JPH07151697A - Apparatus and method for observing crystal defect - Google Patents

Apparatus and method for observing crystal defect

Info

Publication number
JPH07151697A
JPH07151697A JP32604993A JP32604993A JPH07151697A JP H07151697 A JPH07151697 A JP H07151697A JP 32604993 A JP32604993 A JP 32604993A JP 32604993 A JP32604993 A JP 32604993A JP H07151697 A JPH07151697 A JP H07151697A
Authority
JP
Japan
Prior art keywords
defect
wavelength
crystal
laser
laser light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32604993A
Other languages
Japanese (ja)
Other versions
JP2832272B2 (en
Inventor
Kazuo Moriya
一男 守矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP5326049A priority Critical patent/JP2832272B2/en
Publication of JPH07151697A publication Critical patent/JPH07151697A/en
Application granted granted Critical
Publication of JP2832272B2 publication Critical patent/JP2832272B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To make possible the observation of a defect of a semiconductor crystal efficiently even in a relatively less intensity of a laser light by setting the wavelength of the laser light based on changes in the intensity of scattering due to the defect with respect to changes in the wavelength of the laser light and changes in absorption coefficient of the laser light in the semiconductor crystal. CONSTITUTION:A laser apparatus is so set to emit a laser light with a wavelength in a range of 960-1010nm. When a focused laser light 5 is made to irradiate a surface 3, scattered light in the direction of 90 deg. out of the scattered light 11 generated by a defect 9 is observed through a cleaved surface. In this case, as the wavelength of the irradiated laser beam 5 is set in a range of 960-1010nm, the incident laser luminous flux and the scattered light 11 within a silicon wafer 1 are not attenuated so much while the image of the defect 9 is observed efficiently because of a large intensity of scattering by the defect 9 thereby making possible the obtaining of an image data even when the defect 9 is very small.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体デバイスに用いら
れる半導体結晶の内部欠陥を観察する装置および方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus and method for observing internal defects in semiconductor crystals used in semiconductor devices.

【0002】[0002]

【従来の技術】従来、半導体ウエハ等の内部欠陥を観察
する方法として、レーザ光束をウエハ表面から照射し、
ウエハ内の欠陥から生じる散乱光のみをその照射面側あ
るいはウエハ表面に垂直な劈開面側から受光して欠陥像
を観察する方法が知られている。そして、欠陥の検出感
度等の調整は、もっぱら照射レーザ光の強度を変化させ
ることにより行なっている。
2. Description of the Related Art Conventionally, as a method of observing an internal defect of a semiconductor wafer or the like, a laser beam is irradiated from the wafer surface,
There is known a method of observing a defect image by receiving only scattered light generated from a defect in the wafer from the irradiation surface side or the cleavage surface side perpendicular to the wafer surface. The defect detection sensitivity and the like are adjusted by changing the intensity of the irradiation laser beam.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、このよ
うな従来技術によれば、より微小な欠陥を観察すべく照
射レーザ光の強度を上げると、半導体結晶を破壊してし
まうという問題がある。また、このように照射レーザ光
の強度のみに頼ることは、装置構成や消費電力の面でも
好ましくない。
However, according to such a conventional technique, there is a problem that the semiconductor crystal is destroyed when the intensity of the irradiation laser beam is increased to observe smaller defects. In addition, it is not preferable to rely only on the intensity of the irradiation laser beam in this way in terms of the device configuration and power consumption.

【0004】本発明の目的は、このような従来技術の問
題点に鑑み、比較的小さなレーザ光強度でも、効率的に
半導体結晶の欠陥を観察できるような装置および方法を
提供することにある。
An object of the present invention is to provide an apparatus and method capable of efficiently observing a defect in a semiconductor crystal even with a relatively small laser beam intensity in view of the problems of the prior art.

【0005】[0005]

【課題を解決するための手段】この目的を達成するため
本発明では、半導体結晶の平らな表面へ向けてレーザ光
束を照射し、このレーザ光束により前記半導体結晶内の
欠陥から生じる散乱光を受光して前記欠陥の情報を得る
に際し、前記レーザ光の波長は、レーザ光の波長の変化
に対する前記欠陥による散乱強度の変化および前記半導
体結晶におけるレーザ光の吸収係数の変化に基づいて設
定するようにしている。
In order to achieve this object, the present invention irradiates a flat surface of a semiconductor crystal with a laser beam and receives the scattered light generated by a defect in the semiconductor crystal by the laser beam. Then, in obtaining the information of the defect, the wavelength of the laser light is set based on the change of the scattering intensity due to the defect with respect to the change of the wavelength of the laser light and the change of the absorption coefficient of the laser light in the semiconductor crystal. ing.

【0006】[0006]

【作用】この構成において、照射レーザ光の波長に対
し、欠陥からの散乱強度および吸収係数は、シリコン結
晶の場合を例にとれば、図1のグラフに示すように変化
する。散乱強度Iが図1のように変化するのは、欠陥の
まわりのシリコン結晶の屈折率εに対する欠陥の屈折率
をε+△ε、欠陥の体積をV、照射レーザ光の波長をλ
とすれば、その欠陥による散乱強度Iは、I∝λ-4(△
ε*V)2 のように、波長の4乗に反比例するととも
に、△εおよびVの影響を受けるからである。したがっ
て、半導体ウエハの表面へ向けてレーザ光束を照射し、
劈開面側から90°散乱を観察するような場合は、散乱
強度が高くかつ吸収係数が小さい方がより微小な欠陥の
観察に適しているため、シリコンウエハの場合は図1か
ら照射レーザ光の波長を970〜1035nmの範囲内
の波長に設定するのが好ましい。また、シリコンウエハ
の表面からレーザ光束を照射し、その表面から散乱光を
観察するような場合は、シリコンウエハの裏面からの反
射や散乱の影響を抑えるため、吸収係数が比較的大きく
かつ散乱強度が比較的小さい960〜1010nmの範
囲の波長のレーザ光束を照射するのが好ましい。
In this structure, the scattering intensity and the absorption coefficient from the defect change with respect to the wavelength of the irradiation laser light as shown in the graph of FIG. 1 in the case of a silicon crystal as an example. The scattering intensity I changes as shown in FIG. 1 because the refractive index of the defect is ε + Δε with respect to the refractive index ε of the silicon crystal around the defect, the volume of the defect is V, and the wavelength of the irradiation laser beam is λ.
Then, the scattering intensity I due to the defect is I ∝λ -4 (△
This is because it is inversely proportional to the fourth power of the wavelength as in ε * V) 2 and is influenced by Δε and V. Therefore, by irradiating the laser beam toward the surface of the semiconductor wafer,
In the case of observing 90 ° scattering from the cleavage plane side, the scattering intensity is high and the absorption coefficient is small is suitable for observing smaller defects. Therefore, in the case of a silicon wafer, the irradiation laser beam from FIG. It is preferable to set the wavelength within the range of 970 to 1035 nm. In addition, when irradiating the laser beam from the front surface of the silicon wafer and observing scattered light from the front surface, the absorption coefficient is relatively large and the scattering intensity is high to suppress the influence of reflection and scattering from the back surface of the silicon wafer. It is preferable to irradiate a laser beam having a wavelength in the range of 960 to 1010 nm, which is relatively small.

【0007】[0007]

【実施例】以下、図面を用いて本発明の実施例を説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

【0008】図2は本発明の一実施例に係る結晶欠陥観
察装置を示す模式図である。同図に示すように、この装
置は、シリコンウエハ1の表面3へ向けて収束レーザ光
5を照射するレーザ照射手段7、レーザ光5によりシリ
コンウエハ1ないの欠陥9から生じる散乱光11を受光
して欠陥9の情報を得る観察手段13を備える。レーザ
照射手段7は不図示のレーザ装置とそれが発するレーザ
光を集光して表面3へ向け照射させる集光レンズ15を
有する。観察手段13は、散乱光11を受光する顕微鏡
17とそれによって結像される欠陥像を光電変換して画
像データを得るテレビカメラ19とを有する。レーザ装
置としては波長が970〜1035nmの範囲の波長の
レーザ光を発するものを設定し、あるいはそのような波
長のレーザ光を発するように調整し設定されている。
FIG. 2 is a schematic view showing a crystal defect observing apparatus according to an embodiment of the present invention. As shown in the figure, this device receives a laser irradiation means 7 for irradiating the surface 3 of the silicon wafer 1 with a converged laser beam 5, and a scattered light 11 generated by a defect 9 in the silicon wafer 1 by the laser beam 5. An observation means 13 for obtaining information on the defect 9 is provided. The laser irradiation means 7 has a laser device (not shown) and a condenser lens 15 that condenses and irradiates the laser light emitted by the laser device onto the surface 3. The observation means 13 includes a microscope 17 that receives the scattered light 11 and a television camera 19 that photoelectrically converts a defect image formed by the microscope 17 to obtain image data. As the laser device, one that emits laser light having a wavelength in the range of 970 to 1035 nm is set, or the laser device is adjusted and set so as to emit laser light having such a wavelength.

【0009】この構成において、集束レーザ光5が表面
3へ向けて照射されると、欠陥9から散乱光が生じ、そ
れが顕微鏡17を介して観察されるが、レーザ光の波長
が上述のように設定されているため、照射されたレーザ
光はシリコンウエハ内でほど良く減衰するとともに、散
乱強度がそれほど強くないため、裏面21における反射
や散乱の影響をそれほど受けずに、欠陥9からの散乱光
が明瞭に観察される。図3は本発明の他の実施例に係る
結晶欠陥観察装置を示す模式図である。図2と同一の符
号は同様の構成要素を示す。図3中、23はシリコンウ
エハ1の劈開面である。この場合、レーザ装置は、96
0〜1010nmの範囲の波長のレーザ光を発するよう
に設定されている。
In this structure, when the focused laser beam 5 is irradiated toward the surface 3, scattered light is generated from the defect 9 and is observed through the microscope 17. The wavelength of the laser beam is as described above. Since the irradiated laser light is appropriately attenuated in the silicon wafer, and the scattering intensity is not so strong, it is not significantly affected by reflection and scattering on the back surface 21 and is scattered from the defect 9. The light is clearly visible. FIG. 3 is a schematic view showing a crystal defect observation apparatus according to another embodiment of the present invention. 2 that are the same as those in FIG. 2 indicate the same components. In FIG. 3, reference numeral 23 is a cleavage plane of the silicon wafer 1. In this case, the laser device is 96
It is set to emit laser light having a wavelength in the range of 0 to 1010 nm.

【0010】この構成において、集束レーザ光5が表面
3へ向けて照射されると、欠陥9で生じる散乱光のうち
90°方向への散乱光が劈開面23を介して観察される
が、照射レーザビーム5の波長が上述のように設定され
ているため、シリコンウエハ1内で入射レーザ光束や散
乱光11がそれほど減衰することなく、かつ欠陥9によ
る散乱強度も大きいため、効率良く、欠陥9の像が観察
され、欠陥9が微小であってもその画像データを得るこ
とができる。
In this structure, when the focused laser light 5 is irradiated toward the surface 3, scattered light in the 90 ° direction among scattered light generated by the defect 9 is observed through the cleavage plane 23. Since the wavelength of the laser beam 5 is set as described above, the incident laser beam and the scattered light 11 are not significantly attenuated in the silicon wafer 1 and the scattering intensity by the defect 9 is large, so that the defect 9 can be efficiently obtained. Image is observed and even if the defect 9 is minute, its image data can be obtained.

【0011】なお、他の観察形態、例えばウエハの表面
からレーザ光を照射し、裏面から散乱光を観察するよう
な場合においても、図1のようなデータに基づき照射レ
ーザ光の波長を最適化することにより効率的な観察を行
うことができる。
Even in another observation mode, for example, when the laser light is irradiated from the front surface of the wafer and the scattered light is observed from the back surface, the wavelength of the irradiation laser light is optimized based on the data shown in FIG. By doing so, efficient observation can be performed.

【0012】また、上述の観察手段は、テレビカメラ等
を用いたものの他、感光材料を用いたもの等であっても
よい。また、照射レーザ光で走査することにより断面画
像を得るようにしても良い。
Further, the above-mentioned observation means may be one using a television camera or the like, or one using a photosensitive material. Alternatively, a cross-sectional image may be obtained by scanning with irradiation laser light.

【0013】[0013]

【発明の効果】以上説明したように本発明によれば、レ
ーザ光の波長に対する吸収係数および散乱強度の変化に
基づき照射レーザ光の波長を設定するようにしたため、
極めて効率的に欠陥の散乱光による情報を得ることがで
きる。したがって、半導体結晶を照射レーザ光束により
破壊する危険性なく、より微小な欠陥をも観察すること
ができる。
As described above, according to the present invention, the wavelength of the irradiation laser beam is set based on the change of the absorption coefficient and the scattering intensity with respect to the wavelength of the laser beam.
Information based on the scattered light of the defect can be obtained very efficiently. Therefore, even smaller defects can be observed without the risk of destroying the semiconductor crystal by the irradiation laser beam.

【図面の簡単な説明】[Brief description of drawings]

【図1】 シリコン結晶における照射レーザ光の波長に
対する吸収係数および散乱強度の変化を示すグラフであ
る。
FIG. 1 is a graph showing changes in absorption coefficient and scattering intensity with respect to a wavelength of irradiated laser light in a silicon crystal.

【図2】 本発明の一実施例に係る結晶欠陥観察装置を
示す模式図である。
FIG. 2 is a schematic diagram showing a crystal defect observing apparatus according to an embodiment of the present invention.

【図3】 本発明の他の実施例に係る結晶欠陥観察装置
を示す模式図である。
FIG. 3 is a schematic view showing a crystal defect observation apparatus according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1:シリコンウエハ、3:表面、5:収束レーザ光、
7:レーザ照射手段、9:欠陥、11:散乱光、13:
観察手段、15:集光レンズ、17:顕微鏡、19:テ
レビカメラ、21:裏面、23:劈開面。
1: silicon wafer, 3: surface, 5: focused laser beam,
7: Laser irradiation means, 9: Defects, 11: Scattered light, 13:
Observation means, 15: condensing lens, 17: microscope, 19: TV camera, 21: back surface, 23: cleavage surface.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 半導体結晶の平らな表面へ向けてレーザ
光束を照射するレーザ照射手段と、このレーザ光束によ
り前記半導体結晶内の欠陥から生じる散乱光を受光して
前記欠陥の情報を得る観察手段とを備えた結晶欠陥観察
装置において、前記レーザ照射手段が照射するレーザ光
の波長は、レーザ光の波長の変化に対する前記欠陥によ
る散乱強度の変化および前記半導体結晶におけるレーザ
光の吸収係数の変化に基づいて設定されるものであるこ
とを特徴とする結晶欠陥観察装置。
1. A laser irradiating means for irradiating a flat surface of a semiconductor crystal with a laser beam and an observing means for receiving scattered light generated by a defect in the semiconductor crystal by the laser beam to obtain information on the defect. In the crystal defect observing apparatus having the, the wavelength of the laser light irradiated by the laser irradiation means, in the change of the scattering intensity due to the defect with respect to the change of the wavelength of the laser light A crystal defect observing apparatus characterized by being set based on the above.
【請求項2】 前記観察手段は前記照射レーザ光束に対
しほぼ90°の方向に前記欠陥より散乱される散乱光を
前記平らな平面にほぼ垂直な前記半導体結晶の他の表面
を介して受光するものであり、前記半導体結晶はシリコ
ン結晶であり、前記設定される波長は970〜1035
nmの範囲内のものであることを特徴とする請求項1記
載の結晶欠陥観察装置。
2. The observing means receives scattered light scattered from the defect in a direction of about 90 ° with respect to the irradiation laser beam through another surface of the semiconductor crystal which is substantially perpendicular to the flat plane. The semiconductor crystal is a silicon crystal, and the set wavelength is 970 to 1035.
The crystal defect observing apparatus according to claim 1, wherein the crystal defect observing apparatus is in the range of nm.
【請求項3】 前記半導体結晶は前記平らな表面に平行
な他の表面を有するシリコン結晶であり、前記観察手段
は前記欠陥からの散乱光を前記平らな表面を介して受光
するものであり、前記設定される波長は960〜101
0nmの範囲内のものであることを特徴とする請求項1
記載の結晶欠陥観察装置。
3. The semiconductor crystal is a silicon crystal having another surface parallel to the flat surface, and the observation means receives scattered light from the defect via the flat surface. The set wavelength is 960 to 101
2. It is within the range of 0 nm.
The described crystal defect observation device.
【請求項4】 半導体結晶の平らな表面へ向けてレーザ
光束を照射し、このレーザ光束により前記半導体結晶内
の欠陥から生じる散乱光を受光して前記欠陥の情報を得
る結晶欠陥観察方法おいて、前記レーザ光の波長は、レ
ーザ光の波長の変化に対する前記欠陥による散乱強度の
変化および前記半導体結晶におけるレーザ光の吸収係数
の変化に基づいて設定することを特徴とする結晶欠陥観
察方法。
4. A crystal defect observing method for obtaining information of the defect by irradiating a flat surface of a semiconductor crystal with a laser beam and receiving scattered light generated from a defect in the semiconductor crystal by the laser beam. The crystal defect observing method is characterized in that the wavelength of the laser light is set based on a change in scattering intensity due to the defect with respect to a change in wavelength of the laser light and a change in absorption coefficient of the laser light in the semiconductor crystal.
JP5326049A 1993-11-30 1993-11-30 Crystal defect observation device Expired - Lifetime JP2832272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5326049A JP2832272B2 (en) 1993-11-30 1993-11-30 Crystal defect observation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5326049A JP2832272B2 (en) 1993-11-30 1993-11-30 Crystal defect observation device

Publications (2)

Publication Number Publication Date
JPH07151697A true JPH07151697A (en) 1995-06-16
JP2832272B2 JP2832272B2 (en) 1998-12-09

Family

ID=18183542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5326049A Expired - Lifetime JP2832272B2 (en) 1993-11-30 1993-11-30 Crystal defect observation device

Country Status (1)

Country Link
JP (1) JP2832272B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0424541A (en) * 1990-05-21 1992-01-28 Mitsui Mining & Smelting Co Ltd Method and apparatus for measuring internal defect
JPH05264468A (en) * 1992-03-19 1993-10-12 Mitsui Mining & Smelting Co Ltd Method and apparatus for detecting internal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0424541A (en) * 1990-05-21 1992-01-28 Mitsui Mining & Smelting Co Ltd Method and apparatus for measuring internal defect
JPH05264468A (en) * 1992-03-19 1993-10-12 Mitsui Mining & Smelting Co Ltd Method and apparatus for detecting internal

Also Published As

Publication number Publication date
JP2832272B2 (en) 1998-12-09

Similar Documents

Publication Publication Date Title
KR100483357B1 (en) Apparatus and method for detecting micro defects in semi-conductors
JP4001862B2 (en) System and method for a wafer inspection system using multiple angle and multiple wavelength illumination
JPH06281589A (en) Defect evaluating apparatus
US5861952A (en) Optical inspection method and apparatus including intensity modulation of a light beam and detection of light scattered at an inspection position
JP2008502929A (en) Inspection apparatus or inspection method for fine structure by reflected or transmitted infrared light
JP2008058270A (en) Inspection method of polycrystal silicon substrate, inspection method of photovoltaic cell, and infrared inspection apparatus
JPH07294422A (en) Detecting method for surface vicinity crystal defect and device therefor
JP2916321B2 (en) Method for detecting internal defects in multilayer semiconductor substrate, etc.
JPH05100413A (en) Foreign matter detecting device
JP2000146687A (en) Front-illuminated fluorescent screen regarding uv imaging
JP2832272B2 (en) Crystal defect observation device
JPH09243569A (en) Apparatus and method for evaluating semiconductor substrate
JP3190157B2 (en) Crystal defect inspection method
JP3267551B2 (en) Method for detecting defects in multilayer semiconductors etc.
JP5255763B2 (en) Optical inspection method and apparatus
JPH05288536A (en) Foreign matter inspection device
JPH1183465A (en) Surface inspecting method and device therefor
JP2847463B2 (en) Semiconductor device analysis method
TWI835876B (en) Laser processing method, semiconductor device manufacturing method and inspection device
JP2004271220A (en) Evaluation apparatus and method of fused quartz
JP2004163239A (en) Surface evaluation device
JPH10206338A (en) Foreign matter inspecting method and foreign matter inspecting device
JPH08261927A (en) Intra-crystal flaw detecting device
JP2798042B2 (en) Optical processing equipment
JPH01217912A (en) Method of inspecting external appearance and apparatus thereof

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071002

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20081002

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081002

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20091002

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101002

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20111002

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111002

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20121002

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20131002

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term