1版, 19980620, p.157, 株式会社 アグネ承風社 *
JPN6013046311; Shunsuke TANIGUCHI et al.: 'Suppression of Chromium Diffusion to an SOFC Cathode from an Alloy Separator by a Cathode Second Lay' DENKI KAGAKU 64, No.6, 1996, p.568-574 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016076078A1 (ja) * 2014-11-13 2017-08-17 住友電気工業株式会社 セル構造体、その製造方法、および、燃料電池
CN107112564A (zh) * 2014-11-13 2017-08-29 住友电气工业株式会社 电池结构体及其制造方法以及燃料电池
US10424801B2 (en) 2014-11-13 2019-09-24 Sumitomo Electric Industries, Ltd. Cell structure, method for manufacturing the same, and fuel cell
WO2020049888A1 (ja) * 2018-09-05 2020-03-12 住友電気工業株式会社 燃料電池
US11996589B2 (en) 2018-09-05 2024-05-28 Sumitomo Electric Industries, Ltd. Fuel cell
US11984627B2 (en) 2018-09-05 2024-05-14 Sumitomo Electric Industries, Ltd. Chromium adsorption material and fuel cell
JP7248030B2 (ja) 2018-09-05 2023-03-29 住友電気工業株式会社 燃料電池
JPWO2020049888A1 (ja) * 2018-09-05 2021-08-12 住友電気工業株式会社 燃料電池
JP6789450B1 (ja) * 2019-01-30 2020-11-25 日本碍子株式会社 電気化学セル
JP6789449B1 (ja) * 2019-01-30 2020-11-25 日本碍子株式会社 電気化学セル
US10903502B2 (en) 2019-01-30 2021-01-26 Ngk Insulators, Ltd. Electrochemical cell
JP6789448B1 (ja) * 2019-01-30 2020-11-25 日本碍子株式会社 電気化学セル
US11189842B2 (en) 2019-01-30 2021-11-30 Ngk Insulators, Ltd. Electrochemical cell
WO2020158341A1 (ja) * 2019-01-30 2020-08-06 日本碍子株式会社 電気化学セル
WO2020158346A1 (ja) * 2019-01-30 2020-08-06 日本碍子株式会社 電気化学セル
WO2020158339A1 (ja) * 2019-01-30 2020-08-06 日本碍子株式会社 電気化学セル

Also Published As

Publication number Publication date
JP5443325B2 (ja) 2014-03-19

Similar Documents

Publication Publication Date Title
TWI761479B (zh) 電化學元件、電化學模組、電化學裝置、能源系統、固態氧化物型燃料電池、及電化學元件之製造方法
Sumi et al. Performance of nickel–scandia-stabilized zirconia cermet anodes for SOFCs in 3% H2O–CH4
JP5242909B2 (ja) 固体酸化物形燃料電池
Wang et al. Fabrication and performance evaluation of planar solid oxide fuel cell with large active reaction area
JP5443325B2 (ja) 固体酸化物形燃料電池および固体酸化物形燃料電池用単セル
CN110462109B (zh) 合金部件的制造方法和合金部件
JP2011119178A (ja) 固体酸化物形燃料電池
JP5144236B2 (ja) 固体酸化物形燃料電池
WO2012133438A1 (ja) 中低温高効率電気化学セル及びそれらから構成される電気化学反応システム
JP4156213B2 (ja) 固体酸化物形燃料電池
JP5373668B2 (ja) 固体酸化物形燃料電池用単セルおよび固体酸化物形燃料電池
JP2011096617A (ja) 触媒層を付加したチューブ型電気化学セル及びそれらから構成される電気化学反応システム
RU2417488C1 (ru) Планарный элемент электрохимических устройств, батарея и способ изготовления
CN110402514B (zh) 金属支撑型电化学元件用的带电极层基板、电化学元件和制造方法
KR102564764B1 (ko) 전기 화학 장치, 에너지 시스템, 및 고체 산화물형 연료 전지
JP5345428B2 (ja) 固体酸化物形燃料電池
JP2012253035A (ja) 固体酸化物形燃料電池
JP2013054954A (ja) 固体酸化物形燃料電池スタックおよびインターコネクタ
JP2010277954A (ja) 固体酸化物形燃料電池
JP2012133961A (ja) 固体酸化物形燃料電池
Yano et al. Solid oxide fuel cell with anodes using proton conductor (Barium-Cerium/Yttrium oxide)
Lin et al. Performance and Durability Evaluation for Anode-Supported Solid Oxide Fuel Cell with Ce0. 8Sm0. 2O2− δ-SmBa0. 5Sr0. 5Co2O5+ δ Composite Cathodes
JP2008257890A (ja) 燃料極用集電材、及びそれを用いた固体酸化物形燃料電池
JP2022137626A (ja) 可逆型燃料電池システム及びその運転方法
WO2018181924A1 (ja) 電気化学素子、電気化学モジュール、固体酸化物形燃料電池、および製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131219

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees