JPH05264468A - Method and apparatus for detecting internal - Google Patents

Method and apparatus for detecting internal

Info

Publication number
JPH05264468A
JPH05264468A JP9236292A JP9236292A JPH05264468A JP H05264468 A JPH05264468 A JP H05264468A JP 9236292 A JP9236292 A JP 9236292A JP 9236292 A JP9236292 A JP 9236292A JP H05264468 A JPH05264468 A JP H05264468A
Authority
JP
Japan
Prior art keywords
inspected
light
incident
internal defect
defect detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9236292A
Other languages
Japanese (ja)
Other versions
JP2916321B2 (en
Inventor
Kazuo Moriya
一男 守矢
Hideo Wada
英男 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP4092362A priority Critical patent/JP2916321B2/en
Publication of JPH05264468A publication Critical patent/JPH05264468A/en
Application granted granted Critical
Publication of JP2916321B2 publication Critical patent/JP2916321B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PURPOSE:To detect an internal defect by casting a first and a second lights of the wavelength generating a relatively large amount of light data of the surface and the interior of an object into the object, and comparing the obtained light data with each other. CONSTITUTION:A visual field 203 of a TV camera observation system 201 is sectioned into detecting areas 1a-4a corresponding to the depth of layers 1b-4b of a to-be-detected object 105. A focal position is made corresponding to the depthwise position of the boundary between the layers 2b and 3b, and then the position of a laser beam 101 is adjusted so that a focused point 205 of the laser beam 101 comes to a position corresponding to the detecting area 1a, 2a, 3a, 4a as a target detecting layer. Accordingly, the detecting areas 1a-4a in the visual field 203 correspond to the layers 1b-4b. A first and a second lights of the wavelength generating a relatively large amount of light data on the surface and the interior of the object 105 are guided into the object 105, and the obtained light data for every incident light is compared, whereby an internal defect of the object is detected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、多層構造を有する半
導体ウエハ等の被検物体の内部欠陥を、レーザ光等を用
いて照明し、その散乱光等を観察して検出する方法およ
び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for illuminating an internal defect of an object to be inspected such as a semiconductor wafer having a multi-layer structure by using laser light or the like and observing scattered light or the like. ..

【0002】[0002]

【従来の技術】従来、Si結晶の多層構造を有する半導
体ウエハ等の各層内の欠陥を観察する方法としては、波
長1800nmのレーザ光を、そのビーム径を拡げてウ
エハに照射してその散乱光を観察する方法(T. Ogawa,
Lu Taijing and K. Toyoda, Jpn. J. Appl. Phys. 30(1
991)L1393)、Arレーザ等の固定波長のレーザをウエハ
に入射し、その反射光を観察する方法(E. F. Steigmei
er and H. Auderset, Applied Physics A, (1990)531)
等が知られている。
2. Description of the Related Art Conventionally, as a method of observing defects in each layer of a semiconductor wafer having a multi-layer structure of Si crystal, a laser beam having a wavelength of 1800 nm is irradiated on the wafer with its beam diameter expanded to scatter the scattered light. To observe (T. Ogawa,
Lu Taijing and K. Toyoda, Jpn. J. Appl. Phys. 30 (1
991) L1393), a method of irradiating a fixed wavelength laser such as an Ar laser on a wafer and observing the reflected light (EF Steigmei
er and H. Auderset, Applied Physics A, (1990) 531)
Etc. are known.

【0003】また、本発明者らの出願による特開平4−
24541号においては、入射レーザの波長を変えてウ
エハへの侵入深さを変化させることによって、ウエハ表
面からの特定深さの散乱像を得ることが知られている。
In addition, Japanese Patent Application Laid-Open No. 4-
In No. 24541, it is known that a scattering image of a specific depth from the wafer surface is obtained by changing the wavelength of the incident laser to change the penetration depth into the wafer.

【0004】一方、このような欠陥の観察に用いられる
顕微鏡における自動焦点機構においては、顕微鏡側から
レーザ光をウエハに照射し、その反射光を観察する方法
が用いられている。また、特定のパターンを投影し、そ
の像を観察することによって焦点を合わせる方法も知ら
れている。
On the other hand, in the automatic focusing mechanism in the microscope used for observing such defects, a method of irradiating the wafer with laser light from the microscope side and observing the reflected light is used. Also known is a method of focusing by projecting a specific pattern and observing the image.

【0005】しかしながら、前記固定波長のレーザを用
いる方法においては、欠陥が表面に存在するのか内部に
存在するのかが特定できないという問題がある。また、
特開平4−24541号記載の方法においては、深さ方
向の分解能が4〜5μmであり、Si結晶の多層構造に
おいて層の厚さがレーザ光の波長程度の数千Åの場合に
は、この分解能は低過ぎて、やはり、欠陥が表面に存在
するのか内部に存在するのかが特定できない。
However, in the method using the fixed wavelength laser, there is a problem that it is not possible to determine whether the defect exists on the surface or inside. Also,
In the method described in JP-A-4-24541, when the resolution in the depth direction is 4 to 5 μm and the layer thickness is several thousand Å, which is about the wavelength of the laser beam, in the multilayer structure of Si crystal, The resolution is too low to identify again whether the defect is on the surface or inside.

【0006】また、前記反射光を観察する焦点合せの方
法においては、レーザ光軸に対するウエハ法線の傾きが
±5°程度以内でなければ焦点を合わせることができな
いという問題がある。また、前記投影像を観察する焦点
合せ方法においては、これを積極的に傾けた試料に適用
するには特別の機構を必要とする。すなわち、パターン
を観察したい場所に投影してしまうと、焦点合せ後、パ
ターンがその後の計測に邪魔になるので、その対策が必
要になる。
Further, in the focusing method for observing the reflected light, there is a problem that the focusing cannot be performed unless the inclination of the wafer normal to the laser optical axis is within about ± 5 °. Further, in the focusing method for observing the projected image, a special mechanism is required to apply this to a sample that is positively tilted. In other words, if the pattern is projected onto a place where it is desired to be observed, the pattern interferes with the subsequent measurement after focusing, so that a countermeasure is required.

【0007】そこで本発明は、このような従来技術の問
題点に鑑み、多層構造を有する半導体ウエハ等の多層半
導体基板等における内部欠陥の検出を、欠陥が存在する
各層の位置や深さを特定して検出できるようにすること
にある。
In view of the above problems of the prior art, the present invention detects internal defects in a multi-layer semiconductor substrate such as a semiconductor wafer having a multi-layer structure and identifies the position and depth of each layer in which the defect exists. To be able to detect.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
本発明では、被検物体に所定の光を入射させ、それによ
って生じる被検物体からの光情報を観察光学系を介して
得、得られた光情報に基いて被検物体の内部欠陥を検出
する方法において、被検物体の表面における光情報を比
較的多く発生させる波長の第1の光と、被検物体の内部
における光情報を比較的多く発生させる波長の第2の光
とを被検物体に入射させ、各入射光毎にそれによって発
生する光情報を得、これら双方の光情報を比較して内部
欠陥を検出するようにしている。
In order to achieve the above object, according to the present invention, predetermined light is made incident on an object to be inspected, and optical information from the object to be inspected thereby is obtained and obtained through an observation optical system. In the method of detecting an internal defect of an object to be inspected based on the obtained optical information, the first light having a wavelength that generates a relatively large amount of optical information on the surface of the object to be inspected and the optical information inside the object to be inspected The second light having a wavelength that is generated relatively often is made incident on the object to be inspected, the optical information generated by each incident light is obtained, and the internal information is detected by comparing the both optical information. ing.

【0009】光情報としては、散乱光、蛍光、正反射光
のいずれによるものでもよいが、第1および第2の入射
光の波長をそれぞれ適宜選択することにより、あるいは
光情報として得るべき散乱光の散乱方向を空間フィルタ
により選択することにより、被検物体表面の微細構造に
よる回折光の影響を受けないようにして光情報を得るこ
とが好ましい。
The optical information may be scattered light, fluorescent light, or specularly reflected light, but scattered light to be obtained as optical information can be obtained by appropriately selecting the wavelengths of the first and second incident lights. It is preferable to obtain the optical information by not selecting the scattering direction of the light with the spatial filter so as not to be influenced by the diffracted light due to the fine structure of the surface of the object to be inspected.

【0010】第1および第2の入射光の入射面における
ビーム径が、観察光学系の視野と同程度であれば、被検
物体を二次元的に走査する必要はない。
If the beam diameters of the incident surfaces of the first and second incident lights are about the same as the field of view of the observation optical system, it is not necessary to two-dimensionally scan the object to be inspected.

【0011】被検物体がSi結晶の多層構造を有するウ
エハである場合は、第1の入射光と第2の入射光の波長
は双方とも400〜2000nmの範囲内であり、また
は、第1の入射光の波長は200〜650nmの範囲で
あるのが好ましい。また、第1の入射光を波長400〜
1330nmのレーザ光とし、第2の入射光をその二次
高調波とし、これら基本波と二次高調波を同時に被検物
体に入射させるようにしてもよく、あるいは第1の入射
光と第2の入射光を別個に波長可変レーザ装置から発す
るようにしてもよい。
When the object to be inspected is a wafer having a multi-layer structure of Si crystals, the wavelengths of the first incident light and the second incident light are both within the range of 400 to 2000 nm, or the first incident light is within the range of 400 to 2000 nm. The wavelength of incident light is preferably in the range of 200 to 650 nm. In addition, the first incident light has a wavelength of 400 to
The laser light of 1330 nm may be used, the second incident light may be its second harmonic, and the fundamental wave and the second harmonic may be simultaneously incident on the object to be inspected, or the first incident light and the second harmonic The incident light may be separately emitted from the wavelength tunable laser device.

【0012】本発明の他の態様においては、被検物体に
レーザビームを入射させ、それによって生じる被検物体
からの散乱光による散乱像を顕微鏡を介して得、これに
基いて被検物体の内部欠陥を検出する方法において、入
射レーザビームを、被検物体内におけるその屈折光が所
定の小さな横断面を有するようにするとともに、その屈
折光によって生じる散乱像を、その屈折光の光軸と所定
の角度を有してほぼ交差する光軸上において前記顕微鏡
により得、得られた散乱像に含まれる欠陥像の被検物体
における深さ位置をその欠陥像が存在する前記顕微鏡の
視野内位置に基いて特定することを、入射レーザビーム
で被検物体を二次元的に走査しながら行うことを特徴と
する。
In another aspect of the present invention, a laser beam is made to enter the object to be inspected, and a scattered image due to the scattered light from the object to be inspected thereby is obtained through a microscope. In the method of detecting an internal defect, an incident laser beam is made to have its refracted light in a test object have a predetermined small cross section, and a scattered image generated by the refracted light is used as an optical axis of the refracted light. The depth position in the object to be inspected of the defect image obtained by the microscope on an optical axis that intersects at a predetermined angle and substantially intersects the position in the field of view of the microscope in which the defect image exists. It is characterized in that the object to be inspected is two-dimensionally scanned with the incident laser beam.

【0013】この場合、例えば、被検物体面の法線は顕
微鏡の光軸に対して5〜35°の角度をなし、顕微鏡の
焦点面において所定のパターンを結像させ、被検物体面
上のこのパターンの投影像に基き顕微鏡と被検物体間の
距離が調整される。
In this case, for example, the normal to the surface of the object to be inspected forms an angle of 5 to 35 ° with respect to the optical axis of the microscope, and a predetermined pattern is imaged on the focal plane of the microscope. The distance between the microscope and the object to be inspected is adjusted based on the projected image of this pattern.

【0014】さらに別の態様においては、被検物体に所
定の光を入射させ、それによって生じる被検物体からの
光情報を観察光学系を介して得、得られた光情報に基い
て被検物体の内部欠陥を検出する方法において、被検物
体面の法線は観察光学系の光軸に対してある角度をなし
ており、観察光学系の焦点合せに際しては、顕微鏡の焦
点面において所定のパターンを結像させ、被検物体面上
のこのパターンの投影像に基き顕微鏡と被検物体間の距
離を調整することを特徴としている。
In still another embodiment, predetermined light is incident on the object to be inspected, optical information from the object to be inspected thereby is obtained through an observation optical system, and the object to be inspected is obtained based on the obtained optical information. In the method of detecting the internal defect of the object, the normal line of the object surface to be inspected makes an angle with respect to the optical axis of the observation optical system, and when focusing the observation optical system, a predetermined plane is set on the focal plane of the microscope. It is characterized in that a pattern is formed and the distance between the microscope and the object to be inspected is adjusted based on the projected image of this pattern on the surface of the object to be inspected.

【0015】いずれの態様においても、得られる光情報
は、通常、光電変換により画像データに変換される。
In any of the aspects, the obtained optical information is usually converted into image data by photoelectric conversion.

【0016】[0016]

【作用】被検物体の表面および内部における光情報をそ
れぞれ比較的多く発生させる波長の第1および第2の光
を被検物体に入射させると、第1の光に起因する散乱光
には被検物体表面に存在する欠陥からの光情報が、被検
物体内部に存在する欠陥からの光情報よりも多く含ま
れ、第2の光に起因する散乱光には被検物体内部に存在
する欠陥からの光情報が、被検物体表面に存在する欠陥
からの光情報よりも多く含まれることになる。したがっ
て、各入射光毎にそれによって発生する光情報を得、こ
れら双方の光情報を比較して、例えば第2の光によって
得られる光情報から第1の光によって得られる光情報を
取り除くことにより、真に内部に存在する欠陥のみが検
出される。
When the first and second light beams having wavelengths that generate relatively large amounts of light information on the surface and inside of the object to be inspected are incident on the object to be inspected, the scattered light caused by the first light is not reflected. The optical information from the defect existing on the surface of the inspection object is included more than the optical information from the defect existing on the inside of the inspection object, and the scattered light caused by the second light has the defect existing inside the inspection object. The optical information from the optical disk is included more than the optical information from the defect existing on the surface of the object to be inspected. Thus, for each incident light, the optical information generated thereby is obtained and both optical information are compared, for example by removing the optical information obtained by the first light from the optical information obtained by the second light. , Only the defects that are truly inside are detected.

【0017】本発明の他の態様においては、入射レーザ
ビームを被検物体に入射させると、被検物体内における
その屈折光は所定の小さな横断面を有するため、その屈
折光が照明する被検物体内の領域は、光軸に沿った直線
状の、あるいは平面状等の領域となる。したがって、こ
の領域を、その屈折光の光軸と所定の角度を有して交差
する光軸上において前記顕微鏡により観察する場合、顕
微鏡の視野内における散乱像の各部分の深さはその視野
内における位置と対応することになる。したがって、視
野内の欠陥像は、その視野内位置としての深さの情報と
ともに検出される。
In another aspect of the present invention, when the incident laser beam is incident on the object to be inspected, the refracted light in the object to be inspected has a predetermined small cross section, and therefore the refracted light illuminates the object to be inspected. The area inside the object is a linear area or a planar area along the optical axis. Therefore, when observing this region with the microscope on the optical axis that intersects the optical axis of the refracted light at a predetermined angle, the depth of each part of the scattered image in the visual field of the microscope is Will correspond to the position in. Therefore, the defect image in the visual field is detected together with the information on the depth as the position in the visual field.

【0018】なお、本発明のさらに他のあるいはより詳
細な特徴、目的、作用効果等は、以下の実施例を通じて
明らかにされる。
Other or more detailed features, objects, functions and effects of the present invention will be clarified through the following examples.

【0019】[0019]

【実施例】図1は、本発明の一実施例に係る欠陥検出装
置の概略的な構成図である。図に示すようにこの装置
は、観察用のレーザ光101を出力するレーザ装置10
3、レーザ光101を被検物体105に照射するための
集光レンズ107、照射レーザ光101に起因する被検
物体105からの散乱光を受光し、その散乱像を拡大す
る顕微鏡109、その拡大散乱像を光電変換してその散
乱像の画像信号を得るための撮像素子111、被検物体
105に対する顕微鏡109の焦点を合わせるために用
いるパターンを被検物体105上に投影する手段11
3、被検物体105をその法線と顕微鏡109の光軸と
がなす角度θが5〜35°となるように保持し、不図示
の駆動手段により移動されるステージ115を備える。
顕微鏡109は対物レンズ117および結像レンズ11
9を有する。投影手段113は、空間変調素子パターン
121、光源123、光源123が発する光を空間変調
素子パターン121に照射する凸レンズ125、拡散板
127および凸レンズ129、ならびに、これにより照
明されたパターン121を顕微鏡109の焦点位置に結
像させるための投光用レンズ131およびハーフミラー
133を備える。パターン121は投光用レンズ131
の焦点面に配置される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic configuration diagram of a defect detecting apparatus according to an embodiment of the present invention. As shown in the figure, this device is a laser device 10 that outputs a laser beam 101 for observation.
3, a condenser lens 107 for irradiating the object 105 to be inspected with the laser beam 101, a microscope 109 for receiving scattered light from the object 105 due to the irradiating laser beam 101, and enlarging the scattered image, and its enlargement An image pickup element 111 for photoelectrically converting the scattered image to obtain an image signal of the scattered image, and means 11 for projecting a pattern used for focusing the microscope 109 on the object 105 to be inspected onto the object 105 to be inspected.
3. A stage 115 is provided which holds the object 105 to be inspected so that an angle θ formed by the normal line thereof and the optical axis of the microscope 109 is 5 to 35 ° and is moved by a driving unit (not shown).
The microscope 109 has an objective lens 117 and an imaging lens 11.
Have 9. The projection means 113 includes a spatial modulation element pattern 121, a light source 123, a convex lens 125 that irradiates the spatial modulation element pattern 121 with light emitted from the light source 123, a diffusion plate 127 and a convex lens 129, and the pattern 121 illuminated by the convex lens 125 to the microscope 109. The projection lens 131 and the half mirror 133 for forming an image at the focal position of The pattern 121 is a projection lens 131
Is located in the focal plane of.

【0020】図2は、図1の装置による被検物体105
の観察原理を説明するための原理図である。図中、20
1は前記撮像素子111と結像レンズ119を含むTV
カメラ観察系であり、これと対物レンズ117とにより
観察系を構成する。被検物体105表面の法線、観察系
の光軸、および入射レーザビーム101の光軸は同一平
面内に含まれ、かつ被検物体105と入射レーザビーム
101の光軸とがなす角度βは10〜60°、その屈折
光の光軸と被検物体105の法線とがなす角度αはほぼ
16°に設定される。TVカメラ観察系201の視野2
03は、被検物体105の層1b〜4bの各層の深さに
対応させて計測領域1a〜4aが区切られている。
FIG. 2 shows an object 105 to be inspected by the apparatus of FIG.
3 is a principle diagram for explaining the observation principle of FIG. 20 in the figure
Reference numeral 1 denotes a TV including the image pickup element 111 and the imaging lens 119.
This is a camera observation system, and this and the objective lens 117 constitute an observation system. The normal line of the surface of the object 105 to be inspected, the optical axis of the observation system, and the optical axis of the incident laser beam 101 are included in the same plane, and the angle β formed by the object 105 to be inspected and the optical axis of the incident laser beam 101 is The angle α formed by the optical axis of the refracted light and the normal line of the object 105 to be inspected is set to approximately 16 °. Field of view 2 of TV camera observation system 201
In 03, the measurement regions 1a to 4a are divided according to the depths of the layers 1b to 4b of the object 105 to be inspected.

【0021】この構成において、欠陥を検出するために
は、まず、焦点合せ用のパターン121の像を被検物体
105上に投影し、パターン121の投影像のコントラ
ストが計測領域2aと3aの中間において最大になるよ
うにステージ115位置を制御する。次に、この焦点位
置が層2bと3b間の境界の深さ位置に対応するよう
に、ステージ115を所定の距離移動させる。次に、レ
ーザビーム101の集光点205が所望の検出対象層で
ある計測領域1a,2a,3aおよび4aに対応する位
置に位置するようにレーザビーム101の位置を調整す
る。これにより、視野203内の計測領域1a〜4aは
層1b〜4bに対応し、したがって、観察系の焦点深度
が被検物体105における各層1b〜4bをカバーする
程度であれば、視野203内の欠陥等の像がそれが存在
する層の情報とともに得られることになる。なお、この
場合の被写界深度は、例えば、観察系の倍率が20倍に
おいて約40μm、50倍で15μm程度である。ま
た、パターン121の投影は、観察の妨げにならないよ
うに、不要になった時点で停止する。パターン121と
して、観察に支障となる模様のないものを用いた場合は
この限りでない。
In this configuration, in order to detect a defect, first, an image of the focusing pattern 121 is projected on the object 105 to be inspected, and the contrast of the projected image of the pattern 121 is between the measurement regions 2a and 3a. The position of the stage 115 is controlled so as to maximize the position. Next, the stage 115 is moved by a predetermined distance so that the focus position corresponds to the depth position of the boundary between the layers 2b and 3b. Next, the position of the laser beam 101 is adjusted so that the condensing point 205 of the laser beam 101 is located at the positions corresponding to the measurement regions 1a, 2a, 3a, and 4a that are the desired detection target layers. As a result, the measurement regions 1a to 4a in the visual field 203 correspond to the layers 1b to 4b. Therefore, as long as the depth of focus of the observation system covers each of the layers 1b to 4b in the object 105 to be measured, An image such as a defect will be obtained together with information on the layer in which it is present. The depth of field in this case is, for example, about 40 μm when the magnification of the observation system is 20 times, and about 15 μm when the magnification is 50 times. Further, the projection of the pattern 121 is stopped when it is no longer needed so as not to hinder the observation. This does not apply when the pattern 121 does not have a pattern that hinders observation.

【0022】また、視野203を越える範囲での検出を
行うために、レーザビーム101を被検物体105の最
大傾斜方向に対して直角な方向に往復移動させるととも
に、被検物体105をその最大傾斜方向に平行に移動さ
せることにより、図3に示すように、被検物体105
の、例えば、200×200×16μm程度の立体領域
をラスタ・スキャン的に走査する。これにより、その領
域における欠陥の散乱像が、いずれの計測領域1a〜4
aにおいて検出されたかという深さ位置の情報とともに
得られる。
Further, in order to perform detection in a range beyond the field of view 203, the laser beam 101 is reciprocated in a direction perpendicular to the maximum inclination direction of the object 105 to be inspected, and the object 105 to be inspected is inclined at its maximum. By moving in parallel to the direction, as shown in FIG.
, For example, a three-dimensional area of about 200 × 200 × 16 μm is scanned in a raster scan manner. As a result, the scattered image of the defect in that area is measured in any of the measurement areas 1a to 4a.
It is obtained together with the information on the depth position of whether it is detected in a.

【0023】図4はこの検出における分解能を説明する
ための説明図である。同図に示すように、レーザビーム
101による走査における各走査線間の間隔によって規
定される被検物体105の表面方向の分解能を約0.4
μm、レーザビーム101の被検物体105における屈
折角αを約16°とすれば、深さ方向の分解能は約1.
4μmとなる。この深さ分解能は1μm程度まで向上さ
せることができる。
FIG. 4 is an explanatory diagram for explaining the resolution in this detection. As shown in the figure, the resolution in the surface direction of the object 105 to be inspected, which is defined by the interval between the scanning lines in scanning with the laser beam 101, is about 0.4.
.mu.m and the refraction angle .alpha. of the laser beam 101 on the object 105 to be measured is about 16 DEG, the resolution in the depth direction is about 1.
It becomes 4 μm. This depth resolution can be improved to about 1 μm.

【0024】図5は本発明の他の実施例に係る欠陥検出
方法を示す模式図である。ここではレーザ装置として、
色素レーザやTiサファイヤレーザ等の波長可変レーザ
を用い、それが発する光束101をコリメータ301を
介して拡大して被検物体105に照射する。そしてTV
カメラ観察系201の視野内における計測領域の区分は
不要である。また、被検物体105面の法線方向はTV
カメラ観察系201の光軸方向と一致させる。それ以外
は、図1の場合と同様の構成である。
FIG. 5 is a schematic view showing a defect detecting method according to another embodiment of the present invention. Here, as a laser device,
A wavelength tunable laser such as a dye laser or a Ti sapphire laser is used, and the luminous flux 101 emitted by the laser is expanded through a collimator 301 and irradiated onto the object 105 to be inspected. And TV
It is not necessary to divide the measurement area in the visual field of the camera observation system 201. The normal direction of the surface of the object 105 to be inspected is TV.
It is aligned with the optical axis direction of the camera observation system 201. Other than that, the configuration is similar to that of FIG.

【0025】図6は、被検物体105として用いられ
る、Si結晶の多層構造を有するSOI(Silicon on I
nsulator)構造ウエハの断面図である。このウエハはS
i基板401、その上に形成された厚さ0.2μmの酸
化膜(SiO2 )層403、およびその上に形成された
厚さ1μmのSi層405を有する。
FIG. 6 shows an SOI (Silicon on I) having a multilayer structure of Si crystals, which is used as the object 105 to be inspected.
FIG. 2 is a cross-sectional view of a structure wafer. This wafer is S
An i substrate 401, an oxide film (SiO 2 ) layer 403 having a thickness of 0.2 μm formed thereon, and a Si layer 405 having a thickness of 1 μm formed thereon are provided.

【0026】この構成において、欠陥を検出するに際
し、観察系の焦点を、上述と同様にしてウエハの表面に
合わせる。ただしここでは、その焦点深度内のSi層4
05およびSiO2 層403に局在する欠陥を検出する
ので、焦点位置をさらに調整する必要はない。そして、
レーザビーム101を、その照射領域がTVカメラ観察
系201の視野と一致するように照射して観察を行う。
In this structure, when a defect is detected, the focus of the observation system is set on the surface of the wafer in the same manner as described above. However, here, the Si layer 4 within the depth of focus is
05 and the defects localized in the SiO 2 layer 403 are detected, it is not necessary to further adjust the focus position. And
The laser beam 101 is irradiated so that the irradiation region thereof coincides with the field of view of the TV camera observation system 201 for observation.

【0027】図7はレーザビームを前記ウエハに照射し
たときの様子を示す説明図である。同図(a)はウエハ
表面での反射率が大きい場合を示し、同図(b)はこれ
が小さい場合を示す。また、各図(a)および(b)の
左側のグラフは入射強度I0の入射レーザビーム101
による屈折光の光強度Iのウエハ深さDに対する変化を
示すグラフである。なお、曲線509は吸収による減衰
カーブである。
FIG. 7 is an explanatory diagram showing a state where the wafer is irradiated with a laser beam. The figure (a) shows the case where the reflectance on the wafer surface is large, and the figure (b) shows the case where it is small. Further, the incident laser beam 101 on the left side of the graph incident intensity I 0 of each figure (a) and (b)
7 is a graph showing a change in light intensity I of refracted light with respect to a wafer depth D. The curve 509 is an attenuation curve due to absorption.

【0028】同図に示すように、入射レーザ光101
は、反射光501と屈折光503とに分離するが、ウエ
ハ表面(屈折率≒3.5のSi結晶)とSiO2 層40
3(屈折率≒1.5)表面での反射光の干渉によって、
ウエハ表面での反射率Rは、Si結晶のみのウエハの場
合よりも、レーザ光の波長λに応じ、図8に示すように
大きな幅で変動する。そして反射率が大きな場合(λ
2 ,λ4 ,…,λ12)は、同図(a)に示すように、S
i層405とSiO2 層403との境界にある欠陥50
5からの散乱光507の強度は小さく、反射率が小さな
場合(λ1 ,λ3 ,…,λ11)は、同図(b)に示すよ
うに、逆に大きくなる。
As shown in the figure, the incident laser beam 101
Is separated into reflected light 501 and refracted light 503, but the wafer surface (Si crystal having a refractive index of 3.5) and the SiO 2 layer 40 are separated.
3 (refractive index ≈1.5) By the interference of the reflected light on the surface,
The reflectance R on the surface of the wafer fluctuates with a larger width as shown in FIG. 8 in accordance with the wavelength λ of the laser light than in the case of a wafer having only Si crystals. And when the reflectance is large (λ
, 2 , λ 4 , ..., λ 12 ), as shown in FIG.
Defects 50 at the boundary between the i layer 405 and the SiO 2 layer 403
When the intensity of scattered light 507 from No. 5 is small and the reflectance is small (λ 1 , λ 3 , ..., λ 11 ), it becomes large conversely as shown in FIG.

【0029】したがって、反射率の低い波長λ1 ,λ
3 ,…,λ11のレーザ光101を用いて層405,40
3内部の欠陥からの散乱像を有効に検出し、反射率の高
い波長λ2 ,λ4 ,…,λ12のレーザ光を用いてウエハ
表面の塵埃や傷からの散乱像を主体に検出する。そし
て、これらの散乱像を比較することにより、表面の欠陥
と内部欠陥とを鮮明に区別する。また、図8に示すよう
に、前記干渉による反射強度の振動は、波長400nm
以上において観察される。したがって、層内部には波長
400〜2000nmの光が十分入るので、この波長範
囲のレーザ光を使用して内部欠陥を観察し、一方、波長
400nm未満の光は層内部に侵入しないので、波長2
00〜650nmのレーザ光または普通の光を用いて表
面欠陥を観察し、そして内部欠陥と表面欠陥とを識別す
るようにしてもよい。
Therefore, the wavelengths λ 1 and λ having low reflectance are
3 , ..., Layers 405, 40 using the laser light 101 of λ 11
3 Effectively detect scattered images from internal defects, and mainly detect scattered images from dust and scratches on the wafer surface using laser light of wavelengths λ 2 , λ 4 , ..., λ 12 with high reflectance. .. Then, by comparing these scattered images, surface defects and internal defects are clearly distinguished. Further, as shown in FIG. 8, the vibration of the reflection intensity due to the interference has a wavelength of 400 nm.
Observed above. Therefore, since light with a wavelength of 400 to 2000 nm sufficiently enters the inside of the layer, internal defects are observed using laser light in this wavelength range, while light with a wavelength of less than 400 nm does not enter the inside of the layer.
The surface defects may be observed by using laser light of 0 to 650 nm or ordinary light, and the internal defects and the surface defects may be distinguished from each other.

【0030】なお、レーザビームの波長を変化させる代
わりに、図9に示すように、波長λのレーザ光801
を、2次高調波発生素子803を介して波長λ/2(=
400〜1300nm)の基本波と波長λの二次高調波
の混合光805とし、これをウエハに入射させ、その表
面欠陥と内部欠陥からの散乱光を、それぞれ基本波と二
次高調波の散乱光として別の観察系を用いて画像化する
ようにしてもよい。
Instead of changing the wavelength of the laser beam, as shown in FIG.
To the wavelength λ / 2 (=
(400-1300 nm) fundamental wave and second harmonic of wavelength λ as mixed light 805, which is made incident on the wafer, and scattered light from the surface defects and internal defects is scattered into the fundamental wave and the second harmonic, respectively. The observation may be performed by using another observation system as the light.

【0031】図10はこのようにして得られる散乱像の
一例を示す。ただし、被検物体105であるウエハとし
ては、Si層405の厚さが1μm、SiO2 層403
の厚さが0.4〜0.5μmであり、図11に示すよう
に、表面の半分はそのままの面11であるが、他の半分
はエッチングにより内部欠陥のピット13を露出させた
面14としたものを用いている。図10(a)は波長9
40nmのレーザ光による内部散乱像が顕著に現れた5
00μm四方の視野の様子を示し、同図(b)は波長1
000nmのレーザ光による表面散乱像が顕著に現れた
同じ部分の視野の様子を示している。部分11aは面1
1に対応し、部分14aは面14に対応する。図10
(b)においては、部分11aにおいて表面11上の塵
埃の像が現われており、部分14aでは面11上の微小
な無数のピット像が現われている。図10(a)の部分
11aおよび14aにおいては、表面の微小なピット像
は現われず、表面の大きなごみや傷および内部欠陥が無
数に現われている。
FIG. 10 shows an example of the scattered image thus obtained. However, as the wafer to be inspected 105, the Si layer 405 has a thickness of 1 μm, and the SiO 2 layer 403 is
Has a thickness of 0.4 to 0.5 μm, and as shown in FIG. 11, half of the surface is the surface 11 as it is, but the other half is a surface 14 where the internal defect pits 13 are exposed by etching. Is used. FIG. 10A shows a wavelength of 9
The internal scattering image due to the laser light of 40 nm appeared remarkably 5
The state of the field of view of 00 μm square is shown in FIG.
The figure shows the field of view of the same portion where the surface scattered image by the laser light of 000 nm remarkably appeared. Part 11a is surface 1
1 and the portion 14a corresponds to the surface 14. Figure 10
In (b), an image of dust on the surface 11 appears in the portion 11a, and a myriad of minute pit images on the surface 11 appear in the portion 14a. In portions 11a and 14a of FIG. 10 (a), minute pit images on the surface do not appear, and large dust, scratches and internal defects on the surface appear innumerably.

【0032】図12は、このウエハにおける入射光の波
長λに対する反射率Rおよび散乱強度Sの変化を示すグ
ラフである。図中、曲線151は計算による反射率の変
化、曲線153は実測による反射率の変化、曲線155
は表面欠陥からの散乱強度の変化、曲線157は内部欠
陥からの散乱強度の変化をそれぞれ示す。このグラフか
ら、内部欠陥の検出には波長940nmのレーザ光が適
し、表面欠陥の検出には波長1000nmのレーザ光が
適することが分かる。
FIG. 12 is a graph showing changes in reflectance R and scattering intensity S with respect to the wavelength λ of incident light on this wafer. In the figure, a curve 151 indicates a change in reflectance by calculation, a curve 153 indicates a change in reflectance by actual measurement, and a curve 155.
Shows the change in the scattering intensity from the surface defects, and the curve 157 shows the change in the scattering intensity from the internal defects. From this graph, it can be seen that laser light having a wavelength of 940 nm is suitable for detecting internal defects and laser light having a wavelength of 1000 nm is suitable for detecting surface defects.

【0033】図13(a)および(b)は別の被検物体
105の同じ場所を、その内部まで到達する波長100
0nmのレーザ光、および波長451nmのレーザ光で
観察したときの500μm四方の視野の様子をそれぞれ
示す。両者を比較することにより、内部欠陥からの散乱
像を認識することができる。
FIGS. 13A and 13B show a wavelength 100 that reaches the inside of another inspected object 105 at the same location.
The states of the visual field of 500 μm square when observed with a laser beam of 0 nm and a laser beam of a wavelength of 451 nm are respectively shown. By comparing the two, the scattered image from the internal defect can be recognized.

【0034】図14に示すように、被検物体105が、
表面に微細構造を有するようなウエハである場合は、そ
の微細構造が存在する部分については、それと等価的な
厚さの層が存在するものとして、同様にして名部欠陥お
よび表面欠陥を観察することができる。ただしこの場
合、微細構造による回折光が観察光学系中に侵入して内
部欠陥505が観察できなくなるのを防止するため、観
察光学系中に、回折光183を遮断するためのフィルタ
(マスク)181が設けられる。正反射光185は、何
ら問題を生じない。
As shown in FIG. 14, the object 105 to be inspected is
In the case of a wafer having a fine structure on the surface, in the portion where the fine structure is present, a nominal defect and a surface defect are similarly observed, assuming that a layer having an equivalent thickness is present. be able to. In this case, however, a filter (mask) 181 for blocking the diffracted light 183 is provided in the observation optical system in order to prevent the diffracted light due to the fine structure from entering the observation optical system and making it impossible to observe the internal defect 505. Is provided. The regular reflection light 185 does not cause any problem.

【0035】図15〜17はそれぞれ、本発明のさらに
他の実施例に係る欠陥検出装置の構成を示す概略図であ
る。これらの装置は、波長400〜2000nmのレー
ザ光によって被検物体105の内部と表面の欠陥を検出
し、波長200〜650nmのレーザ光によって表面欠
陥を検出するものである。
15 to 17 are schematic views showing the structure of a defect detecting apparatus according to still another embodiment of the present invention. These devices detect defects inside and on the surface of the object to be inspected 105 with laser light having a wavelength of 400 to 2000 nm, and detect surface defects with laser light having a wavelength of 200 to 650 nm.

【0036】図15の装置においては、レーザビーム1
01は凹レンズ163によりビーム径が拡大され、コリ
メータレンズ161によって平行光とされ、そしてハー
フミラー171を介して観察系の光路に導入され、対物
レンズ117を経て被検物体105に照射される。そし
て前記のようにレーザビーム101の波長を変えて表面
欠陥の正反射像と内部欠陥の正反射像を、対物レンズ1
17、結像レンズ119および撮像素子111を介し、
電気信号として得るようになっている。
In the apparatus shown in FIG. 15, the laser beam 1
The beam diameter of 01 is expanded by the concave lens 163, collimated by the collimator lens 161, and introduced into the optical path of the observation system through the half mirror 171, and is irradiated onto the object 105 to be inspected through the objective lens 117. Then, as described above, the wavelength of the laser beam 101 is changed to obtain the specular reflection image of the surface defect and the specular reflection image of the internal defect.
17, through the imaging lens 119 and the image sensor 111,
It is designed to be obtained as an electric signal.

【0037】図16の装置においては、波長λ1 とλ2
のレーザ光をハーフミラー169を介して混合したレー
ザビーム101を用いて被検物体105を照明し、その
正反射光をダイクロイックミラー173により波長λ1
成分とλ2 成分に分割し、そして波長λ1 成分により被
検物体105表面を結像レンズ119および撮像素子1
11を経て観察するとともに、波長λ2 成分により、被
検物体105の内部からの正反射像を、結像レンズ16
5および撮像素子167を経て観察する。
In the device of FIG. 16, wavelengths λ 1 and λ 2
The object 105 to be inspected is illuminated with the laser beam 101 obtained by mixing the laser light of the above-mentioned through the half mirror 169, and the specularly reflected light thereof is wavelength λ 1 by the dichroic mirror 173.
And the λ 2 component, and the surface of the object 105 to be measured is divided by the wavelength λ 1 component into the imaging lens 119 and the image pickup device 1.
11 and observes the specular reflection image from the inside of the object 105 to be inspected due to the wavelength λ 2 component.
5 and the image sensor 167 for observation.

【0038】図17の装置においては、レーザビーム1
01の中央部分の光束をマスク175により遮断し、周
辺部分の光束のみをミラー177および対物レンズ11
7の周辺部を介して被検物体105に照射し、その正反
射像を対物レンズ117の中央部分を介して得る。他
は、図15の場合と同様である。
In the apparatus of FIG. 17, the laser beam 1
The light flux in the central portion of 01 is blocked by the mask 175, and only the light flux in the peripheral portion is mirror 177 and objective lens 11
The object 105 to be inspected is irradiated through the peripheral portion of the object 7, and the specular reflection image thereof is obtained through the central portion of the objective lens 117. Others are the same as the case of FIG.

【0039】[0039]

【発明の効果】以上説明したように本発明によれば、被
検物体の表面および内部における光情報をそれぞれ比較
的多く発生させる波長の第1および第2の光を被検物体
に入射させ、各入射光毎に得られる光情報を比較して内
部欠陥を検出するようにしたため、多層構造を有する半
導体ウエハ等の多層半導体基板等における内部欠陥を、
表面の欠陥から明確に区別して検出することができる。
As described above, according to the present invention, the first and second lights having wavelengths that generate relatively large amounts of optical information on the surface and inside of the object to be inspected are incident on the object to be inspected, Since the internal defect is detected by comparing the optical information obtained for each incident light, the internal defect in the multilayer semiconductor substrate or the like such as a semiconductor wafer having a multilayer structure,
It can be clearly distinguished from surface defects and detected.

【0040】また、入射レーザビームを、被検物体内に
おけるその屈折光が所定の小さな横断面を有するように
するとともに、散乱像を、その屈折光の光軸と所定の角
度を有して交差する光軸上において前記顕微鏡により
得、得られた散乱像に含まれる欠陥像の深さ位置をその
欠陥像の視野内位置に基いて特定するようにしたため、
欠陥が存在する層や深さを高い分解能で検出することが
できる。
Further, the refracted light of the incident laser beam in the object to be inspected has a predetermined small cross section, and the scattered image intersects the optical axis of the refracted light at a predetermined angle. Obtained by the microscope on the optical axis to, so as to specify the depth position of the defect image included in the obtained scattering image based on the position in the field of view of the defect image,
It is possible to detect the layer and the depth where the defect exists with high resolution.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例に係る欠陥検出装置の概略
的構成図である。
FIG. 1 is a schematic configuration diagram of a defect detection device according to an embodiment of the present invention.

【図2】 図1の装置による被検物体の観察原理を説明
するための原理図である。
FIG. 2 is a principle diagram for explaining an observation principle of an object to be inspected by the apparatus of FIG.

【図3】 図1の装置において被検物体をラスタ・スキ
ャン的に走査する様子を示す説明図である。
FIG. 3 is an explanatory diagram showing a manner in which an object to be inspected is scanned in a raster scan manner in the apparatus of FIG.

【図4】 図1の装置による検出における分解能を説明
するための説明図である。
FIG. 4 is an explanatory diagram for explaining resolution in detection by the apparatus of FIG.

【図5】 本発明の他の実施例に係る欠陥検出方法を示
す模式図である。
FIG. 5 is a schematic diagram showing a defect detection method according to another embodiment of the present invention.

【図6】 図5の装置において被検物体として用いられ
る、Si結晶の多層構造を有するSOI構造ウエハの断
面図である。
6 is a cross-sectional view of an SOI structure wafer having a multilayer structure of Si crystals, which is used as a test object in the apparatus of FIG.

【図7】 図5の装置においてレーザビームをウエハに
照射したときの様子を示す説明図である。
7 is an explanatory diagram showing a state when a laser beam is applied to a wafer in the apparatus of FIG.

【図8】 図6に示すようなウエハの表面での反射率
が、Si結晶のみのウエハの場合よりも、レーザ光の波
長λに応じ、大きな幅で変動する様子を示すグラフであ
る。
FIG. 8 is a graph showing how the reflectance on the surface of the wafer as shown in FIG. 6 fluctuates with a large width according to the wavelength λ of the laser light, as compared with the case of a wafer having only Si crystals.

【図9】 波長λのレーザ光を、2次高調波発生素子を
介して波長λ/2の基本波と波長λの二次高調波の混合
光とする様子を示す説明図である。
FIG. 9 is an explanatory diagram showing how laser light of wavelength λ is mixed with a fundamental wave of wavelength λ / 2 and a second harmonic of wavelength λ through a second harmonic generation element.

【図10】 図5の装置において図11のウエハを観察
した場合に得られる散乱像の一例を示す模式図である。
10 is a schematic diagram showing an example of a scattered image obtained when the wafer of FIG. 11 is observed in the apparatus of FIG.

【図11】 図10の散乱像が得られたウエハを示す模
式図である。
11 is a schematic diagram showing a wafer from which the scattered image of FIG. 10 has been obtained.

【図12】 図11のウエハにおける入射光の波長λに
対する反射率Rおよび散乱強度Sの変化を示すグラフで
ある。
12 is a graph showing changes in reflectance R and scattering intensity S with respect to the wavelength λ of incident light in the wafer of FIG.

【図13】 図5の装置において別の被検物体を観察し
たときの様子を示す模式図である。
13 is a schematic diagram showing a state when another test object is observed in the apparatus of FIG.

【図14】 被検物体が表面に微細構造を有するような
ウエハである場合において欠陥を観察する様子を示す模
式図である。
FIG. 14 is a schematic diagram showing how defects are observed when the object to be inspected is a wafer having a fine structure on its surface.

【図15〜17】 本発明のさらに他の実施例に係る欠
陥検出装置の構成を示す概略図である。
15 to 17 are schematic diagrams showing a configuration of a defect detection apparatus according to still another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

101:レーザ光、103:レーザ装置、105:被検
物体、107:集光レンズ、109:顕微鏡、111:
撮像素子、113:投影する手段、115:ステージ、
117:対物レンズ、119:結像レンズ、121:空
間変調素子パターン、123:光源、125,129:
凸レンズ、127:拡散板、131:投光用レンズ、1
33:ハーフミラー、163:凹レンズ、161:コリ
メータレンズ、167:撮像素子、169:ハーフミラ
ー、171:ハーフミラー、173:ダイクロイックミ
ラー、175:マスク、177:ミラー、183:回折
光、181:フィルタ(マスク)、185:正反射光、
201:TVカメラ観察系、203:視野、1b〜4
b:層、1a〜4a:計測領域、301:コリメータ、
401:Si基板、403:酸化膜(SiO2 )層、4
05:Si層、501:反射光、503:屈折光、50
5:欠陥、507:散乱光、801:波長λのレーザ
光、803:2次高調波発生素子、805:混合光
101: laser light, 103: laser device, 105: object to be inspected, 107: condenser lens, 109: microscope, 111:
Image sensor, 113: Projection means, 115: Stage,
117: Objective lens, 119: Imaging lens, 121: Spatial modulation element pattern, 123: Light source, 125, 129:
Convex lens, 127: diffuser plate, 131: projection lens, 1
33: Half mirror, 163: Concave lens, 161: Collimator lens, 167: Image sensor, 169: Half mirror, 171: Half mirror, 173: Dichroic mirror, 175: Mask, 177: Mirror, 183: Diffracted light, 181: Filter (Mask), 185: specular reflection light,
201: TV camera observation system, 203: field of view, 1b to 4
b: layer, 1a to 4a: measurement region, 301: collimator,
401: Si substrate, 403: oxide film (SiO 2 ) layer, 4
05: Si layer, 501: reflected light, 503: refracted light, 50
5: Defect, 507: Scattered light, 801: Laser light of wavelength λ, 803: Second harmonic generation element, 805: Mixed light

