JP2012100585A - 融合タンパク質、核酸、ベクター、細胞、labの測定方法、並びに、lab測定用キット - Google Patents
融合タンパク質、核酸、ベクター、細胞、labの測定方法、並びに、lab測定用キット Download PDFInfo
- Publication number
- JP2012100585A JP2012100585A JP2010251701A JP2010251701A JP2012100585A JP 2012100585 A JP2012100585 A JP 2012100585A JP 2010251701 A JP2010251701 A JP 2010251701A JP 2010251701 A JP2010251701 A JP 2010251701A JP 2012100585 A JP2012100585 A JP 2012100585A
- Authority
- JP
- Japan
- Prior art keywords
- lox
- antibody
- apob
- fusion protein
- lab
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Peptides Or Proteins (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
【解決手段】レクチン様酸化LDL受容体(LOX−1)に対して特異的に結合するタンパク質に、アポリポタンパク質B(ApoB)の全長又は部分断片が連結されてなる融合タンパク質が提供される。LOX−1に対して特異的に結合するタンパク質として、抗LOX−1抗体が例示される。当該融合タンパク質は、LOX−1とApoBに対する特異的結合性に関して人工的に作製した酸化LDL(人工酸化LDL)と同等の機能を備えると共に安定性に優れ、従来のLAB標準品に代わる新たな標準品として使用できる。当該融合タンパク質をLAB標準品として使用するLABの測定方法、当該融合タンパク質を含むLAB測定用キットも提供される。
【選択図】図4
Description
このように、生体にはLOX−1に結合しかつ抗ApoB抗体で認識される脂質、すなわちLABが存在し、人工的に酸化したLDLはLABにかなり近い性質を持っているといえる。
(a)重鎖可変領域が、配列番号1で表されるアミノ酸配列を含む重鎖CDR1、配列番号2で表されるアミノ酸配列を含む重鎖CDR2、及び配列番号3で表されるアミノ酸配列を含む重鎖CDR3を有するものである、
(b)軽鎖可変領域が、配列番号4で表されるアミノ酸配列を含む軽鎖CDR1、配列番号5で表されるアミノ酸配列を含む軽鎖CDR2、及び配列番号6で表されるアミノ酸配列を含む軽鎖CDR3を有するものである。
(a)重鎖可変領域が、配列番号1で表されるアミノ酸配列を含む重鎖CDR1、配列番号2で表されるアミノ酸配列を含む重鎖CDR2、及び配列番号3で表されるアミノ酸配列を含む重鎖CDR3を有するものである、
(b)軽鎖可変領域が、配列番号4で表されるアミノ酸配列を含む軽鎖CDR1、配列番号5で表されるアミノ酸配列を含む軽鎖CDR2、及び配列番号6で表されるアミノ酸配列を含む軽鎖CDR3を有するものである。
ここで、ヒトApoB48の遺伝子(cDNA)の塩基配列と対応のアミノ酸配列を、配列番号7と8に示す。さらに、アミノ酸番号28−97に相当する領域のアミノ酸配列を配列番号9に、アミノ酸番号432−566に相当する領域のアミノ酸配列を配列番号10に、アミノ酸番号1049−1058に相当する領域のアミノ酸配列を配列番号11に、それぞれ示す。
さらに、本発明の融合タンパク質には、LOX−1結合タンパク質部分とApoB部分以外のタンパク質やペプチドが含まれていてもよい。例えば、前記したスペーサーの様な介在配列の他、特定の機能等を持たせた配列をN末端やC末端に付加したり、LOX−1結合タンパク質部分とApoB部分の間に介在させてもよい。
次に、LOX−1結合タンパク質部分をコードするDNAとApoBの全長又は部分断片をコードするDNAとをフレームが一致するように連結し、キメラ遺伝子(キメラ核酸)を作製する。当該キメラ遺伝子は、本発明の融合タンパク質をコードする遺伝子となる。
次に、得られたキメラ遺伝子を適宜のベクターに組み込み、組換えベクター(融合タンパク質発現ベクター)を作製する。さらに、当該組換えベクターを適宜の宿主細胞に導入し、組換え細胞(融合タンパク質発現細胞)を作製する。
そして、当該組換え細胞を培養し、培養物から所望の融合タンパク質を取得することができる。
前記標識の種類としては、酵素(エンザイムイムノアッセイ、EIA、ELISA)、蛍光物質(蛍光イムノアッセイ、FIA)、放射性物質(ラジオイムノアッセイ、RIA)などが挙げられる。抗ApoB抗体は、標識と未標識のいずれでもよい。未標識の場合には、抗ApoB抗体に結合する標識2次抗体をさらに用いればよい。抗ApoB抗体は、モノクローナルでもよいし、ポリクローナルでもよい。
好ましい実施形態では、LOX−1及び/又は抗ApoB抗体をさらに含む。かかる構成により、前記したサンドイッチイムノアッセイ等を簡便に行うことができる。
(a)LOX−1(固相用)
(b)抗ApoB抗体(標識又は未標識)
(c)融合タンパク質(LAB標準品)
(d)希釈用緩衝液
参考文献[1]に記載のマウス抗LOX−1モノクローナル抗体#10−1を使用した。簡単に説明すると、ヒトLOX−1のアミノ酸61−273番(61−273aa)の部分に対応する組換えタンパク質(組換えヒトLOX−1タンパク質;61−273aa)(参考文献[2]に記載)を免疫したBalb/cマウス由来の脾臓細胞をミエローマ細胞株P3U1と細胞融合させた。陽性クローンをELISA法により選抜し、#10−1のクローンを得た。
抗体のアイソタイプをmouse monoclonal antibody isotyping test kit(エービーディー(AbD)社)を用いて、添付の使用説明書に従って決定した。
上記(1)でクローニングした#10−1抗体産生ハイブリドーマから、TRIzol Reagent(インビトロジェン社)1mLを用いて、全RNAを回収した。逆転写反応によるcDNAの合成は、回収した1μgの全RNAからRandom hexamer(インビトロジェン社)およびSuper Script III Reverse Transcriptase(インビトロジェン社)を用いて、添付の使用説明書に従って行った。抗体可変領域重鎖(VH)および軽鎖(VL)領域は、合成したcDNA0.5μgを鋳型にIgG Primer set(ノバジェン社)のフォワードプライマーおよびリバースプライマーをそれぞれ25pmol、10xEx-taq buffer50μL、2.5mM dNTPs4.0μL、Ex-taq polymerase (タカラバイオ社)1.5U、蒸留水34.8μLを加え、全量を50μLに調整した反応液により増幅した。PCRのサイクルは、始め94℃で3分、続く35サイクルを(94℃で1分,55℃で1分,72℃で2分)で行い、最後の伸長を72℃で6分により行った。増幅したDNA断片について、TOPO TA Cloning Kit(インビトロジェン社)を用いてサブクローニングし、ABI PRISM Cycle sequencing kit(アプライド・バイオシステムズ社)を用いてVH遺伝子およびVL遺伝子の塩基配列を決定した。
#10−1抗体産生ハイブリドーマから調製したcDNAを鋳型とし、Fv-H-Fプライマー(配列番号17)とFv-H-Linker-Rプライマー(配列番号18)のプライマーセットを用いてPCRを行い、#10−1抗体重鎖分泌シグナル配列を含むVH遺伝子を増幅した。なお、Fv-H-Linker-Rプライマーはフレキシブルなリンカー配列(Gly4-Ser)3の一部を5’末端に含んでいる。同様に、#10−1抗体産生ハイブリドーマから調製したcDNAを鋳型とし、Linker-Fv-L-Fプライマー(配列番号19)とFv-L-Rプライマー(配列番号20)のプライマーセットを用いてPCRを行い、VL遺伝子を増幅した。
PCRの条件は以下のとおりとした。反応液は、各プライマーセットをそれぞれ15pmol用いて、cDNA 0.5ng、10×KOD plus buffer ver.2を5.0μL、25mM MgSO4を3.0μL、2mM dNTPsを5.0μL、KOD plus DNA polymerase(東洋紡社)を1.0U、蒸留水を32.0μL加えて、全量を50.0μLに調整した。PCRのサイクルは、始め94℃で2分、続く30サイクルを(94℃で15秒、60℃で30秒、68℃で30秒)で行い、最後の伸長を68℃で2分により行った。
増幅したFv型抗体遺伝子を、pcDNA Gateway Directional TOPO Expression kit(インビトロジェン社)を用いてpcDNA6.2/V5/GW/D-TOPO vector(インビトロジェン社)にサブクローニングした。クローニング後、ABI PRISM Cycle sequencing kitを用いて塩基配列を確認した。
Fv型抗体の発現は、FreeStyle 293 Expression system(インビトロジェン社)を用いて行った。Fv型抗体の精製は、TALON Metal Affinity Resins(タカラバイオ社)により行った。
以下の手順により、ヒトApoB48全長遺伝子(GenBank accession no. NM000384; 6,537 bp;配列番号7)を、ヒト肝臓cDNAライブラリーよりPCR法により取得した。まず、ApoB48全長遺伝子を4つの遺伝子断片F1〜F4(F1:1−1864bp、F2:1802−4005bp、F3:3973−5207bp、F4:5137−6537bp)に分割するための、下記4組のプライマーセットを設計した。
F1用プライマーセット:ApoB-1-Fプライマー(配列番号21)とApoB-1864-R(配列番号22)、F2用プライマーセット:ApoB-1802-Fプライマー(配列番号23)とApoB-4005-Rプライマー(配列番号24)、F3用プライマーセット:ApoB-3973-Fプライマー(配列番号25)とApoB-5207-Rプライマー(配列番号26)、F4用プライマーセット:ApoB-5137-Fプライマー(配列番号27)とおよびApoB-6537-Rプライマー(配列番号28)。
Human MTC Panel II(クロンテック社)の肝臓cDNAライブラリーを鋳型とし、各プライマーセットを用いてPCRを行い、F1〜F4の各遺伝子断片を得た。PCRの条件は以下のとおりとした。反応液はヒト肝臓cDNA 0.5μg、各プライマーセットをそれぞれ25pmol、10×KOD plus buffer ver.2を5.0μL、25mM MgSO4を3.0μL、2mM dNTPsを5.0μL、KOD plus DNA polymeraseを1.0U、蒸留水を32.0μL加えて全量を50.0μLに調整した。PCRのサイクルは、始め94℃で2分、続く35サイクル(94℃で15秒、62℃で30秒、68℃で90秒)で行い、最後の伸長を68℃で2分により行った。
次に、各遺伝子断片をpcDNA Gateway Directional TOPO Expression kitを用いてpcDNA6.2/V5/GW/D-TOPO vectorにサブクローニングし、ABI PRISM Cycle sequencing kitにより塩基配列を確認した。
ApoBタンパク質断片B1〜B4をコードする遺伝子を増幅するために、下記4組のプライマーセットを設計した。なおB1〜B4の各領域は、ApoB48タンパク質(全長)において抗ApoB抗体のエピトープとしてすでに報告がある4つの配列を含むよう選択したものである(図3、参考文献[5][6])。
B1遺伝子用プライマーセット:B1-Fプライマー(配列番号38)およびB1-Rプライマー(配列番号31)、B2遺伝子用プライマーセット:B2-Fプライマー(配列番号39)およびB2-Rプライマー(配列番号33)、B3遺伝子用プライマーセット:B3-Fプライマー(配列番号40)およびB3-Rプライマー(配列番号35)、B4遺伝子用プライマーセット:B4-Fプライマー(配列番号41)およびB4-Rプライマー(配列番号37)。
ApoB48全長遺伝子発現ベクターを鋳型とし、各プライマーセットを用いてPCRを行い、B1〜B4をコードする各遺伝子を増幅した(図3)。PCRの条件は以下のとおりとした。反応液はApoB48全長遺伝子発現ベクター50ng、各プライマーセットをそれぞれ25pmol、10×Ex-taq bufferを5.0μL、2.5mM dNTPs mixを4.0μL、Ex-taq DNA polymeraseを1.0U、蒸留水を36.0μL加えて全量を50.0μLに調整した。PCRのサイクルは、始め94℃で2分、続く35サイクル(94℃で15秒、62℃で30秒、72℃で30秒)で行い、最後の伸長を72℃で7分により行った。
続いて、増幅した各遺伝子断片を、マウス抗体軽鎖分泌シグナル配列がN末端側に、C末端側にV5およびHis tagが発現するようにフレームを合わせてpSecTag/FRT/V5-His-TOPO vector(インビトロジェン社)にTA cloningした。クローニング後、ABI PRISM Cycle sequencing kitを用いて塩基配列を確認した。
ApoBタンパク質断片B1〜B4の発現はFreeStyle 293 Expression systemを用いて行った。培養96時間後に上清および細胞ライセートを回収し、培養上清をTALON Metal Affinity Resinsにより精製し、ApoBタンパク質断片B1〜B4を得た。B1〜B4は、ヒトApoB全長(配列番号8)における以下のアミノ酸番号に相当する領域である。B1:28−217、B2:427−596、B3:977−1063、B4:1462−1552。
Fv型抗LOX−1抗体のC末端側とApoB断片のN末端側とがリンカー配列を介して連結された融合タンパク質(4種)を、以下の手順により作製した(図4)。
リンカー付きB1遺伝子用プライマーセット:Linker-B1-Fプライマー(配列番号30)およびB1-Rプライマー(配列番号31)、リンカー付きB2遺伝子用プライマーセット:Linker-B2-Fプライマー(配列番号32)およびB2-Rプライマー(配列番号33)、リンカー付きB3遺伝子用プライマーセット:Linker-B3-Fプライマー(配列番号34)およびB3-Rプライマー(配列番号35)、リンカー付きB4遺伝子用プライマーセット:Linker-B4-Fプライマー(配列番号36)およびB4-Rプライマー(配列番号37)。
PCRの条件は以下のとおりとした。反応液は、鋳型50ng、プライマーセットをそれぞれ15pmol、10×KOD plus buffer ver.2を5.0μL、25mM MgSO4を3.0μL、2mM dNTPsを5.0μL、KOD plus DNA polymeraseを1.0U、蒸留水を32.0μL加えて全量を50.0μLに調整した。PCRのサイクルは、始め94℃で2分、続く30サイクル(94℃で15秒、60℃で30秒、68℃で30秒)で行い、最後の伸長を68℃で2分により行った。
4種の融合タンパク質(Fv−B1、Fv−B2、Fv−B3、Fv−B4)の発現は、FreeStyle 293 Expression systemを用いて行った。各融合タンパク質の精製は、TALON Metal Affinity Resinsを用いて行った。
マウス抗LOX−1抗体#10−1のIgG型、Fv型抗LOX−1抗体、および4種の融合タンパク質(Fv−B1、Fv−B2、Fv−B3、Fv−B4)について、LOX−1への反応性をELISAにより調べた。また、抗ApoB抗体の、各ApoB断片(B1〜B4)および4種の融合タンパク質(Fv−B1、Fv−B2、Fv−B3、Fv−B4)への反応性を、ELISAにより調べた。
抗LOX−1抗体および融合タンパク質用抗原として、組換えヒトLOX−1(61−273aa)およびBSA(陰性対照、シグマ社)を用いた。また、抗ApoB抗体用抗原として、ApoB断片(B1、B2)、融合タンパク質(Fv−B1、Fv−B2、Fv−B3、Fv−B4)、ApoBタンパク質(陽性対照,シグマ社)およびBSA(陰性対照)を用いた。
Fv型抗LOX−1抗体および4種の融合タンパク質(Fv−B1、Fv−B2、Fv−B3、Fv−B4)について、LOX−1への反応性をウェスタンブロッティングにより調べた。また、抗ApoB抗体の、各ApoB断片(B1〜B4)および4種の融合タンパク質(Fv−B1、Fv−B2、Fv−B3、Fv−B4)への反応性を、ウェスタンブロッティングにより調べた。抗LOX−1抗体および融合タンパク質用抗原として、組換えヒトLOX−1タンパク質(61−273aa)およびBSA(陰性対照)を用いた。また、抗ApoB抗体用抗原として、ApoB断片発現HEK293細胞の培養上清および細胞ライセート、融合タンパク質(Fv−B1、Fv−B2、Fv−B3、Fv−B4)、Fv型抗体、およびBSA(陰性対照)を用いた。
続いて、融合タンパク質の反応性検討に使用するPVDF膜は100%ブロックエース(DSファーマ社)にて、抗ApoB抗体反応性検討用のPVDF膜は5%スキムミルク(森永乳業社)、0.1%Tween 20(ナカライテスク社)含有PBS(PBS−T)にて、それぞれ室温1時間でブロッキングした。
1次抗体としてHRP標識ヒツジ抗ヒトApoBポリクローナル抗体を用いる場合は、5%スキムミルク含有PBS−Tにて5000倍希釈し、室温で1時間反応させた。
融合タンパク質発現確認用抗体HRP-labeled mouse anti-V5 tagを用いる場合(陽性対照)は、5%スキムミルク含有PBS−Tにより2000倍希釈して、室温で1時間反応させた。
LDLおよび人工酸化LDLの作製は、参考文献[3]の方法に従って行った。すなわち、新鮮血漿(d=1.006)を、健常者よりEDTA採血した血液を3,000rpmで10分間遠心することで得た。次に、新鮮血漿にKBr(和光純薬工業社)を密度1.019となるように添加し、58,000rpmで20時間超遠心した後に下層を回収した。さらに、回収した分画にKBrを密度1.063となるように添加し、58,000rpmで20時間超遠心した後に上層を回収し、10000倍量のPBSに対して透析を行い、LDLを得た。LDLの酸化修飾は、3mg/mLに調整したLDLに最終濃度7.5μM CuSO4を加え37℃ で16時間反応させた後、10000倍量のLDL buffer(150mM NaCl,0.24mM EDTA,pH7.4)に対して透析することで作製した(人工酸化LDL)。酸化の程度は、チオバルビツール酸反応産生物の量およびアガロースゲルの移動度を測定することによって測定した。使用するまで4℃で保存した。
LOX−1および抗ApoB抗体を用いたサンドイッチELISAは、参考文献[2]と[4]に記載の方法にて行った。まず、組換えヒトLOX−1(61−273aa)含有PBS50μLを、384−ウェルプレート(グライナー社)に4℃で終夜固相化した(0.25μg/ウェル)。PBSで2回洗浄した後、3%BSA含有HEPESバッファー(10mM HEPES,150mM NaCl,pH7.4)80μLを添加し、室温で2時間ブロッキングした。
PBSで3回洗浄後、測定試料(または標準品)40μLを添加し、室温で2時間インキュベートした。測定試料(または標準品)としては、2mM EDTA,5%BSA含有HEPESバッファーにて希釈した4種類の融合タンパク質(Fv−B1、Fv−B2、Fv−B3、Fv−B4)、人工酸化LDL(上記(8)で調製)、又はLDL(上記(8)で調製)を用いた。
抗体反応後PBSで5回洗浄し、TMB solutionをプレートに添加し室温で反応させた。2M硫酸で反応を停止させ、450nmの吸光度を測定した。
上記(7)において、組換えヒトLOX−1(61−273aa)あるいはBSAを固相化したELISAの結果を図6に示す。図中、●はLOX−1を、○はBSAを固相化した場合をそれぞれ示す。値は三つの独立した実験の平均とSEMを示す。すなわち、抗LOX−1抗体#10−1は、組換えヒトLOX−1に対して抗体濃度15ng/mL〜33μg/mLの範囲で用量依存的(dose-dependent)に反応性を示した。一方、抗体濃度2ng/mL〜100μg/mLの範囲では、陰性対照のBSAへの反応性を示さなかった。
また、マウス抗LOX−1抗体#10−1のアイソタイプは、IgG1,κであった。
#10−1抗体の重鎖可変領域のアミノ酸配列とCDR1〜3を図1(a)に、軽鎖可変領域のアミノ酸配列とCDR1〜3を図1(b)に、それぞれ示す。さらに、#10−1抗体の重鎖可変領域のcDNA塩基配列とアミノ酸配列を配列番号13と配列番号14に、重鎖CDR1のアミノ酸配列を配列番号1に、重鎖CDR2のアミノ酸配列を配列番号2に、重鎖CDR3のアミノ酸配列を配列番号3に、それぞれ示す。さらに、#10−1抗体の軽鎖可変領域のcDNA塩基配列とアミノ酸配列を配列番号15と配列番号16に、軽鎖CDR1のアミノ酸配列を配列番号4に、軽鎖CDR2のアミノ酸配列を配列番号5に、軽鎖CDR3のアミノ酸配列を配列番号6に、それぞれ示す。
上記(3)で構築したFv型抗LOX−1抗体を用いた場合の、組換えヒトLOX−1(61−273aa)あるいはBSAを固相化したELISAの結果を図7に示す。図中、●はLOX−1を、○はBSAを固相化した場合をそれぞれ示す。値は三つの独立した実験の平均とSEMを示す。すなわち、Fv型抗LOX−1抗体は、組換えヒトLOX−1に対して抗体濃度46ng/mL〜33μg/mLの範囲で用量依存的に反応性を示した。一方、抗体濃度2ng/mL〜100μg/mLの範囲では、陰性対照のBSAへの反応性を示さなかった。
以上より、当該Fv型抗体がLOX−1結合タンパクとして利用可能であると考えられた。
上記(4)、(5)のように、抗ApoB抗体結合タンパクを作製することを目的として、4つのApoBタンパク断片(B1−B4)に相当するcDNAをクローニングし(図3)、B1−B4の各断片を組換えタンパクとして作製した。各断片はHEK293細胞で発現させ、回収した培養上清及び細胞ライセート中の組換えタンパクの発現を、抗V5抗体を用いたウェスタンブロッティング(上記(8))により検討した。
その結果、B1断片の約35kDaのバンドとB2断片の約23kDaのバンドが、培養上清(図8下段)および細胞ライセート(図9下段)ともに確認された。一方、B3断片の約18kDaのバンドとB4断片の約18kDaのバンドは、いずれも細胞ライセートに確認されたが(図9下段)、培養上清中には見られなかった(図8下段)。
ヒツジ抗ApoBポリクローナル抗体のApoB断片(B1〜B4)への反応性を、ウェスタンブロッティングとELISAにより検討した。
ウェスタンブロッティングの結果、培養上清中のB2断片および細胞ライセート中のB2断片およびB3断片に反応性を示した(図8上段、図9上段)。
His−tagにより培養上清から精製したB1断片およびB2断片を用いてELISAを行うと、ヒツジ抗ApoBポリクローナル抗体は、B2断片に対して抗体希釈倍率1.0×102〜8.1×103倍の範囲において、B1断片に対して抗体希釈倍率1.0×102〜9.0×102倍の範囲において、陽性対照の全長ApoBには抗体希釈倍率1.0×102〜7.3×104倍の範囲においてそれぞれ用量依存的に反応性を示した。一方、陰性対照のBSAには抗体希釈倍率1.0×102〜5.9×106倍の範囲では反応性を示さなかった。
上記(6)のように、LOX−1リガンド測定系における人工酸化LDL標準品(ヒト血漿から調製)の代替品の取得を目的として、Fv型抗LOX−1抗体とApoB断片(B1〜B4)との融合タンパク質を作製した(図5)。作製した4種類の融合タンパク質(Fv−B1、Fv−B2、Fv−B3、Fv−B4)の発現を、抗V5抗体を用いたウェスタンブロッティングにより検討した。その結果、作製した融合タンパク質のうちFv−B1は約63kDa付近、Fv−B2は約60kDa付近、Fv−B3は約66kDa付近、Fv−B5は約60kDa付近に、バンドが確認された(図11)。
4種類の融合タンパク質(Fv−B1、Fv−B2、Fv−B3、Fv−B4)のFv型抗LOX−1抗体部分がLOX−1への結合活性を保持しているかを調べるために、LOX−1および抗V5抗体を用いたELISAとウェスタンブロッティングを行った。
すなわち、Fv−B1およびFv−B3では、融合タンパク質添加量45ng/mL〜100μg/mLの範囲においてFv型抗LOX−1抗体とほぼ同等の用量反応曲線が得られた。一方、Fv−B2およびFv−B4では、融合タンパク質添加濃度1.2μg/mL〜100μg/mLの範囲においてLOX−1に対して用量依存的に反応性を示したが、4パラメーターロジスティック解析により得られた変曲点に対応するタンパク濃度は、Fv−B2は80.9μg/mL、Fv−B4は20.6μg/mLであり、Fv型抗体(2.91μg/mL)と比較してそれぞれ約27倍、約7倍高かった。このFv−B2およびFv−B4のLOX−1結合能の低下は、融合させたApoB断片の立体障害により、Fv型抗体部分のLOX−1への結合を一部抑制している可能性が考えられる。
また、Fv型抗体および4種類の融合タンパク質は、陰性対照のBSAには抗体添加濃度1.6ng/mL〜100μg/mLの範囲において反応性を示さなかった。
本実施例で使用した抗ApoB抗体が、ApoB断片単体と同様に融合タンパク質を認識するか否かについて、ウェスタンブロッティングとELISAにより検討した。
すなわち、ヒツジ抗ApoBポリクローナル抗体は、Fv−B3に対して抗体希釈倍率1.0×102〜7.3×104倍の範囲において、Fv−B1およびFv−B2に対して1.0×102〜8.1×103倍において、1.0×102〜2.7×103倍の範囲においてそれぞれ用量依存的に反応性を示し、陰性対照のBSAには反応性を示さなかった。
以上の結果より、本実施例で作製した融合タンパク質は、抗ApoB抗体により検出可能であると考えられた。
LOX−1リガンド測定系の標準タンパク質としての、本実施例で作製した融合タンパク質の適用可能性について、LOX−1と抗ApoB抗体を用いたサンドイッチELISA(上記(10))により検討した。
結果を図15に示す。図中、●はFv−B1、▲はFv−B2,○はFv−B3、△はFv−B4の場合をそれぞれ示す。値は三つの独立した実験の平均とSEMを示す。
すなわち、Fv−B2の添加濃度1.23μg/mL〜100μg/mL、Fv−B3の添加濃度0.14μg/mL〜33.3μg/mLにおいてそれぞれ用量依存的に検出可能であった。一方、Fv−B1に対しても添加濃度1.23μg/mL〜100μg/mLにおいて用量依存的に検出したが、Fv−B2と比較して最大反応はOD450で約3倍低かった。またFv−B4の添加濃度15ng/mL〜100μg/mLの範囲においては反応性を示さなかった。
抗ApoB抗体の反応性は、ELISAおよびウェスタンブロッティングによる融合タンパク質への反応性検討の結果と一致していることから(図12,図14)、LOX−1に結合している融合タンパク質は、抗ApoB抗体によって特異的に検出可能であり、人工酸化LDLの代わりとしてLOX−1リガンド測定系(LAB測定)の標準タンパク(標準品)として利用できると考えられた。
ヒト血漿より人工的に調製した酸化LDL(人工酸化LDL)について、ロットの違いにより標準曲線がどの程度変化し、それにより測定値にどの程度影響するかを、LOX−1と抗ApoB抗体を用いたサンドイッチELISA(上記(10))により検討した。また、本実施例で作製した融合タンパク質Fv−B3におけるロット間のバラツキを比較することで、融合タンパク質の有用性を検証した。
すなわち、組換えLOX−1およびヒツジ抗ApoBポリクローナル抗体の組合せによる検出系において、人工酸化LDL(OxLDL)は図16に示すように4つの異なるロットにおいてLOX−1への反応性に差が見られた。この結果をもとに4パラメーターロジスティック解析を行い得られた変曲点に対応するタンパク濃度は、人工酸化LDLのロット1では38.6μg/mL、ロット2では17.7μg/mL、ロット3では8.81μg/mL、8.34μg/mLであり、最大4.6倍の差があった。
一方、融合タンパク質Fv−B3では図17に示すように異なるロット間において、4パラメーターロジスティック解析により得られた変曲点に対応するタンパク濃度は、ロット1では2.17μg/mLであり、ロット2では1.98μg/mLであり、約1.1倍の差に収まった。
[1]Sugimoto, K., et al., LOX-1-MT1-MMP axis is crucial for RhoA and Rac1 activation induced by oxidized low-density lipoprotein in endothelial cells. Cardiovasc Res, 2009.
[2]Sato, Y., et al., Determination of LOX-1-ligand activity in mouse plasma with a chicken monoclonal antibody for ApoB. Atherosclerosis, 2008. 200(2): p. 303-9.
[3]Sawamura, T., et al., An endothelial receptor for oxidized low-density lipoprotein. Nature, 1997. 386(6620): p. 73-7.
[4]Inoue, N., et al., LOX Index, a Novel Predictive Biochemical Marker for Coronary Heart Disease and Stroke. Clin Chem, 2010.(非特許文献2)
[5]Segrest, J.P., et al., Structure of apolipoprotein B-100 in low density lipoproteins. J Lipid Res, 2001. 42(9): p. 1346-67.
[6]Pease, R.J., et al., Use of bacterial expression cloning to localize the epitopes for a series of monoclonal antibodies against apolipoprotein B100. J Biol Chem, 1990. 265(1): p. 553-68.
Claims (13)
- LOX−1に対して特異的に結合するタンパク質に、ApoBの全長又は部分断片が連結されてなる融合タンパク質。
- LOX−1に対して特異的に結合するタンパク質は、LOX−1に対する抗体である請求項1に記載の融合タンパク質。
- LOX−1に対する抗体は、抗体の機能的断片である請求項2に記載の融合タンパク質。
- 抗体の機能的断片は、Fv型抗体である請求項3に記載の融合タンパク質。
- LOX−1に対する抗体は、その可変領域について、下記(a)と(b)のいずれか一方又は両方を満たすものである請求項2〜4のいずれかに記載の融合タンパク質。
(a)重鎖可変領域が、配列番号1で表されるアミノ酸配列を含む重鎖CDR1、配列番号2で表されるアミノ酸配列を含む重鎖CDR2、及び配列番号3で表されるアミノ酸配列を含む重鎖CDR3を有するものである、
(b)軽鎖可変領域が、配列番号4で表されるアミノ酸配列を含む軽鎖CDR1、配列番号5で表されるアミノ酸配列を含む軽鎖CDR2、及び配列番号6で表されるアミノ酸配列を含む軽鎖CDR3を有するものである。 - ApoBの部分断片は、ヒトApoB48におけるアミノ酸番号28−97の領域、アミノ酸番号432−566の領域、及びアミノ酸番号1049−1058の領域からなる群より選ばれた少なくとも1つの領域を含むものである請求項1〜5のいずれかに記載の融合タンパク質。
- 請求項1〜6のいずれかに記載の融合タンパク質をコードする核酸。
- 請求項7に記載の核酸が導入されたベクター。
- 請求項8に記載のベクターを含む細胞。
- LOX−1と抗ApoB抗体に対してLABが有する特異的結合性を利用したLABの測定方法であって、請求項1〜6のいずれかに記載の融合タンパク質をLABの標準品として用い、当該標準品との比較により試料中のLABを測定するLABの測定方法。
- LOX−1と抗ApoB抗体のいずれか一方は、支持体に固定化されている請求項10に記載のLABの測定方法。
- 請求項10又は11に記載のLABの測定方法に用いるためのキットであって、請求項1〜6のいずれかに記載の融合タンパク質を含むLAB測定用キット。
- LOX−1及び/又は抗ApoB抗体をさらに含む請求項12に記載のLAB測定用キット。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010251701A JP5706669B2 (ja) | 2010-11-10 | 2010-11-10 | 融合タンパク質、核酸、ベクター、細胞、labの測定方法、並びに、lab測定用キット |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010251701A JP5706669B2 (ja) | 2010-11-10 | 2010-11-10 | 融合タンパク質、核酸、ベクター、細胞、labの測定方法、並びに、lab測定用キット |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012100585A true JP2012100585A (ja) | 2012-05-31 |
JP5706669B2 JP5706669B2 (ja) | 2015-04-22 |
Family
ID=46391821
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010251701A Active JP5706669B2 (ja) | 2010-11-10 | 2010-11-10 | 融合タンパク質、核酸、ベクター、細胞、labの測定方法、並びに、lab測定用キット |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5706669B2 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013190679A1 (ja) * | 2012-06-21 | 2013-12-27 | 独立行政法人国立循環器病研究センター | 融合タンパク質、核酸、ベクター、細胞、labの測定方法、並びに、lab測定用キット |
JP2015010879A (ja) * | 2013-06-27 | 2015-01-19 | 中野 恵正 | 機能不全hdlの測定方法、機能不全hdl測定用キット、並びに、生活習慣病の検出方法 |
JP2018508467A (ja) * | 2014-12-19 | 2018-03-29 | ユニヴェルシテ・ドゥ・ナント | 抗il−34抗体 |
US9982046B2 (en) | 2013-06-21 | 2018-05-29 | Novartis Ag | Methods of treating cardiovascular disorders with lectin-like oxidized LDL receptor 1 antibodies |
US9988455B2 (en) | 2013-06-21 | 2018-06-05 | Novartis Ag | Methods of treating cardiovascular disorders with lectin-like oxidized LDL receptor 1 antibodies |
WO2019159934A1 (ja) * | 2018-02-14 | 2019-08-22 | 国立大学法人信州大学 | 融合タンパク質、及びそれを用いた高密度リポタンパク質の測定キット |
WO2021177333A1 (ja) | 2020-03-03 | 2021-09-10 | 国立大学法人信州大学 | アディポネクチンの定量方法及びそれに用いる分析用試薬 |
WO2021200797A1 (ja) | 2020-03-30 | 2021-10-07 | 国立大学法人信州大学 | 変性hdlの定量方法、及びそれに用いる分析用試薬 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0998787A (ja) * | 1994-11-30 | 1997-04-15 | Nippon Chemiphar Co Ltd | 変性低密度リポ蛋白質受容体 |
-
2010
- 2010-11-10 JP JP2010251701A patent/JP5706669B2/ja active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0998787A (ja) * | 1994-11-30 | 1997-04-15 | Nippon Chemiphar Co Ltd | 変性低密度リポ蛋白質受容体 |
Non-Patent Citations (1)
Title |
---|
JPN7015000278; Clin. Chem. 56, 4, 201004, p.550-558 * |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013190679A1 (ja) * | 2012-06-21 | 2013-12-27 | 独立行政法人国立循環器病研究センター | 融合タンパク質、核酸、ベクター、細胞、labの測定方法、並びに、lab測定用キット |
US9982046B2 (en) | 2013-06-21 | 2018-05-29 | Novartis Ag | Methods of treating cardiovascular disorders with lectin-like oxidized LDL receptor 1 antibodies |
US9988455B2 (en) | 2013-06-21 | 2018-06-05 | Novartis Ag | Methods of treating cardiovascular disorders with lectin-like oxidized LDL receptor 1 antibodies |
US10870698B2 (en) | 2013-06-21 | 2020-12-22 | Novartis Ag | Nucleic acids encoding lectin-like oxidized LDL receptor 1 antibodies |
JP2015010879A (ja) * | 2013-06-27 | 2015-01-19 | 中野 恵正 | 機能不全hdlの測定方法、機能不全hdl測定用キット、並びに、生活習慣病の検出方法 |
JP2018508467A (ja) * | 2014-12-19 | 2018-03-29 | ユニヴェルシテ・ドゥ・ナント | 抗il−34抗体 |
CN111770997A (zh) * | 2018-02-14 | 2020-10-13 | 国立大学法人信州大学 | 融合蛋白、以及使用该融合蛋白的高密度脂蛋白的测定试剂盒 |
WO2019159934A1 (ja) * | 2018-02-14 | 2019-08-22 | 国立大学法人信州大学 | 融合タンパク質、及びそれを用いた高密度リポタンパク質の測定キット |
JPWO2019159934A1 (ja) * | 2018-02-14 | 2021-03-11 | 国立大学法人信州大学 | 融合タンパク質、及びそれを用いた高密度リポタンパク質の測定キット |
EP3754023A4 (en) * | 2018-02-14 | 2021-12-08 | Shinshu University | FUSION PROTEIN AND HIGH DENSITY LIPOPROTEIN MEASUREMENT KIT USING IT |
JP7365050B2 (ja) | 2018-02-14 | 2023-10-19 | 達也 沢村 | 融合タンパク質、及びそれを用いた高密度リポタンパク質の測定キット |
WO2021177333A1 (ja) | 2020-03-03 | 2021-09-10 | 国立大学法人信州大学 | アディポネクチンの定量方法及びそれに用いる分析用試薬 |
WO2021200797A1 (ja) | 2020-03-30 | 2021-10-07 | 国立大学法人信州大学 | 変性hdlの定量方法、及びそれに用いる分析用試薬 |
Also Published As
Publication number | Publication date |
---|---|
JP5706669B2 (ja) | 2015-04-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5706669B2 (ja) | 融合タンパク質、核酸、ベクター、細胞、labの測定方法、並びに、lab測定用キット | |
JP5941615B2 (ja) | ヒトcxcl1タンパク質の免疫学的測定方法 | |
US11372001B2 (en) | Anti-human IgG4 monoclonal antibody and methods of making and using same | |
KR20190116997A (ko) | 유전적 변이체를 인식하는 항체 | |
EP3533459A1 (en) | Anti-pla2-gib antibodies and the uses thereof | |
JP2013511966A (ja) | 単一特異性ポリペプチド試薬 | |
CN111748033A (zh) | 一种与新型冠状病毒np蛋白结合的分离抗体、包含其的检测试剂盒 | |
US20230384326A1 (en) | Test method and test kit for adult still's disease | |
JP7365050B2 (ja) | 融合タンパク質、及びそれを用いた高密度リポタンパク質の測定キット | |
WO2013190679A1 (ja) | 融合タンパク質、核酸、ベクター、細胞、labの測定方法、並びに、lab測定用キット | |
JPH10226700A (ja) | Miaの検出のためのイムノアッセイ | |
US11327078B2 (en) | Monoclonal antibody against APOA4, immunological measurement method, and kit for measurement | |
Huang et al. | A high-affinity human/mouse cross-reactive monoclonal antibody, specific for VEGFR-2 linear and conformational epitopes | |
WO2018079393A1 (ja) | ジスルフィド型hmgb1特異的抗体、ジスルフィド型hmgb1の測定方法および測定用キット、ならびに、還元型hmgb1、ジスルフィド型hmgb1、トロンビン分解hmgb1等の全てのhmgb1を定量することが可能な測定方法および測定用キット | |
WO2017116196A1 (ko) | 재조합 picp 단백질 및 이에 특이적으로 결합하는 항체의 제조방법 | |
JP5448424B2 (ja) | ヒトIgGのFcを含有するタンパク質の測定試薬 | |
US20230331865A1 (en) | Antibodies for use in immunohistochemistry (ihc) protocols to diagnose cancer | |
JP2018138520A (ja) | 抗ミッドカインモノクローナル抗体及びそれを用いた免疫学的測定キット | |
WO2024101357A1 (ja) | コートマータンパク質複合体サブユニットベータ2に対する抗体 | |
US20210388108A1 (en) | Antibodies specific for glycosylated apoj and uses thereof | |
JPWO2009022632A1 (ja) | 新規肝癌マーカー | |
JP2002356500A (ja) | 活性型肝細胞増殖因子アクティベーターに対する特異的抗体とその使用法 | |
JP2024103455A (ja) | 診断キット及び診断を補助する方法 | |
JP5626681B2 (ja) | 癌の検出方法 | |
JP4803943B2 (ja) | 肝細胞増殖因子活性化因子阻害因子−1に対する抗体とその用途 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20131031 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20140919 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20140919 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20141202 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150205 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150227 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5706669 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |