JP3519813B2 - Defect detection method and defect detection device - Google Patents

Defect detection method and defect detection device

Info

Publication number
JP3519813B2
JP3519813B2 JP05391595A JP5391595A JP3519813B2 JP 3519813 B2 JP3519813 B2 JP 3519813B2 JP 05391595 A JP05391595 A JP 05391595A JP 5391595 A JP5391595 A JP 5391595A JP 3519813 B2 JP3519813 B2 JP 3519813B2
Authority
JP
Japan
Prior art keywords
light
light source
subject
illumination
wiring pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05391595A
Other languages
Japanese (ja)
Other versions
JPH08247957A (en
Inventor
順一 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP05391595A priority Critical patent/JP3519813B2/en
Publication of JPH08247957A publication Critical patent/JPH08247957A/en
Application granted granted Critical
Publication of JP3519813B2 publication Critical patent/JP3519813B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、規則性な配線を持つ
液晶基板又はICウエハの欠陥を検出する欠陥検出方法
及び欠陥検出装置。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a defect detecting method and a defect detecting apparatus for detecting defects in a liquid crystal substrate or an IC wafer having regular wiring.

【0002】[0002]

【従来の技術】従来の液晶基板やICウエハ等の外観検
査は、その欠陥の種類に応じた検査光を様々な角度から
照射し、基板上で反射した欠陥像を含む反射光を目視或
いはCCD等の撮像素子により、観察することが一般に
行われていた。なお、欠陥には様々な種類があり、これ
ら欠陥の種類によって検査光も各々異ならせる必要があ
る。
2. Description of the Related Art In the conventional visual inspection of liquid crystal substrates, IC wafers, etc., inspection light is irradiated from various angles according to the type of the defect, and the reflected light including the defect image reflected on the substrate is visually or CCD. It was generally observed by an image pickup device such as. There are various types of defects, and it is necessary to make the inspection light different depending on the types of defects.

【0003】例えば、基板表面にショットずれ或いはピ
ントずれがある場合、それらの欠陥検出には、正常時の
パターンエッジから発せられた回折光が作りだす分光縞
と、異常時のパターンエッジから発せられる回折光が作
りだす分光縞との比較により、被検体である基板のパタ
ーン変形による分光縞の乱れを検出できるため、基板表
面に対して斜めの位置から、基板表面の格子状のパター
ンと直交するように検査光を照射させる方法が有効であ
る。回折光の分光縞とは、一般に回折格子による光の分
光作用であり、白色光が青色から赤色光に分光される現
象のことである。なお、ショットずれとは、基板表面の
下地のパターンに対して、ステッパの移動誤差が原因
で、発生するパターンのずれのことである。
For example, when there is a shot shift or a focus shift on the substrate surface, the detection of these defects is performed by the spectral fringes produced by the diffracted light emitted from the pattern edge in the normal state and the diffraction fringes emitted from the pattern edge in the abnormal state. By comparing with the spectral fringes created by the light, it is possible to detect the disturbance of the spectral fringes due to the pattern deformation of the substrate that is the subject, so that it should be orthogonal to the lattice pattern on the substrate surface from an oblique position with respect to the substrate surface. The method of irradiating the inspection light is effective. Spectral fringes of diffracted light are generally a spectral action of light by a diffraction grating, and are a phenomenon in which white light is split into blue light and red light. The shot shift is a shift of the pattern generated due to a movement error of the stepper with respect to the underlying pattern on the substrate surface.

【0004】一般に、図6(a)に示すように、対角1
0インチ程度のパネル1では、ショットの大きさに限界
があるため、パネル1の1/4の大きさのショット2を
4ショットうつことにより、1枚の印画が作成される。
ところが、図6(b)に示すように、4つのうち1つの
ショット2’でもずれがあると、パネル1の1/4は色
が変わって見えてしまう。
Generally, as shown in FIG.
Since the size of the shot is limited in the panel 1 of about 0 inch, one shot is created by moving four shots 2 each having a size of 1/4 of the panel 1.
However, as shown in FIG. 6B, if there is a deviation even in one of the four shots 2 ', the color of 1/4 of the panel 1 appears to change.

【0005】また、ピントずれとは、基板表面への露光
時のパターンのピントが合っていない時に、基板表面上
にぼやけたような分光縞ができてしまうことである。ま
た、基板表面に傷や塵或いは突起等がある場合、それら
の欠陥検出には、基板表面の欠陥部分から発せられる散
乱光を利用して欠陥の観察行うために、基板表面に対し
て斜めの位置から、基板表面上の格子状のパターンと斜
交するように検査光を照射させる方法が有効である。
Defocusing means that when the pattern on the surface of the substrate is not in focus during exposure, blurred spectral fringes are formed on the surface of the substrate. In addition, when there are scratches, dust, protrusions, etc. on the substrate surface, in order to detect these defects, the scattered light emitted from the defective portion of the substrate surface is used to observe the defects. A method of irradiating the inspection light from a position so as to obliquely intersect the grid pattern on the substrate surface is effective.