【手続補正書】[Procedure amendment]

【提出日】平成5年3月5日[Submission date] March 5, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項9[Name of item to be corrected] Claim 9

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項23[Name of item to be corrected] Claim 23

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0012[Correction target item name] 0012

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0012】 本発明の他の態様においては、被検物体
にレーザビームを入射させ、それによって生じる被検物
体からの散乱光による散乱像を顕微鏡を介して得、これ
に基いて被検物体の内部欠陥を検出する方法において、
上記に加え、入射レーザビームを、被検物体内における
その屈折光が所定の小さな横断面を有するようにすると
ともに、その屈折光によって生じる散乱像を、その屈折
光の光軸と所定の角度を有してほぼ交差する光軸上にお
いて前記顕微鏡により得、得られた散乱像に含まれる欠
陥像の被検物体における深さ位置をその欠陥像が存在す
る前記顕微鏡の視野内位置に基いて特定することを、入
射レーザビームあるいは被検物体を二次元的に走査しな
がら行うことをさらに特徴とする。
In another aspect of the present invention, a laser beam is incident on an object to be inspected, a scattered image resulting from scattered light from the object to be inspected thereby is obtained through a microscope, and based on this, an image of the object to be inspected is obtained. In the method of detecting internal defects,
In addition to the above, the refracted light of the incident laser beam is made to have a predetermined small cross section in the object to be inspected, and the scattered image generated by the refracted light is measured at a predetermined angle with the optical axis of the refracted light. Obtained by the microscope on substantially intersecting optical axes, specify the depth position in the object to be inspected of the defect image included in the obtained scattering image based on the position in the field of view of the microscope in which the defect image exists This is further characterized by performing the incident laser beam or the object to be inspected two-dimensionally.

Claims (26)

【特許請求の範囲】[Claims] 【請求項1】 被検物体に所定の光を入射させ、それに
よって生じる被検物体からの光情報を観察光学系を介し
て得、得られた光情報に基いて被検物体の内部欠陥を検
出する方法において、被検物体の表面における光情報を
比較的多く発生させる波長の第1の入射光と、被検物体
の内部における光情報を比較的多く発生させる波長の第
2の入射光とを被検物体に入射させ、各入射光毎にそれ
によって発生する光情報を得、これら双方の光情報を比
較して内部欠陥を検出することを特徴とする内部欠陥検
出方法。
1. A predetermined light is made incident on an object to be inspected, optical information from the object to be inspected thereby is obtained through an observation optical system, and internal defects of the object to be inspected are obtained based on the obtained optical information. In the method for detecting, a first incident light having a wavelength that causes a relatively large amount of optical information on the surface of the object to be inspected, and a second incident light having a wavelength that causes a relatively large amount of optical information inside the object to be inspected. Is incident on the object to be inspected, the optical information generated by each incident light is obtained, and the internal information is detected by comparing the optical information of both of them and the internal defect is detected.
【請求項2】 光情報は散乱光によるものであり、第1
および第2の入射光の波長をそれぞれ適宜選択すること
により、被検物体表面の微細構造による回折光の影響を
受けないようにして光情報を得る、請求項1に記載の内
部欠陥検出方法。
2. The optical information is based on scattered light,
The internal defect detection method according to claim 1, wherein the optical information is obtained without being affected by the diffracted light due to the fine structure of the surface of the object to be inspected, by appropriately selecting the wavelengths of the second incident light and the second incident light.
【請求項3】 光情報は散乱光によるものであり、光情
報として得るべき散乱光の散乱方向を空間フィルタによ
り選択し、被検物体表面の微細構造による回折光の影響
を受けないようにして光情報を得る、請求項1記載の内
部欠陥検出方法。
3. The optical information is due to scattered light, and the scattering direction of scattered light to be obtained as optical information is selected by a spatial filter so that it is not affected by diffracted light due to the fine structure of the surface of the object to be inspected. The internal defect detection method according to claim 1, wherein optical information is obtained.
【請求項4】 第1および第2の入射光の入射面におけ
るビーム径は、観察光学系の視野と同程度であり、被検
物体を二次元的に走査する必要がない請求項1記載の内
部欠陥検出方法。
4. The beam diameter of the incident surface of the first and second incident lights is approximately the same as the field of view of the observation optical system, and it is not necessary to scan the object to be examined two-dimensionally. Internal defect detection method.
【請求項5】 被検物体はSi結晶の多層構造を有する
ウエハであり、第1の入射光と第2の入射光の波長は4
00〜2000nmの範囲内である請求項1記載の内部
欠陥検出方法。
5. The object to be inspected is a wafer having a multilayer structure of Si crystals, and the wavelengths of the first incident light and the second incident light are 4
The internal defect detection method according to claim 1, wherein the internal defect detection range is from 00 to 2000 nm.
【請求項6】 被検物体はSi結晶の多層構造を有する
ウエハであり、第1の入射光の波長は200〜650n
mの範囲である請求項1記載の内部欠陥検出方法。
6. The object to be inspected is a wafer having a multilayer structure of Si crystals, and the wavelength of the first incident light is 200 to 650 n.
The internal defect detection method according to claim 1, wherein the range is m.
【請求項7】 被検物体はSi結晶の多層構造を有する
ウエハであり、第2の入射光は波長400〜1330n
mのレーザ光であり、第1の入射光はその二次高調波で
あり、これら基本波と二次高調波が同時に被検物体に入
射される請求項1記載の内部欠陥検出方法。
7. The object to be inspected is a wafer having a multilayer structure of Si crystals, and the second incident light has a wavelength of 400 to 1330 n.
The internal defect detection method according to claim 1, wherein the first incident light is m second laser light, and the first incident light is a second harmonic thereof, and the fundamental wave and the second harmonic are simultaneously incident on the object to be inspected.
【請求項8】 第1の入射光と第2の入射光は波長可変
レーザ装置から発せられたものである請求項1記載の内
部欠陥検出方法。
8. The internal defect detection method according to claim 1, wherein the first incident light and the second incident light are emitted from a wavelength tunable laser device.
【請求項9】 被検物体にレーザビームを入射させ、そ
れによって生じる被検物体からの散乱光による散乱像を
顕微鏡を介して得、これに基いて被検物体の内部欠陥を
検出する方法において、入射レーザビームを、被検物体
内におけるその屈折光が所定の小さな横断面を有するよ
うにするとともに、その屈折光によって生じる散乱像
を、その屈折光の光軸と所定の角度を有してほぼ交差す
る光軸上において前記顕微鏡により得、得られた散乱像
に含まれる欠陥像の被検物体における深さ位置をその欠
陥像が存在する前記顕微鏡の視野内位置に基いて特定す
ることを、入射レーザビームで被検物体を二次元的に走
査しながら行うことを特徴とする内部欠陥検出方法。
9. A method of detecting an internal defect of an object to be inspected based on a scattered image of scattered light from the object to be inspected, which is produced by causing a laser beam to enter the object to be inspected. , The incident laser beam is made to have its refracted light having a predetermined small cross section inside the object to be inspected, and the scattered image generated by the refracted light is given at a predetermined angle with the optical axis of the refracted light. Obtained by the microscope on substantially intersecting optical axes, to specify the depth position in the object to be inspected of the defect image included in the obtained scattered image based on the position in the field of view of the microscope in which the defect image exists. An internal defect detection method characterized in that the object to be inspected is two-dimensionally scanned with an incident laser beam.
【請求項10】 被検物体面の法線は顕微鏡の光軸に対
して5〜35°の角度をなし、顕微鏡の焦点面において
所定のパターンを結像させ、被検物体面上のこのパター
ンの投影像に基き顕微鏡と被検物体間の距離を調整する
ことを特徴とする請求項9記載の内部欠陥検出方法。
10. The normal line of the object surface to be inspected forms an angle of 5 to 35 ° with respect to the optical axis of the microscope, and a predetermined pattern is imaged in the focal plane of the microscope. The internal defect detection method according to claim 9, wherein the distance between the microscope and the object to be inspected is adjusted based on the projected image of.
【請求項11】 入射光によって生じる光情報として、
散乱光によるものの他、欠陥からの光を分光して得られ
る蛍光によるものを含む請求項1または9記載の内部欠
陥検出方法。
11. As optical information generated by incident light,
The internal defect detection method according to claim 1 or 9, which includes not only scattered light but also fluorescent light obtained by dispersing light from the defect.
【請求項12】 入射光によって生じる光情報は入射光
によって被検物体から生じる正反射光である請求項1記
載の内部欠陥検出方法。
12. The internal defect detection method according to claim 1, wherein the optical information generated by the incident light is specularly reflected light generated from the object to be inspected by the incident light.
【請求項13】 得られる光情報は光電変換により画像
データとされる請求項1または9記載の内部欠陥検出方
法。
13. The internal defect detection method according to claim 1, wherein the optical information obtained is image data by photoelectric conversion.
【請求項14】 被検物体に所定の光を入射させ、それ
によって生じる被検物体からの光情報を観察光学系を介
して得、得られた光情報に基いて被検物体の内部欠陥を
検出する方法において、被検物体面の法線は観察光学系
の光軸に対してある角度をなしており、観察光学系の焦
点合せに際しては、顕微鏡の焦点面において所定のパタ
ーンを結像させ、被検物体面上のこのパターンの投影像
に基き顕微鏡と被検物体間の距離を調整することを特徴
とする内部欠陥検出方法。
14. A predetermined light is made incident on an object to be inspected, optical information from the object to be inspected thereby is obtained through an observation optical system, and internal defects of the object to be inspected are obtained based on the obtained optical information. In the detection method, the normal line of the object surface to be inspected makes an angle with the optical axis of the observation optical system, and when focusing the observation optical system, a predetermined pattern is imaged on the focal plane of the microscope. An internal defect detection method characterized in that the distance between the microscope and the object to be inspected is adjusted based on the projected image of this pattern on the object surface to be inspected.
【請求項15】 被検物体に所定の光を入射させる照明
手段と、その入射光によって生じる被検物体からの光情
報を得るための観察光学系と、これによって得られた光
情報を光電変換して被検物体の内部欠陥の画像データを
得る光電変換手段とを備えた内部欠陥検出装置におい
て、照明手段は被検物体の表面における光情報を比較的
多く発生させる波長の第1の入射光と、被検物体の内部
における光情報を比較的多く発生させる波長の第2の入
射光とを被検物体に入射させるものであり、画像データ
を得る手段は第1および第2の各入射光毎に画像データ
を得るものであることを特徴とする内部欠陥検出装置。
15. Illuminating means for causing a predetermined light to enter the object to be inspected, an observation optical system for obtaining optical information from the object to be inspected generated by the incident light, and optical information obtained by this photoelectric conversion. In the internal defect detection device including a photoelectric conversion unit that obtains image data of the internal defect of the object to be inspected, the illumination unit includes the first incident light having a wavelength that generates a relatively large amount of optical information on the surface of the object to be inspected. And a second incident light having a wavelength that generates a relatively large amount of optical information inside the object to be inspected, and the means for obtaining image data includes first and second incident light. An internal defect detection device characterized in that image data is obtained for each.
【請求項16】 観察光学系を介して得られる光情報は
散乱光によるものであり、照明手段は第1および第2の
入射光の波長をそれぞれ適宜選択して照射するものであ
り、これにより、画像データを得る手段は被検物体表面
の微細構造による回折光の影響を受けずに画像データを
得るものである、請求項15記載の内部欠陥検出装置。
16. The light information obtained through the observation optical system is due to scattered light, and the illuminating means appropriately selects and irradiates the wavelengths of the first and second incident lights, respectively. 16. The internal defect detection device according to claim 15, wherein the means for obtaining the image data obtains the image data without being affected by the diffracted light due to the fine structure of the surface of the object to be inspected.
【請求項17】 観察光学系を介して得られる光情報は
散乱光によるものであり、観察光学系は光情報として得
るべき散乱光の散乱方向を選択する空間フィルタを有
し、これにより被検物体表面の微細構造による回折光の
影響を受けないようにして光情報を得るものである、請
求項15記載の内部欠陥検出装置。
17. The optical information obtained through the observation optical system is due to scattered light, and the observation optical system has a spatial filter for selecting a scattering direction of scattered light to be obtained as optical information, whereby The internal defect detection device according to claim 15, wherein the optical information is obtained without being affected by the diffracted light due to the fine structure of the object surface.
【請求項18】 照明手段が被検物体に入射させる第1
および第2の入射光の入射面におけるビーム径は、観察
光学系の視野と同程度であり、被検物体を二次元的に走
査する必要がない請求項15記載の内部欠陥検出装置。
18. A first illuminating means for illuminating an object to be inspected
16. The internal defect detection device according to claim 15, wherein the beam diameter of the incident surface of the second incident light is about the same as the field of view of the observation optical system, and the object to be inspected does not need to be two-dimensionally scanned.
【請求項19】 被検物体はSi結晶の多層構造を有す
るウエハであり、第1の入射光と第2の入射光の波長は
400〜2000nmの範囲内である請求項15記載の
内部欠陥検出方法。
19. The internal defect detection according to claim 15, wherein the object to be inspected is a wafer having a multilayer structure of Si crystals, and the wavelengths of the first incident light and the second incident light are within the range of 400 to 2000 nm. Method.
【請求項20】 被検物体はSi結晶の多層構造を有す
るウエハであり、第1の入射光の波長は200〜650
nmの範囲である請求項15記載の内部欠陥検出方法。
20. The object to be inspected is a wafer having a multilayer structure of Si crystals, and the wavelength of the first incident light is 200 to 650.
The internal defect detection method according to claim 15, wherein the internal defect detection range is in the range of nm.
【請求項21】 被検物体はSi結晶の多層構造を有す
るウエハであり、第1の入射光は波長400〜1330
nmのレーザ光であり、第2の入射光はその二次高調波
であり、照明手段はこれら基本波と二次高調波を同時に
被検物体に入射させるものである請求項15記載の内部
欠陥検出装置。
21. The object to be inspected is a wafer having a multilayer structure of Si crystals, and the first incident light has a wavelength of 400 to 1330.
16. The internal defect according to claim 15, wherein the internal incident light is a laser light of nm, the second incident light is a second harmonic thereof, and the illumination means simultaneously makes the fundamental wave and the second harmonic incident on the object to be inspected. Detection device.
【請求項22】 照明手段は第1の入射光と第2の入射
光を発する波長可変レーザ装置を有するものである請求
項15記載の内部欠陥検出装置。
22. The internal defect detection device according to claim 15, wherein the illumination means has a wavelength tunable laser device which emits first incident light and second incident light.
【請求項23】 被検物体にレーザビームを入射させる
照明手段と、この入射レーザビームで被検物体を二次元
的に走査する手段と、その入射レーザビームによって生
じる散乱像を得るための顕微鏡と、これによって得られ
る散乱像を光電変換して画像データとする光電変換手段
とを備えた内部欠陥検出装置において、照明手段が発す
る入射レーザビームは被検物体内におけるその屈折光が
所定の小さな横断面を有するようなものであり、顕微鏡
はその屈折光によって生じる散乱像を、その屈折光の光
軸と所定の角度を有してほぼ交差する光軸上において得
るように配置され、光電変換手段により得られた画像デ
ータ中に含まれる欠陥像の被検物体における深さ位置
は、その欠陥像が存在する顕微鏡の視野内位置に基いて
特定されることを特徴とする内部欠陥検出装置。
23. Illuminating means for making a laser beam incident on an object to be inspected, means for two-dimensionally scanning the object to be inspected by the incident laser beam, and a microscope for obtaining a scattered image generated by the incident laser beam. In the internal defect detection device provided with photoelectric conversion means for photoelectrically converting the scattered image obtained thereby into image data, the incident laser beam emitted by the illumination means is a predetermined small cross-section of the refracted light in the object to be inspected. The microscope is arranged so as to obtain a scattered image generated by the refracted light on an optical axis that intersects the optical axis of the refracted light at a predetermined angle and substantially intersects, and the photoelectric conversion means The depth position of the defect image contained in the image data obtained by the inspected object is specified based on the position within the field of view of the microscope in which the defect image exists. Internal defect detection device.
【請求項24】 被検物体面の法線は顕微鏡の光軸に対
して5〜35°の角度をなし、顕微鏡の焦点面において
所定のパターンを結像させる手段を有し、顕微鏡と被検
物体間の距離は被検物体面上のこのパターンの投影像に
基き調整されることを特徴とする請求項23記載の内部
欠陥検出方法。
24. The normal to the object surface to be inspected forms an angle of 5 to 35 ° with respect to the optical axis of the microscope, and has means for forming a predetermined pattern in the focal plane of the microscope, and the microscope and the object to be inspected. 24. The internal defect detection method according to claim 23, wherein the distance between the objects is adjusted based on a projected image of this pattern on the surface of the object to be inspected.
【請求項25】 観察光学系は、光情報として、散乱光
によるものの他、欠陥からの光を分光して蛍光をも得る
ものである、請求項15記載の内部欠陥検出装置。
25. The internal defect detection device according to claim 15, wherein the observation optical system is one that obtains fluorescence by dispersing light from a defect as well as by scattered light as optical information.
【請求項26】 入射光によって生じる光情報は入射光
によって被検物体から生じる正反射光である請求項15
記載の内部欠陥検出方法。
26. The optical information generated by the incident light is specularly reflected light generated from the object to be inspected by the incident light.
The described internal defect detection method.
JP4092362A 1992-03-19 1992-03-19 Method for detecting internal defects in multilayer semiconductor substrate, etc. Expired - Fee Related JP2916321B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4092362A JP2916321B2 (en) 1992-03-19 1992-03-19 Method for detecting internal defects in multilayer semiconductor substrate, etc.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4092362A JP2916321B2 (en) 1992-03-19 1992-03-19 Method for detecting internal defects in multilayer semiconductor substrate, etc.

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP14513298A Division JP3267551B2 (en) 1998-05-11 1998-05-11 Method for detecting defects in multilayer semiconductors etc.
JP14513198A Division JP3186695B2 (en) 1998-05-11 1998-05-11 Device for detecting defects in semiconductors, etc.

Publications (2)

Publication Number Publication Date
JPH05264468A true JPH05264468A (en) 1993-10-12
JP2916321B2 JP2916321B2 (en) 1999-07-05

Family

ID=14052302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4092362A Expired - Fee Related JP2916321B2 (en) 1992-03-19 1992-03-19 Method for detecting internal defects in multilayer semiconductor substrate, etc.

Country Status (1)

Country Link
JP (1) JP2916321B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07151697A (en) * 1993-11-30 1995-06-16 Mitsui Mining & Smelting Co Ltd Apparatus and method for observing crystal defect
JPH07151696A (en) * 1993-11-30 1995-06-16 Mitsui Mining & Smelting Co Ltd Apparatus and method for observing crystal cross section
JPH07151698A (en) * 1993-11-30 1995-06-16 Mitsui Mining & Smelting Co Ltd Apparatus and method for observing crystal defect
JPH09113460A (en) * 1995-10-19 1997-05-02 Sekisui Chem Co Ltd Method and apparatus for detecting defect of reflective polarization object
JPH11160230A (en) * 1997-11-28 1999-06-18 Mitsubishi Materials Silicon Corp Method and apparatus for detecting crystal defect near surface
JPH11190702A (en) * 1997-12-26 1999-07-13 Hitachi Ltd Wafer inspecting apparatus
US5936726A (en) * 1995-03-10 1999-08-10 Hitachi Ltd. Inspection method, inspection apparatus and method of production of semiconductor device using them
US6226079B1 (en) 1997-09-29 2001-05-01 Hitachi, Ltd. Defect assessing apparatus and method, and semiconductor manufacturing method
DE10045210A1 (en) * 2000-09-13 2002-05-02 Infineon Technologies Ag Method and device for detecting layers deposited on a wafer
US7348190B2 (en) 2004-07-21 2008-03-25 Samsung Electronics Co., Ltd. Method of detecting a defect in a semiconductor device
JP2012063330A (en) * 2010-09-17 2012-03-29 Kansai Paint Co Ltd Method for non-contact and non-destructive evaluation of multilayer coating film, and device using the same
US10213590B2 (en) 2011-09-06 2019-02-26 Merit Medical Systems, Inc. Vascular access system with connector
US10792413B2 (en) 2008-03-05 2020-10-06 Merit Medical Systems, Inc. Implantable and removable customizable body conduit

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58106444A (en) * 1981-12-21 1983-06-24 Matsushita Electric Ind Co Ltd Checker for surface fault of film
JPS63212911A (en) * 1987-03-02 1988-09-05 Hitachi Electronics Eng Co Ltd Auto focus system
JPH0216438A (en) * 1988-07-04 1990-01-19 Hitachi Ltd Instrument and method for inspecting foreign matter
JPH02190749A (en) * 1989-01-20 1990-07-26 Hitachi Ltd Foreign matter inspecting device
JPH03238348A (en) * 1990-02-06 1991-10-24 Vti Inc Method and device for measuring fine defect of material in non-destuctive manner
JPH0424541A (en) * 1990-05-21 1992-01-28 Mitsui Mining & Smelting Co Ltd Method and apparatus for measuring internal defect
JPH0426845A (en) * 1990-05-22 1992-01-30 Dainippon Printing Co Ltd Foreign matter inspecting method
JPH0495861A (en) * 1990-08-13 1992-03-27 Toshiba Corp Detector of defect of transparent circular work

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58106444A (en) * 1981-12-21 1983-06-24 Matsushita Electric Ind Co Ltd Checker for surface fault of film
JPS63212911A (en) * 1987-03-02 1988-09-05 Hitachi Electronics Eng Co Ltd Auto focus system
JPH0216438A (en) * 1988-07-04 1990-01-19 Hitachi Ltd Instrument and method for inspecting foreign matter
JPH02190749A (en) * 1989-01-20 1990-07-26 Hitachi Ltd Foreign matter inspecting device
JPH03238348A (en) * 1990-02-06 1991-10-24 Vti Inc Method and device for measuring fine defect of material in non-destuctive manner
JPH0424541A (en) * 1990-05-21 1992-01-28 Mitsui Mining & Smelting Co Ltd Method and apparatus for measuring internal defect
JPH0426845A (en) * 1990-05-22 1992-01-30 Dainippon Printing Co Ltd Foreign matter inspecting method
JPH0495861A (en) * 1990-08-13 1992-03-27 Toshiba Corp Detector of defect of transparent circular work

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07151696A (en) * 1993-11-30 1995-06-16 Mitsui Mining & Smelting Co Ltd Apparatus and method for observing crystal cross section
JPH07151698A (en) * 1993-11-30 1995-06-16 Mitsui Mining & Smelting Co Ltd Apparatus and method for observing crystal defect
JPH07151697A (en) * 1993-11-30 1995-06-16 Mitsui Mining & Smelting Co Ltd Apparatus and method for observing crystal defect
US5936726A (en) * 1995-03-10 1999-08-10 Hitachi Ltd. Inspection method, inspection apparatus and method of production of semiconductor device using them
JPH09113460A (en) * 1995-10-19 1997-05-02 Sekisui Chem Co Ltd Method and apparatus for detecting defect of reflective polarization object
US6226079B1 (en) 1997-09-29 2001-05-01 Hitachi, Ltd. Defect assessing apparatus and method, and semiconductor manufacturing method
JPH11160230A (en) * 1997-11-28 1999-06-18 Mitsubishi Materials Silicon Corp Method and apparatus for detecting crystal defect near surface
JPH11190702A (en) * 1997-12-26 1999-07-13 Hitachi Ltd Wafer inspecting apparatus
DE10045210A1 (en) * 2000-09-13 2002-05-02 Infineon Technologies Ag Method and device for detecting layers deposited on a wafer
US7348190B2 (en) 2004-07-21 2008-03-25 Samsung Electronics Co., Ltd. Method of detecting a defect in a semiconductor device
US10792413B2 (en) 2008-03-05 2020-10-06 Merit Medical Systems, Inc. Implantable and removable customizable body conduit
JP2012063330A (en) * 2010-09-17 2012-03-29 Kansai Paint Co Ltd Method for non-contact and non-destructive evaluation of multilayer coating film, and device using the same
US10213590B2 (en) 2011-09-06 2019-02-26 Merit Medical Systems, Inc. Vascular access system with connector
US10632296B2 (en) 2011-09-06 2020-04-28 Merit Medical Systems, Inc. Vascular access system with connector

Also Published As

Publication number Publication date
JP2916321B2 (en) 1999-07-05

Similar Documents

Publication Publication Date Title
JP3258385B2 (en) Optical board inspection system
US8410460B2 (en) Pattern defect inspection method and its apparatus
US7528942B2 (en) Method and apparatus for detecting defects
JP2796316B2 (en) Defect or foreign matter inspection method and apparatus
US7173694B2 (en) Method and system for detecting defects
US5963316A (en) Method and apparatus for inspecting a surface state
JP4163258B2 (en) Optical height measuring device, surface inspection device having such a height measuring device, and lithographic device having this inspection device
JP5268061B2 (en) Board inspection equipment
JPH05264468A (en) Method and apparatus for detecting internal
JP4359689B2 (en) Inspection apparatus and inspection method, pattern substrate manufacturing method
JP2018120211A (en) Method of inspecting defect of photomask blank, method of screening, and method of manufacturing
JP5571969B2 (en) Defect inspection method and apparatus
JP3186695B2 (en) Device for detecting defects in semiconductors, etc.
JP3267551B2 (en) Method for detecting defects in multilayer semiconductors etc.
JP4325909B2 (en) Defect inspection apparatus, defect inspection method, optical scanning apparatus, and semiconductor device manufacturing method
JP3519813B2 (en) Defect detection method and defect detection device
JPH08304296A (en) Method and system for detecting defect of foreign matter
JP3409272B2 (en) Foreign matter inspection method of exposure mask
JP2005043229A (en) Device for inspecting defect of transparent plate
JPH0536726B2 (en)
JPH1183465A (en) Surface inspecting method and device therefor
JP4654408B2 (en) Inspection apparatus, inspection method, and pattern substrate manufacturing method
JP3141470B2 (en) Three-dimensional shape detection method and apparatus
JP2000028536A (en) Defect inspecting apparatus
JP3410013B2 (en) Defect or foreign matter inspection method and apparatus

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990406

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees