JP2008058270A - Inspection method of polycrystal silicon substrate, inspection method of photovoltaic cell, and infrared inspection apparatus - Google Patents

Inspection method of polycrystal silicon substrate, inspection method of photovoltaic cell, and infrared inspection apparatus Download PDF

Info

Publication number
JP2008058270A
JP2008058270A JP2006238915A JP2006238915A JP2008058270A JP 2008058270 A JP2008058270 A JP 2008058270A JP 2006238915 A JP2006238915 A JP 2006238915A JP 2006238915 A JP2006238915 A JP 2006238915A JP 2008058270 A JP2008058270 A JP 2008058270A
Authority
JP
Japan
Prior art keywords
infrared
silicon substrate
polycrystalline silicon
light
polarized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006238915A
Other languages
Japanese (ja)
Inventor
Norihisa Matsumoto
紀久 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006238915A priority Critical patent/JP2008058270A/en
Publication of JP2008058270A publication Critical patent/JP2008058270A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inspection method of a polycrystal silicon substrate capable of detecting a cracked part while clearly distinguishing it from the other normal part. <P>SOLUTION: Infrared scattered light 3 is polarized by a first polarizing filter 6, and a workpiece 1 is irradiated with polarized infrared radiation 5. The polarized infrared radiation 5 reflected by the workpiece 1 is polarized by a second polarizing filter 7, and imaged by an infrared camera 4. A polarization direction adjusting means 17 for adjusting the polarization direction is connected to the second polarizing filter 7. While an image imaged by the infrared camera 4 is seen, the polarization direction of the second polarizing filter 7 is adjusted by the polarization direction adjusting means 17 so that the reflected light on the cracked part transmits through the second polarizing filter 7 to make the cracked part become a bright image and imaging of the reflected light the part other than the cracked part is suppressed, and the cracked part in the polycrystal silicon substrate is detected. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、多結晶シリコン基板の検査方法および太陽電池セルの検査方法、並びに赤外線検査装置に関するものである。   The present invention relates to a polycrystalline silicon substrate inspection method, a solar battery cell inspection method, and an infrared inspection apparatus.

赤外散乱光を単結晶シリコンウエハに照射し、その反射光による赤外線画像から、微小なクラックを検出する半導体ウエハ検査装置がある。
つまり、赤外散乱光を単結晶シリコンウエハに入射すると、単結晶部分では入射角に応じて一定の方向に反射するため、反射光による赤外線画像は通常一様な画像になるが、クラック部分では赤外線の吸収および散乱が起こるため、反射光による赤外線画像において影として出現し、影の画像から微小なクラックを検出することができる(例えば特許文献1参照)。
また、ソーラーパネルは太陽電池セルを複数枚組み合わせたものを樹脂によりガラスに貼り付けたものであり、ソーラーパネルにおけるクラックなどの欠陥を検出する欠陥検査システムとして、ソーラーパネルのガラス面での乱反射防止のために、近赤外線を線形偏光してソーラーパネルに入射させたものがある(例えば特許文献2参照)。
There is a semiconductor wafer inspection apparatus that irradiates a single crystal silicon wafer with infrared scattered light and detects minute cracks from an infrared image by the reflected light.
In other words, when infrared scattered light is incident on a single crystal silicon wafer, the single crystal part reflects in a certain direction according to the incident angle, so the infrared image by the reflected light is usually a uniform image, but in the crack part. Since infrared absorption and scattering occur, it appears as a shadow in an infrared image by reflected light, and minute cracks can be detected from the shadow image (see, for example, Patent Document 1).
In addition, solar panels are a combination of multiple solar cells that are bonded to glass with resin. As a defect inspection system that detects defects such as cracks in solar panels, the solar panel glass surface is protected from irregular reflection. Therefore, there is one in which near infrared rays are linearly polarized and incident on a solar panel (for example, see Patent Document 2).

特開平6−308042号公報(第2頁)JP-A-6-308042 (2nd page) J.R.Hodor,H.J.Decker,Jr.J.Barney : Infrared technology comes to state-of-the-art solar array production,SPIE Vol.819 Infrared Technology VIII (1987) p.22-p.29J.R.Hodor, H.J.Decker, Jr.J.Barney: Infrared technology comes to state-of-the-art solar array production, SPIE Vol.819 Infrared Technology VIII (1987) p.22-p.29

多結晶シリコン基板は、単結晶シリコンからなるものとは異なり、結晶表面が複数の面方位を有するため、特許文献1に示す半導体ウエハ検査装置を用いて、多結晶シリコン基板を検査すると、反射光による赤外線画像において、クラック部分だけでなく、正常な結晶面も部分的に影として出現する場合がある。このため、クラック部分を明確に区別して検出することが困難であるという課題があった。
また、特許文献2に示す検査システムでは、ガラス面での乱反射を防止するためだけに赤外線を偏光しているので、多結晶シリコン基板におけるクラック部分を明確に区別して検出することができないという課題があった。
Since a polycrystalline silicon substrate has a plurality of plane orientations unlike a single crystal silicon substrate, when a polycrystalline silicon substrate is inspected using the semiconductor wafer inspection apparatus disclosed in Patent Document 1, reflected light is reflected. In the infrared image by, not only a crack part but also a normal crystal plane may appear partially as a shadow. For this reason, there has been a problem that it is difficult to clearly distinguish and detect a crack portion.
Moreover, in the inspection system shown in Patent Document 2, since infrared rays are polarized only to prevent irregular reflection on the glass surface, there is a problem that it is impossible to clearly distinguish and detect crack portions in the polycrystalline silicon substrate. there were.

本発明は、かかる課題を解決するためになされたものであり、多結晶シリコン基板のクラック部分を明確に区別して検出することができる多結晶シリコン基板の検査方法を得ることを目的とする。また、太陽電池セルの検査方法と赤外線検査装置を得ることを目的とする。   The present invention has been made to solve such a problem, and an object of the present invention is to obtain a method for inspecting a polycrystalline silicon substrate that can clearly distinguish and detect a crack portion of the polycrystalline silicon substrate. Moreover, it aims at obtaining the inspection method and infrared rays inspection apparatus of a photovoltaic cell.

本発明に係る多結晶シリコン基板の検査方法は、多結晶シリコン基板に赤外線を照射し、上記多結晶シリコン基板における上記赤外線の反射光を撮像して上記多結晶シリコン基板のクラック部分を検出する多結晶シリコン基板の検査方法において、上記多結晶シリコン基板に偏光赤外線を照射し、上記多結晶シリコン基板における上記偏光赤外線の反射光を、偏光特性に基づいて選択して撮像することにより、上記多結晶シリコン基板のクラック部分を検出する方法である。   The method for inspecting a polycrystalline silicon substrate according to the present invention includes a method for irradiating a polycrystalline silicon substrate with infrared rays, imaging the reflected light of the infrared rays on the polycrystalline silicon substrate, and detecting a crack portion of the polycrystalline silicon substrate. In the method for inspecting a crystalline silicon substrate, the polycrystalline silicon substrate is irradiated with polarized infrared rays, and the reflected light of the polarized infrared rays on the polycrystalline silicon substrate is selected and imaged based on polarization characteristics, whereby the polycrystalline This is a method for detecting a crack portion of a silicon substrate.

多結晶シリコン基板における偏光赤外線の反射光を、偏光方向を調整して偏光することにより、クラック部分以外の結晶面における反射光が撮像されることを抑制し、クラック部分における反射光を明るい像として撮像されるように選択して、クラック部分を他と区別して明確に検出する。   By polarizing polarized infrared reflected light on the polycrystalline silicon substrate by adjusting the polarization direction, it is possible to suppress the reflected light on the crystal surface other than the crack part from being imaged, and to make the reflected light at the crack part a bright image. The image is selected so as to be imaged, and the crack portion is clearly detected separately from others.

実施の形態1.
本発明の実施の形態1の多結晶シリコン基板の検査方法に係わる多結晶シリコン基板は、面方位が一定である単結晶シリコン単独で構成されているのではなく、上記単結晶の結晶粒界が組み合わさったもので、主として面方位が(100)面および(111)面の結晶面を有している。また、上記多結晶シリコン基板には、製造工程や装置搬送時のトラブル等により微小なクラック(異常部分)が発生する場合があり、クラックの存在する基板は不良品となるため製品出荷時に除外する必要がある。
Embodiment 1 FIG.
The polycrystalline silicon substrate according to the method for inspecting a polycrystalline silicon substrate of the first embodiment of the present invention is not composed of single crystal silicon having a constant plane orientation, but the crystal grain boundary of the single crystal is These are combined, and mainly have crystal planes with (100) planes and (111) planes. The polycrystalline silicon substrate may have micro cracks (abnormal parts) due to troubles during the manufacturing process or transportation of the device. The cracked substrate is a defective product and is excluded at the time of product shipment. There is a need.

図1は、本実施の形態に係わる、多結晶シリコン基板における赤外線の反射状態を示す模式図であり、赤外光源2からの赤外散乱光3が第1の偏光フィルタ6を透過して偏光され、偏光赤外線5が被検体である多結晶シリコン基板1へ入射する場合で、図中、散乱光を点線、偏光光を実線で示し、散乱光および偏光光における、振動面方向と振動面の数とを、上記点線又は実線に直交する円内の矢印で模式的に示す。なお、図2には比較例として、赤外光源2からの赤外散乱光3が被検体である多結晶シリコン基板1へ入射する場合を示す。   FIG. 1 is a schematic diagram showing an infrared reflection state on a polycrystalline silicon substrate according to the present embodiment. Infrared scattered light 3 from an infrared light source 2 passes through a first polarizing filter 6 and is polarized. In the case where the polarized infrared light 5 is incident on the polycrystalline silicon substrate 1 which is the subject, the scattered light is indicated by a dotted line, the polarized light is indicated by a solid line, and the vibration plane direction and the vibration plane in the scattered light and the polarized light are shown. The number is schematically indicated by an arrow in a circle orthogonal to the dotted line or the solid line. As a comparative example, FIG. 2 shows a case where infrared scattered light 3 from an infrared light source 2 is incident on a polycrystalline silicon substrate 1 which is a subject.

図2に示すように、赤外光源2から照射され、3つの振動面方向3を有する赤外散乱光3が多結晶シリコン基板1面に到達する。多結晶シリコン基板1面に斜めに入射した赤外散乱光3は、多結晶シリコン基板における面方位(100)面の結晶面部分xでは、一部は吸収され入射された角度に対応してそれぞれ一定方向に様々な方向に、3つの振動面方向3を有する反射光13xが出射される。
また、赤外散乱光3は、多結晶シリコン基板における例えば面方位(111)面の結晶面部分yでは、一部は吸収され、面方位(100)面の結晶面部分xとは異なる反射方向であるが、入射された角度に対応してそれぞれ一定方向に様々な方向に、3つの振動面方向3を有する反射光13yが出射される。
また、クラック部分zでは入射した赤外散乱光3は、吸収されると共に乱反射して、様々な方向に、3つの振動面方向3を有する反射光13zが出射される。
上記のように、赤外散乱光3が多結晶シリコン基板1に入射した場合は、多結晶シリコン基板1におけるクラック部分z、面方位(100)面の結晶面部分xおよび面方位(111)面の結晶面部分yにおいて、反射状態に明確な差異が認められず、異常部分であるクラック部分zと、正常部分である面方位(100)面の結晶面部分xおよび面方位(111)面の結晶面部分yとを区別することが困難である。
As shown in FIG. 2, infrared scattered light 3 irradiated from the infrared light source 2 and having three vibration surface directions 3 A reaches the surface of the polycrystalline silicon substrate 1. The infrared scattered light 3 obliquely incident on the surface of the polycrystalline silicon substrate 1 is partially absorbed in the crystal plane portion x of the plane orientation (100) plane in the polycrystalline silicon substrate, corresponding to the incident angle. in various directions in a certain direction, the reflected light 13x is emitted with three vibration plane direction 3 a.
In addition, the infrared scattered light 3 is partially absorbed, for example, in the crystal plane part y of the plane orientation (111) plane in the polycrystalline silicon substrate, and the reflection direction is different from the crystal plane part x of the plane orientation (100) plane. although, in various directions, each predetermined direction corresponding to the incident angle, the reflected light 13y is emitted with three vibration plane direction 3 a.
Further, the infrared scattered light 3 incident at the crack portion z is irregularly reflected while being absorbed, in various directions, the reflected light 13z is emitted with three vibration plane direction 3 A.
As described above, when the infrared scattered light 3 is incident on the polycrystalline silicon substrate 1, the crack portion z in the polycrystalline silicon substrate 1, the crystal plane portion x of the plane orientation (100) plane, and the plane orientation (111) plane In the crystal plane portion y, no clear difference is observed in the reflection state, and the crack portion z which is an abnormal portion, the crystal plane portion x of the plane orientation (100) plane which is a normal portion, and the plane orientation (111) plane It is difficult to distinguish from the crystal plane part y.

一方、図1に示すように、本実施の形態においては、赤外光源2から照射された赤外散乱光3が光源に平行に設置された第1の偏光フィルタ6を透過して偏光されて、一定方向の振動面5に揃えられた偏光赤外線5が多結晶シリコン基板1面に到達すると、多結晶シリコン基板1に斜めに入射された偏光赤外線5は、多結晶シリコン基板における面方位(100)面の結晶面部分xでは入射された角度に対応して一定方向に、一定方向の振動面方向5xを有する反射光15xが出射される。また、偏光赤外線5は、多結晶シリコン基板における面方位(111)面の結晶面部分yでは、面方位(100)面の結晶面部分xとは異なる反射方向ではあるが、入射された角度に対応して一定方向に、一定方向の振動面方向5yを有する反射光15yが出射される。また、クラック部分zでは入射した偏光赤外線5は、吸収されると共に乱反射して様々な方向に、3つの振動面方向3zを有する反射光15zが出射される。
上記のように、多結晶シリコン基板に偏光赤外線5が入射した場合、クラック部分zと、面方位(100)面の結晶面部分xおよび面方位(111)面の結晶面部分yとで、反射状態において、特に反射光の振動面の数が違う等の差異が生じる。
また、上記反射光15x〜15zが、第2の偏光フィルタ7を透過して後、赤外線レンズ14により集光されて撮像される際に、第2の偏光フィルタ7の偏光方向を、赤外線レンズ14の光軸に対して垂直方向に回転させる等の偏光方向調整手段17により調整して、第2の偏光フィルタ7を透過する光の振動面方向の偏光特性に基づいて選択される。
On the other hand, as shown in FIG. 1, in this embodiment, the infrared scattered light 3 irradiated from the infrared light source 2 is transmitted through the first polarizing filter 6 installed in parallel to the light source and polarized. When the polarized infrared ray 5 aligned with the vibration plane 5 A in a certain direction reaches the surface of the polycrystalline silicon substrate 1, the polarized infrared ray 5 incident obliquely on the polycrystalline silicon substrate 1 is converted into the plane orientation ( in a predetermined direction corresponding to the crystal surface section x the incident angle of 100) plane, the reflected light 15x having a constant direction of the vibration plane direction 5x a is emitted. Further, the polarized infrared ray 5 has a reflection direction different from that of the crystal plane portion x of the plane orientation (100) in the crystal plane portion y of the plane orientation (111) plane in the polycrystalline silicon substrate, but at an incident angle. in a predetermined direction correspondingly, reflected light 15y having a constant direction of the vibration plane direction 5y a is emitted. The polarization infrared 5 incident at the crack portion z are in different directions to diffuse while being absorbed, reflected light 15z is emitted with three vibration plane direction 3z A.
As described above, when the polarized infrared ray 5 is incident on the polycrystalline silicon substrate, it is reflected by the crack portion z, the crystal plane portion x of the plane orientation (100) plane, and the crystal plane portion y of the plane orientation (111) plane. In the state, a difference such as a difference in the number of vibration surfaces of the reflected light occurs.
When the reflected lights 15x to 15z are transmitted through the second polarizing filter 7 and then collected by the infrared lens 14 and imaged, the polarization direction of the second polarizing filter 7 is changed to the infrared lens 14. It is selected based on the polarization characteristics in the vibration plane direction of the light transmitted through the second polarizing filter 7 by adjusting by the polarization direction adjusting means 17 such as rotating in the direction perpendicular to the optical axis.

本実施の形態において、多結晶シリコン基板に特定の方向から入射した入射光に対しては、面方位(100)面の結晶面部分と面方位(111)面の結晶面部分のどちらかにおける反射光の方が少なくなり、その箇所が黒く見えることになる。そこで、例えば、特定の方向からの入射光に対して、面方位(100)面の結晶面部分における反射光が、面方位(111)面の結晶面部分における反射光より少ない場合、偏光方向調整手段17により、第2の偏光フィルタ7の偏光方向を調整して、面方位(111)面の結晶面部分からの反射光が撮像されることを抑制して像を暗くし、多結晶シリコン基板のクラック部分zにおける反射光の一部が選択されて明るい像として撮像され、上記クラック部分を他の部分と明確に区別し検出することができる。
これは、図1に示すように、多結晶シリコン基板の正常な結晶面部分{面方位(100)面の結晶面部分、面方位(111)面の結晶面部分}では赤外線を一定の振動面で反射するのに対して、クラック部分では赤外線を様々な振動面に反射しているからであり、上記のような第2の偏光フィルタ7の回転位置において、被検体1における反射光を撮像し、撮像画像によりクラック部分を検出することができる。
なお、クラック部分が実質的に無い場合は、画像全体が暗状態になっり、クラックに起因する線上の明ラインが存在しないことにより確認する。
In the present embodiment, the incident light incident on the polycrystalline silicon substrate from a specific direction is reflected at either the crystal plane part of the plane orientation (100) plane or the crystal plane part of the plane orientation (111) plane. There will be less light and the area will appear black. Thus, for example, when the incident light from a specific direction has less reflected light at the crystal plane portion of the plane orientation (100) plane than the reflected light at the crystal plane portion of the plane orientation (111) plane, the polarization direction adjustment is performed. The means 17 adjusts the polarization direction of the second polarizing filter 7 to suppress imaging of reflected light from the crystal plane portion of the plane orientation (111) plane, thereby darkening the image, and the polycrystalline silicon substrate A part of the reflected light in the crack part z is selected and picked up as a bright image, and the crack part can be clearly distinguished from other parts and detected.
As shown in FIG. 1, the normal crystal plane portion of the polycrystalline silicon substrate {the crystal plane portion of the plane orientation (100) plane, the crystal plane portion of the plane orientation (111) plane} has a constant vibration plane. In contrast, the infrared rays are reflected on various vibration surfaces at the crack portion, and the reflected light from the subject 1 is imaged at the rotational position of the second polarizing filter 7 as described above. The crack portion can be detected from the captured image.
In addition, when there is substantially no crack part, the whole image will be in a dark state, and it confirms by the absence of the bright line on the line resulting from a crack.

本実施の形態に係わる多結晶シリコン基板は太陽電池セルに用いられるが、この場合、多結晶シリコン基板の表面には光を閉じこめるために反射防止膜が形成され、多結晶シリコン基板における(100)と(111)のどちらか一方の面方位の結晶面部分での反射光の方が、他方の面方位の結晶面部分での反射光より少なくなるように膜厚と屈折率を計算して堆積される。
また、例えば、結晶の表面に面方位(111)面の結晶面部分の方が多ければ、この面での反射が少なくなるように反射防止膜を形成して、光の閉じこめ効果を高め、反射防止膜の膜厚と屈折率の調整では抑制できなかった、例えば面方位(100)面の結晶面部分における反射光が第2の偏光フィルタ7を透過して撮像されることが抑制され、クラック部分zにおける反射光が選択されて第2の偏光フィルタ7を透過し、明るい像として撮像されるように、第2の偏向フィルタ7の偏光方向を偏光方向調整手段17により調整することで、クラック部分を検出することができる。
The polycrystalline silicon substrate according to the present embodiment is used for a solar battery cell. In this case, an antireflection film is formed on the surface of the polycrystalline silicon substrate to confine light, and (100) in the polycrystalline silicon substrate. And (111) are deposited by calculating the film thickness and refractive index so that the reflected light at the crystal plane part of one of the plane orientations is less than the reflected light at the crystal plane part of the other plane orientation. Is done.
In addition, for example, if there are more crystal plane parts of the plane orientation (111) on the surface of the crystal, an antireflection film is formed so as to reduce reflection on this plane, thereby enhancing the light confinement effect and reflecting. For example, the reflected light in the crystal plane portion of the plane orientation (100) plane that has not been suppressed by adjusting the thickness and refractive index of the prevention film is suppressed from being imaged through the second polarizing filter 7 and cracks. By adjusting the polarization direction of the second deflection filter 7 by the polarization direction adjusting means 17 so that the reflected light in the portion z is selected and transmitted through the second polarization filter 7 and picked up as a bright image, cracks are generated. The part can be detected.

実施の形態2.
図3は、本発明の実施の形態2の赤外線検査装置の概略構成図である。
被検体1が載置される微動台8は、水平方向および垂直方向に微動するもので、被検体1の水平位置および垂直位置を適宜調整することができる。被検体1の一方の面側の上方に赤外光源2が設けられ、赤外光源2と被検体1との間に第1の偏光フィルタ6が設けられている。第1の偏光フィルタ6により、赤外光源2から被検体1に斜めに照射された赤外散乱光3は偏光され、赤外光源2と第1の偏光フィルタ6により被検体1の表面に偏光赤外線5を照射する赤外線照射手段18となる。
赤外線カメラ4は、赤外光源2が設けられたと同じ面側の上方に、被検体1における反射光15を集光して撮像できるように設けられ、赤外線カメラ4からの電気信号を受け画像を表示するモニタ9が接続されている。第2の偏光フィルタ7が、赤外線カメラ4と被検体1のと間に、赤外線カメラ4の赤外線レンズ14の光軸に対して垂直方向に設けられ、被検体1で反射された赤外線15が偏光される偏光手段7となる。被検体1における反射光15が、偏光フィルタ7により偏光された偏光赤外線16を赤外線レンズ14により集光し、モニタ9により光電変換して電気信号に変えて撮像する撮像手段19となる。また、第2の偏光フィルタ7には、第2の偏光フィルタの偏光方向を調整する偏光方向調整手段17が接続されている。
多結晶シリコン基板1におけるクラック部分は、検査者が、モニタ9における画像を見ながら、偏光方向調整手段17により第2の偏光フィルタ7の偏光方向を手動で調整し、第2の偏光フィルタ7の偏光方向を、クラック部分以外における反射光が第2の偏光フィルタ7を透過するのを抑制して、主としてクラック部分における反射光が第2の偏光フィルタ7を透過して、クラック部分が明るい画像になるように調整することにより検出する。
上記のように、本実施の形態においては、検出手段20として、検査者がモニタ9を目視しながら偏光方向調整手段17により第2の偏光フィルタ7の偏光方向を調整して検査する場合を示したが、赤外線カメラ4の出力するビデオ信号を解析するための適切なコンピュータプログラムを作成し、赤外線カメラ4またはモニタ9を適切なコンピュータに接続し、コンピュータのメモリ部に上記のコンピュータプログラムを搭載してコンピュータによりビデオ信号を解析して、シリコン基板の異常部分の解析を自動的に行う検出手段20を用いてもよい。
Embodiment 2. FIG.
FIG. 3 is a schematic configuration diagram of the infrared inspection apparatus according to Embodiment 2 of the present invention.
The fine movement table 8 on which the subject 1 is placed is finely moved in the horizontal direction and the vertical direction, and the horizontal position and vertical position of the subject 1 can be appropriately adjusted. An infrared light source 2 is provided above one surface side of the subject 1, and a first polarizing filter 6 is provided between the infrared light source 2 and the subject 1. The infrared scattered light 3 obliquely irradiated on the subject 1 from the infrared light source 2 is polarized by the first polarizing filter 6 and polarized on the surface of the subject 1 by the infrared light source 2 and the first polarizing filter 6. It becomes the infrared irradiation means 18 which irradiates the infrared rays 5.
The infrared camera 4 is provided above the same surface side where the infrared light source 2 is provided so that the reflected light 15 from the subject 1 can be collected and imaged. The infrared camera 4 receives an electrical signal from the infrared camera 4 and receives an image. A monitor 9 for display is connected. A second polarizing filter 7 is provided between the infrared camera 4 and the subject 1 in a direction perpendicular to the optical axis of the infrared lens 14 of the infrared camera 4, and the infrared rays 15 reflected by the subject 1 are polarized. The polarizing means 7 is obtained. The reflected light 15 in the subject 1 is an imaging means 19 that collects the polarized infrared light 16 polarized by the polarizing filter 7 by the infrared lens 14, photoelectrically converts it by the monitor 9 and converts it into an electrical signal. The second polarizing filter 7 is connected to a polarization direction adjusting unit 17 that adjusts the polarization direction of the second polarizing filter.
An inspector manually adjusts the polarization direction of the second polarizing filter 7 by the polarization direction adjusting means 17 while viewing the image on the monitor 9, and the crack portion in the polycrystalline silicon substrate 1 is checked. The polarization direction is such that the reflected light other than the crack portion is prevented from passing through the second polarizing filter 7, and the reflected light mainly at the crack portion is transmitted through the second polarizing filter 7 so that the crack portion becomes a bright image. It detects by adjusting so that it may become.
As described above, in the present embodiment, the detection unit 20 shows a case where the inspector performs inspection by adjusting the polarization direction of the second polarizing filter 7 with the polarization direction adjusting unit 17 while viewing the monitor 9. However, an appropriate computer program for analyzing the video signal output from the infrared camera 4 is created, the infrared camera 4 or the monitor 9 is connected to an appropriate computer, and the above-mentioned computer program is installed in the memory unit of the computer. Alternatively, the detection means 20 that analyzes the video signal by a computer and automatically analyzes the abnormal portion of the silicon substrate may be used.

赤外線カメラ4において、赤外線レンズ14とモニタ9の間に、可視光線をカットできるフィルタを設けることにより、可視光領域下での検査においてもモニタ9上の画像を鮮明にすることができる。
また、赤外線カメラ4における赤外線レンズ14を可視光線も集光し電気信号に変換して出力するものとした上で、可視光による撮像と、可視光をカットした赤外線による撮像とを同時に行わせ、モニタ9において両方の撮像による像を比較表示して異常部分の位置を精度良く特定できるようにしてもよい。
In the infrared camera 4, by providing a filter capable of cutting visible light between the infrared lens 14 and the monitor 9, the image on the monitor 9 can be made clear even in the inspection under the visible light region.
In addition, the infrared lens 14 in the infrared camera 4 is also configured to collect visible light, convert it into an electrical signal, and output it, and simultaneously perform imaging with visible light and infrared imaging with the visible light cut, The monitor 9 may compare and display the images of both images so that the position of the abnormal part can be specified with high accuracy.

以下、本実施の形態の赤外線検査装置を用いて、被検体1として多結晶シリコン基板を用いて構成された太陽電池セルを検査する場合を説明するが、多結晶シリコン基板も同様に検査することができる。
太陽電池セル1を微動台8に載置し、微動台8を適宜操作することにより、赤外光源2および赤外線カメラ4に対して太陽電池セル1を適切な位置に保持する。赤外光源2としては、遠赤外線を照射可能な赤外線ヒータや近赤外線を照射可能なハロゲンランプ等が用いられ、赤外光源2から照射された赤外散乱光3は第1の偏光フィルタ6で偏光されて偏光赤外線5となり、太陽電池セル1に斜めに入射する。偏光赤外線5は太陽電池セル1に入射され、太陽電池セル1で反射された反射光15は、赤外線レンズ14の光軸に対して垂直方向に設けられている第2の偏光フィルタ7で再び偏光されて偏光赤外線16となり、赤外線レンズ14により集光される。赤外線カメラ4に備わる赤外線レンズ14は、赤外線カメラ4付属の操作手段により、赤外光源2と赤外線カメラ4とを結ぶ線上を被検体1と赤外線レンズ14とを適宜平行移動させることにより、赤外線カメラ4内部の受光素子上に被検体1の像を結ぶように被検体1にピントを合わせる。
画像を目視しながら、偏光方向調整手段17により第2の偏光フィルタ7を、赤外線レンズ14の光軸に対して垂直方向に回転させることにより、太陽電池セル1に用いられた多結晶シリコン基板の、面方位(100)面の結晶面部分または面方位(111)面の結晶面部分における反射光が第2の偏光フィルタ7を透過することを抑制し、主としてクラック部分における反射光が第2の偏光フィルタを透過し明るい像となるようにして、太陽電池セル1の多結晶シリコン基板のクラック部分を正常な結晶面と区別して明確に検出することができる。
Hereinafter, although the case where the solar cell comprised using the polycrystalline-silicon substrate as the test object 1 is test | inspected using the infrared rays inspection apparatus of this Embodiment is demonstrated, a polycrystalline-silicon substrate is also test | inspected similarly. Can do.
The solar battery cell 1 is placed on the fine movement base 8 and the fine movement base 8 is appropriately operated to hold the solar battery cell 1 in an appropriate position with respect to the infrared light source 2 and the infrared camera 4. As the infrared light source 2, an infrared heater that can irradiate far infrared rays, a halogen lamp that can irradiate near infrared rays, or the like is used. The infrared scattered light 3 emitted from the infrared light source 2 is generated by the first polarizing filter 6. The polarized infrared rays 5 are polarized and enter the solar battery cell 1 obliquely. The polarized infrared ray 5 is incident on the solar cell 1, and the reflected light 15 reflected by the solar cell 1 is again polarized by the second polarizing filter 7 provided in the direction perpendicular to the optical axis of the infrared lens 14. As a result, polarized infrared radiation 16 is obtained and condensed by the infrared lens 14. The infrared lens 14 provided in the infrared camera 4 is translated by appropriately moving the subject 1 and the infrared lens 14 on the line connecting the infrared light source 2 and the infrared camera 4 by operating means attached to the infrared camera 4. 4 Focus the subject 1 so that the image of the subject 1 is formed on the light receiving element inside.
While visually observing the image, the second polarizing filter 7 is rotated in the direction perpendicular to the optical axis of the infrared lens 14 by the polarization direction adjusting means 17, so that the polycrystalline silicon substrate used in the solar cell 1. The reflected light in the crystal plane portion of the plane orientation (100) plane or the crystal plane portion of the plane orientation (111) plane is prevented from passing through the second polarizing filter 7, and the reflected light mainly in the crack portion is the second The crack portion of the polycrystalline silicon substrate of the solar battery cell 1 can be clearly detected by distinguishing it from the normal crystal plane so that the light passes through the polarizing filter and becomes a bright image.

また、図示していないが、赤外光源2として遠赤外光源を用いる場合には、被検体1との間に、一定面積で均一に照射するために、遠赤外線を拡散する拡散板としてアルミニウム板やセラミックコートの金属板などが設置されることが好ましい。   Although not shown, when a far-infrared light source is used as the infrared light source 2, aluminum is used as a diffusion plate for diffusing far-infrared rays so as to uniformly irradiate the subject 1 with a constant area. It is preferable to install a plate, a ceramic coated metal plate, or the like.

実施の形態3.
図4は、本発明の実施の形態3の赤外線検査装置の概略構成図であり、太陽電池セルを披検体1とする場合であり、太陽電池セル1のpn接合の順方向に直流バイアスを印加するための電極10と電源11を備えたものである。なお、太陽電池セル1の表面および裏面には、製品の特性上、金属電極が設けられているため、本実施の形態の赤外線検査装置の電極10として用いることができ、電極10間に、太陽電池セル1の順方向(太陽電池セルの多くはpnダイオードで構成されている)に直流バイアスを印加すると、太陽電池セル1の内部で発熱(自発光)し外部に放出される。この発光波長は約1〜1.3μm程度の赤外線で、検査に用いる赤外線領域内の波長である。
なお、上記印加するバイアスを高くし、太陽電池セル1内部に流れる電流量を増大させると、シリコンの発光強度が増大し、太陽電池セル1からの発光赤外線と、赤外光源2から照射され太陽電池セル1表面で反射された赤外線15の両方を第2の偏光フィルタ7で偏光し、赤外線レンズ14で集光することにより、集光できる赤外線量が増加するため赤外線カメラ4での測定強度を高くすることができる。
Embodiment 3 FIG.
FIG. 4 is a schematic configuration diagram of an infrared inspection apparatus according to Embodiment 3 of the present invention, in which a solar battery cell is used as a specimen 1, and a DC bias is applied in the forward direction of the pn junction of solar battery cell 1. For this purpose, an electrode 10 and a power source 11 are provided. In addition, since the metal electrode is provided in the surface and the back surface of the photovoltaic cell 1 on the characteristic of a product, it can be used as the electrode 10 of the infrared inspection apparatus of this Embodiment, When a direct current bias is applied in the forward direction of the battery cell 1 (many of the solar battery cells are configured by pn diodes), the battery cell 1 generates heat (self-emission) and is emitted to the outside. This emission wavelength is an infrared ray of about 1 to 1.3 μm, which is a wavelength in an infrared region used for inspection.
In addition, when the bias to be applied is increased and the amount of current flowing inside the solar battery cell 1 is increased, the emission intensity of silicon increases, and the emitted infrared light from the solar battery cell 1 and the infrared light source 2 irradiate the sun. Both infrared rays 15 reflected on the surface of the battery cell 1 are polarized by the second polarizing filter 7 and condensed by the infrared lens 14, so that the amount of infrared rays that can be collected increases. Can be high.

多結晶シリコン基板を用いた太陽電池セルを検査する場合等、太陽電池セルの表面に形成されている反射防止膜や、太陽電池セルの表面に形成されている光を閉じこめるためのテクスチャ構造の影響で多結晶シリコン基板表面において反射する赤外線の強度が減少し、反射光の強度が通常の半導体ウエハで同様の検査を行った場合に比べて弱くなることがあっても、本実施の形態の赤外線検査装置を用いることにより赤外線レンズ14により集光される光強度を高くすることができ、クラック部分での発光の程度がクラック部分以外の結晶面部分で発光の程度より多いためコントラストを増加させることができ、クラック部分を明確に区別することができる。   When inspecting solar cells using a polycrystalline silicon substrate, the influence of the antireflection film formed on the surface of the solar cell and the texture structure for confining the light formed on the surface of the solar cell Even if the intensity of the infrared ray reflected on the surface of the polycrystalline silicon substrate is reduced and the intensity of the reflected light may be weaker than when the same inspection is performed on a normal semiconductor wafer, the infrared ray of the present embodiment By using the inspection device, the intensity of light collected by the infrared lens 14 can be increased, and the degree of light emission at the crack portion is greater than the amount of light emission at the crystal surface portion other than the crack portion, thereby increasing the contrast. And cracks can be clearly distinguished.

実施の形態4.
図5は、本発明の実施の形態4の多結晶シリコン基板の検査方法に係わる、多結晶シリコン基板1における赤外線の透過状態を示す模式図であり、赤外光源2からの赤外線の散乱光3が第1の偏光フィルタ6を透過して偏光され、偏光赤外線5が被検体である多結晶シリコン基板1へ入射し透過する場合で、図中、散乱光を点線、偏光を実線で示し、散乱光と偏光の振動面方向と振動面の数を点線又は実線に直交する円内の矢印で模式的に示す。図6には本実施の形態の比較例として、赤外光源2からの赤外線が様々な方向に散乱されながら、赤外散乱光3が被検体である多結晶シリコン基板1へ入射し透過する場合を示。
Embodiment 4 FIG.
FIG. 5 is a schematic diagram showing an infrared transmission state in the polycrystalline silicon substrate 1 according to the method for inspecting a polycrystalline silicon substrate according to the fourth embodiment of the present invention. Infrared scattered light 3 from the infrared light source 2 is shown. Is transmitted through the first polarizing filter 6 and polarized, and the polarized infrared ray 5 is incident on and transmitted through the polycrystalline silicon substrate 1 as an object. In the figure, the scattered light is indicated by a dotted line and the polarized light is indicated by a solid line. The vibration plane direction of light and polarized light and the number of vibration planes are schematically shown by arrows in a circle orthogonal to a dotted line or a solid line. In FIG. 6, as a comparative example of the present embodiment, the infrared scattered light 3 is incident on and passes through the polycrystalline silicon substrate 1 as the subject while the infrared light from the infrared light source 2 is scattered in various directions. Showing.

図6に示すように、赤外光源2から照射された赤外散乱光3は3つの振動面方向3を有する赤外散乱光3が多結晶シリコン基板1面に到達する。赤外散乱光3は、多結晶シリコン基板1における面方位(100)面の結晶面部分xを透過し、様々な方向に、3つの振動面方向3xを有する透過光23xが出射される。
また、赤外散乱光3は、多結晶シリコン基板1における例えば面方位(111)面の結晶面部分yを透過し、様々な方向に、3つの振動面方向3を有する透過光23yが出射される。
また、クラック部分zでは入射した赤外散乱光3は、吸収されると共に乱反射して透過し、様々な方向に、3つの振動面方向3を有する透過光23zが出射される。
上記のように、赤外散乱光3が多結晶シリコン基板1を透過した場合は、多結晶シリコン基板1におけるクラック部分z、面方位(100)面の結晶面部分xおよび面方位(111)面の結晶面部分yにおいて、各透過光に明確な差異が認められず、異常部分であるクラック部分zと、正常部分である面方位(100)面の結晶面部分xおよび面方位(111)面の結晶面部分yとを区別することが困難である。
As shown in FIG. 6, the infrared scattered light 3 emitted from the infrared light source 2 is infrared scattered light 3 having three vibration plane direction 3 A reaches the polycrystalline silicon substrate 1 surface. Infrared scattered light 3 is transmitted through the crystal surface portion x of the plane orientation (100) plane in the polycrystalline silicon substrate 1, in various directions, the transmitted light 23x is emitted with three vibration plane direction 3x A.
Further, the infrared scattered light 3 is transmitted through the crystal surface portion y of the example surface orientation (111) surface in a polycrystalline silicon substrate 1, in various directions, emitted transmitted light 23y having three vibration plane direction 3 A Is done.
Further, the infrared scattered light 3 incident at the crack portion z is irregularly reflected while being absorbed transmitted, in various directions, the transmitted light 23z is emitted with three vibration plane direction 3 A.
As described above, when the infrared scattered light 3 is transmitted through the polycrystalline silicon substrate 1, the crack portion z in the polycrystalline silicon substrate 1, the crystal plane portion x of the plane orientation (100) plane, and the plane orientation (111) plane In the crystal plane part y, no clear difference is observed in each transmitted light, the crack part z being an abnormal part, the crystal plane part x of the plane orientation (100) plane being the normal part, and the plane orientation (111) plane It is difficult to distinguish the crystal plane part y of

一方、図5に示すように、本実施の形態においては、赤外光源2から照射された赤外散乱光3が光源に平行に設置された第1の偏光フィルタ6を透過して偏光されて、ある一定方向の振動面5に揃えられた偏光赤外線5が多結晶シリコン基板1面に到達すると、多結晶シリコン基板1に入射した偏光赤外線5は、多結晶シリコン基板における面方位(100)面の結晶面部分xでは全てが透過して一定方向の振動面方向25xを有する透過光25xが出射される。また、多結晶シリコン基板における面方位(111)面の結晶面部分yでは、入射光の一部が透過され入射された角度に対応して一定方向に、一定方向の振動面方向25yを有する透過光25yが出射される。また、クラック部分zでは入射した偏光赤外線5は、吸収されると共に乱反射して様々な方向に、3つの振動面方向25zを有する透過光25zが出射される。
上記のように、多結晶シリコン基板1に入射した偏光赤外線5は、多結晶シリコン基板1における面方位(100)面の結晶面部分xおよび面方位(111)面の結晶面部分yと、クラック部分zとで透過状態において、特に透過光で振動面の数が違う等の差異が生じる。
On the other hand, as shown in FIG. 5, in the present embodiment, the infrared scattered light 3 emitted from the infrared light source 2 is transmitted through the first polarizing filter 6 disposed in parallel with the light source and polarized. When the polarized infrared ray 5 aligned with the vibration surface 5 A in a certain direction reaches the surface of the polycrystalline silicon substrate 1, the polarized infrared ray 5 incident on the polycrystalline silicon substrate 1 has a plane orientation (100) in the polycrystalline silicon substrate. all in the surface of the crystal surface section x the transmitted light 25x is emitted having a plane of vibration direction 25x a constant and transmission direction. Further, the crystal plane portion y of the plane orientation (111) plane in the polycrystalline silicon substrate has a vibration plane direction 25y A in a certain direction in a certain direction corresponding to the angle at which a part of incident light is transmitted and incident. Transmitted light 25y is emitted. The polarization infrared 5 incident at the crack portion z are in different directions to diffuse while being absorbed, transmitted light 25z is emitted with three vibration plane direction 25z A.
As described above, the polarized infrared ray 5 incident on the polycrystalline silicon substrate 1 includes the crystal plane portion x of the plane orientation (100) plane and the crystal plane portion y of the plane orientation (111) plane in the polycrystalline silicon substrate 1 and cracks. In the transmitted state between the portion z and the transmitted light, a difference such as the number of vibration surfaces is different.

また、透過光25x〜25zは、赤外線レンズ14により集光されて撮像される際に、第2の偏光フィルタ7を赤外線レンズ14の光軸に対して垂直方向に回転させることにより、第2の偏光フィルタ7の偏光方向を調整して、第2の偏光フィルタ7を透過する光の振動面方向を選択することにより、実施の形態1と同様にしてクラック部分zを検出することができる。   Further, when the transmitted light 25x to 25z is collected by the infrared lens 14 and imaged, the second polarizing filter 7 is rotated in the direction perpendicular to the optical axis of the infrared lens 14 to thereby obtain the second By adjusting the polarization direction of the polarizing filter 7 and selecting the vibration plane direction of the light transmitted through the second polarizing filter 7, the crack portion z can be detected in the same manner as in the first embodiment.

実施の形態5.
図7は、本発明の実施の形態5の赤外線検査装置の概略構成図である。
被検体1が微動台8に載置され、被検体1の一方の面側の上方に赤外光源2が設けられ、赤外光源2と被検体1の間に第1の偏光フィルタ6が設けられている。第1の偏光フィルタ6により、赤外散乱光3は偏光され、赤外光源2と第1の偏光フィルタ6により被検体1の表面に偏光赤外線5を照射する赤外線照射手段18となる。
赤外線カメラ4は、赤外光源2が設けられた被検体1の面と反対側に、被検体1を透過した透過光25を集光して撮像するように設けられている。第2の偏光フィルタ7が、赤外線カメラ4と被検体1との間に、赤外線カメラ4の赤外線レンズ14の光軸に対して垂直方向に設けられ、被検体1を透過した赤外線25が偏光されて透過する偏光手段7となる。赤外線カメラ4には赤外線カメラ4からの電気信号を受け、赤外線カメラ4が撮像した画像を表示するモニタ9が接続され、被検体1を透過した透過光25が、偏光フィルタ7により偏光された赤外線26を赤外線レンズ14により集光し、光電変換して電気信号に変えて撮像する撮像手段19となる。また、第2の偏光フィルタ7には、第2の偏光フィルタの偏光方向を調整する偏光方向調整手段17が接続されている。
多結晶シリコン基板1におけるクラック部分は、実施の形態1と同様にして、モニタ9における画像を見ながら、偏光方向調整手段17により第2の偏光フィルタ7の偏光方向を調整し、第2の偏光フィルタ7の偏光方向を、主としてクラック部分を透過した透過光が第2の偏光フィルタ7を透過し、明るい像となるようにしてクラック部分を検出することができる。
Embodiment 5. FIG.
FIG. 7 is a schematic configuration diagram of an infrared inspection apparatus according to Embodiment 5 of the present invention.
The subject 1 is placed on the fine movement table 8, the infrared light source 2 is provided above one side of the subject 1, and the first polarizing filter 6 is provided between the infrared light source 2 and the subject 1. It has been. The infrared scattered light 3 is polarized by the first polarizing filter 6, and becomes an infrared irradiation means 18 that irradiates the surface of the subject 1 with the polarized infrared light 5 by the infrared light source 2 and the first polarizing filter 6.
The infrared camera 4 is provided on the side opposite to the surface of the subject 1 on which the infrared light source 2 is provided so as to collect and image the transmitted light 25 that has passed through the subject 1. A second polarizing filter 7 is provided between the infrared camera 4 and the subject 1 in a direction perpendicular to the optical axis of the infrared lens 14 of the infrared camera 4, and the infrared ray 25 that has passed through the subject 1 is polarized. Thus, the polarizing means 7 is transmitted. A monitor 9 that receives an electrical signal from the infrared camera 4 and displays an image captured by the infrared camera 4 is connected to the infrared camera 4, and the transmitted light 25 that has passed through the subject 1 is polarized by the polarizing filter 7. 26 becomes the image pickup means 19 that collects light by the infrared lens 14, photoelectrically converts it into an electric signal, and picks up an image. The second polarizing filter 7 is connected to a polarization direction adjusting unit 17 that adjusts the polarization direction of the second polarizing filter.
In the same manner as in the first embodiment, the crack portion in the polycrystalline silicon substrate 1 is adjusted by adjusting the polarization direction of the second polarizing filter 7 by the polarization direction adjusting means 17 while viewing the image on the monitor 9, thereby With respect to the polarization direction of the filter 7, it is possible to detect the crack portion so that the transmitted light mainly transmitted through the crack portion is transmitted through the second polarizing filter 7 to form a bright image.

本実施の形態の赤外線検査装置を用いて、被検体1として多結晶シリコン基板や太陽電池セルを検査するが、太陽電池セルを検査する場合、赤外光源2から出射され、第1の偏光フィルタ6により偏光された偏光赤外線5は、被検体1の一方の主面から照射されるが、裏面の大部分は金属電極19で覆われているため金属電極22部分では透過しない。しかし、太陽電池セル1端部の周辺は上部電極との短絡防止のため下部電極22を形成しないのが一般的である。そのため、透過光25は、第2の偏光フィルタ7により偏光され、偏光赤外線26は赤外線レンズ14によって集光され赤外線カメラ4で光電変換されてモニタ9に表示される。
また、太陽電池セルの製造工程の途中で形成されるクラックは、装置搬送トラブル等により多結晶シリコン基板端が装置等の強固な部分に接触することで発生する場合が多いため、太陽電池セルのクラックは上記基板端部に起点があることがほとんどである。したがって、上記基板端部を全周に渡って検査すれば上記基板にクラックが存在するか否かは大旨特定することができる。このように、上記基板端部のみを簡易的に観測する場合には赤外線の透過による検査が可能となる。
また、本実施の形態において、実施の形態3のように太陽電池セルに形成されている金属電極を利用して、自発光による赤外線を組み合わせることにより、クラックの検査をより感度よく行うことができる。
Using the infrared inspection apparatus of the present embodiment, a polycrystalline silicon substrate or a solar battery cell is inspected as the subject 1. When inspecting a solar battery cell, the first polarizing filter is emitted from the infrared light source 2. The polarized infrared light 5 polarized by 6 is irradiated from one main surface of the subject 1, but since most of the back surface is covered with the metal electrode 19, it does not pass through the metal electrode 22 portion. However, in general, the lower electrode 22 is not formed around the end of the solar battery cell 1 to prevent a short circuit with the upper electrode. Therefore, the transmitted light 25 is polarized by the second polarizing filter 7, and the polarized infrared light 26 is collected by the infrared lens 14, photoelectrically converted by the infrared camera 4, and displayed on the monitor 9.
In addition, cracks formed during the manufacturing process of solar cells often occur when the end of the polycrystalline silicon substrate comes into contact with a solid part of the device or the like due to equipment transfer troubles, etc. Most cracks have a starting point at the edge of the substrate. Therefore, if the substrate end is inspected over the entire circumference, it can be specified whether or not there is a crack in the substrate. In this way, when only the substrate edge is simply observed, inspection by infrared transmission is possible.
In the present embodiment, cracks can be inspected with higher sensitivity by using the metal electrodes formed in the solar battery cells as in the third embodiment and combining infrared rays by self-light emission. .

本発明の実施の形態1の多結晶シリコン基板の検査方法に係わる、多結晶シリコン基板における赤外線の反射状態を示す模式図である。It is a schematic diagram which shows the reflective state of the infrared rays in a polycrystalline silicon substrate regarding the inspection method of the polycrystalline silicon substrate of Embodiment 1 of this invention. 本発明の実施の形態1の比較例に係わる、多結晶シリコン基板における赤外線の反射状態を示す模式図である。It is a schematic diagram which shows the reflective state of the infrared rays in a polycrystalline silicon substrate concerning the comparative example of Embodiment 1 of this invention. 本発明の実施の形態2の赤外線検査装置の概略構成図である。It is a schematic block diagram of the infrared rays inspection apparatus of Embodiment 2 of this invention. 本発明の実施の形態3の赤外線検査装置の概略構成図である。It is a schematic block diagram of the infrared rays inspection apparatus of Embodiment 3 of this invention. 本発明の実施の形態4の多結晶シリコン基板の検査方法に係わる、多結晶シリコン基板における赤外線の透過状態を示す模式図である。It is a schematic diagram which shows the permeation | transmission state of the infrared rays in a polycrystalline silicon substrate regarding the inspection method of the polycrystalline silicon substrate of Embodiment 4 of this invention. 本発明の実施の形態4の比較例に係わる、多結晶シリコン基板における赤外線の透過状態を示す模式図である。It is a schematic diagram which shows the permeation | transmission state of the infrared rays in a polycrystalline silicon substrate concerning the comparative example of Embodiment 4 of this invention. 本発明の実施の形態5の赤外線検査装置の概略構成図である。It is a schematic block diagram of the infrared rays inspection apparatus of Embodiment 5 of this invention.

符号の説明Explanation of symbols

1 被検体(多結晶シリコン基板、太陽電池セル)、2 赤外光源、3 赤外散乱光、4 赤外線カメラ、14 赤外線レンズ、5 偏光赤外線、6 第1のフィルタ、7 第2の偏光フィルタ、9 モニタ、10 電極、11 電源、15、15x、15y、15z 反射光、25、25x、25y、25z 透過光、17 偏光方向調整手段、18 赤外線照射手段、19 撮像手段、x 多結晶シリコン基板における面方位(100)面の結晶面部分、y 多結晶シリコン基板における面方位(111)面の結晶面部分、z 多結晶シリコン基板におけるクラック部分。   1 subject (polycrystalline silicon substrate, solar cell), 2 infrared light source, 3 infrared scattered light, 4 infrared camera, 14 infrared lens, 5 polarized infrared ray, 6 first filter, 7 second polarization filter, 9 monitor, 10 electrode, 11 power source, 15, 15x, 15y, 15z reflected light, 25, 25x, 25y, 25z transmitted light, 17 polarization direction adjusting means, 18 infrared irradiation means, 19 imaging means, x in polycrystalline silicon substrate A crystal plane part of the plane orientation (100) plane, a crystal plane part of the plane orientation (111) plane in the y polycrystalline silicon substrate, and a crack part in the z polycrystalline silicon substrate.

Claims (7)

多結晶シリコン基板に赤外線を照射し、上記多結晶シリコン基板における上記赤外線の反射光を撮像して上記多結晶シリコン基板のクラック部分を検出する多結晶シリコン基板の検査方法において、上記多結晶シリコン基板に偏光赤外線を照射し、上記多結晶シリコン基板における上記偏光赤外線の反射光を、偏光特性に基づいて選択して撮像することにより、上記多結晶シリコン基板のクラック部分を検出することを特徴とする多結晶シリコン基板の検査方法。 In the method for inspecting a polycrystalline silicon substrate, wherein the polycrystalline silicon substrate is irradiated with infrared rays, the reflected light of the infrared rays on the polycrystalline silicon substrate is imaged, and a crack portion of the polycrystalline silicon substrate is detected. And detecting a crack portion of the polycrystalline silicon substrate by irradiating polarized infrared rays on the polycrystalline silicon substrate and selecting and imaging the reflected light of the polarized infrared light on the polycrystalline silicon substrate based on polarization characteristics. Inspection method for polycrystalline silicon substrate. 多結晶シリコン基板に赤外線を照射し、上記多結晶シリコン基板を透過した上記赤外線の透過光を撮像して上記多結晶シリコン基板のクラック部分を検出する多結晶シリコン基板の検査方法において、上記多結晶シリコン基板に偏光赤外線を照射し、上記多結晶シリコン基板を透過した上記偏光赤外線の透過光を、偏光特性に基づいて選択して撮像することにより、上記多結晶シリコン基板のクラック部分を検出することを特徴とする多結晶シリコン基板の検査方法。 In the method for inspecting a polycrystalline silicon substrate, wherein the polycrystalline silicon substrate is irradiated with infrared rays, the infrared transmitted light that has passed through the polycrystalline silicon substrate is imaged, and a crack portion of the polycrystalline silicon substrate is detected. Detecting a crack portion of the polycrystalline silicon substrate by irradiating a polarized infrared ray on a silicon substrate and selecting and imaging the transmitted light of the polarized infrared ray transmitted through the polycrystalline silicon substrate based on polarization characteristics A method for inspecting a polycrystalline silicon substrate. 太陽電池セルに赤外線を照射し、上記太陽電池セルにおける反射光を撮像してクラック部分を検出する太陽電池セルの検査方法において、上記太陽電池セルのpn接合の順方向に直流バイアスを印加しながら、上記太陽電池セルに偏光赤外線を照射し、上記太陽電池セルにおける上記偏光赤外線の反射光を、偏光特性に基づいて選択して撮像することにより、上記太陽電池セルのクラック部分を検出することを特徴とする太陽電池セルの検査方法。 In the solar cell inspection method of irradiating solar cells with infrared rays, imaging reflected light from the solar cells and detecting cracks, applying a DC bias in the forward direction of the pn junction of the solar cells Irradiating polarized solar light to the solar battery cell, and detecting the cracked portion of the solar battery cell by selecting and imaging the reflected light of the polarized infrared light on the solar battery cell based on polarization characteristics. A method for inspecting a solar battery cell. 太陽電池セルに赤外線を照射し、上記太陽電池セルを透過した透過光を撮像してクラック部分を検出する太陽電池セルの検査方法において、上記太陽電池セルのpn接合の順方向に直流バイアスを印加しながら、上記太陽電池セルに偏光赤外線を照射し、上記太陽電池セルを透過した上記偏光赤外線の透過光を、偏光特性に基づいて選択して撮像することにより、上記太陽電池セルのクラック部分を検出することを特徴とする太陽電池セルの検査方法。 In a solar cell inspection method in which a solar cell is irradiated with infrared rays, and a transmitted light transmitted through the solar cell is imaged to detect a crack portion, a DC bias is applied in the forward direction of the pn junction of the solar cell. However, the solar cell is irradiated with polarized infrared light, and the transmitted light of the polarized infrared light transmitted through the solar cell is selected and imaged based on the polarization characteristics, whereby the crack portion of the solar cell is detected. A method for inspecting a solar battery cell, comprising detecting the solar cell. 被検体の表面に偏光赤外線を照射する赤外線照射手段と、上記被検体における上記偏光赤外線の反射光を偏光する偏光手段と、上記偏光手段の偏光方向を調整して上記反射光を選択する偏光方向調整手段と、上記選択された反射光を撮像可能な撮像手段とを備えたことを特徴とする赤外線検査装置。 Infrared irradiation means for irradiating the surface of the subject with polarized infrared light, polarizing means for polarizing the reflected light of the polarized infrared light on the subject, and a polarization direction for selecting the reflected light by adjusting the polarization direction of the polarizing means An infrared inspection apparatus comprising adjustment means and imaging means capable of imaging the selected reflected light. 被検体の表面に偏光赤外線を照射する赤外線照射手段と、上記被検体を透過した上記偏光赤外線の透過光を偏光する偏光手段と、上記偏光手段の偏光方向を調整して上記透過光を選択する偏光方向調整手段と、上記選択された透過光を撮像可能な撮像手段とを備えたことを特徴とする赤外線検査装置。 Infrared irradiation means for irradiating polarized infrared light onto the surface of the subject, polarizing means for polarizing the transmitted light of the polarized infrared light transmitted through the subject, and adjusting the polarization direction of the polarizing means to select the transmitted light An infrared inspection apparatus comprising: a polarization direction adjusting unit; and an imaging unit capable of imaging the selected transmitted light. 被検体がpn接合を有する半導体基板であり、pn接合の順方向に電圧を印加する印加手段を備えたことを特徴とする請求項5または請求項6に記載の赤外線検査装置。 The infrared inspection apparatus according to claim 5, wherein the subject is a semiconductor substrate having a pn junction, and includes an applying unit that applies a voltage in a forward direction of the pn junction.
JP2006238915A 2006-09-04 2006-09-04 Inspection method of polycrystal silicon substrate, inspection method of photovoltaic cell, and infrared inspection apparatus Pending JP2008058270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006238915A JP2008058270A (en) 2006-09-04 2006-09-04 Inspection method of polycrystal silicon substrate, inspection method of photovoltaic cell, and infrared inspection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006238915A JP2008058270A (en) 2006-09-04 2006-09-04 Inspection method of polycrystal silicon substrate, inspection method of photovoltaic cell, and infrared inspection apparatus

Publications (1)

Publication Number Publication Date
JP2008058270A true JP2008058270A (en) 2008-03-13

Family

ID=39241160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006238915A Pending JP2008058270A (en) 2006-09-04 2006-09-04 Inspection method of polycrystal silicon substrate, inspection method of photovoltaic cell, and infrared inspection apparatus

Country Status (1)

Country Link
JP (1) JP2008058270A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010054376A (en) * 2008-08-28 2010-03-11 Ccs Inc Light irradiation apparatus
JP2011091089A (en) * 2009-10-20 2011-05-06 Sharp Corp Inspection device and method
WO2011063318A2 (en) * 2009-11-23 2011-05-26 Applied Materials, Inc. Apparatus and methods for measuring solar cell module performance
KR101088261B1 (en) * 2009-05-28 2011-11-30 (주)원우시스템즈 Inspection device and method of solar cell
JP2012185091A (en) * 2011-03-07 2012-09-27 Mitsubishi Electric Corp Device and method for inspecting silicon substrate
JP2013036888A (en) * 2011-08-09 2013-02-21 Mitsubishi Electric Corp Silicon substrate inspection device and inspection method
JP2013057570A (en) * 2011-09-07 2013-03-28 Jfe Steel Corp Surface flaw inspection device
JP2014052261A (en) * 2012-09-06 2014-03-20 Shimadzu Corp Inspection device
JP2014181975A (en) * 2013-03-19 2014-09-29 Dainippon Screen Mfg Co Ltd Photo device detection device and photo device inspection method
WO2014203986A1 (en) * 2013-06-21 2014-12-24 富士フイルム株式会社 Polarization filter and sensor system
JP2017102129A (en) * 2009-09-02 2017-06-08 ジーピー・インスペクト・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Method and device for detecting defects of object
US9835565B2 (en) 2014-12-29 2017-12-05 Samsung Display Co., Ltd. Inspection device of display device and inspection method of display device
US10036701B2 (en) 2014-07-15 2018-07-31 Fujifilm Corporation Sensing system and sensing method
JP2018197695A (en) * 2017-05-24 2018-12-13 株式会社カネカ Electronic component exterior appearance inspection method and exterior appearance inspection device
CN109164112A (en) * 2018-09-26 2019-01-08 深圳森阳环保材料科技有限公司 A kind of cable surface defects detection system based on unmanned plane
US10598588B2 (en) 2015-04-24 2020-03-24 Fujifilm Corporation Sensing method and sensing system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61134646A (en) * 1984-12-05 1986-06-21 Sumitomo Electric Ind Ltd Crystal evaluating device
JPS63114055U (en) * 1987-01-17 1988-07-22
JPH06308042A (en) * 1993-04-05 1994-11-04 Space Syst Loral Inc Optical-irradiation inspection system for flaw detection of wafer and solar cell
JPH08304298A (en) * 1995-05-10 1996-11-22 Mitsubishi Electric Corp Infrared inspection system
JPH1019799A (en) * 1996-07-09 1998-01-23 Mutual Corp Inspection method of mixed foreign matter in vessel and inspection equipment
JPH10282014A (en) * 1997-04-10 1998-10-23 Mitsui Chem Inc Surface defect detector with polarizing plate
JP2000321167A (en) * 1999-05-10 2000-11-24 Hitachi Cable Ltd Method for detecting foreign object in optical fiber
JP2006184177A (en) * 2004-12-28 2006-07-13 Mitsubishi Electric Corp Infrared inspection device and method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61134646A (en) * 1984-12-05 1986-06-21 Sumitomo Electric Ind Ltd Crystal evaluating device
JPS63114055U (en) * 1987-01-17 1988-07-22
JPH06308042A (en) * 1993-04-05 1994-11-04 Space Syst Loral Inc Optical-irradiation inspection system for flaw detection of wafer and solar cell
JPH08304298A (en) * 1995-05-10 1996-11-22 Mitsubishi Electric Corp Infrared inspection system
JPH1019799A (en) * 1996-07-09 1998-01-23 Mutual Corp Inspection method of mixed foreign matter in vessel and inspection equipment
JPH10282014A (en) * 1997-04-10 1998-10-23 Mitsui Chem Inc Surface defect detector with polarizing plate
JP2000321167A (en) * 1999-05-10 2000-11-24 Hitachi Cable Ltd Method for detecting foreign object in optical fiber
JP2006184177A (en) * 2004-12-28 2006-07-13 Mitsubishi Electric Corp Infrared inspection device and method

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010054376A (en) * 2008-08-28 2010-03-11 Ccs Inc Light irradiation apparatus
KR101088261B1 (en) * 2009-05-28 2011-11-30 (주)원우시스템즈 Inspection device and method of solar cell
JP2017102129A (en) * 2009-09-02 2017-06-08 ジーピー・インスペクト・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Method and device for detecting defects of object
JP2011091089A (en) * 2009-10-20 2011-05-06 Sharp Corp Inspection device and method
WO2011063318A2 (en) * 2009-11-23 2011-05-26 Applied Materials, Inc. Apparatus and methods for measuring solar cell module performance
WO2011063318A3 (en) * 2009-11-23 2011-11-24 Applied Materials, Inc. Apparatus and methods for measuring solar cell module performance
JP2012185091A (en) * 2011-03-07 2012-09-27 Mitsubishi Electric Corp Device and method for inspecting silicon substrate
JP2013036888A (en) * 2011-08-09 2013-02-21 Mitsubishi Electric Corp Silicon substrate inspection device and inspection method
JP2013057570A (en) * 2011-09-07 2013-03-28 Jfe Steel Corp Surface flaw inspection device
JP2014052261A (en) * 2012-09-06 2014-03-20 Shimadzu Corp Inspection device
JP2014181975A (en) * 2013-03-19 2014-09-29 Dainippon Screen Mfg Co Ltd Photo device detection device and photo device inspection method
WO2014203986A1 (en) * 2013-06-21 2014-12-24 富士フイルム株式会社 Polarization filter and sensor system
JP2015004856A (en) * 2013-06-21 2015-01-08 富士フイルム株式会社 Polarization filter and application of the same
US9671540B2 (en) 2013-06-21 2017-06-06 Fujifilm Corporation Polarization filter and sensor system
US10036701B2 (en) 2014-07-15 2018-07-31 Fujifilm Corporation Sensing system and sensing method
US9835565B2 (en) 2014-12-29 2017-12-05 Samsung Display Co., Ltd. Inspection device of display device and inspection method of display device
US10598588B2 (en) 2015-04-24 2020-03-24 Fujifilm Corporation Sensing method and sensing system
JP2018197695A (en) * 2017-05-24 2018-12-13 株式会社カネカ Electronic component exterior appearance inspection method and exterior appearance inspection device
CN109164112A (en) * 2018-09-26 2019-01-08 深圳森阳环保材料科技有限公司 A kind of cable surface defects detection system based on unmanned plane

Similar Documents

Publication Publication Date Title
JP2008058270A (en) Inspection method of polycrystal silicon substrate, inspection method of photovoltaic cell, and infrared inspection apparatus
JP6929772B2 (en) Equipment and methods for workpiece defect detection
TWI589861B (en) System and method for detecting cracks in a wafer
TWI439684B (en) Photoluminescence imaging with preferential detection of photoluminescence signals emitted from a specified material layer of a wafer or other workpiece
US9773641B2 (en) Method and apparatus for observing defects
JP5349742B2 (en) Surface inspection method and surface inspection apparatus
TW201602738A (en) In-line wafer edge inspection, wafer pre-alignment, and wafer cleaning
US20060278831A1 (en) Infrared inspection apparatus, infrared inspecting method and manufacturing method of semiconductor wafer
JP2007078404A (en) Inspection device of solar cell panel
TW200839227A (en) Automatic inspection system for flat panel substrate
CN102565090B (en) For the method checking photovoltaic substrate
US20070181180A1 (en) Methods and apparatus for inspection of multi-junction solar cells
JP2011117928A (en) Apparatus and method for inspecting internal defect of substrate
JP5830229B2 (en) Wafer defect inspection system
CN112129772A (en) Defect detection system and method
JP5831425B2 (en) Solar cell inspection equipment
JP2006184177A (en) Infrared inspection device and method
JP2008096252A (en) Near-field inspection method and device
US7773211B2 (en) Apparatus and method for determining stress in solar cells
US8110804B2 (en) Through substrate optical imaging device and method
WO2019099285A1 (en) Methods and apparatus for detecting surface defects on glass sheets
JP2013140061A (en) Method for detecting foreign substance on front and back sides of transparent flat substrate, and foreign substance inspection device using the method
US4501966A (en) Infrared microscope inspection apparatus
JP5212779B2 (en) Surface inspection apparatus and surface inspection method
KR101575895B1 (en) Apparatus and method for inspecting wafer using light

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110609

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120327