【0006】他にも、レジストの膜厚ムラや飛び散りの
ような欠陥検出は、等膜厚干渉縞の乱れを利用して検出
することができるため、基板表面を干渉照明する干渉照
明光学系を用いる方法が有効である。よって、従来は上
述したような光学系を具備する装置を用いて、液晶基板
やICウエハ等の外観検査における欠陥検出を漏れなく
行っていた。
In addition, since defects such as uneven film thickness and scattering of the resist can be detected by utilizing the disturbance of the equal film thickness interference fringes, an interference illumination optical system for interference illumination of the substrate surface is used. The method used is effective. Therefore, conventionally, defect detection in visual inspection of liquid crystal substrates, IC wafers and the like has been performed without omission by using an apparatus having the above-described optical system.

【0007】[0007]

【発明が解決しようとする課題】ところが、液晶基板或
いはICウエハ等の外観検査を行う場合、一般に検査時
間には時間制限があるので、全ての光学系による欠陥の
検出を漏れなく行おうとすると、検査時間に対する時間
制限を越えてしまうという問題があった。この理由とし
ては、従来は一枚当たりの基板に対して、一つの光学系
で一つの欠陥の抽出及び欠陥の有無の判定を行っていた
為であった。
However, when performing a visual inspection of a liquid crystal substrate, an IC wafer, or the like, the inspection time is generally limited, so that it is necessary to detect defects by all the optical systems without omission. There was a problem that the time limit for the inspection time was exceeded. The reason for this is that in the past, one optical system was used to extract one defect and determine the presence / absence of a defect for each substrate.

【0008】そのため、漏れのない欠陥検出を行わせよ
うとして、複数の異なった欠陥検出を行おうとすると、
欠陥の抽出及び欠陥の有無の判定を各光学系についてし
なくてはならなくなるので、その結果、漏れのない欠陥
の検出は検査時間の増長につながっていた。また、各光
学系を用いて個々に検査を行い、漏れのない欠陥検出を
行うことは可能であっても、検出した欠陥像は抽出した
光学系別表示を行うため、全ての欠陥を同一画面上に表
示することができず、一目で全体の欠陥の分布状況等を
把握することができないと言う問題もあった。
For this reason, if a plurality of different defect detections are attempted in order to detect leak-free defects,
Since it is necessary to extract defects and judge the presence / absence of defects for each optical system, the detection of defects without leaks leads to an increase in inspection time. In addition, even though it is possible to perform inspections individually using each optical system and detect defects without leakage, all detected defects are displayed on the same screen because the detected defect images are displayed separately for each optical system. There is also a problem in that it cannot be displayed above, and it is not possible to grasp the distribution status of defects as a whole at a glance.

【0009】上記問題点の解決方法として、各光学系が
検出した像を合成するという方法が考えられるが、この
方法には画像処理装置等が必要となるため、装置全体を
複雑にしてしまうという問題がある。この発明の目的
は、同一画面上に全ての欠陥を表示することができると
共に、装置構造の複雑化と検査時間の増長を伴わない欠
陥検出方法及び欠陥検出装置を提供するものである。
As a method for solving the above problems, a method of synthesizing the images detected by the respective optical systems is conceivable. However, this method requires an image processing device and the like, which makes the entire device complicated. There's a problem. An object of the present invention is to provide a defect detection method and a defect detection device which can display all defects on the same screen and which does not complicate the device structure and increase the inspection time.

【0010】[0010]

【課題を解決するための手段】本発明は、規則性を持っ
て配置された配線パターンを有する被検体の欠陥検出方
法において、前記被検体表面に対して斜め方向から入射
し前記配線パターンに対してほぼ直交する方向からアフ
ォーカルな照明光を照射する回折光源と、前記被検体表
面に対して斜め方向から入射し前記配線パターンに対し
て斜交する方向からアフォーカルな照明光を照射する散
乱光源と、前記被検体表面に対して垂直方向から入射し
前記配線パターン面に対してほぼ真上からアフォーカル
な照明光を照射する干渉光源と、前記被検体表面の画像
を撮像する撮像素子とを有し、前記被検体の種類別に前
記各光源の光量が最適になるように調節し、前記被検体
の同じ照明範囲に前記それぞれの光源からの照明光を照
射し、該被検体表面からの反射光を前記撮像素子で撮像
し、この撮像素子で取得された前記各光源に対応する各
欠陥画像を同一の画面上に表示できるようにする。
According to the present invention, there is provided a method of detecting a defect of an object having a wiring pattern arranged with regularity, wherein the wiring pattern is incident on the surface of the object obliquely. Africa from a direction substantially perpendicular to Te
A diffraction light source for irradiating Okaru illumination light, and a scattering light source for the irradiation of the afocal illumination light from oblique direction with respect to the wiring pattern incident obliquely to the surface of the object, the subject surface Incident perpendicularly to the wiring pattern surface and afocal from almost directly above the wiring pattern surface.
An interfering light source for irradiating different illumination light and an image pickup device for picking up an image of the surface of the subject,
The light quantity of each light source is adjusted to be optimum, and the illumination light from each of the light sources is applied to the same illumination range of the subject.
And image the reflected light from the subject surface with the image sensor.
Then, each defect image corresponding to each of the light sources acquired by this image sensor can be displayed on the same screen.

【0011】また、規則性を持って配置された配線パタ
ーンを有する被検体の欠陥検出装置において、前記被検
体表面に対して斜め方向から入射し前記配線パターンに
対してほぼ直交する方向からアフォーカルな照明光を照
射する回折光源と、前記被検体表面に対して斜め方向か
ら入射し前記配線パターンに対して斜交する方向から
フォーカルな照明光を照射する散乱光源と、前記被検体
表面に対して垂直方向から入射し前記配線パターン面に
対してほぼ真上からアフォーカルな照明光を照射する干
渉光源と、前記被検体の種類別に前記各光源の光量を最
適になるように調整する光量制御部と、前記各光源によ
り同じ照射領域に照射された前記被検体表面の画像を撮
像する撮像素子と、前記撮像素子により撮像された前記
被検体表面での各種欠陥画像を同一の画面上に表示する
画像表示装置とから構成する。
Further, in a defect detecting device for a subject having a wiring pattern arranged with regularity, an afocal light is incident from a direction oblique to the surface of the subject and substantially orthogonal to the wiring pattern. and Do diffraction light source that emits illumination light, a the oblique direction with respect to the wiring pattern incident obliquely to the surface of the object
A scattering light source for irradiating a focal illumination light, an interference light source for irradiating an afocal illumination light from directly above the wiring pattern surface which is incident from a direction perpendicular to the subject surface, and an interference light source of the subject. The amount of light from each of the light sources is
A light amount control unit that adjusts to be suitable, an image sensor that captures an image of the subject surface illuminated by the light sources in the same irradiation region, and various types of the subject surface that are imaged by the image sensor. The image display device displays defect images on the same screen.

【0012】[0012]

【0013】[0013]

【作用】本発明の欠陥検出方法では、複数の欠陥に対応
する複数種類の光源を用いて、各光源ごとに最適な光量
に調整して被検体表面に同時に照射し、被検体表面から
の各種光源特有の欠陥を撮像素子により撮像することに
より、同一画面上に表示することができる。
In the defect detection method of the present invention, a plurality of types of light sources corresponding to a plurality of defects are used, and the optimum amount of light is adjusted for each light source to irradiate the subject surface at the same time. By picking up an image of a defect peculiar to a light source with an image pickup device, it can be displayed on the same screen.

【0014】また、本発明の欠陥検出装置では、複数種
類の光源に対してそれぞれ最適な光量になるように光量
制御部で調整し、これらの光源の照明光を被検体へ同時
に照射して撮像素子により撮像することにより、被検体
上の各種欠陥を画像表示装置に同時に表示させることが
できる。
Further, in the defect detecting apparatus of the present invention, the light quantity control unit adjusts the light quantity for each of a plurality of types of light sources so that the light quantity is optimum, and the illumination light of these light sources is simultaneously irradiated to the object to be imaged. By imaging with the element, various defects on the subject can be simultaneously displayed on the image display device.

【0015】[0015]

【実施例】以下、この発明の実施例について図を用いて
説明する。 (第1実施例)図1は、この発明を実施するための欠陥
検出装置の構成図を示したものであり、図2は、図1の
照明部分の平面図を示したものである。
Embodiments of the present invention will be described below with reference to the drawings. (First Embodiment) FIG. 1 shows a block diagram of a defect detecting apparatus for carrying out the present invention, and FIG. 2 shows a plan view of an illumination portion of FIG.

【0016】標本Sを載置するステージ10は、直交す
る方向で移動可能なX−Yステージから構成されてい
る。上記標本Sとしては、ガラス又はシリコン基板上に
規則正しく、格子状の配線が多数刻印された液晶基板又
はICウエハを用いる。光源Aは、標本S表面でのショ
ットずれ或いはピントずれ等を検出するのに有効な回折
光源11である。回折光源11は、照明用の凸レンズ1
2を介して、標本S表面の照野13に斜め上方の位置か
ら、標本S表面の配線に直交する方向にアフォーカルな
照明光14を照射できるように配置されている。
The stage 10 on which the sample S is placed is composed of an XY stage which can move in a direction orthogonal to each other. As the sample S, a liquid crystal substrate or an IC wafer in which a large number of grid-like wirings are regularly marked on a glass or silicon substrate is used. The light source A is a diffractive light source 11 that is effective for detecting a shot shift, a focus shift, or the like on the surface of the sample S. The diffraction light source 11 is a convex lens 1 for illumination.
It is arranged so that the afocal illumination light 14 can be emitted from a position obliquely above to the illumination field 13 on the surface of the sample S via 2 via a line 2 in a direction orthogonal to the wiring on the surface of the sample S.

【0017】光源Bは、標本S表面の傷や塵或いは突起
等を検出するのに有効な散乱光源15,16である。一
対の散乱光源15,16は、照明用の凸レンズ17,1
8を介して、回折光源11と同じ照野13に斜め上方の
位置、この場合45度近傍の角度から、標本S表面の配
線に斜交する方向にアフォーカルな照明光19,20が
照射できるように配置されている。
The light source B is the scattered light sources 15 and 16 effective for detecting scratches, dust, protrusions, etc. on the surface of the sample S. The pair of scattered light sources 15 and 16 includes convex lenses 17 and 1 for illumination.
Afocal illumination light 19 and 20 can be applied to the same illumination field 13 as the diffractive light source 11 from a diagonally upper position, in this case, an angle near 45 degrees, in a direction diagonally intersecting the wiring on the surface of the sample S via 8. Are arranged as follows.

