JP2012079677A - Lighting system used for automatic optical detection and its combination with image forming system - Google Patents

Lighting system used for automatic optical detection and its combination with image forming system Download PDF

Info

Publication number
JP2012079677A
JP2012079677A JP2011032957A JP2011032957A JP2012079677A JP 2012079677 A JP2012079677 A JP 2012079677A JP 2011032957 A JP2011032957 A JP 2011032957A JP 2011032957 A JP2011032957 A JP 2011032957A JP 2012079677 A JP2012079677 A JP 2012079677A
Authority
JP
Japan
Prior art keywords
light source
light
image forming
optical detection
optical element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011032957A
Other languages
Japanese (ja)
Inventor
Guang Shiah Wang
グアンシーアウ ワン
Huei Yu Chen
フエイユィ チェン
Shu Wei Zeng
シューウェイ ゾン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Machvision Inc
Original Assignee
Machvision Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Machvision Inc filed Critical Machvision Inc
Publication of JP2012079677A publication Critical patent/JP2012079677A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • F21S2/005Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction of modular construction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • G01N21/95684Patterns showing highly reflecting parts, e.g. metallic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0005Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being of the fibre type
    • G02B6/0008Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being of the fibre type the light being emitted at the end of the fibre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2131/00Use or application of lighting devices or systems not provided for in codes F21W2102/00-F21W2121/00
    • F21W2131/40Lighting for industrial, commercial, recreational or military use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N2021/178Methods for obtaining spatial resolution of the property being measured
    • G01N2021/1785Three dimensional

Abstract

PROBLEM TO BE SOLVED: To provide a lighting system used for automatic optical detection, of which light path length is shortened and the required space is greatly reduced.SOLUTION: This concerns with a lighting system 20 which is used for automatic optical detection and illuminates an object 80 as a detection object and includes a first light source 21, a second light source 22, a third light source 23, a first optical element 24, and at least three second optical elements 25. Each of the second optical elements 25 is installed respectively at a light output end of the first light source 21, the second light source 22, and the third light source 23, and can condense light outputted from each light source. The light output ends of the first light source 21 and the second light source 22 are symmetrically oriented to the front surface of the object 80. Further, the first optical element 24 is aimed at the plane of symmetry and can guide light beams outputted from the third light source 23 to the front surface of the object 80.

Description

本発明は、自動光学検出に用いられる照明システムおよびそれと画像形成システムとの組合せに係わり、とりわけ検出対象の物体の表面を照明する光源システムに関するものである。   The present invention relates to an illumination system used for automatic optical detection and a combination thereof with an image forming system, and more particularly to a light source system that illuminates the surface of an object to be detected.

自動光学検出(AOI)は、液晶表示パネル、半導体集積回路チップおよび回路板の製造にとって重要なプロセスであり、生産、製造過程における製品品質の診断と改善によって製造コストを削減するために必要なプロセスである。自動光学検出の基本的な性能は、検出速度と検出感度の2つの重要な指標によって評価される。生産技術の進歩にしたがって製造速度の高速化、基板寸法の大型化および印刷パターンサイズの小型化が進んでおり、自動光学検出に対してより速い検出速度とより高い検出感度が求められている。   Automatic optical detection (AOI) is an important process for the manufacture of liquid crystal display panels, semiconductor integrated circuit chips and circuit boards, and the process necessary to reduce manufacturing costs by diagnosing and improving product quality in the production and manufacturing processes. It is. The basic performance of automatic optical detection is evaluated by two important indicators: detection speed and detection sensitivity. With the progress of production technology, the production speed is increased, the substrate size is increased, and the print pattern size is reduced, and higher detection speed and higher detection sensitivity are required for automatic optical detection.

検出対象の物体やサンプルの表面画像を獲得するために必要な光の強度は、形成する画像の大きさや検出速度に反比例する。したがって、LCDやチップなどに対して高速かつ高分解能の光学検出をするためには、性能のより高い照明光学システムが必要不可欠である。形成する画像の大きさに応じて画像形成用レンズの開口数(numerical aperture; NA)を増やせば光源を大きくすることができるが、この方法は、奥行きを小さくし、システム全体の機械的精度に悪影響をもたらしかねない。また、大型サンプルの表面を検出する場合には大きな視野が必要となり、そのためレンズの開口数が制限されてしまう。線形走査CCDセンサを用いてサンプルの表面を走査する場合には、一般に線形光ファイバやリニアLEDアレイからの光を照明として用いる。このような照明方法および装置は、10μmよりも大きい画像に対して低分解能の検出を行なう場合には効果的であるが、10μm未満の画像に対して高分解能の検出を行なう場合には、かかる照明技術の効率が極めて低い。   The intensity of light necessary to acquire a surface image of an object or sample to be detected is inversely proportional to the size of the image to be formed and the detection speed. Therefore, in order to perform high-speed and high-resolution optical detection on LCDs and chips, an illumination optical system with higher performance is indispensable. The light source can be increased by increasing the numerical aperture (NA) of the image forming lens according to the size of the image to be formed, but this method reduces the depth and increases the mechanical accuracy of the entire system. It can cause adverse effects. In addition, when detecting the surface of a large sample, a large field of view is required, which limits the numerical aperture of the lens. When scanning the surface of a sample using a linear scanning CCD sensor, light from a linear optical fiber or a linear LED array is generally used as illumination. Such an illumination method and apparatus are effective when low-resolution detection is performed on an image larger than 10 μm, but is necessary when high-resolution detection is performed on an image smaller than 10 μm. The efficiency of lighting technology is extremely low.

図1は特許文献1によって開示された照明および画像形成システムの概略図である。この照明および画像形成システム10は、第1の照明装置111、第2の照明装置112、第1の光反射装置121、第2の光反射装置122、平面屈折レンズ13、光学素子14および画像形成センサ15を有している。第1の照明装置111および第2の照明装置112からの照明光が前記検出対象の物体80の表面に集光されるとともにその表面の軸線上に集光されて線状照明を形成する。3組の照明装置を2組の照明装置に変更するために、第1の光反射装置121の中央には長形溝孔1211が設けられており、第2の光反射装置122からの反射光が該長形溝孔1211を介して検出対象の物体80の表面に到達することができる。また、この検出対象の物体80の表面反射光が長形溝孔1211を透過するとともに光学素子14に屈折されて画像形成センサ15に到達しかつ画像形成センサ15内で画像を形成する。   FIG. 1 is a schematic diagram of an illumination and image forming system disclosed in Patent Document 1. The illumination and image forming system 10 includes a first illumination device 111, a second illumination device 112, a first light reflection device 121, a second light reflection device 122, a plane refraction lens 13, an optical element 14, and image formation. A sensor 15 is provided. Illumination light from the first illuminating device 111 and the second illuminating device 112 is condensed on the surface of the object 80 to be detected and condensed on the axis of the surface to form linear illumination. In order to change the three sets of lighting devices to two sets of lighting devices, a long slot 1211 is provided in the center of the first light reflecting device 121, and reflected light from the second light reflecting device 122. Can reach the surface of the object 80 to be detected through the elongated slot 1211. Further, the surface reflected light of the object 80 to be detected passes through the long slot 1211 and is refracted by the optical element 14 to reach the image forming sensor 15 and form an image in the image forming sensor 15.

台湾国特許第389833号明細書Taiwan Patent No. 389833 Specification

この従来の技術では、いずれもアーチ状の表面を有する光反射装置または屈折レンズを用いなければ光線を軸線上に集光させることができない。かかる照明システムにおいて、複雑な光路を形成する場合には大きな空間が必要となる。また、複数の光反射装置、屈折レンズおよび長形溝孔に対して精密な角度調整を行わなければ、正確に屈折方向や反射方向を制御することができない。   In each of these conventional techniques, the light beam cannot be condensed on the axis unless a light reflecting device or a refractive lens having an arched surface is used. In such an illumination system, when a complicated optical path is formed, a large space is required. In addition, the refractive direction and the reflection direction cannot be accurately controlled unless precise angle adjustment is performed on the plurality of light reflecting devices, the refractive lens, and the long slot.

本発明は自動光学検出に用いられる照明システムおよびそれと画像形成システムとの組合せを開示したものであり、光源として用いられる発光ダイオードと集光可能な光学素子とを組み合わせているため、光路長を短縮するとともに当該照明システムの必要空間を大幅に縮小することができる。   The present invention discloses an illumination system used for automatic optical detection and a combination of the illumination system and an image forming system. A light-emitting diode used as a light source and a condensing optical element are combined to shorten the optical path length. In addition, the required space of the lighting system can be greatly reduced.

本発明は、自動光学検出に用いられ検出対象の物体を照明する照明システムであって、第1の光源、第2の光源、第3の光源、第1の光学素子および非連続集光曲面を有する少なくとも3つの第2の光学素子を含む自動光学検出に用いられる照明システムを開示したものである。前記第2の光学素子の各々がそれぞれ前記第1の光源、前記第2の光源および前記第3の光源の光出力端に設けられ、前記各光源から出力される光線を集光することができる。前記第1の光源および前記第2の光源の光出力端が対称的に前記物体の表面へ配向されている。また、前記第1の光学素子は前記対称面に照準されており、前記第3の光源から出力される光線を前記物体の表面に案内することができる。   The present invention is an illumination system that is used for automatic optical detection and illuminates an object to be detected, and includes a first light source, a second light source, a third light source, a first optical element, and a discontinuous condensing curved surface. An illumination system for use in automatic optical detection that includes at least three second optical elements. Each of the second optical elements is provided at a light output end of each of the first light source, the second light source, and the third light source, and can collect light beams output from the respective light sources. . The light output ends of the first light source and the second light source are symmetrically oriented to the surface of the object. Further, the first optical element is aimed at the symmetry plane, and can guide the light beam output from the third light source to the surface of the object.

本発明の一例に係わる前記第2の光学素子は、少なくとも1つのフレネルレンズを有している。   The second optical element according to an example of the present invention has at least one Fresnel lens.

本発明の一例に係わる前記第1の光学素子は分光レンズである。   The first optical element according to an example of the present invention is a spectroscopic lens.

本発明は照明システムと画像形成システムとの組合せを開示したものであり、当該組合せは、検出対象の物体を照明するとともに当該物体の画像を形成し、第1の光源、第2の光源、第3の光源、第1の光学素子、非連続集光曲面を有する少なくとも3つの第2の光学素子および画像形成システムを含む。前記第2の光学素子の各々がそれぞれ前記第1の光源、前記第2の光源および前記第3の光源の光出力端に設けられ、前記各光源から出力される光線を集光することができる。前記第1の光源および前記第2の光源の光出力端が対称的に前記物体の表面へ配向されている。また、前記第1の光学素子は前記対称面に照準されており、前記第3の光源から出力される光線を前記物体の表面に案内することができる。前記物体の表面によって反射された光線が前記画像形成システム内において画像を形成する。   The present invention discloses a combination of an illumination system and an image forming system. The combination illuminates an object to be detected and forms an image of the object, and includes a first light source, a second light source, and a second light source. 3 light sources, a first optical element, at least three second optical elements having a discontinuous condensing curved surface, and an image forming system. Each of the second optical elements is provided at a light output end of each of the first light source, the second light source, and the third light source, and can collect light beams output from the respective light sources. . The light output ends of the first light source and the second light source are symmetrically oriented to the surface of the object. Further, the first optical element is aimed at the symmetry plane, and can guide the light beam output from the third light source to the surface of the object. Light rays reflected by the surface of the object form an image in the image forming system.

後述する本発明の詳細な内容を理解しやすくするために上記において本発明の技術的特徴およびその効果を簡潔に説明した。本発明を構成する特許請求の範囲の対象のその他の技術的特徴並びにその効果は下記のとおり説明する。当業者は、以下において述べる概念および特定な実施例に基づいて他の構造や製造プロセスに変更したり設計したりすることによって本発明と同じ目的を容易に実現することができる。当業者は、そのような等価的な構造が、後述する特許請求の範囲に記載された本発明の主旨と範囲を逸脱しないことを理解できるはずである。   In order to facilitate understanding of the detailed contents of the present invention described later, the technical features of the present invention and the effects thereof have been briefly described above. Other technical features and effects of the subject of the claims constituting the present invention will be described as follows. Those skilled in the art can easily achieve the same object as the present invention by changing or designing to other structures and manufacturing processes based on the concepts and specific embodiments described below. Those skilled in the art will recognize that such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the claims below.

特許文献1によって開示された照明および画像形成システムの概略図である。1 is a schematic diagram of an illumination and image forming system disclosed in Patent Document 1. FIG. 本発明の1実施例である自動光学検出に用いられる照明システムの概略図である。It is the schematic of the illumination system used for the automatic optical detection which is one Example of this invention. 本発明の照明システムと画像形成システムとの組合せを示す概略図である。It is the schematic which shows the combination of the illumination system of this invention, and an image forming system. 本発明の1実施例である第2の光学素子の断面概略図である。It is a section schematic diagram of the 2nd optical element which is one example of the present invention.

図2は本発明の1実施例である自動光学検出に用いられる照明システム20の概略図である。検出対象の物体80を照明する照明システム20は、第1の光源21、第2の光源22、第3の光源23、第1の光学素子24および少なくとも3つの第2の光学素子25を有している。第2の光学素子25の各々がそれぞれ第1の光源21、第2の光源22および第3の光源23の光出力端に設けられ、前記各光源から出力される光線を直接または間接的に検出対象の物体80の表面上における軸線に集光することができる。第1の光源21および第2の光源22の光出力端が対称的に前記物体の表面へ配向されており、光源21〜23は、LED線状光源または光ファイバ線状光源である。第1の光学素子24は、略前記対称面に照準されており、第3の光源23から出力される光線を当該物体80の表面に案内することができる。即ち、第1の光学素子24が物体80の表面に対して45度の角度をなしており、かつ物体80の表面の直上方に位置している。したがって、第1の光源21、第2の光源22および第3の光源23から物体80の表面に投射された線状光線が各面において均等になっており、かつ強度が1箇所に集中しており、それにより画像の輝度を大幅に向上することができる。   FIG. 2 is a schematic diagram of an illumination system 20 used for automatic optical detection according to an embodiment of the present invention. The illumination system 20 that illuminates the detection target object 80 includes a first light source 21, a second light source 22, a third light source 23, a first optical element 24, and at least three second optical elements 25. ing. Each of the second optical elements 25 is provided at the light output end of each of the first light source 21, the second light source 22, and the third light source 23, and directly or indirectly detects the light beam output from each light source. It is possible to focus on the axis on the surface of the target object 80. The light output ends of the first light source 21 and the second light source 22 are symmetrically oriented to the surface of the object, and the light sources 21 to 23 are LED linear light sources or optical fiber linear light sources. The first optical element 24 is substantially aimed at the symmetry plane, and can guide the light beam output from the third light source 23 to the surface of the object 80. That is, the first optical element 24 forms an angle of 45 degrees with respect to the surface of the object 80 and is located immediately above the surface of the object 80. Therefore, the linear light rays projected from the first light source 21, the second light source 22, and the third light source 23 onto the surface of the object 80 are uniform on each surface, and the intensity is concentrated on one place. Thus, the brightness of the image can be greatly improved.

図3は本発明の照明システムと画像形成システムとの組合せを示す概略図である。第1の光学素子24には、例えば線形CCDカメラなどの画像形成センサ30が設けられており、第1の光学素子24を透過した、検出対象の物体80の表面反射光を受光することができる。第1の光学素子24は分光レンズ(splitting lens)であってもよい。本発明の照明システム20を用いることにより、当該画像形成センサ30の画像品質を改善することができるとともに照明システム20と画像形成センサ30とを組み合わせるために必要な空間を縮小することができる。   FIG. 3 is a schematic view showing a combination of the illumination system and the image forming system of the present invention. The first optical element 24 is provided with an image forming sensor 30 such as a linear CCD camera, for example, and can receive the surface reflected light of the object 80 to be detected that has passed through the first optical element 24. . The first optical element 24 may be a splitting lens. By using the illumination system 20 of the present invention, the image quality of the image forming sensor 30 can be improved and the space required for combining the illumination system 20 and the image forming sensor 30 can be reduced.

第1の光学素子24は分光レンズであり、第3の光源23から出力された光線が第1の光学素子24を透過するとともに第1の光学素子24に屈折されて物体80の表面に到達する。これらの光線は、物体80の表面によって垂直に反射され第1の光学素子24に戻された後、再び第1の光学素子24を透過して画像形成センサ30に到達し、画像を形成する。   The first optical element 24 is a spectroscopic lens, and the light beam output from the third light source 23 passes through the first optical element 24 and is refracted by the first optical element 24 to reach the surface of the object 80. . These light rays are vertically reflected by the surface of the object 80 and returned to the first optical element 24, and then pass through the first optical element 24 again to reach the image forming sensor 30 to form an image.

図4は本発明の1実施例である第2の光学素子の断面概略図である。第2の光学素子40は2つのフレネルレンズ41を有している。フレネルレンズ41は、一方の表面にジグザグ状の非連続曲面構造を有しており、他方の表面は平滑面である。これら2つのフレネルレンズ41は、非連続曲面にて接合されて第2の光学素子40を形成してもよく、または一体成形によって前記フレネルレンズ構造を有する第2の光学素子40を形成してもよい。一般に第2の光学素子40は長尺形状のレンズまたはレンズセットであり、リニアLED光源の出力端に配置されて検出対象の物体80に光線を集光することができる。   FIG. 4 is a schematic sectional view of a second optical element according to one embodiment of the present invention. The second optical element 40 has two Fresnel lenses 41. The Fresnel lens 41 has a zigzag-shaped discontinuous curved surface structure on one surface, and the other surface is a smooth surface. These two Fresnel lenses 41 may be joined by a non-continuous curved surface to form the second optical element 40, or the second optical element 40 having the Fresnel lens structure may be formed by integral molding. Good. In general, the second optical element 40 is a long lens or a lens set, and is arranged at the output end of the linear LED light source, and can focus the light beam on the object 80 to be detected.

従来の球面レンズとの比較において、フレネルレンズは、レンズを理論上無数である複数の同心円模様(即ちフレネルゾーン)に分割することによって同じ光学的効果を得るとともに材料の使用量を削減することができる。フレネルレンズを用いることによってレンズの厚さ(および重量と体積)を大幅に削減することができ、そのため本発明の照明システムと画像形成システムとを組み合わせるために必要な空間を更に縮小することができる。   Compared to a conventional spherical lens, a Fresnel lens can obtain the same optical effect and reduce the amount of material used by dividing the lens into a plurality of theoretically innumerable concentric patterns (ie, Fresnel zones). it can. By using a Fresnel lens, the thickness (and weight and volume) of the lens can be significantly reduced, so that the space required to combine the illumination system of the present invention with the imaging system can be further reduced. .

上記において本発明の技術的内容および技術的特徴を説明した。当業者は、本発明の開示に基づいて本発明の主旨を逸脱しない範囲において様々な変更や修飾をすることができる。したがって、本発明は、実施例に限定されることなく様々な変更や修飾も後述する本発明の特許請求の範囲に含まれる。   The technical contents and technical features of the present invention have been described above. Those skilled in the art can make various changes and modifications based on the disclosure of the present invention without departing from the spirit of the present invention. Therefore, the present invention is not limited to the examples, and various changes and modifications are also included in the scope of the claims of the present invention described later.

10 画像形成システム
13 平面屈折レンズ
14 光学素子
15 画像形成センサ
20 照明システム
21 第1の光源
22 第2の光源
23 第3の光源
24 第1の光学素子
25 第2の光学素子
30 画像形成センサ
40 第2の光学素子
41 フレネルレンズ
80 検出対象の物体
111 第1の照明装置
112 第2の照明装置
121 第1の光反射装置
122 第2の光反射装置
1211 長形溝孔
DESCRIPTION OF SYMBOLS 10 Image forming system 13 Plano-refractive lens 14 Optical element 15 Image forming sensor 20 Illumination system 21 1st light source 22 2nd light source 23 3rd light source 24 1st optical element 25 2nd optical element 30 Image forming sensor 40 Second optical element 41 Fresnel lens 80 Object to be detected 111 First illumination device 112 Second illumination device 121 First light reflection device 122 Second light reflection device 1211 Long slot

Claims (14)

自動光学検出に用いられ検出対象の物体を照明するための照明システムにおいて、
ぞれぞれの光出力端が対称的に前記物体の表面へ配向されている第1の光源、第2の光源、第3の光源、前記物体の直上方に位置し前記第3の光源から出力される光線を前記物体の表面に案内しうる第1の光学素子、およびそれぞれ前記第1の光源、前記第2の光源および前記第3の光源の光出力端に設けられ前記各光源から出力される光線を集光しうる非連続集光曲面を有する少なくとも3つの第2の光学素子を含むことを特徴とする自動光学検出に用いられる照明システム。
In an illumination system used for automatic optical detection to illuminate an object to be detected,
From the first light source, the second light source, the third light source, and the third light source positioned directly above the object, each light output end being symmetrically oriented to the surface of the object A first optical element capable of guiding the output light beam to the surface of the object, and outputs from the light sources provided at the light output ends of the first light source, the second light source, and the third light source, respectively. An illumination system used for automatic optical detection, comprising at least three second optical elements having non-continuous condensing curved surfaces capable of condensing collected light rays.
前記第1の光学素子が前記第1の光源と前記第2の光源間の対称面に照準されていることを特徴とする請求項1記載の自動光学検出に用いられる照明システム。   2. The illumination system used for automatic optical detection according to claim 1, wherein the first optical element is aimed at a plane of symmetry between the first light source and the second light source. 前記第2の光学素子が少なくとも1つのフレネルレンズを有していることを特徴とする請求項1記載の自動光学検出に用いられる照明システム。   The illumination system used for automatic optical detection according to claim 1, wherein the second optical element has at least one Fresnel lens. 前記フレネルレンズは2つ有しており、当該フレネルレンズの各々が非連続曲面によって接合されて前記第2の光学素子を形成することを特徴とする請求項3記載の自動光学検出に用いられる照明システム。   The illumination used for automatic optical detection according to claim 3, wherein the Fresnel lens has two, and each of the Fresnel lenses is joined by a discontinuous curved surface to form the second optical element. system. 前記第1の光源、前記第2の光源および前記第3の光源は、LED線状光源または光ファイバ線状光源であることを特徴とする請求項1記載の自動光学検出に用いられる照明システム。   The illumination system used for automatic optical detection according to claim 1, wherein the first light source, the second light source, and the third light source are LED linear light sources or optical fiber linear light sources. 前記第1の光学素子は分光レンズであることを特徴とする請求項1記載の自動光学検出に用いられる照明システム。   The illumination system used for automatic optical detection according to claim 1, wherein the first optical element is a spectroscopic lens. 検出対象の物体を照明するとともに前記物体の画像を形成する、自動光学検出に用いられる照明システムと画像形成システムとの組合せにおいて、
ぞれぞれの光出力端が対称的に前記物体の表面へ配向されている第1の光源と第2の光源、第3の光源、前記物体の直上方に位置し前記第3の光源から出力される光線を前記物体の表面に案内しうる第1の光学素子、それぞれ前記第1の光源、前記第2の光源および前記第3の光源の光出力端に設けられ前記各光源から出力される光線を集光しうる、非連続集光曲面を有する少なくとも3つの第2の光学素子、および前記物体の表面によって反射された光線を受光して画像を形成する画像形成システムを含むことを特徴とする自動光学検出に用いられる照明システムと画像形成システムとの組合せ。
In a combination of an illumination system and an image forming system used for automatic optical detection that illuminates an object to be detected and forms an image of the object,
The first light source, the second light source, the third light source, and the third light source positioned directly above the object, each light output end being symmetrically oriented to the surface of the object A first optical element capable of guiding an output light beam to the surface of the object, respectively, provided at a light output end of each of the first light source, the second light source, and the third light source, and output from each light source. At least three second optical elements having a non-continuous condensing curved surface, and an image forming system that receives the light reflected by the surface of the object and forms an image. A combination of an illumination system and an image forming system used for automatic optical detection.
前記第1の光学素子が前記第1の光源と前記第2の光源間の対称面に照準されていることを特徴とする請求項7記載の自動光学検出に用いられる照明システムと画像形成システムとの組合せ。   8. The illumination system and image forming system used for automatic optical detection according to claim 7, wherein the first optical element is aimed at a plane of symmetry between the first light source and the second light source. Combination. 前記第2の光学素子は、少なくとも1つのフレネルレンズを有していることを特徴とする請求項7記載の自動光学検出に用いられる照明システムと画像形成システムとの組合せ。   8. The combination of an illumination system and an image forming system used for automatic optical detection according to claim 7, wherein the second optical element has at least one Fresnel lens. 前記フレネルレンズは2つ有しており、当該フレネルレンズの各々が非連続曲面によって接合されて前記第2の光学素子を形成することを特徴とする請求項9記載の自動光学検出に用いられる照明システムと画像形成システムとの組合せ。   The illumination used for automatic optical detection according to claim 9, wherein the Fresnel lens has two, and each of the Fresnel lenses is joined by a discontinuous curved surface to form the second optical element. Combination of system and image forming system. 前記第1の光源、前記第2の光源および前記第3の光源は、LED線状光源または光ファイバ線状光源であることを特徴とする請求項7記載の自動光学検出に用いられる照明システムと画像形成システムとの組合せ。   The illumination system used for automatic optical detection according to claim 7, wherein the first light source, the second light source, and the third light source are LED linear light sources or optical fiber linear light sources. Combination with image forming system. 前記第1の光学素子は分光レンズであることを特徴とする請求項7記載の自動光学検出に用いられる照明システムと画像形成システムとの組合せ。   8. The combination of an illumination system used for automatic optical detection and an image forming system according to claim 7, wherein the first optical element is a spectroscopic lens. 前記画像形成システムが線形CCDカメラを含むことを特徴とする請求項7記載の自動光学検出に用いられる照明システムと画像形成システムとの組合せ。   8. The combination of an illumination system and an image forming system used for automatic optical detection according to claim 7, wherein the image forming system includes a linear CCD camera. 前記物体の表面によって反射されかつ前記画像形成システムによって受光された光線が先に前記第1の光学素子を透過することを特徴とする請求項7記載の自動光学検出に用いられる照明システムと画像形成システムとの組合せ。   8. The illumination system and image formation used for automatic optical detection according to claim 7, wherein the light beam reflected by the surface of the object and received by the image forming system passes through the first optical element first. Combination with system.
JP2011032957A 2010-10-05 2011-02-18 Lighting system used for automatic optical detection and its combination with image forming system Pending JP2012079677A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW099133802 2010-10-05
TW099133802A TW201215845A (en) 2010-10-05 2010-10-05 Illumination system for automatic optical inspection and assembly of it and camera system

Publications (1)

Publication Number Publication Date
JP2012079677A true JP2012079677A (en) 2012-04-19

Family

ID=46137672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011032957A Pending JP2012079677A (en) 2010-10-05 2011-02-18 Lighting system used for automatic optical detection and its combination with image forming system

Country Status (3)

Country Link
JP (1) JP2012079677A (en)
KR (1) KR101232947B1 (en)
TW (1) TW201215845A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101476530B1 (en) * 2013-01-22 2014-12-24 마하비전 아이엔씨. Optical assembly of multi-angle illumination for line scan and light source system using the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI484164B (en) * 2012-05-11 2015-05-11 Machvision Inc Optical re - inspection system and its detection method
TWI491871B (en) * 2013-07-05 2015-07-11 Machvision Inc Illumination system for use in optical inspection, illumination system-based inspection system, and illumination system-based inspection method
CN110346381B (en) * 2019-08-12 2022-03-08 衡阳师范学院 Optical element damage testing method and device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0278901U (en) * 1988-12-05 1990-06-18
JPH04122840A (en) * 1990-09-14 1992-04-23 Matsushita Electric Ind Co Ltd Observing apparatus of substrate
JPH0829138A (en) * 1994-07-20 1996-02-02 Fujitsu Ltd Device and method for inspecting pattern
JP2003202302A (en) * 1993-05-13 2003-07-18 Olympus Optical Co Ltd Surface defect-inspecting apparatus
JP2004101311A (en) * 2002-09-09 2004-04-02 Matsushita Electric Ind Co Ltd Luminaire and lighting method for line sensor cameras
JP2007248051A (en) * 2006-03-13 2007-09-27 Kyushu Institute Of Technology Method for inspecting defect of object surface
JP2009103512A (en) * 2007-10-22 2009-05-14 Hitachi Ltd Wiring pattern treatment apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3519813B2 (en) * 1995-03-14 2004-04-19 オリンパス株式会社 Defect detection method and defect detection device
ATE525638T1 (en) * 2003-01-09 2011-10-15 Orbotech Ltd METHOD AND DEVICE FOR SIMULTANEOUS 2D AND TOPOGRAPHIC INVESTIGATION
KR20080043047A (en) * 2006-11-13 2008-05-16 주식회사 고영테크놀러지 Three-dimensional image measuring apparatus using shadow moire

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0278901U (en) * 1988-12-05 1990-06-18
JPH04122840A (en) * 1990-09-14 1992-04-23 Matsushita Electric Ind Co Ltd Observing apparatus of substrate
JP2003202302A (en) * 1993-05-13 2003-07-18 Olympus Optical Co Ltd Surface defect-inspecting apparatus
JPH0829138A (en) * 1994-07-20 1996-02-02 Fujitsu Ltd Device and method for inspecting pattern
JP2004101311A (en) * 2002-09-09 2004-04-02 Matsushita Electric Ind Co Ltd Luminaire and lighting method for line sensor cameras
JP2007248051A (en) * 2006-03-13 2007-09-27 Kyushu Institute Of Technology Method for inspecting defect of object surface
JP2009103512A (en) * 2007-10-22 2009-05-14 Hitachi Ltd Wiring pattern treatment apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101476530B1 (en) * 2013-01-22 2014-12-24 마하비전 아이엔씨. Optical assembly of multi-angle illumination for line scan and light source system using the same

Also Published As

Publication number Publication date
KR20120035830A (en) 2012-04-16
KR101232947B1 (en) 2013-02-13
TW201215845A (en) 2012-04-16

Similar Documents

Publication Publication Date Title
CN100582717C (en) System for inspecting surfaces with improved light efficiency
JP5339707B2 (en) Linear concentrator
CN105372256A (en) Surface detection system and method thereof
JP2013167857A (en) Microscope and inspection device
JP2012079677A (en) Lighting system used for automatic optical detection and its combination with image forming system
JP2015055561A (en) Defect inspection method and defect inspection device of microlens array
KR101446061B1 (en) Apparatus for measuring a defect of surface pattern of transparent substrate
TW201602515A (en) Method and system for measuring thickness of glass article
KR20130105267A (en) Focus position changing apparatus and confocal optical apparatus using the same
US20090086197A1 (en) Inspection apparatus
KR101658700B1 (en) Optics Apparatus for Inspecting Surface of Panel and Method for Inspecting Surface
KR101568980B1 (en) Automatic focus control apparatus and automatic focus control method using the same
CN102454923A (en) Lighting system for automatic optic inspection and combination of lighting system and image system
JP2014010428A (en) Line illumination apparatus
KR20190059411A (en) a multi-functional optical inspecting device
JP2006017487A (en) Lens sheet inspecting device
JP6086274B2 (en) Dimension measuring device
JP2013205041A (en) Lighting device, inspection device, and manufacturing method of substrate
KR20130109057A (en) Microscope
JP2012145437A (en) Area flow meter
JP2016114602A (en) Surface shape measurement device, and defect determination device
JP2005241692A (en) Optical device, imaging apparatus and inspection device
JP4487042B2 (en) Optical apparatus, inspection apparatus, and inspection method
CN218823963U (en) Outer side wall detection device
CN113037212B (en) Photoelectric assembly characteristic measuring device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130402