JP2012103584A - Proximity exposure device, substrate positioning method for proximity exposure device, and manufacturing method for display panel substrate - Google Patents
Proximity exposure device, substrate positioning method for proximity exposure device, and manufacturing method for display panel substrate Download PDFInfo
- Publication number
- JP2012103584A JP2012103584A JP2010253620A JP2010253620A JP2012103584A JP 2012103584 A JP2012103584 A JP 2012103584A JP 2010253620 A JP2010253620 A JP 2010253620A JP 2010253620 A JP2010253620 A JP 2010253620A JP 2012103584 A JP2012103584 A JP 2012103584A
- Authority
- JP
- Japan
- Prior art keywords
- stage
- substrate
- laser
- chuck
- proximity exposure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
Abstract
Description
本発明は、液晶ディスプレイ装置等の表示用パネル基板の製造において、プロキシミティ方式を用いて基板の露光を行うプロキシミティ露光装置、プロキシミティ露光装置の基板位置決め方法、及びそれらを用いた表示用パネル基板の製造方法に係り、特に基板を支持するチャックを移動ステージによりXY方向へ移動及びθ方向へ回転して露光時の基板の位置決めを行うプロキシミティ露光装置、プロキシミティ露光装置の基板位置決め方法、及びそれらを用いた表示用パネル基板の製造方法に関する。 The present invention relates to a proximity exposure apparatus that exposes a substrate using a proximity method in manufacturing a display panel substrate such as a liquid crystal display device, a substrate positioning method of the proximity exposure apparatus, and a display panel using the same. In particular, a proximity exposure apparatus for positioning a substrate during exposure by moving a chuck that supports the substrate in the XY direction and rotating in the θ direction by a moving stage, and a substrate positioning method for the proximity exposure apparatus, And a method of manufacturing a display panel substrate using them.
表示用パネルとして用いられる液晶ディスプレイ装置のTFT(Thin Film Transistor)基板やカラーフィルタ基板、プラズマディスプレイパネル用基板、有機EL(Electroluminescence)表示パネル用基板等の製造は、露光装置を用いて、フォトリソグラフィー技術により基板上にパターンを形成して行われる。露光装置としては、レンズ又は鏡を用いてマスクのパターンを基板上に投影するプロジェクション方式と、マスクと基板との間に微小な間隙(プロキシミティギャップ)を設けてマスクのパターンを基板へ転写するプロキシミティ方式とがある。プロキシミティ方式は、プロジェクション方式に比べてパターン解像性能は劣るが、照射光学系の構成が簡単で、かつ処理能力が高く量産用に適している。 Manufacturing of TFT (Thin Film Transistor) substrates, color filter substrates, plasma display panel substrates, organic EL (Electroluminescence) display panel substrates, and the like of liquid crystal display devices used as display panels is performed using photolithography using an exposure apparatus. This is performed by forming a pattern on the substrate by a technique. As an exposure apparatus, a projection method in which a mask pattern is projected onto a substrate using a lens or a mirror, and a minute gap (proximity gap) is provided between the mask and the substrate to transfer the mask pattern to the substrate. There is a proximity method. The proximity method is inferior in pattern resolution performance to the projection method, but the configuration of the irradiation optical system is simple, the processing capability is high, and it is suitable for mass production.
近年、表示用パネルの各種基板の製造では、大型化及びサイズの多様化に対応するため、比較的大きな基板を用意し、表示用パネルのサイズに応じて、1枚の基板から1枚又は複数枚の表示用パネル基板を製造している。その場合、プロキシミティ方式では、基板の一面を一括して露光しようとすると、基板と同じ大きさのマスクが必要となり、高価なマスクのコストがさらに増大する。そこで、基板より比較的小さなマスクを用い、移動ステージにより基板をXY方向へステップ移動して、基板の一面を複数のショットに分けて露光する方式が主流となっている。 In recent years, in the manufacture of various substrates for display panels, a relatively large substrate is prepared in order to cope with an increase in size and a variety of sizes, and one or a plurality of substrates can be selected from one substrate depending on the size of the display panel. Manufactures display panel substrates. In this case, in the proximity method, if one surface of the substrate is to be exposed all at once, a mask having the same size as the substrate is required, which further increases the cost of the expensive mask. Therefore, a method in which a mask that is relatively smaller than the substrate is used, the substrate is moved stepwise in the XY directions by a moving stage, and one surface of the substrate is divided into a plurality of shots for exposure.
プロキシミティ露光装置において、パターンの焼付けを精度良く行うためには、露光時の基板の位置決めを精度良く行わなければならない。基板の位置決めを行う移動ステージは、X方向へ移動するXステージと、Y方向へ移動するYステージと、θ方向へ回転するθステージとを備え、基板を支持するチャックを搭載して、XY方向へ移動及びθ方向へ回転する。特許文献1及び特許文献2には、基板を位置決めする際に、レーザー測長系を用いて移動ステージのXY方向の位置を検出し、また複数のレーザー変位計を用いてチャックのθ方向の傾きを検出する技術が開示されている。
In the proximity exposure apparatus, in order to perform pattern printing with high accuracy, the substrate must be positioned accurately during exposure. The moving stage for positioning the substrate includes an X stage that moves in the X direction, a Y stage that moves in the Y direction, and a θ stage that rotates in the θ direction. And rotate in the θ direction. In
特許文献1及び特許文献2に記載の技術では、チャックにバーミラーを取り付け、Xステージに設けた複数のレーザー変位計により、バーミラーの変位を複数箇所で測定して、チャックのθ方向の傾きを検出している。そのため、専用のバーミラーが必要であるが、このバーミラーは、表面を高い精度で平坦に加工する必要があるため、非常に高価であって、多大な費用が掛かる。
In the techniques described in
また、特許文献1及び特許文献2に記載の技術では、Xステージにレーザー変位計を設けているため、チャックをYステージによりY方向へ移動すると、バーミラーの位置がレーザー変位計に対して変化する。そのため、測定結果には、バーミラーの平坦度による誤差が含まれる恐れがあった。
In the techniques described in
特許文献1及び特許文献2に記載されている様に、複数のレーザー変位計を用いてチャックのθ方向の傾きを検出する場合、複数のレーザー変位計をより離して設置する程、チャックのθ方向の傾きを精度良く検出することができる。しかしながら、レーザー変位計の出力特性は直線性が乏しく、測定範囲を広げると、測定誤差が大きくなる。特許文献1及び特許文献2に記載の技術では、チャックがθ方向に傾いた状態で、チャックをYステージによりY方向へ移動すると、各レーザー変位計からバーミラーまでの距離が変動するため、複数のレーザー変位計をより離して設置すると、レーザー変位計の測定範囲が広がり、測定誤差が大きくなる恐れがあった。
As described in
さらに、レーザー変位計の出力特性は、設置状態により変動し、被測定物の微小な角度変化に対して線形性が異なる。そのため、特許文献1及び特許文献2に記載されている様に、複数のレーザー変位計を用いてチャックのθ方向の傾きを検出する場合、各レーザー変位計の測定値にチャックの角度に依存した変動値が含まれ、チャックのθ方向の傾きを高精度に検出することができない恐れがあった。
Furthermore, the output characteristics of the laser displacement meter vary depending on the installation state, and the linearity differs with respect to a minute angle change of the object to be measured. Therefore, as described in
本発明の課題は、安価な構成で、チャックのθ方向の傾きを精度良く検出して、基板のθ方向の位置決めを精度良く行うことである。さらに、本発明の課題は、パターンの焼付けを精度良く行って、高品質な表示用パネル基板を製造することである。 An object of the present invention is to accurately detect the inclination of the chuck in the θ direction and accurately position the substrate in the θ direction with an inexpensive configuration. Furthermore, an object of the present invention is to manufacture a high-quality display panel substrate by performing pattern printing with high accuracy.
本発明のプロキシミティ露光装置は、基板を支持するチャックと、マスクを保持するマスクホルダとを備え、マスクと基板との間に微小なギャップを設けて、マスクのパターンを基板へ転写するプロキシミティ露光装置において、X方向(又はY方向)へ移動する第1のステージ、第1のステージに搭載されY方向(又はX方向)へ移動する第2のステージ、及び第2のステージに搭載されθ方向へ回転する第3のステージを有し、チャックを搭載して、チャックに支持された基板の位置決めを行う移動ステージと、レーザー光を発生する光源、第1のステージに取り付けられた第1の反射手段、第2のステージに取り付けられた第2の反射手段、光源からのレーザー光と第1の反射手段により反射されたレーザー光との干渉を測定する第1のレーザー干渉計、及び光源からのレーザー光と第2の反射手段により反射されたレーザー光との干渉を測定する第2のレーザー干渉計を有するレーザー測長系と、第1のレーザー干渉計及び第2のレーザー干渉計の測定結果から、移動ステージのXY方向の位置を検出する第1の検出手段と、チャックに設けられ、第2のステージに取り付けられた第2の反射手段までの距離を複数箇所で測定する複数の光学式変位計と、複数の光学式変位計の測定結果から、チャックのθ方向の傾きを検出する第2の検出手段と、移動ステージを駆動するステージ駆動回路と、第2の検出手段の検出結果に基づき、ステージ駆動回路を制御し、第3のステージによりチャックをθ方向へ回転させて、基板のθ方向の位置決めを行い、第1の検出手段の検出結果に基づき、ステージ駆動回路を制御し、第1のステージ及び第2のステージによりチャックをXY方向へ移動させて、基板のXY方向の位置決めを行う制御手段とを備えたものである。 The proximity exposure apparatus of the present invention includes a chuck that supports a substrate and a mask holder that holds the mask, and provides a minute gap between the mask and the substrate to transfer the mask pattern to the substrate. In the exposure apparatus, the first stage that moves in the X direction (or Y direction), the second stage that is mounted on the first stage and moves in the Y direction (or X direction), and the second stage that is mounted on the second stage A moving stage for positioning the substrate supported by the chuck, a light source for generating laser light, and a first stage attached to the first stage. Reflection means, second reflection means attached to the second stage, and first for measuring interference between the laser light from the light source and the laser light reflected by the first reflection means. Laser interferometer, laser length measuring system having second laser interferometer for measuring interference between laser beam from light source and laser beam reflected by second reflecting means, first laser interferometer and first laser interferometer A plurality of distances from the measurement result of the second laser interferometer to the first detection means for detecting the position of the moving stage in the XY direction and the second reflection means provided on the chuck and attached to the second stage. A plurality of optical displacement meters to be measured at locations, a second detection means for detecting the inclination of the chuck in the θ direction from the measurement results of the plurality of optical displacement meters, a stage drive circuit for driving the moving stage, Based on the detection result of the second detection means, the stage drive circuit is controlled, the chuck is rotated in the θ direction by the third stage, the substrate is positioned in the θ direction, and the detection result of the first detection means And a control means for controlling the stage drive circuit and moving the chuck in the XY directions by the first stage and the second stage to position the substrate in the XY directions.
また、本発明のプロキシミティ露光装置の基板位置決め方法は、基板を支持するチャックと、マスクを保持するマスクホルダとを備え、マスクと基板との間に微小なギャップを設けて、マスクのパターンを基板へ転写するプロキシミティ露光装置の基板位置決め方法であって、X方向(又はY方向)へ移動する第1のステージ、第1のステージに搭載されY方向(又はX方向)へ移動する第2のステージ、及び第2のステージに搭載されθ方向へ回転する第3のステージを有する移動ステージにチャックを搭載し、第1のステージに第1の反射手段を取り付け、第1のレーザー干渉計により、光源からのレーザー光と第1の反射手段により反射されたレーザー光との干渉を測定し、第2のステージに第2の反射手段を取り付け、第2のレーザー干渉計により、光源からのレーザー光と第2の反射手段により反射されたレーザー光との干渉を測定し、チャックに複数の光学式変位計を設け、複数の光学式変位計により、第2のステージに取り付けた第2の反射手段までの距離を複数箇所で測定し、複数の光学式変位計の測定結果から、チャックのθ方向の傾きを検出し、検出結果に基づき、第3のステージによりチャックをθ方向へ回転して、基板のθ方向の位置決めを行い、第1のレーザー干渉計及び第2のレーザー干渉計の測定結果から、移動ステージのXY方向の位置を検出し、検出結果に基づき、第1のステージ及び第2のステージによりチャックをXY方向へ移動して、基板のXY方向の位置決めを行うものである。 The proximity exposure apparatus of the present invention includes a substrate positioning method comprising a chuck for supporting a substrate and a mask holder for holding the mask, and providing a minute gap between the mask and the substrate to form a mask pattern. A method for positioning a substrate of a proximity exposure apparatus that transfers to a substrate, the first stage moving in the X direction (or Y direction), and the second stage mounted on the first stage and moving in the Y direction (or X direction). A chuck is mounted on a moving stage having a third stage that is mounted on the second stage and that is mounted on the second stage and that rotates in the θ direction, and a first reflecting means is attached to the first stage, and a first laser interferometer is used. The interference between the laser light from the light source and the laser light reflected by the first reflecting means is measured, the second reflecting means is attached to the second stage, and the second laser The interferometer measures interference between the laser light from the light source and the laser light reflected by the second reflecting means, and the chuck is provided with a plurality of optical displacement meters, and the plurality of optical displacement meters The distance to the second reflecting means attached to the stage is measured at a plurality of locations, the inclination of the chuck in the θ direction is detected from the measurement results of the plurality of optical displacement meters, and based on the detection result, the third stage The chuck is rotated in the θ direction, the substrate is positioned in the θ direction, the position of the moving stage in the XY direction is detected from the measurement results of the first laser interferometer and the second laser interferometer, and the detection result is obtained. Based on this, the chuck is moved in the XY direction by the first stage and the second stage, and the substrate is positioned in the XY direction.
チャックに複数の光学式変位計を設け、複数の光学式変位計により、第2のステージに取り付けた第2の反射手段までの距離を複数箇所で測定し、複数の光学式変位計の測定結果から、チャックのθ方向の傾きを検出するので、第2のステージに取り付けた第2の反射手段が、第2のレーザー干渉計を用いた移動ステージの位置の検出と、複数の光学式変位計を用いたチャックのθ方向の傾きの検出とに兼用され、チャックのθ方向の傾きを検出するための専用の反射手段(バーミラー)が必要なくなる。そして、チャックを移動ステージによりXY方向へ移動しても、光学式変位計が常に第2の反射手段の同じ箇所に対して測定を行うため、第2の反射手段の平坦度による測定誤差がなくなる。また、チャックがθ方向に傾いた状態で、チャックを移動ステージによりXY方向へ移動しても、光学式変位計から第2の反射手段までの距離が変動せず、測定範囲が広がらないので、複数の光学式変位計をより離して設置することができる。従って、安価な構成で、チャックのθ方向の傾きが精度良く検出され、基板のθ方向の位置決めが精度良く行われる。 The chuck is provided with a plurality of optical displacement meters, and the plurality of optical displacement meters are used to measure the distance to the second reflecting means attached to the second stage at a plurality of locations. The measurement results of the plurality of optical displacement meters Since the inclination of the chuck in the θ direction is detected, the second reflecting means attached to the second stage detects the position of the moving stage using the second laser interferometer and a plurality of optical displacement meters. This is also used for detecting the inclination of the chuck in the θ direction and does not require a dedicated reflecting means (bar mirror) for detecting the inclination of the chuck in the θ direction. Even when the chuck is moved in the X and Y directions by the moving stage, the optical displacement meter always performs the measurement on the same portion of the second reflecting means, so that there is no measurement error due to the flatness of the second reflecting means. . In addition, even if the chuck is tilted in the θ direction and the chuck is moved in the XY direction by the moving stage, the distance from the optical displacement meter to the second reflecting means does not fluctuate and the measurement range does not widen. A plurality of optical displacement meters can be installed further apart. Therefore, the tilt in the θ direction of the chuck is detected with high accuracy and the positioning of the substrate in the θ direction is performed with high accuracy.
さらに、本発明のプロキシミティ露光装置は、複数の光学式変位計が、広い波長帯域の光を参照反射面及び被測定物へ照射し、参照反射面からの反射光と被測定物からの反射光との干渉光の波長及び強度から、被測定物までの距離を測定する分光干渉レーザー変位計であるものである。また、本発明のプロキシミティ露光装置の基板位置決め方法は、光学式変位計として、広い波長帯域の光を参照反射面及び被測定物へ照射し、参照反射面からの反射光と被測定物からの反射光との干渉光の波長及び強度から、被測定物までの距離を測定する分光干渉レーザー変位計を用いるものである。 Furthermore, in the proximity exposure apparatus of the present invention, the plurality of optical displacement meters irradiate the reference reflection surface and the object to be measured with light of a wide wavelength band, and the reflected light from the reference reflection surface and the reflection from the object to be measured. This is a spectral interference laser displacement meter that measures the distance to an object to be measured from the wavelength and intensity of interference light with light. Further, the substrate positioning method of the proximity exposure apparatus according to the present invention, as an optical displacement meter, irradiates the reference reflecting surface and the object to be measured with light in a wide wavelength band, and reflects the reflected light from the reference reflecting surface and the object to be measured. A spectral interference laser displacement meter is used to measure the distance to the object to be measured from the wavelength and intensity of the interference light with the reflected light.
分光干渉レーザー変位計は、特許文献1及び特許文献2に記載の技術で使用されているレーザー変位計に比べて、被測定物の微小な角度変化による出力特性の変化が小さく高精度であるが、測定範囲が狭い。本発明では、特許文献1及び特許文献2に記載の技術と異なり、チャックがθ方向に傾いた状態で、チャックを移動ステージによりXY方向へ移動しても、光学式変位計から第2の反射手段までの距離が変動しないので、光学式変位計として、測定範囲が狭く高精度な分光干渉レーザー変位計を用いることができ、チャックのθ方向の傾きをより精度良く検出することができる。
The spectral interference laser displacement meter is less accurate than the laser displacement meter used in the techniques described in
さらに、本発明のプロキシミティ露光装置は、レーザー測長系が、第2のレーザー干渉計を複数有し、第1の検出手段が、複数の第2のレーザー干渉計の測定結果から、第1のステージ及び第2のステージが移動する際のヨーイングを検出するものである。また、本発明のプロキシミティ露光装置の基板位置決め方法は、複数の第2のレーザー干渉計により、光源からのレーザー光と第2の反射手段により反射されたレーザー光との干渉を複数箇所で測定し、複数の第2のレーザー干渉計の測定結果から、第1のステージ及び第2のステージが移動する際のヨーイングを検出するものである。第2のステージに取り付けた第2の反射手段を利用して、移動ステージが移動する際のヨーイングを検出することができる。 Further, in the proximity exposure apparatus of the present invention, the laser length measurement system has a plurality of second laser interferometers, and the first detection means determines the first from the measurement results of the plurality of second laser interferometers. Yawing when the stage and the second stage move is detected. In the proximity exposure apparatus of the present invention, the substrate positioning method measures the interference between the laser light from the light source and the laser light reflected by the second reflecting means at a plurality of locations by the plurality of second laser interferometers. Then, yawing when the first stage and the second stage move is detected from the measurement results of the plurality of second laser interferometers. By using the second reflecting means attached to the second stage, it is possible to detect yawing when the moving stage moves.
本発明の表示用パネル基板の製造方法は、上記のいずれかのプロキシミティ露光装置を用いて基板の露光を行い、あるいは、上記のいずれかのプロキシミティ露光装置の基板位置決め方法を用いて基板を位置決めして、基板の露光を行うものである。露光時の基板のθ方向の位置決めが精度良く行われるので、パターンの焼付けが精度良く行われ、高品質な表示用パネル基板が製造される。 The method for producing a display panel substrate according to the present invention exposes a substrate using any one of the above-described proximity exposure apparatuses or uses the substrate positioning method of any one of the above-described proximity exposure apparatuses to form a substrate. Positioning is performed to expose the substrate. Since the positioning of the substrate in the θ direction at the time of exposure is performed with high accuracy, pattern printing is performed with high accuracy, and a high-quality display panel substrate is manufactured.
本発明のプロキシミティ露光装置及びプロキシミティ露光装置の基板位置決め方法によれば、チャックに複数の光学式変位計を設け、複数の光学式変位計により、第2のステージに取り付けた第2の反射手段までの距離を複数箇所で測定し、複数の光学式変位計の測定結果から、チャックのθ方向の傾きを検出することにより、安価な構成で、チャックのθ方向の傾きを精度良く検出して、基板のθ方向の位置決めを精度良く行うことができる。 According to the proximity exposure apparatus and the substrate positioning method of the proximity exposure apparatus of the present invention, the chuck is provided with a plurality of optical displacement meters, and the second reflection attached to the second stage by the plurality of optical displacement meters. By measuring the distance to the means at multiple locations and detecting the tilt in the θ direction of the chuck from the measurement results of multiple optical displacement meters, the tilt in the θ direction of the chuck can be accurately detected with an inexpensive configuration. Thus, the substrate can be accurately positioned in the θ direction.
さらに、本発明のプロキシミティ露光装置及びプロキシミティ露光装置の基板位置決め方法によれば、光学式変位計として、分光干渉レーザー変位計を用いることにより、チャックのθ方向の傾きをより精度良く検出することができる。 Furthermore, according to the proximity exposure apparatus and the substrate positioning method of the proximity exposure apparatus according to the present invention, the tilt of the chuck in the θ direction can be detected with higher accuracy by using a spectral interference laser displacement meter as the optical displacement meter. be able to.
さらに、本発明のプロキシミティ露光装置及びプロキシミティ露光装置の基板位置決め方法によれば、複数の第2のレーザー干渉計により、光源からのレーザー光と第2の反射手段により反射されたレーザー光との干渉を複数箇所で測定し、複数の第2のレーザー干渉計の測定結果から、第1のステージ及び第2のステージが移動する際のヨーイングを検出することにより、第2のステージに取り付けた第2の反射手段を利用して、移動ステージが移動する際のヨーイングを検出することができる。 Furthermore, according to the proximity exposure apparatus and the substrate positioning method of the proximity exposure apparatus of the present invention, the laser light from the light source and the laser light reflected by the second reflecting means by the plurality of second laser interferometers Was measured at a plurality of locations, and was attached to the second stage by detecting yawing when the first stage and the second stage moved from the measurement results of the plurality of second laser interferometers. By using the second reflecting means, it is possible to detect yawing when the moving stage moves.
本発明の表示用パネル基板の製造方法によれば、露光時の基板のθ方向の位置決めを精度良く行うことができるので、パターンの焼付けを精度良く行って、高品質な表示用パネル基板を製造することができる。 According to the display panel substrate manufacturing method of the present invention, the substrate can be accurately positioned in the θ direction at the time of exposure. Therefore, a high-quality display panel substrate is manufactured by performing pattern printing with high accuracy. can do.
図1は、本発明の一実施の形態によるプロキシミティ露光装置の概略構成を示す図である。本実施の形態は、複数のチャックを有するプロキシミティ露光装置の例を示している。プロキシミティ露光装置は、複数のチャック10a,10b、主ステージベース11、複数の副ステージベース11a,11b、台12、Xガイド13、複数の移動ステージ、マスクホルダ20、レーザー測長系制御装置30、レーザー測長系、レーザー変位計制御装置40、分光干渉レーザー変位計41、主制御装置70、入出力インタフェース回路71,72、及びステージ駆動回路80a,80bを含んで構成されている。プロキシミティ露光装置は、これらの他に、基板1をチャック10へ搬入し、また基板1をチャック10から搬出する基板搬送ロボット、露光光を照射する照射光学系、装置内の温度管理を行う温度制御ユニット等を備えている。
FIG. 1 is a diagram showing a schematic configuration of a proximity exposure apparatus according to an embodiment of the present invention. This embodiment shows an example of a proximity exposure apparatus having a plurality of chucks. The proximity exposure apparatus includes a plurality of
なお、本実施の形態では、チャック、副ステージベース、移動ステージ、及びステージ駆動回路がそれぞれ2つ設けられているが、これらをそれぞれ1つ又は3つ以上設けてもよい。また、以下に説明する実施の形態におけるXY方向は例示であって、X方向とY方向とを入れ替えてもよい。 In this embodiment, two chucks, sub-stage bases, moving stages, and stage drive circuits are provided, but one or three or more of these may be provided. Further, the XY directions in the embodiments described below are examples, and the X direction and the Y direction may be interchanged.
図1において、基板1の露光を行う露光位置の上空に、マスク2を保持するマスクホルダ20が設置されている。マスクホルダ20には、露光光が通過する開口20aが設けられており、開口20aの下方には、マスク2が装着されている。マスクホルダ20の下面の開口20aの周囲には、吸着溝が設けられており、マスクホルダ20は、吸着溝により、マスク2の周辺部を真空吸着して保持している。マスクホルダ20に保持されたマスク2の上空には、図示しない照射光学系が配置されている。露光時、照射光学系からの露光光がマスク2を透過して基板1へ照射されることにより、マスク2のパターンが基板1の表面に転写され、基板1上にパターンが形成される。
In FIG. 1, a
マスクホルダ20の下方には、主ステージベース11が配置されている。主ステージベース11の左右には、主ステージベース11のX方向に隣接して副ステージベース11a,11bが配置されている。主ステージベース11のY方向には、台12が取り付けられている。チャック10aは、後述する移動ステージによって、副ステージベース11a上のロード/アンロード位置と主ステージベース11上の露光位置との間を移動される。また、チャック10bは、後述する移動ステージによって、副ステージベース11b上のロード/アンロード位置と主ステージベース11上の露光位置との間を移動される。
A
基板1は、副ステージベース11a,11b上のロード/アンロード位置において、図示しない基板搬送ロボットにより、チャック10a,10bへ搬入され、またチャック10a,10bから搬出される。チャック10a,10bへの基板1のロード及びチャック10a,10bからの基板1のアンロードは、チャック10a,10bに設けた複数の突き上げピンを用いて行われる。突き上げピンは、チャック10a,10bの内部に収納されており、チャック10a,10bの内部から上昇して、基板1をチャック10a,10bにロードする際、基板搬送ロボットから基板1を受け取り、基板1をチャック10a,10bからアンロードする際、基板搬送ロボットへ基板1を受け渡す。チャック10a,10bは、基板1を真空吸着して支持する。
The
図2は、チャック10aが露光位置にあり、チャック10bがロード/アンロード位置にある状態を示す上面図である。また、図3は、チャック10aが露光位置にあり、チャック10bがロード/アンロード位置にある状態を示す一部断面側面図である。図2において、主ステージベース11上及び副ステージベース11a,11b上には、主ステージベース11上から副ステージベース11a,11b上へX方向に伸びるXガイド13が設けられている。
FIG. 2 is a top view showing a state in which the
図3において、チャック10a,10bは、それぞれ移動ステージに搭載されている。各移動ステージは、Xステージ14、Yガイド15、Yステージ16、θステージ17、及びチャック支持台19を含んで構成されている。Xステージ14は、Xガイド13に搭載され、Xガイド13に沿ってX方向へ移動する。Yステージ16は、Xステージ14上に設けられたYガイド15に搭載され、Yガイド15に沿ってY方向(図3の図面奥行き方向)へ移動する。θステージ17は、Yステージ16に搭載され、θ方向へ回転する。チャック支持台19は、θステージ17に搭載され、チャック10a,10bを複数箇所で支持する。
In FIG. 3, chucks 10a and 10b are each mounted on a moving stage. Each moving stage includes an
各移動ステージのXステージ14のX方向への移動により、チャック10aは、副ステージベース11a上のロード/アンロード位置と主ステージベース11上の露光位置との間を移動され、チャック10bは、副ステージベース11b上のロード/アンロード位置と主ステージベース11上の露光位置との間を移動される。図4は、チャック10bが露光位置にあり、チャック10aがロード/アンロード位置にある状態を示す上面図である。また、図5は、チャック10bが露光位置にあり、チャック10aがロード/アンロード位置にある状態を示す一部断面側面図である。副ステージベース11a,11b上のロード/アンロード位置において、各移動ステージのXステージ14のX方向への移動、Yステージ16のY方向への移動、及びθステージ17のθ方向への回転により、チャック10a,10bに搭載された基板1のプリアライメントが行われる。
Due to the movement of each moving stage in the X direction of the
主ステージベース11上の露光位置において、各移動ステージのXステージ14のX方向への移動及びYステージ16のY方向への移動により、チャック10a,10bに保持された基板1のXY方向へのステップ移動が行われる。そして、各移動ステージのXステージ14のX方向への移動、Yステージ16のY方向への移動、及びθステージ17のθ方向への回転により、露光時の基板1の位置決めが行われる。また、図示しないZ−チルト機構によりマスクホルダ20をZ方向へ移動及びチルトすることにより、マスク2と基板1とのギャップ合わせが行われる。
At the exposure position on the
各移動ステージのXステージ14、Yステージ16、及びθステージ17には、ボールねじ及びモータや、リニアモータ等の図示しない駆動機構が設けられている。図1において、ステージ駆動回路80aは、主制御装置70の制御により、チャック10aを搭載する移動ステージのXステージ14、Yステージ16、及びθステージ17を駆動する。また、ステージ駆動回路80bは、主制御装置70の制御により、チャック10bを搭載する移動ステージのXステージ14、Yステージ16、及びθステージ17を駆動する。
The
なお、本実施の形態では、マスクホルダ20をZ方向へ移動及びチルトすることにより、マスク2と基板1とのギャップ合わせを行っているが、各移動ステージにZ−チルト機構を設けて、チャック10a,10bをZ方向へ移動及びチルトすることにより、マスク2と基板1とのギャップ合わせを行ってもよい。
In the present embodiment, the gap between the
以下、本実施の形態のプロキシミティ露光装置の基板の位置決め動作について説明する。図1において、レーザー測長系は、レーザー光源31、レーザー干渉計32a,32b,33、後述するバーミラー34a,34b、及びバーミラー35を含んで構成されている。本実施の形態では、レーザー干渉計32aを用いて、チャック10aを搭載する移動ステージのX方向の位置を検出し、レーザー干渉計32bを用いて、チャック10bを搭載する移動ステージのX方向の位置を検出する。また、2つのレーザー干渉計33を用いて、主ステージベース11上での各移動ステージのY方向の位置を検出する。
Hereinafter, the substrate positioning operation of the proximity exposure apparatus of the present embodiment will be described. In FIG. 1, the laser length measurement system includes a
図6は、主ステージベース上にある移動ステージの上面図である。図7は、主ステージベース上にある移動ステージのX方向の一部断面側面図である。図8は、主ステージベース上にある移動ステージのY方向の側面図である。図6〜図8は、チャック10aを搭載する移動ステージを示しており、チャック10bを搭載する移動ステージは、チャック10aを搭載する移動ステージとX方向において左右対称な構成となっている。なお、図7ではXガイド13が省略され、図8ではレーザー干渉計32a,32bが省略されている。
FIG. 6 is a top view of the moving stage on the main stage base. FIG. 7 is a partial sectional side view in the X direction of the moving stage on the main stage base. FIG. 8 is a side view of the moving stage on the main stage base in the Y direction. 6 to 8 show a moving stage on which the
図8において、移動ステージのXステージ14がXガイド13に搭載されているので、主ステージベース11及び副ステージベース11a,11bとXステージ14との間に、Xガイド13の高さに応じた空間が発生している。レーザー測長系のバーミラー34aは、この空間を利用して、Xステージ14の下に取り付けられている。バーミラー34bも同様である。レーザー干渉計32aは、図1に示す様に、主ステージベース11のXガイド13から外れた位置に設置されている。レーザー干渉計32bも同様である。
In FIG. 8, since the
図6〜図8において、バーミラー35は、アーム36により、ほぼチャック10aの高さでYステージ16に取り付けられている。チャック10bを搭載する移動ステージについても、同様に、バーミラー35は、ほぼチャック10bの高さでYステージ16に取り付けられている。2つのレーザー干渉計33は、図6及び図8に示す様に、主ステージベース11のY方向に取り付けられた台12に設置されている。
6 to 8, the
図9及び図10は、レーザー測長系の動作を説明する図である。なお、図9は、チャック10aが露光位置にあり、チャック10bがロード/アンロード位置にある状態を示し、図10は、チャック10bが露光位置にあり、チャック10aがロード/アンロード位置にある状態を示している。
9 and 10 are diagrams for explaining the operation of the laser length measurement system. 9 shows a state where the
図9及び図10において、レーザー干渉計32aは、レーザー光源31からのレーザー光をバーミラー34aへ照射し、バーミラー34aにより反射されたレーザー光を受光して、レーザー光源31からのレーザー光とバーミラー34aにより反射されたレーザー光との干渉を測定する。図1において、レーザー測長系制御装置30は、主制御装置70の制御により、レーザー干渉計32aの測定結果から、チャック10aを搭載する移動ステージのX方向の位置を検出する。主制御装置70は、レーザー測長系制御装置30の検出結果を、入出力インタフェース回路71を介して入力する。
9 and 10, the
図9及び図10において、レーザー干渉計32bは、レーザー光源31からのレーザー光をバーミラー34bへ照射し、バーミラー34bにより反射されたレーザー光を受光して、レーザー光源31からのレーザー光とバーミラー34bにより反射されたレーザー光との干渉を測定する。図1において、レーザー測長系制御装置30は、主制御装置70の制御により、レーザー干渉計32bの測定結果から、チャック10bを搭載する移動ステージのX方向の位置を検出する。主制御装置70は、レーザー測長系制御装置30の検出結果を、入出力インタフェース回路71を介して入力する。
9 and 10, the
レーザー測長系のバーミラー34a,34bを各移動ステージのXステージ14の下に取り付け、レーザー干渉計32a,32bを主ステージベース11のXガイド13から外れた位置に設置するので、各移動ステージは副ステージベース11a,11bと主ステージベース11とを移動する際にレーザー干渉計32a,32bと衝突することがない。そして、レーザー干渉計32a,32bを主ステージベース11に設置するので、レーザー干渉計32a,32bが副ステージベース11a,11bの振動の影響を受けない。また、レーザー干渉計32a,32bから主ステージベース11上の各移動ステージまでの測定距離が短くなる。従って、各移動ステージのX方向の位置が精度良く検出される。
Since the laser measuring system bar mirrors 34a and 34b are attached under the
図9及び図10において、2つのレーザー干渉計33は、レーザー光源31からのレーザー光をバーミラー35へ照射し、バーミラー35により反射されたレーザー光を受光して、レーザー光源31からのレーザー光とバーミラー35により反射されたレーザー光との干渉を二箇所で測定する。図1において、レーザー測長系制御装置30は、主制御装置70の制御により、2つのレーザー干渉計33の測定結果から、主ステージベース11上での各移動ステージのY方向の位置を検出し、また主ステージベース11上で各移動ステージのXステージ14及びYステージ16がXY方向へ移動する際のヨーイングを検出する。
9 and 10, the two
各レーザー干渉計33を主ステージベース11のY方向に取り付けられた台12に設置するので、各レーザー干渉計33が副ステージベース11a,11bの振動の影響を受けない。また、各レーザー干渉計33から主ステージベース11上の各移動ステージまでの測定距離が短くなる。従って、各レーザー干渉計33を用いて、主ステージベース11上での各移動ステージのY方向の位置が精度良く検出される。また、レーザー測長系の各バーミラー35を、ほぼ各移動ステージが搭載するチャック10a,10bの高さに取り付けるので、各移動ステージのY方向の位置が基板1の近傍で検出される。そして、Yステージ16に取り付けたバーミラー35を利用して、移動ステージが移動する際のヨーイングを検出することができる。
Since each
図1において、チャック10a,10bには、2つの分光干渉レーザー変位計41がそれぞれ設けられている。図11(a)は分光干渉レーザー変位計の上面図、図11(b)は分光干渉レーザー変位計の側面図である。図11(a),(b)に示す様に、各分光干渉レーザー変位計41は、取り付け具50により、バーミラー35の裏面に向き合わせて、チャック10a,10bの下面に取り付けられている。本実施の形態で用いる分光干渉レーザー変位計41は、干渉光を利用した光学式変位計であって、先端のヘッド部に参照面を有し、広い波長帯域の光を参照反射面及び被測定物へ照射して、参照反射面からの反射光と被測定物からの反射光との干渉光の波長及び強度から、被測定物までの距離を測定するものである。
In FIG. 1, chucks 10a and 10b are provided with two spectral interference
図11(a),(b)において、2つの分光干渉レーザー変位計41は、バーミラー35の裏面までの距離を二箇所で測定する。図1において、レーザー変位計制御装置40は、主制御装置70の制御により、2つの分光干渉レーザー変位計41の測定結果から、チャック10a,10bのθ方向の傾きを検出する。主制御装置70は、レーザー変位計制御装置40の検出結果を、入出力インタフェース回路72を介して入力する。
11A and 11B, the two spectral interference
図12〜図14は、従来のレーザー変位計の動作を説明する図である。図12は、特許文献1及び特許文献2において、チャック10aを搭載する移動ステージに取り付けられたレーザー変位計42を示している。チャック10aのθ方向の傾きを検出するための専用のバーミラー44が、チャック10aのY方向へ伸びる一側面に取り付けられている。2つのレーザー変位計42は、それぞれ、アーム46により、バーミラー44の高さでXステージ14に取り付けられている。チャック10bを搭載する移動ステージに取り付けられたバーミラー44及びレーザー変位計42は、図12とX方向において左右対称な構成となっている。特許文献1及び特許文献2に記載の技術で使用されているレーザー変位計42は、三角測量を応用した光学式変位計であって、レーザー光源からのレーザー光を被測定物へ照射し、被測定物からの反射光をCCDセンサー等の受光素子で受光して、被測定物の変位を測定するものである。
12-14 is a figure explaining operation | movement of the conventional laser displacement meter. FIG. 12 shows a
特許文献1及び特許文献2に記載の技術では、チャック10a,10bにバーミラー44を取り付け、Xステージ14に設けた複数のレーザー変位計42により、バーミラー44の変位を複数箇所で測定して、チャック10a,10bのθ方向の傾きを検出している。そのため、専用のバーミラー44が必要であるが、このバーミラー44は、表面を高い精度で平坦に加工する必要があるため、非常に高価であって、多大な費用が掛かる。
In the techniques described in
本実施の形態では、チャック10a,10bに複数の分光干渉レーザー変位計41を設け、複数の分光干渉レーザー変位計41により、Yステージ16に取り付けたバーミラー35までの距離を複数箇所で測定し、複数の分光干渉レーザー変位計41の測定結果から、チャック10a,10bのθ方向の傾きを検出するので、Yステージ16に取り付けたバーミラー35が、レーザー干渉計33を用いた移動ステージの位置の検出と、複数の分光干渉レーザー変位計41を用いたチャック10a,10bのθ方向の傾きの検出とに兼用され、チャック10a,10bのθ方向の傾きを検出するための専用のバーミラーが必要なくなる。
In the present embodiment, the
図13は、図12に示した状態から、チャック10aをYステージ16によりY方向へ移動した状態を示している。特許文献1及び特許文献2に記載の技術では、Xステージ14にレーザー変位計42を設けているため、露光位置における基板のステップ移動時に、チャック10a,10bをYステージ16によりY方向へ移動すると、図12及び図13に示す様に、バーミラー44の位置がレーザー変位計42に対して変化する。そのため、測定結果には、バーミラー44の平坦度による誤差が含まれる恐れがあった。
FIG. 13 shows a state where the
図14(a)は、図12に示した状態で、チャック10aがθ方向に傾いたときのレーザー変位計42とバーミラー44との位置関係を示し、図14(b)は、図13に示した状態で、チャック10aがθ方向に傾いたときのレーザー変位計42とバーミラー44との位置関係を示している。
14A shows the positional relationship between the
特許文献1及び特許文献2に記載されている様に、複数のレーザー変位計42を用いてチャック10a,10bのθ方向の傾きを検出する場合、複数のレーザー変位計42をより離して設置する程、チャック10a,10bのθ方向の傾きを精度良く検出することができる。しかしながら、レーザー変位計42の出力特性は直線性が乏しく、測定範囲を広げると、測定誤差が大きくなる。特許文献1及び特許文献2に記載の技術では、チャック10a,10bがθ方向に傾いた状態で、チャック10a,10bをYステージ16によりY方向へ移動すると、図14(a),(b)に示す様に、各レーザー変位計42からバーミラー44までの距離が変動するため、複数のレーザー変位計42をより離して設置すると、レーザー変位計42の測定範囲が広がり、測定誤差が大きくなる恐れがあった。
As described in
図15及び図16は、分光干渉レーザー変位計の動作を説明する図である。図16は、図15に示した状態から、チャック10aをYステージ16によりY方向へ移動した状態を示している。本実施の形態では、露光位置における基板のステップ移動時に、チャック10a,10bを移動ステージによりXY方向へ移動しても、図15及び図16に示す様に、分光干渉レーザー変位計41が常にバーミラー35の同じ箇所に対して測定を行うため、バーミラー35の平坦度による測定誤差がなくなる。また、チャック10a,10bがθ方向に傾いた状態で、チャック10a,10bを移動ステージによりXY方向へ移動しても、分光干渉レーザー変位計41からバーミラー35までの距離が変動せず、測定範囲が広がらないので、複数の分光干渉レーザー変位計41をより離して設置することができる。
15 and 16 are diagrams for explaining the operation of the spectral interference laser displacement meter. FIG. 16 shows a state where the
さらに、レーザー変位計42の出力特性は、設置状態により変動し、被測定物の微小な角度変化に対して線形性が異なる。そのため、特許文献1及び特許文献2に記載されている様に、複数のレーザー変位計42を用いてチャックのθ方向の傾きを検出する場合、各レーザー変位計の測定値にチャック10a,10bの角度に依存した変動値が含まれ、チャック10a,10bのθ方向の傾きを高精度に検出することができない恐れがあった。
Furthermore, the output characteristics of the
本実施の形態で使用する分光干渉レーザー変位計41は、特許文献1及び特許文献2に記載の技術で使用されているレーザー変位計42に比べて、被測定物の微小な角度変化による出力特性の変化が小さく高精度であるが、測定範囲が狭い。本発明では、特許文献1及び特許文献2に記載の技術と異なり、チャック10a,10bがθ方向に傾いた状態で、チャック10a,10bを移動ステージによりXY方向へ移動しても、分光干渉レーザー変位計41からバーミラー35までの距離が変動しないので、測定範囲が狭く高精度な分光干渉レーザー変位計41を用いることができ、チャック10a,10bのθ方向の傾きをより精度良く検出することができる。
The spectral interference
図1において、露光時の基板1の位置決めを行う際、主制御装置70は、レーザー変位計制御装置40によるチャック10a,10bのθ方向の傾きの検出結果に基づき、ステージ駆動回路80a,80bを制御し、各移動ステージのθステージ17によりチャック10a,10bをθ方向へ回転させて、基板1のθ方向の位置決めを行う。また、主制御装置70は、レーザー測長系制御装置30による移動ステージのXY方向の位置の検出結果に基づき、ステージ駆動回路80a,80bを制御し、各移動ステージのXステージ14及びYステージ16によりチャック10a,10bをXY方向へ移動させて、基板1のXY方向の位置決めを行う。
In FIG. 1, when positioning the
以上説明した本実施の形態によれば、チャック10a,10bに複数の光学式変位計を設け、複数の光学式変位計により、Yステージ16に取り付けたバーミラー35までの距離を複数箇所で測定し、複数の光学式変位計の測定結果から、チャック10a,10bのθ方向の傾きを検出することにより、安価な構成で、チャック10a,10bのθ方向の傾きを精度良く検出して、基板1のθ方向の位置決めを精度良く行うことができる。
According to the present embodiment described above, the
さらに、光学式変位計として、分光干渉レーザー変位計41を用いることにより、チャック10a,10bのθ方向の傾きをより精度良く検出することができる。
Furthermore, by using the spectral interference
さらに、複数のレーザー干渉計33により、レーザー光源31からのレーザー光とバーミラー35により反射されたレーザー光との干渉を複数箇所で測定し、複数のレーザー干渉計33の測定結果から、Xステージ14及びYステージ16が移動する際のヨーイングを検出することにより、Yステージ16に取り付けたバーミラー35を利用して、移動ステージが移動する際のヨーイングを検出することができる。
Further, interference between the laser light from the
本発明の露光装置又は露光方法を用いて基板の露光を行うことにより、露光時の基板のθ方向の位置決めを精度良く行うことができるので、パターンの焼付けを精度良く行って、高品質な基板を製造することができる。 By performing exposure of the substrate using the exposure apparatus or exposure method of the present invention, it is possible to accurately position the substrate in the θ direction at the time of exposure. Can be manufactured.
例えば、図17は、液晶ディスプレイ装置のTFT基板の製造工程の一例を示すフローチャートである。薄膜形成工程(ステップ101)では、スパッタ法やプラズマ化学気相成長(CVD)法等により、基板上に液晶駆動用の透明電極となる導電体膜や絶縁体膜等の薄膜を形成する。レジスト塗布工程(ステップ102)では、ロール塗布法等により感光樹脂材料(フォトレジスト)を塗布して、薄膜形成工程(ステップ101)で形成した薄膜上にフォトレジスト膜を形成する。露光工程(ステップ103)では、プロキシミティ露光装置や投影露光装置等を用いて、マスクのパターンをフォトレジスト膜に転写する。現像工程(ステップ104)では、シャワー現像法等により現像液をフォトレジスト膜上に供給して、フォトレジスト膜の不要部分を除去する。エッチング工程(ステップ105)では、ウエットエッチングにより、薄膜形成工程(ステップ101)で形成した薄膜の内、フォトレジスト膜でマスクされていない部分を除去する。剥離工程(ステップ106)では、エッチング工程(ステップ105)でのマスクの役目を終えたフォトレジスト膜を、剥離液によって剥離する。これらの各工程の前又は後には、必要に応じて、基板の洗浄/乾燥工程が実施される。これらの工程を数回繰り返して、基板上にTFTアレイが形成される。 For example, FIG. 17 is a flowchart showing an example of the manufacturing process of the TFT substrate of the liquid crystal display device. In the thin film formation step (step 101), a thin film such as a conductor film or an insulator film, which becomes a transparent electrode for driving liquid crystal, is formed on the substrate by sputtering, plasma chemical vapor deposition (CVD), or the like. In the resist coating process (step 102), a photosensitive resin material (photoresist) is applied by a roll coating method or the like to form a photoresist film on the thin film formed in the thin film forming process (step 101). In the exposure step (step 103), the mask pattern is transferred to the photoresist film using a proximity exposure apparatus, a projection exposure apparatus, or the like. In the development step (step 104), a developer is supplied onto the photoresist film by a shower development method or the like to remove unnecessary portions of the photoresist film. In the etching process (step 105), a portion of the thin film formed in the thin film formation process (step 101) that is not masked by the photoresist film is removed by wet etching. In the stripping step (step 106), the photoresist film that has finished the role of the mask in the etching step (step 105) is stripped with a stripping solution. Before or after each of these steps, a substrate cleaning / drying step is performed as necessary. These steps are repeated several times to form a TFT array on the substrate.
また、図18は、液晶ディスプレイ装置のカラーフィルタ基板の製造工程の一例を示すフローチャートである。ブラックマトリクス形成工程(ステップ201)では、レジスト塗布、露光、現像、エッチング、剥離等の処理により、基板上にブラックマトリクスを形成する。着色パターン形成工程(ステップ202)では、染色法、顔料分散法、印刷法、電着法等により、基板上に着色パターンを形成する。この工程を、R、G、Bの着色パターンについて繰り返す。保護膜形成工程(ステップ203)では、着色パターンの上に保護膜を形成し、透明電極膜形成工程(ステップ204)では、保護膜の上に透明電極膜を形成する。これらの各工程の前、途中又は後には、必要に応じて、基板の洗浄/乾燥工程が実施される。 FIG. 18 is a flowchart showing an example of the manufacturing process of the color filter substrate of the liquid crystal display device. In the black matrix forming step (step 201), a black matrix is formed on the substrate by processing such as resist coating, exposure, development, etching, and peeling. In the colored pattern forming step (step 202), a colored pattern is formed on the substrate by a dyeing method, a pigment dispersion method, a printing method, an electrodeposition method, or the like. This process is repeated for the R, G, and B coloring patterns. In the protective film forming step (step 203), a protective film is formed on the colored pattern, and in the transparent electrode film forming step (step 204), a transparent electrode film is formed on the protective film. Before, during or after each of these steps, a substrate cleaning / drying step is performed as necessary.
図17に示したTFT基板の製造工程では、露光工程(ステップ103)において、図18に示したカラーフィルタ基板の製造工程では、ブラックマトリクス形成工程(ステップ201)の露光処理において、本発明のプロキシミティ露光装置及びプロキシミティ露光装置の基板位置決め方法を適用することができる。 In the TFT substrate manufacturing process shown in FIG. 17, in the exposure process (step 103), in the color filter substrate manufacturing process shown in FIG. 18, in the exposure process of the black matrix forming process (step 201), the proxy of the present invention. The substrate positioning method of the proximity exposure apparatus and proximity exposure apparatus can be applied.
1 基板
2 マスク
10a,10b チャック
11 主ステージベース
11a,11b 副ステージベース
12 台
13 Xガイド
14 Xステージ
15 Yガイド
16 Yステージ
17 θステージ
19 チャック支持台
20 マスクホルダ
30 レーザー測長系制御装置
31 レーザー光源
32a,32b,33 レーザー干渉計
34a,34b,35 バーミラー
36 アーム
40 レーザー変位計制御装置
41 分光干渉レーザー変位計
50 取り付け具
70 主制御装置
71,72 入出力インタフェース回路
80a,80b ステージ駆動回路
DESCRIPTION OF
Claims (8)
X方向(又はY方向)へ移動する第1のステージ、第1のステージに搭載されY方向(又はX方向)へ移動する第2のステージ、及び第2のステージに搭載されθ方向へ回転する第3のステージを有し、前記チャックを搭載して、前記チャックに支持された基板の位置決めを行う移動ステージと、
レーザー光を発生する光源、前記第1のステージに取り付けられた第1の反射手段、前記第2のステージに取り付けられた第2の反射手段、光源からのレーザー光と第1の反射手段により反射されたレーザー光との干渉を測定する第1のレーザー干渉計、及び光源からのレーザー光と第2の反射手段により反射されたレーザー光との干渉を測定する第2のレーザー干渉計を有するレーザー測長系と、
前記第1のレーザー干渉計及び前記第2のレーザー干渉計の測定結果から、前記移動ステージのXY方向の位置を検出する第1の検出手段と、
前記チャックに設けられ、前記第2のステージに取り付けられた前記第2の反射手段までの距離を複数箇所で測定する複数の光学式変位計と、
前記複数の光学式変位計の測定結果から、前記チャックのθ方向の傾きを検出する第2の検出手段と、
前記移動ステージを駆動するステージ駆動回路と、
前記第2の検出手段の検出結果に基づき、前記ステージ駆動回路を制御し、前記第3のステージにより前記チャックをθ方向へ回転させて、基板のθ方向の位置決めを行い、前記第1の検出手段の検出結果に基づき、前記ステージ駆動回路を制御し、前記第1のステージ及び前記第2のステージにより前記チャックをXY方向へ移動させて、基板のXY方向の位置決めを行う制御手段とを備えたことを特徴とするプロキシミティ露光装置。 In a proximity exposure apparatus that includes a chuck that supports a substrate and a mask holder that holds a mask, and provides a minute gap between the mask and the substrate to transfer the mask pattern to the substrate.
A first stage that moves in the X direction (or Y direction), a second stage that is mounted on the first stage and moves in the Y direction (or X direction), and that is mounted on the second stage and rotates in the θ direction. A moving stage having a third stage, mounting the chuck, and positioning the substrate supported by the chuck;
Light source for generating laser light, first reflecting means attached to the first stage, second reflecting means attached to the second stage, laser light from the light source and reflected by the first reflecting means Laser having a first laser interferometer for measuring the interference with the laser beam and a second laser interferometer for measuring the interference between the laser beam from the light source and the laser beam reflected by the second reflecting means Measuring system,
First detection means for detecting the position of the moving stage in the XY direction from the measurement results of the first laser interferometer and the second laser interferometer;
A plurality of optical displacement meters provided at the chuck and measuring the distance to the second reflecting means attached to the second stage at a plurality of locations;
Second detection means for detecting the inclination of the chuck in the θ direction from the measurement results of the plurality of optical displacement meters;
A stage driving circuit for driving the moving stage;
Based on the detection result of the second detection means, the stage driving circuit is controlled, the chuck is rotated in the θ direction by the third stage, the substrate is positioned in the θ direction, and the first detection is performed. Control means for controlling the stage drive circuit based on the detection result of the means and moving the chuck in the XY direction by the first stage and the second stage to position the substrate in the XY direction. A proximity exposure apparatus characterized by the above.
前記第1の検出手段は、前記複数の第2のレーザー干渉計の測定結果から、前記第1のステージ及び前記第2のステージが移動する際のヨーイングを検出することを特徴とする請求項1又は請求項2に記載のプロキシミティ露光装置。 The laser measuring system has a plurality of the second laser interferometers,
2. The first detection unit detects yawing when the first stage and the second stage move from the measurement results of the plurality of second laser interferometers. Alternatively, the proximity exposure apparatus according to claim 2.
X方向(又はY方向)へ移動する第1のステージ、第1のステージに搭載されY方向(又はX方向)へ移動する第2のステージ、及び第2のステージに搭載されθ方向へ回転する第3のステージを有する移動ステージにチャックを搭載し、
第1のステージに第1の反射手段を取り付け、第1のレーザー干渉計により、光源からのレーザー光と第1の反射手段により反射されたレーザー光との干渉を測定し、
第2のステージに第2の反射手段を取り付け、第2のレーザー干渉計により、光源からのレーザー光と第2の反射手段により反射されたレーザー光との干渉を測定し、
チャックに複数の光学式変位計を設け、複数の光学式変位計により、第2のステージに取り付けた第2の反射手段までの距離を複数箇所で測定し、
複数の光学式変位計の測定結果から、チャックのθ方向の傾きを検出し、検出結果に基づき、第3のステージによりチャックをθ方向へ回転して、基板のθ方向の位置決めを行い、
第1のレーザー干渉計及び第2のレーザー干渉計の測定結果から、移動ステージのXY方向の位置を検出し、検出結果に基づき、第1のステージ及び第2のステージによりチャックをXY方向へ移動して、基板のXY方向の位置決めを行うことを特徴とするプロキシミティ露光装置の基板位置決め方法。 A proximity exposure apparatus substrate positioning method comprising a chuck for supporting a substrate and a mask holder for holding a mask, and providing a minute gap between the mask and the substrate to transfer the mask pattern to the substrate. ,
A first stage that moves in the X direction (or Y direction), a second stage that is mounted on the first stage and moves in the Y direction (or X direction), and that is mounted on the second stage and rotates in the θ direction. A chuck is mounted on a moving stage having a third stage,
The first reflecting means is attached to the first stage, and the first laser interferometer measures the interference between the laser light from the light source and the laser light reflected by the first reflecting means,
The second reflecting means is attached to the second stage, and the second laser interferometer measures the interference between the laser light from the light source and the laser light reflected by the second reflecting means,
The chuck is provided with a plurality of optical displacement meters, and the plurality of optical displacement meters are used to measure the distance to the second reflecting means attached to the second stage at a plurality of locations.
From the measurement results of a plurality of optical displacement meters, the inclination of the chuck in the θ direction is detected, and based on the detection result, the chuck is rotated in the θ direction by the third stage to position the substrate in the θ direction.
From the measurement results of the first laser interferometer and the second laser interferometer, the position of the moving stage in the XY direction is detected, and the chuck is moved in the XY direction by the first stage and the second stage based on the detection result. Then, a substrate positioning method for a proximity exposure apparatus, wherein the substrate is positioned in the X and Y directions.
複数の第2のレーザー干渉計の測定結果から、第1のステージ及び第2のステージが移動する際のヨーイングを検出することを特徴とする請求項4又は請求項5に記載のプロキシミティ露光装置の基板位置決め方法。 By using a plurality of second laser interferometers, the interference between the laser light from the light source and the laser light reflected by the second reflecting means is measured at a plurality of locations,
6. The proximity exposure apparatus according to claim 4, wherein yawing is detected when the first stage and the second stage move from the measurement results of the plurality of second laser interferometers. Substrate positioning method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010253620A JP2012103584A (en) | 2010-11-12 | 2010-11-12 | Proximity exposure device, substrate positioning method for proximity exposure device, and manufacturing method for display panel substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010253620A JP2012103584A (en) | 2010-11-12 | 2010-11-12 | Proximity exposure device, substrate positioning method for proximity exposure device, and manufacturing method for display panel substrate |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012103584A true JP2012103584A (en) | 2012-05-31 |
Family
ID=46394017
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010253620A Pending JP2012103584A (en) | 2010-11-12 | 2010-11-12 | Proximity exposure device, substrate positioning method for proximity exposure device, and manufacturing method for display panel substrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2012103584A (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008108906A (en) * | 2006-10-25 | 2008-05-08 | Canon Inc | Positioning device |
JP2008298906A (en) * | 2007-05-30 | 2008-12-11 | Hitachi High-Technologies Corp | Exposure apparatus, exposure method, and method of manufacturing display panel substrate |
JP2009031639A (en) * | 2007-07-30 | 2009-02-12 | Hitachi High-Technologies Corp | Exposure apparatus, exposure method and method for manufacturing panel substrate for display |
JP2010185899A (en) * | 2009-02-10 | 2010-08-26 | Hitachi High-Technologies Corp | Proximity exposure apparatus, method for holding mask of proximity exposure apparatus, and method for manufacturing panel substrate for display |
JP2010219236A (en) * | 2009-03-16 | 2010-09-30 | Hitachi High-Technologies Corp | Proximity aligner, substrate positioning method of proximity aligner, and method of manufacturing panel substrate for display |
JP2010230347A (en) * | 2009-03-26 | 2010-10-14 | Tokyo Electric Power Co Inc:The | Torque measuring device |
-
2010
- 2010-11-12 JP JP2010253620A patent/JP2012103584A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008108906A (en) * | 2006-10-25 | 2008-05-08 | Canon Inc | Positioning device |
JP2008298906A (en) * | 2007-05-30 | 2008-12-11 | Hitachi High-Technologies Corp | Exposure apparatus, exposure method, and method of manufacturing display panel substrate |
JP2009031639A (en) * | 2007-07-30 | 2009-02-12 | Hitachi High-Technologies Corp | Exposure apparatus, exposure method and method for manufacturing panel substrate for display |
JP2010185899A (en) * | 2009-02-10 | 2010-08-26 | Hitachi High-Technologies Corp | Proximity exposure apparatus, method for holding mask of proximity exposure apparatus, and method for manufacturing panel substrate for display |
JP2010219236A (en) * | 2009-03-16 | 2010-09-30 | Hitachi High-Technologies Corp | Proximity aligner, substrate positioning method of proximity aligner, and method of manufacturing panel substrate for display |
JP2010230347A (en) * | 2009-03-26 | 2010-10-14 | Tokyo Electric Power Co Inc:The | Torque measuring device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4863948B2 (en) | Exposure apparatus, exposure method, and manufacturing method of display panel substrate | |
JP2019086709A (en) | Exposure system, exposure method, and manufacturing method of panel substrate for display | |
JP4808676B2 (en) | Exposure apparatus, exposure method, and manufacturing method of display panel substrate | |
JP5349093B2 (en) | Proximity exposure apparatus, substrate positioning method for proximity exposure apparatus, and display panel substrate manufacturing method | |
JP2010060990A (en) | Exposure device, exposure method, and method for manufacturing display panel substrate | |
JP5687165B2 (en) | Proximity exposure apparatus, substrate positioning method for proximity exposure apparatus, and display panel substrate manufacturing method | |
JP2013195778A (en) | Exposure device, exposure method, and method of manufacturing display panel substrate | |
JP2012032666A (en) | Exposure equipment, exposure method and method for manufacturing panel substrate for display | |
JP5305967B2 (en) | Exposure apparatus, exposure method, and manufacturing method of display panel substrate | |
JP5441800B2 (en) | Proximity exposure apparatus, substrate positioning method for proximity exposure apparatus, display panel substrate manufacturing method, and minute angle detection method using optical displacement meter | |
JP2012103584A (en) | Proximity exposure device, substrate positioning method for proximity exposure device, and manufacturing method for display panel substrate | |
JP5537063B2 (en) | Proximity exposure apparatus, gap control method for proximity exposure apparatus, and method for manufacturing display panel substrate | |
JP2011007974A (en) | Exposure device, exposure method, and method of manufacturing display panel substrate | |
JP2013205678A (en) | Proximity exposure device, substrate positioning method of proximity exposure device, and manufacturing method of display panel substrate | |
JP2008009012A (en) | Exposure device, exposure method, and method for manufacturing panel substrate for display | |
JP2013054270A (en) | Proximity exposure apparatus, gap control method for proximity exposure apparatus and manufacturing method of panel substrate for display | |
JP2010276901A (en) | Exposure device, chuck position detection method of exposure device, and manufacturing method of panel substrate for display | |
JP5349163B2 (en) | Exposure apparatus, exposure method, and manufacturing method of display panel substrate | |
JP2013064896A (en) | Proximity exposure device, substrate positioning method of proximity exposure device, and manufacturing method of display panel substrate | |
JP2011123103A (en) | Proximity exposure apparatus, method for controlling gap of proximity exposure apparatus, and method for manufacturing display panel substrate | |
JP5441770B2 (en) | Proximity exposure apparatus, gap control method for proximity exposure apparatus, and method for manufacturing display panel substrate | |
JP2010176081A (en) | Exposure device, substrate carrying method of same, production method of panel substrate for display | |
JP2014146011A (en) | Pattern formation device and pattern formation method | |
JP2010102084A (en) | Exposure apparatus, exposure method, and method for manufacturing display panel substrate | |
JP2012068434A (en) | Proximity exposure apparatus, method for aligning proximity exposure apparatus, and method for manufacturing display panel substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130902 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140227 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140304 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20140701 |