【0018】上述した凸レンズ12,17,18は、各
光源から出た照明光14,19,20をアフォーカルな
状態にして、標本S表面上の照射範囲に対応した径、即
ち検査範囲よりも十分に大きい径を有するものを用い
る。光源Cは、標本Sのレジストの膜厚ムラや飛び散り
等を検出するのに有効な干渉光源21である。干渉光源
21は、後述する干渉用の光学系を介して、標本S表面
の上記各光源と同じ照野13に上方の位置からアフォー
カルな照明光22を照射できるように配置されている。
The above-mentioned convex lenses 12, 17, and 18 make the illumination light 14, 19, and 20 emitted from each light source into an afocal state, and have a diameter corresponding to the irradiation range on the surface of the sample S, that is, the inspection range. A material having a sufficiently large diameter is used. The light source C is an interference light source 21 that is effective for detecting unevenness in film thickness of the resist of the sample S, scattering, and the like. The interference light source 21 is arranged so as to be able to irradiate the same illumination field 13 on the surface of the sample S with the afocal illumination light 22 from an upper position via an interference optical system described later.

【0019】干渉用の光学系に関して詳述すると、初め
に干渉光源21の照明光22’は、直径約1cm程度の
開口部のスリット23を介して、ハーフミラー24に導
いた後、ハーフミラー24で反射された照明光22’を
標本S表面の照野13に向けてをアフォーカルな状態で
照射できるように、結像レンズ25を配置する。なお、
結像レンズ25は、回折光源11や散乱光源15,16
からの照明光14,19,20を遮らない位置に配置す
る。
The interference optical system will be described in detail. First, the illumination light 22 'of the interference light source 21 is guided to the half mirror 24 through the slit 23 of the opening having a diameter of about 1 cm, and then the half mirror 24. The image forming lens 25 is arranged so that the illumination light 22 ′ reflected by can be irradiated to the illumination field 13 on the surface of the sample S in an afocal state. In addition,
The imaging lens 25 includes a diffraction light source 11 and scattering light sources 15 and 16
It is arranged at a position where the illumination lights 14, 19, and 20 from are not blocked.

【0020】また、上述した標本S表面の照野13で反
射した各種欠陥像を有する反射光は、再び結像レンズ2
5を透過して、反射光を撮像するために配置した検出手
段に結像させる。検出手段には、主に撮像素子を用いて
おり、この実施例では、その撮像素子にCCDカメラ2
6を用いた。CCDカメラ26は、結像レンズ25の焦
点位置付近の瞳位置に配置する。
Further, the reflected light having various defect images reflected by the illumination field 13 on the surface of the sample S is again formed by the imaging lens 2.
After passing through 5, the reflected light is imaged on the detection means arranged for imaging. An image sensor is mainly used as the detecting means. In this embodiment, the CCD camera 2 is used as the image sensor.
6 was used. The CCD camera 26 is arranged at the pupil position near the focal position of the imaging lens 25.

【0021】さらに、CCDカメラ26で撮像された欠
陥像を映し出すために、CCDカメラ26には画像表示
装置としてモニター27が接続される。また、これらの
構成を制御する制御系は、測定を行う標本の種類や区分
け等のデータ入力を行う標本データ入力部28と、標本
データ入力部28により入力された標本データと共に、
各光源11,15,16,21の光量を記憶するデータ
記憶部29と、各光量データに従ったデジタル値を出力
する光量制御部30と、光量制御部30と各々接続し、
光量制御部30が出力したデジタル値をアナログ化する
D/Aコンバータ31とから構成される。
Further, in order to display the defect image picked up by the CCD camera 26, a monitor 27 is connected to the CCD camera 26 as an image display device. Further, the control system for controlling these configurations, together with the sample data input unit 28 for inputting data such as the type and division of the sample to be measured, and the sample data input by the sample data input unit 28,
A data storage unit 29 that stores the light intensity of each of the light sources 11, 15, 16, and 21, a light intensity control unit 30 that outputs a digital value according to each light intensity data, and a light intensity control unit 30 are connected,
It is composed of a D / A converter 31 for converting the digital value output from the light quantity control unit 30 into an analog signal.

【0022】図3は、データ記憶部29に入力される各
光源の光量データ形式の例を示したものであり、例えば
図3中に示されている1A−○○○○は、回折光の光量
が多く発生し、干渉光が少なくてよい場合等に、回折光
を256階調の34、干渉光を11のレベルにセットす
る際の標本名として用いた例である。このように各光量
データは、用いる標本の名前によりラベル付けされてお
り、データ内の内容は、各光源の光量を回折、散乱、干
渉の順に8bitの256階調で表記される。
FIG. 3 shows an example of the light quantity data format of each light source input to the data storage unit 29. For example, 1A- ○○○○ shown in FIG. 3 is the diffracted light. This is an example used as a sample name when setting the diffracted light to 34 of 256 gradations and the interference light to the level of 11 when a large amount of light is generated and the interference light may be small. As described above, each light amount data is labeled by the name of the sample to be used, and the contents in the data are expressed by the light amount of each light source in the order of diffraction, scattering, and interference in 256 gradations of 8 bits.

【0023】この理由として、例えば金属の薄膜が全面
にコートされているような標本の欠陥検出の場合、標本
表面は鏡のようになっているため、標本表面で反射され
る干渉光源からの照明光は大変強くなってしまい、その
他の光源からの回折光源や散乱光源からの照明光はその
反射光中に埋もれてしまい欠陥検出を行うことができな
いためであり、そのため、この様な標本においては、干
渉光源の光量の設定を少なくする必要があるので、各光
源の光量の組み合わせは、標本別にする必要があった。
The reason for this is that, for example, in the case of defect detection of a sample in which a metal thin film is coated on the entire surface, since the sample surface is like a mirror, illumination from an interference light source reflected by the sample surface is performed. This is because the light becomes very strong, and the illumination light from the diffracted light source and scattered light source from other light sources is buried in the reflected light and cannot detect defects. Therefore, in such a sample, Since it is necessary to reduce the setting of the light amount of the interference light source, the combination of the light amount of each light source needs to be set for each sample.

【0024】よって、標本状況別に予め設定された光量
データによって制御された光源により検査を行えば、検
出される欠陥はそれぞれの検査光が検出できる欠陥全て
を含んだものになり、欠陥の検出漏れを生じることを防
止することができる。上述した第1実施例の動作を以下
に説明する。標本Sの欠陥検出を行う場合、最初に、ス
テージ10上に標本Sを載置し図3に示す、標本Sの名
前を標本データ入力部28からデータ記憶部29に入力
すると、入力された標本名に対応する光量データが、デ
ータ記憶部29から光量制御部30へ送られ、光量制御
部30は、その値に従ったデジタル値の出力を行う。出
力されたデジタル値は、D/Aコンバータ31によって
アナログ化され、各光源11,15,16,21の光量
をそれぞれコントロールする。
Therefore, when the inspection is performed by the light source controlled by the light quantity data set in advance for each sample situation, the detected defects include all the defects that can be detected by the respective inspection lights, and the defects are not detected. Can be prevented. The operation of the above-described first embodiment will be described below. When detecting a defect of the sample S, first, the sample S is placed on the stage 10 and the name of the sample S shown in FIG. 3 is input from the sample data input unit 28 to the data storage unit 29. Light amount data corresponding to the name is sent from the data storage unit 29 to the light amount control unit 30, and the light amount control unit 30 outputs a digital value according to the value. The output digital value is converted into an analog signal by the D / A converter 31 and controls the light amount of each of the light sources 11, 15, 16 and 21.

【0025】回折光源11からの照明光14は、凸レン
ズ12によってアフォーカルな状態にされ、標本S表面
上に照射される。照射された照明光14の大部分は、標
本S上で入射角に対応した反射角で反射されるが、標本
S上にショットずれ或いはピントずれがある場合、格子
状パターンのエッジ部分での回折現象による回折光が正
常部に対して異なった波長を持つ。この回折光を標本S
の上方に配置される結像レンズ25で収束し、CCDカ
メラ26の結像面上に図4(a)に示すような標本Sの
格子状パターンのエッジ部分での回折光(イ)を収束さ
せ、そのことにより、欠陥像を得ることができる。
The illumination light 14 from the diffractive light source 11 is made afocal by the convex lens 12 and is irradiated onto the surface of the sample S. Most of the illuminated illumination light 14 is reflected on the sample S at a reflection angle corresponding to the incident angle, but if there is a shot shift or a focus shift on the sample S, diffraction at the edge portion of the grid pattern The light diffracted by the phenomenon has a different wavelength from the normal part. This diffracted light is used as the sample S
4 is converged by the imaging lens 25 disposed above, and the diffracted light (a) at the edge portion of the lattice pattern of the sample S as shown in FIG. By doing so, a defect image can be obtained.

【0026】また、一対の散乱光源15,16からの照
明光19,20は、回折光源11とほぼ同じ照野13内
に、凸レンズ17,18によって同じ大きさで照射され
る。照射された照明光17,18は、標本S上に傷や塵
或いは突起等がある場合、散乱光を生じさせて、上述し
た回折光の場合と同様に結像レンズ25を介して、CC
Dカメラ26上の結像面上に図4(b)に示すような標
本S上の傷(ロ)や塵(ハ)による散乱光を収束させ
る。
Illumination lights 19 and 20 from the pair of scattering light sources 15 and 16 are illuminated by the convex lenses 17 and 18 in the same size into the illumination field 13 that is substantially the same as the diffraction light source 11. When the specimen S has scratches, dust, protrusions, or the like, the irradiated illumination lights 17 and 18 generate scattered light and pass through the imaging lens 25 as in the case of the diffracted light described above, and the CC
Scattered light due to scratches (b) and dust (c) on the sample S as shown in FIG. 4B is converged on the image forming surface of the D camera 26.

【0027】また、干渉光源21からの照明光22’
は、結像レンズ25の焦点位置に置かれたスリット23
の開口部を通り、ハーフミラー24で結像レンズ25側
へ照明光22’を反射させて、結像レンズ25によって
アフォーカルな照明光22となり、標本Sに対して垂直
に照射される。照射された照明光22は、標本S上に膜
厚ムラ等がある場合、干渉パターンを生じさせて、回折
光の場合と同様に結像レンズ25を介して、CCDカメ
ラ26上の結像面上に図4(c)に示すような標本S表
面での干渉光(ニ)を収束させる。
Illumination light 22 'from the interference light source 21
Is the slit 23 placed at the focal position of the imaging lens 25.
The illumination light 22 ′ is reflected by the half mirror 24 toward the imaging lens 25 side through the opening of the above, and becomes the afocal illumination light 22 by the imaging lens 25, and the sample S is irradiated perpendicularly. When the sample S has uneven film thickness or the like, the irradiated illumination light 22 causes an interference pattern, and through the imaging lens 25, as in the case of diffracted light, an imaging surface on the CCD camera 26. The interference light (d) on the surface of the sample S as shown in FIG.

【0028】以上のような、光量をコントロールされた
各光源11,15,16,21は、標本S表面を同時に
照射し、標本S上で反射した各光源11,15,16,
21に対応した欠陥像を、同時にCCDカメラ26に収
束させる。標本Sの各欠陥像は、CCDカメラ26から
モニター27上に、図4(d)に示すような標本S表面
の全ての欠陥像を表示する。
Each of the light sources 11, 15, 16, 21 whose light amount is controlled as described above illuminates the surface of the sample S at the same time and is reflected on the sample S.
The defect image corresponding to 21 is simultaneously focused on the CCD camera 26. For each defect image of the sample S, all the defect images on the surface of the sample S as shown in FIG. 4D are displayed on the monitor 27 from the CCD camera 26.

【0029】なお、CCDカメラ26上の結像面上に結
像された像は、各光源の光量が適当に調節されているた
め、それぞれの光源11,15,16,21による標本
Sでの回折光,散乱光,干渉光による欠陥像は全て検出
され表示される。従ってこの実施例により、液晶基板や
ICウエハの欠陥検出において、従来行われていた単一
光源による検査と同程度の時間内で、多数の光源による
欠陥検出を行うことができ、その結果、各光源で得られ
る特有の欠陥を同時に検出、表示することができる。
In the image formed on the image forming surface of the CCD camera 26, the light amount of each light source is appropriately adjusted, and therefore, the image of the sample S by each light source 11, 15, 16, 21 is obtained. Defect images due to diffracted light, scattered light, and interference light are all detected and displayed. Therefore, according to this embodiment, in the defect detection of the liquid crystal substrate or the IC wafer, the defect detection by a large number of light sources can be performed within the same time as the inspection by the single light source which has been conventionally performed. It is possible to detect and display the peculiar defects obtained by the light source at the same time.

【0030】また、例えば各光源の照明光路にそれぞれ
シャッターを設けることで、それぞれの個々の光源で、
必要な欠陥像の検出のみを行うこともできる。さらに、
この発明は実施例に記載されたものに限定されるもので
はなく、図5に示すように、干渉光源21’と、この干
渉光源21’から発した照明光をアフォーカルな状態の
平行光束にする凸レンズ32と、標本Sと結像レンズ2
5との間に配置され凸レンズ32から入射する干渉光源
からの照明光22”を標本S側へ光軸と平行に反射させ
る位置にハーフミラー24’とを備えることもできる。
Further, for example, by providing a shutter in the illumination optical path of each light source,
It is also possible to detect only the required defect image. further,
The present invention is not limited to the one described in the embodiment, and as shown in FIG. 5, the interference light source 21 ′ and the illumination light emitted from the interference light source 21 ′ are converted into a parallel light flux in an afocal state. Convex lens 32, sample S, and imaging lens 2
5 may be provided with a half mirror 24 'at a position for reflecting the illumination light 22 "from the interference light source incident from the convex lens 32 toward the sample S side in parallel to the optical axis.

【0031】このように構成することによって、干渉光
源の照明光が結像レンズの表面で反射されないので、欠
陥像のコントラストが良くなる。
With this structure, the illumination light of the interference light source is not reflected on the surface of the imaging lens, so that the contrast of the defect image is improved.

【0032】[0032]

【発明の効果】以上のようにこの発明によれば、液晶基
板やICウエハの欠陥検出において、単一光源による検
査と同程度の時間内で、多種の光源による検査ができ、
各光源で得られる特有の欠陥を同時に検出、表示するこ
とができる。
As described above, according to the present invention, in the defect detection of a liquid crystal substrate or an IC wafer, it is possible to inspect with various light sources within the same time as an inspection with a single light source,
It is possible to simultaneously detect and display the specific defects obtained by each light source.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1実施例の欠陥検出装置の構成図を示したも
のである。
FIG. 1 is a diagram showing a configuration of a defect detection device according to a first embodiment.

【図2】図1の照明部分の平面図を示したものである。FIG. 2 shows a plan view of the illumination portion of FIG.

【図3】各光源の光量データ形式の例を示したものであ
る。
FIG. 3 shows an example of a light quantity data format of each light source.

【図4】(a)回折光源により検出できる欠陥像を示し
たものである。 (b)散乱光源により検出できる欠陥像を示したもので
ある。 (c)干渉光源により検出できる欠陥像を示したもので
ある。 (d)この実施例により表示できる欠陥像を示したもの
である。
FIG. 4A shows a defect image that can be detected by a diffraction light source. (B) shows a defect image that can be detected by a scattered light source. (C) shows a defect image that can be detected by an interference light source. (D) shows a defect image which can be displayed by this embodiment.

【図5】他の実施例の構成図を示したものである。FIG. 5 is a diagram showing a configuration of another embodiment.

【図6】(a)パネルの印画を示したものである。 (b)パネルの印画を示したものである。FIG. 6 (a) shows an image printed on a panel. (B) It shows the print of the panel.

【符号の説明】[Explanation of symbols]

1 パネル 2,2’ ショット 10 ステージ 11 回折光源 12,17,18 凸レンズ 13 照野 14,19,20,22,22’,22” 照明光 15,16 散乱光源 21,21’ 干渉光源 23 スリット 24,24’ ハーフミラー 25 結像レンズ 26 CCDカメラ 27 モニター 28 標本データ入力部 29 データ記憶部 30 光量制御部 31 D/Aコンバータ 32 凸レンズ 1 panel 2,2 'shot 10 stages 11 Diffraction light source 12, 17, 18 Convex lens 13 Teruno 14,19,20,22,22 ', 22 "Illumination light 15,16 Scattered light source 21,21 'interference light source 23 slits 24, 24 'half mirror 25 Imaging lens 26 CCD camera 27 monitors 28 Sample data input section 29 Data storage section 30 Light intensity controller 31 D / A converter 32 convex lens

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 規則性を持って配置された配線パターン
を有する被検体の欠陥検出方法において、 前記被検体表面に対して斜め方向から入射し前記配線パ
ターンに対してほぼ直交する方向からアフォーカルな
明光を照射する回折光源と、 前記被検体表面に対して斜め方向から入射し前記配線パ
ターンに対して斜交する方向からアフォーカルな照明光
照射する散乱光源と、 前記被検体表面に対して垂直方向から入射し前記配線パ
ターン面に対してほぼ真上からアフォーカルな照明光を
照射する干渉光源と、 前記被検体表面の画像を撮像する撮像素子とを有し、前記被検体の種類別に前記各光源の光量が他の光源の照
明光に埋もれない最適な光量になるように調節し、 前記
被検体の同じ照明範囲に前記それぞれの光源からの照明
光を照射し、該被検体表面からの反射光を前記撮像素子
撮像し、この撮像素子で取得された前記各光源に対応
する各欠陥画像を同一の画面上に表示することを特徴と
する欠陥検出方法。
1. A defect detection method for an object having a wiring pattern arranged with regularity, comprising : afocal from a direction which is obliquely incident on the surface of the object and is substantially orthogonal to the wiring pattern. Do irradiation <br/> and diffraction light source that emits bright light, afocal illumination light from oblique direction with respect to the wiring pattern incident obliquely to the surface of the object
A scattering light source for irradiating the subject surface, an interference light source for irradiating the wiring pattern surface with an afocal illumination light which is incident from a direction perpendicular to the subject surface, and the subject surface. Image pickup device for picking up an image of each of the light sources.
Illumination from each of the light sources in the same illumination range of the subject as adjusted so that the light amount is not buried in bright light.
Corresponds to each light source acquired by irradiating light, capturing the reflected light from the surface of the subject with the image sensor, and capturing with the image sensor.
A defect detection method characterized in that each defect image is displayed on the same screen.
【請求項2】 前記各光源の光量は前記被検体別に予め
設定された光量データに基づいて設定され、前記干渉光
源による反射光中に前記回折光源又は前記散乱光源の照
明光が埋もれないように前記干渉光源の光量を前記回折
光源又は前記散乱光源の光量より少なく設定することを
特徴とする請求項1記載の欠陥検出方法。
2. The amount of light of each light source is preset for each subject.
The interference light is set based on the set light intensity data.
The diffracted or scattered light source in the light reflected by the source.
The amount of light of the interference light source is set to the diffraction so that bright light is not buried.
The defect detection method according to claim 1, wherein the amount of light is set to be smaller than that of the light source or the scattering light source .
【請求項3】 規則性を持って配置された配線パターン
を有する被検体の欠陥検出装置において、 前記被検体表面に対して斜め方向から入射し前記配線パ
ターンに対してほぼ直交する方向からアフォーカルな
明光を照射する回折光源と、 前記被検体表面に対して斜め方向から入射し前記配線パ
ターンに対して斜交する方向からアフォーカルな照明光
照射する散乱光源と、 前記被検体表面に対して垂直方向から入射し前記配線パ
ターン面に対してほぼ真上からアフォーカルな照明光を
照射する干渉光源と、前記被検体の種類別に前記各光源の光量が他の光源の照
明光に埋もれない最適な光量になるように 調整する光量
制御部と、 前記各光源により同じ照射領域に照射された前記被検体
表面の画像を撮像する撮像素子と、 前記撮像素子により撮像された前記被検体表面での各種
欠陥画像を同一の画面上に表示する画像表示装置と、 を具備したことを特徴とする欠陥検出装置。
3. A defect detection apparatus for a subject having a wiring pattern arranged in a regular manner, wherein an afocal light is incident on the surface of the subject from an oblique direction and is substantially orthogonal to the wiring pattern. Do irradiation <br/> and diffraction light source that emits bright light, afocal illumination light from oblique direction with respect to the wiring pattern incident obliquely to the surface of the object
A scattering light source for irradiating the subject, an interference light source for irradiating the wiring pattern surface with an afocal illumination light from directly above the subject surface, and an interfering light source for the subject. Depending on the type, the light intensity of each light source may
A light amount control unit that adjusts to an optimal light amount that is not buried in bright light, an image sensor that captures an image of the subject surface that is irradiated to the same irradiation region by each light source, and the image captured by the image sensor. An image display device, which displays various defect images on the surface of a subject on the same screen, and a defect detection device.
【請求項4】前記光量制御部は、前記被検体の種類に応
じて前記各光源の最適な光量を記憶するデータ記憶部を
有することを特徴とする請求項3記載の欠陥検出装置。
4. The defect detecting apparatus according to claim 3, wherein the light quantity control section has a data storage section for storing an optimum light quantity of each of the light sources according to the type of the object.
【請求項5】前記光量制御部は、反射の高い前記被検体
に対して前記干渉光源による反射光中に前記回折光源又
は前記散乱光源の照明光が埋もれないように前記干渉光
源の光量を前記回折光源又は前記散乱光源の光量より少
なく設定することを特徴とする請求項3記載の欠陥検出
装置。
5. The light amount control section is provided for the subject with high reflection.
With respect to the diffracted light source or
Is the interference light so that the illumination light of the scattered light source is not buried.
The light intensity of the light source is less than that of the diffractive light source or the scattering light source.
The defect detection device according to claim 3, wherein the defect detection device is set to be omitted.
【請求項6】前記散乱光源は、前記配線パターンに直交
する軸に対してほぼ対象となるように前記配線パターン
に対して斜交する方向に一対配置したことを特徴とする
請求項3記載の欠陥検出装置。
6. A pair of the scattered light sources are arranged in a direction oblique to the wiring pattern so as to be substantially symmetrical with respect to an axis orthogonal to the wiring pattern. Defect detection device.
【請求項7】前記回折光源、散乱光源及び干渉光源は、
それぞれの照明光路にシャッターを設け、前記各照明光
源を任意に組み合わせて、又は個々の光源を単独にて前
記被検体に照射することを特徴とする請求項3記載の欠
陥検出装置。
7. The diffractive light source, the scattering light source, and the interference light source,
4. The defect detecting apparatus according to claim 3, wherein a shutter is provided in each illumination optical path, and each of the illumination light sources is arbitrarily combined, or each of the individual light sources irradiates the subject.
JP05391595A 1995-03-14 1995-03-14 Defect detection method and defect detection device Expired - Fee Related JP3519813B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05391595A JP3519813B2 (en) 1995-03-14 1995-03-14 Defect detection method and defect detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05391595A JP3519813B2 (en) 1995-03-14 1995-03-14 Defect detection method and defect detection device

Publications (2)

Publication Number Publication Date
JPH08247957A JPH08247957A (en) 1996-09-27
JP3519813B2 true JP3519813B2 (en) 2004-04-19

Family

ID=12956013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05391595A Expired - Fee Related JP3519813B2 (en) 1995-03-14 1995-03-14 Defect detection method and defect detection device

Country Status (1)

Country Link
JP (1) JP3519813B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002131242A (en) * 2000-10-27 2002-05-09 M I L:Kk Image for surface inspection
JP4649051B2 (en) * 2001-03-21 2011-03-09 オリンパス株式会社 Inspection screen display method and substrate inspection system
KR100429637B1 (en) * 2001-12-17 2004-05-03 엘지전자 주식회사 Light Source Device with a Multi-Path and Operating Method for the Same
TW200540939A (en) * 2004-04-22 2005-12-16 Olympus Corp Defect inspection device and substrate manufacturing system using the same
JP2006113022A (en) * 2004-10-18 2006-04-27 Toppan Printing Co Ltd Defect detection device and method on antireflection film
TW200916763A (en) * 2007-06-03 2009-04-16 Camtek Ltd Multiple illumination path system and method for defect detection
KR100910574B1 (en) * 2008-05-29 2009-08-04 선문대학교 산학협력단 3-d measuring method by using multi wavelength reference phase
TW201215845A (en) * 2010-10-05 2012-04-16 Machvision Inc Illumination system for automatic optical inspection and assembly of it and camera system
KR101379448B1 (en) * 2013-04-10 2014-03-31 (주)넥스틴 Apparatus for examining pattern image of semiconductor wafer using multiple light device

Also Published As

Publication number Publication date
JPH08247957A (en) 1996-09-27

Similar Documents

Publication Publication Date Title
TWI336779B (en) Defect inspection apparatus, defect inspection method,method for fabricating photomask and method for transcribing pattern
JP3483948B2 (en) Defect detection device
US20060158643A1 (en) Method and system of inspecting mura-defect and method of fabricating photomask
US20110075134A1 (en) Defect Inspection Method and System
US20110141272A1 (en) Apparatus and method for inspecting an object surface defect
JP2001013085A (en) Flow inspection apparatus
JP3379805B2 (en) Surface defect inspection equipment
JPH0961365A (en) Surface defect inspecting device
TW555968B (en) Surface inspection apparatus
JP3936959B2 (en) Pattern defect inspection method and apparatus
JP3519813B2 (en) Defect detection method and defect detection device
US6646735B2 (en) Surface inspection apparatus and surface inspection method
JP2947513B1 (en) Pattern inspection equipment
JP6920009B2 (en) Defect detection device, defect detection method and defect observation device
JPH05264468A (en) Method and apparatus for detecting internal
JP2001091469A (en) Surface defect inspection device
JP2009109263A (en) Apparatus and method for inspection
JP2003202302A (en) Surface defect-inspecting apparatus
JP3078784B2 (en) Defect inspection equipment
JPH0783844A (en) Defect inspection device
JP2000028535A (en) Defect inspecting device
JP2653853B2 (en) Inspection method of periodic pattern
JP2000097867A (en) Defect detecting device and method for translucent substrate
JPH10213552A (en) Surface fault inspection method
JPH09218162A (en) Surface defect inspection device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040130

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100206

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees