JP2013057570A - Surface flaw inspection device - Google Patents

Surface flaw inspection device Download PDF

Info

Publication number
JP2013057570A
JP2013057570A JP2011195389A JP2011195389A JP2013057570A JP 2013057570 A JP2013057570 A JP 2013057570A JP 2011195389 A JP2011195389 A JP 2011195389A JP 2011195389 A JP2011195389 A JP 2011195389A JP 2013057570 A JP2013057570 A JP 2013057570A
Authority
JP
Japan
Prior art keywords
angle
analyzer
image
inspected
defect detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011195389A
Other languages
Japanese (ja)
Inventor
Hiroyuki Sugiura
寛幸 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011195389A priority Critical patent/JP2013057570A/en
Publication of JP2013057570A publication Critical patent/JP2013057570A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PROBLEM TO BE SOLVED: To detect flaws on the surface of an inspected object even when the surface condition of a harmless pattern is unstable while preventing erroneous detection of the harmless pattern.SOLUTION: A surface flaw inspection device 1 includes an imaging unit 4 that receives reflectance of illumination light applied to an inspected object 2 and takes a surface image of the inspected object 2, a polarization angle adjustment unit 12 that changes relative angles of a polarizer 5 and an analyzer 6 for defining optical condition of the imaging unit 4, an image monitor 10 that evaluates the surface image of the inspected object 2 taken by the imaging unit 4, and a polarization angle correction input unit 11 that inputs angle of the analyzer 6 according to evaluation by the image monitor 10.

Description

本発明は、薄鋼板表面などの被検査体表面に存在する欠陥を光学的に検出する表面欠陥検出装置に関する。   The present invention relates to a surface defect detection apparatus that optically detects defects existing on the surface of an object to be inspected, such as a thin steel plate surface.

従来から、薄鋼板表面などの被検査体表面に照射光を照射して、この被検査体表面からの反射光を解析することにより、被検査体表面に存在する欠陥を光学的に検出する表面欠陥検出装置が知られている。このような光学式の表面欠陥検出装置は、被検査体表面に存在する欠陥に似ているが検出対象ではない無害模様を欠陥として誤検出してしまうことがある。このため、この無害模様の誤検出を抑制する技術が提案されている。   Conventionally, a surface that optically detects defects existing on the surface of the object to be inspected by irradiating the surface of the object to be inspected, such as a thin steel plate surface, and analyzing the reflected light from the surface of the object to be inspected. Defect detection devices are known. Such an optical surface defect detection apparatus may erroneously detect a harmless pattern that is similar to a defect existing on the surface of the object to be inspected but is not a detection target as a defect. For this reason, a technique for suppressing erroneous detection of this harmless pattern has been proposed.

例えば、特許文献1には、被検査体表面に対して35度から75度の入射角度で光を入射し、反射光の正反射方向に設置した第1のカメラの画像と、入射方向あるいは正反射方向から20度以内の角度方向に設置した第2のカメラの画像とを比較して、無害模様の誤検出を抑制する技術が記載されている。特許文献2には、偏光板と1/4波長板とを用いて被検査体から反射した光の偏光状態を最適に調整した光学系を構成することにより、偏光板と1/4波長板とを調整して無害模様の誤検出を抑制する技術が記載されている。   For example, in Patent Document 1, light is incident on the surface of an object to be inspected at an incident angle of 35 degrees to 75 degrees, and an image of a first camera installed in the regular reflection direction of reflected light, the incident direction or the normal direction. A technique is described that suppresses false detection of harmless patterns by comparing with an image of a second camera installed in an angle direction within 20 degrees from the reflection direction. In Patent Document 2, a polarizing plate and a quarter-wave plate are formed by configuring an optical system that optimally adjusts the polarization state of light reflected from the object to be inspected using a polarizing plate and a quarter-wave plate. A technique is described that suppresses false detection of harmless patterns by adjusting.

特開昭58−204353号公報JP 58-204353 A 特開2005−221391号公報JP 2005-221391 A

しかしながら、特許文献1に記載の技術は、被検査体表面の無害模様の状態が一定している場合には有効であるが、無害模様の状態が変化し、2台のカメラが共に無害模様を検出する場合に、無害模様を誤検出してしまうという問題点があった。また、特許文献2に記載の技術は、予め無害模様を打ち消すように光学系を設計するので、無害模様の状態が一定しない場合に、無害模様の誤検出を抑制することができないという問題点があった。   However, the technique described in Patent Document 1 is effective when the state of the harmless pattern on the surface of the object to be inspected is constant, but the state of the harmless pattern is changed, and the two cameras are both harmless. In the case of detection, there is a problem that a harmless pattern is erroneously detected. Moreover, since the technique described in Patent Document 2 designs an optical system so as to cancel the harmless pattern in advance, there is a problem in that it is not possible to suppress the false detection of the harmless pattern when the state of the harmless pattern is not constant. there were.

本発明は、上記に鑑みてなされたものであって、被検査体表面の無害模様の状態が一定しない場合でも、無害模様を誤検出することなく被検査体表面の欠陥を検出することを可能とする表面欠陥検出装置を提供することを目的とする。   The present invention has been made in view of the above, and even when the state of the harmless pattern on the surface of the object to be inspected is not constant, it is possible to detect a defect on the surface of the object to be inspected without erroneously detecting the harmless pattern. An object of the present invention is to provide a surface defect detection apparatus.

上述した課題を解決し、目的を達成するために、本発明に係る表面欠陥検出装置は、被検査体に照射された照明光の反射光を受光して、前記被検査体の表面画像を撮像する撮像手段と、前記撮像手段が撮像を行う光学条件を変更する変更手段と、前記撮像手段が撮像した前記被検査体の表面画像を評価する評価手段と、前記評価手段の評価に従い前記変更手段を制御する調整手段とを備えることを特徴とする。   In order to solve the above-described problems and achieve the object, a surface defect detection device according to the present invention receives reflected light of illumination light irradiated on an object to be inspected and captures a surface image of the object to be inspected. Imaging means for performing, changing means for changing an optical condition for imaging by the imaging means, evaluation means for evaluating the surface image of the object to be inspected imaged by the imaging means, and the changing means according to the evaluation by the evaluation means And adjusting means for controlling.

本発明に係る表面欠陥検出装置によれば、被検査体の無害模様の状態が一定しない場合でも、無害模様を誤検出することなく被検査体表面の欠陥を検出することができる。   According to the surface defect detection device of the present invention, it is possible to detect a defect on the surface of the inspection object without erroneously detecting the harmless pattern even when the state of the harmless pattern of the inspection object is not constant.

図1は、本発明の第1実施形態に係る表面欠陥検出装置の構成を示す模式図である。FIG. 1 is a schematic diagram showing the configuration of the surface defect detection apparatus according to the first embodiment of the present invention. 図2は、検光子の角度調整機構の例を示す模式図である。FIG. 2 is a schematic diagram showing an example of the angle adjustment mechanism of the analyzer. 図3は、無害模様を有する鋼板表面に対して直線偏光を照射した場合の反射光の偏光状態を説明する図である。FIG. 3 is a diagram for explaining the polarization state of reflected light when linearly polarized light is irradiated on the steel sheet surface having a harmless pattern. 図4は、検光子の角度により無害模様の見え方が異なる理由を説明する図である。FIG. 4 is a diagram for explaining the reason why the harmless pattern looks different depending on the angle of the analyzer. 図5は、酸洗ラインの検査にて検光子の角度を調整するタイミングを説明する図である。FIG. 5 is a diagram for explaining the timing for adjusting the angle of the analyzer in the inspection of the pickling line. 図6は、本発明の第2実施形態に係る表面欠陥検出装置の構成を示す模式図である。FIG. 6 is a schematic diagram showing the configuration of the surface defect detection apparatus according to the second embodiment of the present invention. 図7は、ノイズレベルを指標とした検光子角度の自動設定方法の例を説明する図である。FIG. 7 is a diagram for explaining an example of an analyzer angle automatic setting method using the noise level as an index. 図8は、ノイズレベルを検光子の各角度に関してグラフ化したグラフである。FIG. 8 is a graph in which the noise level is graphed for each angle of the analyzer.

以下に、本発明に係る表面欠陥検出装置の実施形態を図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。   Hereinafter, an embodiment of a surface defect detection device according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

〔第1実施形態〕
図1は、本発明の第1実施形態に係る表面欠陥検出装置の構成を示す模式図である。図1に示されるように、本発明の実施形態に係る表面欠陥検出装置1は、被検査体2に照明光を照射する照明部3と、照明光を照射された被検査体2からの反射光を受光する撮像部4と、撮像部4が撮像する光学条件を規定する偏光子(偏光板)5および検光子(偏光板)6とを備える。
[First Embodiment]
FIG. 1 is a schematic diagram showing the configuration of the surface defect detection apparatus according to the first embodiment of the present invention. As shown in FIG. 1, a surface defect detection apparatus 1 according to an embodiment of the present invention includes an illumination unit 3 that irradiates an inspection object 2 with illumination light, and a reflection from the inspection object 2 irradiated with the illumination light. An imaging unit 4 that receives light, and a polarizer (polarizing plate) 5 and an analyzer (polarizing plate) 6 that define optical conditions for imaging by the imaging unit 4 are provided.

照明部3は、例えばメタルハイドロランプを使用した光源7から光ファイバーを介して光線が導かれ、その光線を照明部3が被検査体2を照射するための光学系を内部に備える。照明部3の出射端と被検査体2との間の照射光の光路には、偏光角が45度に設定された偏光子5が配置されている。これにより、垂直方向(P偏光)と水平方向(S偏光)の偏光成分を含んだ直線偏光が被検査体2に照射される。   The illuminating unit 3 includes an optical system in which a light beam is guided through an optical fiber from a light source 7 using, for example, a metal hydrolamp, and the illuminating unit 3 irradiates the inspection object 2 with the light beam. A polarizer 5 having a polarization angle set to 45 degrees is disposed in the optical path of the irradiation light between the emission end of the illumination unit 3 and the inspection object 2. As a result, linearly polarized light including polarization components in the vertical direction (P-polarized light) and the horizontal direction (S-polarized light) is irradiated onto the device under test 2.

照明部3から被検査体2へ照射される照明光の入射角は、例えば60度とすることができる。一方、撮像部4は、照明部3から被検査体2へ照射された照射光の正反射光を受光する位置に配置される。すなわち、撮像部4が受光する反射光の反射角も60度である。なお、入射角および反射角は60度に限らず、反射光のP偏光とS偏光との差が検出しやすい角度であれば他の角度でも構わない。   The incident angle of the illumination light emitted from the illumination unit 3 to the object to be inspected 2 can be set to 60 degrees, for example. On the other hand, the imaging unit 4 is arranged at a position for receiving regular reflection light of irradiation light irradiated from the illumination unit 3 to the inspection object 2. That is, the reflection angle of the reflected light received by the imaging unit 4 is also 60 degrees. The incident angle and the reflection angle are not limited to 60 degrees, and may be other angles as long as the difference between the P-polarized light and the S-polarized light of the reflected light is easy to detect.

被検査体2と撮像部4との間の反射光の光路には、検光子6が配置され、撮像部4は、この検光子6を介して反射光を受光する。なお、検光子6の角度は、被検査体2の製造条件に従い、無害模様の誤検出を抑制し得る角度に予め仮設定しておく。   An analyzer 6 is disposed in the optical path of the reflected light between the object to be inspected 2 and the imaging unit 4, and the imaging unit 4 receives the reflected light through the analyzer 6. Note that the angle of the analyzer 6 is provisionally set in advance according to the manufacturing conditions of the inspection object 2 to an angle that can suppress the erroneous detection of the harmless pattern.

ところで、上記のように被検査体2の製造条件に従い検光子6の角度を設定しても、実際には製造条件のバラつきにより無害模様の状態が変化するので、仮設定の角度では無害模様を誤検出してしまうことがある。そこで、本発明の第1実施形態に係る表面欠陥検出装置では、オペレータが検光子6の角度をマニュアルで変更する。以下、そのための構成を説明する。   By the way, even if the angle of the analyzer 6 is set according to the manufacturing conditions of the object 2 as described above, the harmless pattern actually changes due to variations in the manufacturing conditions. Misdetection may occur. Therefore, in the surface defect detection apparatus according to the first embodiment of the present invention, the operator manually changes the angle of the analyzer 6. Hereinafter, a configuration for that purpose will be described.

図1に示されるように、本発明の第1実施形態に係る表面欠陥検出装置は、撮像部4から出力された画像信号を制御する画像入力部8と、画像入力部8によって制御された画像信号に画像処理を加える画像処理部9と、画像処理部9により処理された画像信号を画像化して表示する画像モニター10とを備える。さらに、本発明の第1実施形態に係る表面欠陥検出装置は、オペレータが検光子6の角度を設定するための偏光角修正入力部11と、偏光角修正入力部11からの入力に従い検光子6の角度を駆動する偏光角調整部12とを備える。   As shown in FIG. 1, the surface defect detection device according to the first embodiment of the present invention includes an image input unit 8 that controls an image signal output from the imaging unit 4, and an image that is controlled by the image input unit 8. An image processing unit 9 that performs image processing on the signal, and an image monitor 10 that displays the image signal processed by the image processing unit 9 as an image are provided. Furthermore, the surface defect detection apparatus according to the first embodiment of the present invention includes a polarization angle correction input unit 11 for an operator to set the angle of the analyzer 6, and the analyzer 6 according to the input from the polarization angle correction input unit 11. And a polarization angle adjusting unit 12 for driving the angle.

画像入力部8は、撮像部4から出力された画像信号を増幅する増幅器と、電気的ノイズをカットするフィルタと、アナログ信号である画像信号をデジタル信号の画像信号に変換するA/D変換器とを内部に備える。画像処理部9は、入力された画像信号に対して下地の反射率ムラなどの下地影響を除くためにシェーディング補正処理と、空間フィルタによるノイズ除去処理とを行う前処理機能を備える。画像モニター10は、CRTまたはLCDなどの一般的な画像表示装置である。   The image input unit 8 includes an amplifier that amplifies the image signal output from the imaging unit 4, a filter that cuts electrical noise, and an A / D converter that converts the image signal that is an analog signal into an image signal of a digital signal. Are provided inside. The image processing unit 9 has a preprocessing function for performing shading correction processing and noise removal processing using a spatial filter in order to remove background effects such as uneven reflectance of the background from the input image signal. The image monitor 10 is a general image display device such as a CRT or LCD.

なお、本発明の第1実施形態に係る表面欠陥検出装置は、上記構成に加え、画像処理部9の出力画像から欠陥候補の長さ・幅・面積などの特徴量を演算する特徴量演算部13と、この特徴量から所定のアルゴリズムによって欠陥の種別および程度を判定する欠陥判定部14と、判定された欠陥の種別および程度を表示または出力する外部入出力部15と、外部入出力部15からの出力を利用して被検査体2の品質管理などを行う上位計算機16を備える。また、本発明の第1実施形態に係る表面欠陥検出装置は、画像入力部8に従い光源7の出力を制御する光量制御部17を備える。   In addition to the above configuration, the surface defect detection apparatus according to the first embodiment of the present invention calculates a feature amount such as a length, width, and area of a defect candidate from the output image of the image processing unit 9. 13, a defect determination unit 14 that determines the type and degree of the defect from the feature amount by a predetermined algorithm, an external input / output unit 15 that displays or outputs the type and degree of the determined defect, and an external input / output unit 15 Is provided with a host computer 16 for performing quality control of the inspected object 2 by using the output from. In addition, the surface defect detection apparatus according to the first embodiment of the present invention includes a light amount control unit 17 that controls the output of the light source 7 in accordance with the image input unit 8.

図2は、検光子6の角度調整機構の例を示す模式図である。例えば、リング状に穴の開いた回転機構が撮像部4の入射端に設けられており、その回転機構の中に検光子6を取り付ける構成にすれば、検光子6の角度を360度の任意角度に設定できる。   FIG. 2 is a schematic diagram illustrating an example of an angle adjustment mechanism of the analyzer 6. For example, if a rotation mechanism having a hole in a ring shape is provided at the incident end of the imaging unit 4 and the analyzer 6 is attached to the rotation mechanism, the angle of the analyzer 6 is arbitrarily set to 360 degrees. Can be set to an angle.

以下、上記構成の第1実施形態に係る表面欠陥検出装置における、検光子6の調整方法について説明する。   Hereinafter, a method for adjusting the analyzer 6 in the surface defect detection apparatus according to the first embodiment having the above-described configuration will be described.

酸洗鋼板の表面には、例えばスケール残りまたは赤スケールといった、検出すべきヘゲ疵と同様の形状をした無害模様が発生する。酸洗鋼板とは、塩酸または硫酸などの強酸を入れた液槽中に鋼板を通過させて表面のスケールを除去する酸洗処理を施した鋼板をいう。この酸洗処理において除去しきれずに残ったものがスケール残りである。スケール残り自体を検出する用途も存在するが、以下では、被検査体2の表面の欠陥を検出する検査として、酸洗ライン上における鋼板表面のヘゲ疵を検出する検査を想定し、スケール残りを無害模様とみなして説明を行う。   On the surface of the pickled steel sheet, a harmless pattern having the same shape as the lashes to be detected, such as scale residue or red scale, is generated. The pickled steel sheet refers to a steel sheet that has been subjected to a pickling process in which a steel sheet is passed through a liquid tank containing a strong acid such as hydrochloric acid or sulfuric acid to remove scale on the surface. What remains without being completely removed in this pickling treatment is the remaining scale. Although there is an application for detecting the remaining scale itself, in the following, as an inspection for detecting defects on the surface of the object 2 to be inspected, an inspection for detecting lashes on the surface of the steel plate on the pickling line is assumed. Is described as harmless.

図3は、この無害模様を有する鋼板表面に対して直線偏光を照射した場合の反射光の偏光状態を説明する図である。図3(a)に示されるように、本発明の第1実施形態に係る第1実施形態に係る表面欠陥検出装置は、偏光角が45度の直線偏光を被検査体である鋼板に照射する。図3(a)では、鋼板に照射される直線偏光の偏光状態を符号Aの直線で表示している。   FIG. 3 is a diagram for explaining the polarization state of reflected light when linearly polarized light is irradiated on the steel sheet surface having this harmless pattern. As shown in FIG. 3 (a), the surface defect detection device according to the first embodiment of the first embodiment of the present invention irradiates a steel plate as an object to be inspected with linearly polarized light having a polarization angle of 45 degrees. . In FIG. 3A, the polarization state of the linearly polarized light irradiated on the steel plate is indicated by a straight line with a symbol A.

図3(b)は、鋼板に照射された直線偏光の反射光の偏光状態を示す図である。図3(b)に示されるように、鋼板の下地によって直線偏光が反射するか、または、鋼板上のスケール残りによって直線偏光が反射するかによって、反射光の偏光状態が異なる。図3(b)では、鋼板の下地による反射した楕円偏光の偏光状態を符号Bの楕円で表示し、無害模様による反射した楕円偏光の偏光状態を符号Cの楕円で表示している。このように反射光の偏光状態に相違が生じる理由は、鋼板の下地によって直線偏光が反射するか、または、鋼板上のスケール残りによって直線偏光が反射するかによって、照射した直線偏光のP偏光成分とS偏光成分とに対する作用が異なるからである。   FIG.3 (b) is a figure which shows the polarization state of the reflected light of the linearly polarized light irradiated to the steel plate. As shown in FIG. 3B, the polarization state of the reflected light differs depending on whether the linearly polarized light is reflected by the base of the steel plate or the linearly polarized light is reflected by the remaining scale on the steel plate. In FIG. 3 (b), the polarization state of the elliptically polarized light reflected by the base of the steel plate is indicated by an ellipse indicated by symbol B, and the polarization state of the elliptically polarized light reflected by the harmless pattern is indicated by an ellipse indicated by symbol C. The reason for the difference in the polarization state of the reflected light is that the linearly polarized light is irradiated depending on whether the linearly polarized light is reflected by the base of the steel plate or the linearly polarized light is reflected by the remaining scale on the steel plate. This is because the action on the S polarization component is different from that on the S polarization component.

上記性質を利用し、本発明の第1実施形態に係る第1実施形態に係る表面欠陥検出装置1は、反射光の光路に配置した検光子6の角度を調整することにより、無害模様の誤検出を抑制する。図4は、検光子6の角度により無害模様の見え方が異なる理由を説明する図である。   The surface defect detection apparatus 1 according to the first embodiment of the first embodiment of the present invention, using the above properties, adjusts the angle of the analyzer 6 disposed in the optical path of the reflected light, thereby preventing harmless pattern errors. Suppress detection. FIG. 4 is a diagram for explaining the reason why the harmless pattern looks different depending on the angle of the analyzer 6.

図4(a)に示すように、検光子6の角度が適切でない場合(図中一点鎖線の角度)、鋼板の下地にて反射した楕円偏光と鋼板上のスケール残りにて反射した楕円偏光とでは、検光子6を透過する偏光成分の大きさが異なる。検光子6を透過する成分の大きさは、検光子の角度に対する楕円偏光の射影成分となるからである。図4(a)中では、検光子6を透過する偏光の方向を一転鎖線で示し、鋼板の下地にて反射した楕円偏光の射影成分を破線の両矢印で示し、鋼板上のスケール残りにて反射した楕円偏光の射影成分を実線の両矢印で示している。図4(a)に示された例では、この破線の両矢印と実線の両矢印との大きさが異なり、鋼板の下地と無害模様とにコントラストが生じて画像化されてしまうことが解る。   As shown in FIG. 4A, when the angle of the analyzer 6 is not appropriate (the angle of the alternate long and short dash line in the figure), the elliptically polarized light reflected by the base of the steel plate and the elliptically polarized light reflected by the rest of the scale on the steel plate Then, the magnitude | sizes of the polarization component which permeate | transmits the analyzer 6 differ. This is because the size of the component that passes through the analyzer 6 becomes a projected component of elliptically polarized light with respect to the angle of the analyzer. In FIG. 4 (a), the direction of polarized light passing through the analyzer 6 is indicated by a chain line, and the projected component of elliptically polarized light reflected by the base of the steel plate is indicated by a dashed double-pointed arrow. The projected component of the reflected elliptically polarized light is indicated by a solid double arrow. In the example shown in FIG. 4 (a), it can be seen that the broken double arrow and the solid double arrow are different in size, and the base of the steel plate and the harmless pattern are contrasted and imaged.

一方、図4(b)に示すように、検光子の角度が適切な場合(図中角度αの実線)、鋼板の下地にて反射した楕円偏光と鋼板上のスケール残りにて反射した楕円偏光とで、検光子を透過する成分の大きさが等しく(または略等しく)なる。図4(a)と同様に、図4(b)中では、鋼板の下地にて反射した楕円偏光の射影成分を破線の両矢印で示し、鋼板上のスケール残りにて反射した楕円偏光の射影成分を実線の両矢印で示している。図4(b)に示された例では、この破線の両矢印と実線の両矢印との大きさが略等しくなり、鋼板の下地と無害模様とにコントラストがなく画像化されることが解る。   On the other hand, as shown in FIG. 4B, when the angle of the analyzer is appropriate (solid line of angle α in the figure), the elliptically polarized light reflected by the base of the steel plate and the elliptically polarized light reflected by the remainder of the scale on the steel plate. And the sizes of the components that pass through the analyzer are equal (or substantially equal). Similar to FIG. 4 (a), in FIG. 4 (b), the projected component of the elliptically polarized light reflected by the base of the steel plate is indicated by a dashed double-pointed arrow, and the projected elliptically polarized light reflected by the remaining scale on the steel plate. Ingredients are indicated by solid double arrows. In the example shown in FIG. 4B, it can be seen that the broken line double arrow and the solid line double arrow are approximately equal in size, and the base of the steel sheet and the harmless pattern are imaged without any contrast.

上記理由により、本発明の第1実施形態に係る表面欠陥検出装置1は、図4(b)に示されるように検光子6の角度を調整すれば、無害模様の誤検出を抑制することができる。ところが、図4(b)に示されるような検光子6の角度は、製造条件やスケールの残り方などにより変化してしまう。よって、検光子6の角度を固定した場合、無害模様の誤検出を抑制することができない状況が発生する。そこで、本発明の第1実施形態に係る表面欠陥検出装置1では、オペレータが、連続して製造される鋼板の製造条件が変わるタイミングで無害模様の発生状況を画像モニター10で確認し、検光子6の角度を偏光角修正入力部に入力することで検光子6の角度を調整する。   For the above reasons, the surface defect detection apparatus 1 according to the first embodiment of the present invention can suppress harmless pattern false detection by adjusting the angle of the analyzer 6 as shown in FIG. it can. However, the angle of the analyzer 6 as shown in FIG. 4B varies depending on the manufacturing conditions and the remaining scale. Therefore, when the angle of the analyzer 6 is fixed, a situation occurs in which erroneous detection of a harmless pattern cannot be suppressed. Therefore, in the surface defect detection apparatus 1 according to the first embodiment of the present invention, the operator confirms the occurrence state of the harmless pattern on the image monitor 10 at the timing when the manufacturing conditions of the continuously manufactured steel sheet change, and the analyzer. The angle of the analyzer 6 is adjusted by inputting the angle 6 to the polarization angle correction input unit.

以下、酸洗ライン上における鋼板表面の欠陥の検出の例を用いて、オペレータが、検光子6の角度を調整すべきタイミングについて説明する。   Hereinafter, the timing at which the operator should adjust the angle of the analyzer 6 will be described using an example of detection of defects on the surface of the steel sheet on the pickling line.

図5は、酸洗ライン上における鋼板表面の欠陥の検出にて検光子6の角度を調整するタイミングを説明する図である。図5(a)は、鋼板表面の欠陥の検出をする表面欠陥検出装置1を備えた酸洗ライン上の模式図である。図5(a)に示されるように、酸洗ラインにおいて、被検査体2である鋼板は、コイル18として巻き取られた状態で酸洗ラインに搬入される。そして、コイル18を巻き戻すことにより、鋼板が、酸洗ラインに通板され、酸洗処理をされた後に、表面欠陥検出装置1により鋼板表面の欠陥の検出がなされる。この欠陥の検出が終了した被検査体2は、コイラーによりに巻き取られて巻取コイル19となり、酸洗ラインから搬出され、酸洗ラインが終了する。   FIG. 5 is a diagram for explaining the timing for adjusting the angle of the analyzer 6 by detecting defects on the surface of the steel sheet on the pickling line. Fig.5 (a) is a schematic diagram on the pickling line provided with the surface defect detection apparatus 1 which detects the defect of the steel plate surface. As shown in FIG. 5A, in the pickling line, the steel plate that is the object to be inspected 2 is carried into the pickling line while being wound as a coil 18. Then, by rewinding the coil 18, the steel sheet is passed through the pickling line and subjected to the pickling treatment, and then the surface defect detection device 1 detects a defect on the surface of the steel sheet. The object to be inspected 2 for which detection of this defect has been completed is wound up by a coiler to become a winding coil 19 and is carried out of the pickling line, and the pickling line is completed.

図5(a)に示される酸洗ラインは連続ラインであるので、被検査体2としての鋼板は、溶接されて連続的に酸洗ラインに通板される。したがって、図5(b)に示されるように、被検査体2としての鋼板のコイルAとコイルBとは、溶接部2bを介して一体化された状態で表面欠陥検出装置1により欠陥の検出が実施される。   Since the pickling line shown in FIG. 5A is a continuous line, the steel plate as the object to be inspected 2 is welded and continuously passed through the pickling line. Therefore, as shown in FIG. 5 (b), the coil A and the coil B of the steel plate as the object 2 to be inspected are detected by the surface defect detection device 1 in a state of being integrated through the welded portion 2b. Is implemented.

以上より、本発明の第1実施形態に係る表面欠陥検出装置1を酸洗ライン上における鋼板表面の欠陥の検出に用いた場合、被検査体2としての鋼板のコイル間を溶接する溶接部2bが表面欠陥検出装置1を通過した後すぐに、オペレータが検光子6の角度の再設定をするべきであることが解る。   From the above, when the surface defect detection device 1 according to the first embodiment of the present invention is used for detection of defects on the surface of a steel plate on a pickling line, the welded portion 2b that welds between the coils of the steel plate as the inspection object 2. It can be seen that the operator should reset the angle of the analyzer 6 immediately after passing through the surface defect detection device 1.

具体的には、オペレータは、溶接部2bの下流側近傍である無害模様発生状況確認エリア2aの表面画像を画像モニター10にて確認し、偏光角修正入力装置11を操作し、無害模様発生状況確認エリア2aの無害模様が最小化するように検光子6の角度を調整する。このように、コイル間を溶接する溶接部が表面欠陥検出装置を通過したタイミングで検光子6の角度を調整することにより、無害模様の発生状況が変化しても、無害模様を誤検出することなく被検査体2の表面を検査することが可能となる。   Specifically, the operator confirms the surface image of the harmless pattern occurrence status confirmation area 2a in the vicinity of the downstream side of the welded portion 2b on the image monitor 10, operates the polarization angle correction input device 11, and operates the harmless pattern occurrence status. The angle of the analyzer 6 is adjusted so that the harmless pattern in the confirmation area 2a is minimized. In this way, by adjusting the angle of the analyzer 6 at the timing when the welded portion that welds the coils passes through the surface defect detection device, the harmless pattern can be erroneously detected even if the occurrence of the harmless pattern changes. Therefore, it is possible to inspect the surface of the object 2 to be inspected.

なお、上記説明では、検光子6の角度を変更することにより、光学的条件を変更する実施形態を用いて本発明の実施形態を説明したが、例えば、照明部3および撮像部4の位置を駆動して照明光の入射角および反射角を変更することで光学的条件を変更しても、本発明の要旨を変更することなく適切に本発明を実施することができる。   In the above description, the embodiment of the present invention has been described using the embodiment in which the optical condition is changed by changing the angle of the analyzer 6. However, for example, the positions of the illumination unit 3 and the imaging unit 4 are determined. Even if the optical conditions are changed by changing the incident angle and the reflection angle of the illumination light by driving, the present invention can be appropriately implemented without changing the gist of the present invention.

以上より、本発明の第1実施形態に係る表面欠陥検出装置は、被検査体2に照射された照明光の反射光を受光して、被検査体2の表面画像を撮像する撮像部4と、撮像部4が撮像を行う光学条件を規定する偏光子5および検光子6の相対的角度を変更する偏光角調整部12と、撮像部4が撮像した被検査体2の表面画像を評価する画像モニター10と、画像モニター10による評価に従い、オペレータが検光子6の角度を入力する偏光角修正入力部11とを備え、入力された検光子6の角度となるように偏向角調節部12が検光子6の角度を制御するので、無害模様の発生状況に変化が生じても、無害模様を誤検出することなく被検査体表面の欠陥を検査することが可能である。   As described above, the surface defect detection apparatus according to the first embodiment of the present invention receives the reflected light of the illumination light irradiated on the inspection object 2 and images the surface image of the inspection object 2. The polarization angle adjusting unit 12 that changes the relative angle between the polarizer 5 and the analyzer 6 that defines the optical conditions for the imaging unit 4 to capture an image, and the surface image of the object 2 to be inspected captured by the imaging unit 4 are evaluated. In accordance with the evaluation by the image monitor 10 and the evaluation by the image monitor 10, the operator includes a polarization angle correction input unit 11 for inputting the angle of the analyzer 6, and the deflection angle adjusting unit 12 is set to the angle of the input analyzer 6. Since the angle of the analyzer 6 is controlled, it is possible to inspect defects on the surface of the object to be inspected without erroneously detecting the harmless pattern even if the harmless pattern occurrence state changes.

〔第2実施形態〕
図6は、本発明の第2実施形態に係る表面欠陥検出装置の構成を示す模式図である。本発明の第1実施形態は、オペレータがマニュアルで検光子の最適な角度を探し出す方式を用いたが、本発明の第2実施形態は、例えば鋼板のノイズレベルを指標として、このノイズレベルが最小になる角度を検光子の最適角度に自動設定する実施形態である。
[Second Embodiment]
FIG. 6 is a schematic diagram showing the configuration of the surface defect detection apparatus according to the second embodiment of the present invention. In the first embodiment of the present invention, a method in which an operator manually finds the optimum angle of the analyzer is used. However, in the second embodiment of the present invention, for example, the noise level of a steel plate is used as an index, and this noise level is minimized. This is an embodiment in which the angle is automatically set to the optimum angle of the analyzer.

図6に示されるように、本発明の第2実施形態に係る表面欠陥検出装置は、本発明の第1実施形態に係る表面欠陥検出装置と略同様の構成をしている。したがって、本発明の第2実施形態に係る表面欠陥検出装置の説明では、本発明の第1実施形態に係る表面欠陥検出装置と同一の符号を付すことにより、同一の構成要素の説明を省略するものとする。   As shown in FIG. 6, the surface defect detection apparatus according to the second embodiment of the present invention has substantially the same configuration as the surface defect detection apparatus according to the first embodiment of the present invention. Therefore, in the description of the surface defect detection apparatus according to the second embodiment of the present invention, the same components as those of the surface defect detection apparatus according to the first embodiment of the present invention are denoted by the same reference numerals, and the description of the same components is omitted. Shall.

本発明の第2実施形態に係る表面欠陥検出装置1は、本発明の第1実施形態に係る表面欠陥検出装置1の構成要素に加えて、画像評価部20を備える。画像評価部20は、画像処理部9からの出力である被検査体2の画像におけるノイズレベルを算出する演算器であり、一般的なMPUによって実現される。したがって、図6では、画像評価部20が画像処理部9と別体となっているが、画像評価部20と画像処理部9と一体として構成することも可能である。   The surface defect detection apparatus 1 according to the second embodiment of the present invention includes an image evaluation unit 20 in addition to the components of the surface defect detection apparatus 1 according to the first embodiment of the present invention. The image evaluation unit 20 is an arithmetic unit that calculates a noise level in the image of the object 2 to be inspected, which is an output from the image processing unit 9, and is realized by a general MPU. Therefore, in FIG. 6, the image evaluation unit 20 is separated from the image processing unit 9, but the image evaluation unit 20 and the image processing unit 9 may be configured integrally.

ここで、画像のノイズレベルとしては、例えば各画素の輝度の標準偏差σを用いることができる。以下、画像のノイズレベルとして各画素の輝度の標準偏差σを用いたものをノイズレベルσと略記し、このノイズレベルσを用いて説明を行う。   Here, as the noise level of the image, for example, the standard deviation σ of the luminance of each pixel can be used. Hereinafter, an image noise level using the standard deviation σ of luminance of each pixel is abbreviated as a noise level σ, and description will be made using the noise level σ.

また、画像評価部20は、算出した画像のノイズレベルに従って、偏光角調整部12に制御信号を送信する。画像評価部20が行う偏光角調整部12の制御としては、例えば以下の方法が考えられる。   In addition, the image evaluation unit 20 transmits a control signal to the polarization angle adjustment unit 12 according to the calculated noise level of the image. As the control of the polarization angle adjustment unit 12 performed by the image evaluation unit 20, for example, the following method can be considered.

図7および図8は、ノイズレベルσを指標とした検光子6の角度の自動設定方法の例を説明する図である。   7 and 8 are diagrams for explaining an example of an automatic method for setting the angle of the analyzer 6 using the noise level σ as an index.

本発明の第2実施形態に係る検光子6の角度の自動設定方法の例では、表面欠陥検出装置1が無害模様発生状況確認エリア2a(図5(b)参照)の画像を、検光子6の角度を0度から10度ピッチで変えてながら取得する。すなわち、本発明の第2実施形態に係る検光子6の角度の自動設定方法の例では、図7に示されるように、10度ピッチの各角度に対応して分割された無害模様発生状況確認エリア2aの画像が取得される。なお、図7に示される例では、溶接部2bが表面欠陥検出装置1を通過するタイミングにおける検光子6の角度が無害模様の誤検出を抑制する角度として0度に予め仮設定されていたとして、無害模様発生状況確認エリア2aを図示している。また、検光子6の角度の10度ピッチに対応した無害模様発生状況確認エリア2aの一定長さをLピッチと定義する。なお、検光子6の角度を予め仮設定されている角度の前後に何度の範囲で調べるかは、処理を短時間(つまり鋼板上の短距離)で行うためにパラメータで決めておいても良い。   In the example of the method for automatically setting the angle of the analyzer 6 according to the second embodiment of the present invention, the surface defect detection device 1 displays the image of the harmless pattern occurrence state confirmation area 2a (see FIG. 5B) as the analyzer 6. The angle is acquired while changing the angle at a pitch of 0 to 10 degrees. That is, in the example of the method for automatically setting the angle of the analyzer 6 according to the second embodiment of the present invention, as shown in FIG. 7, the harmless pattern occurrence status confirmation corresponding to each angle of 10 degrees pitch is confirmed. An image of area 2a is acquired. In the example shown in FIG. 7, it is assumed that the angle of the analyzer 6 at the timing when the weld 2b passes the surface defect detection device 1 is preliminarily set to 0 degrees as an angle that suppresses false detection of harmless patterns. The harmless pattern occurrence status confirmation area 2a is illustrated. Further, a certain length of the harmless pattern occurrence status confirmation area 2a corresponding to the 10 degree pitch of the analyzer 6 is defined as an L pitch. It should be noted that how many ranges the angle of the analyzer 6 is examined before and after a preset angle may be determined by a parameter in order to perform the processing in a short time (that is, a short distance on the steel plate). good.

画像評価部20は、上記のように取得された各Lピッチにおける無害模様発生状況確認エリア2aの画像のノイズレベルσを計算し、各Lピッチに対応した検光子6の角度のノイズレベルσとして記憶する。なお、このノイズレベルσを計算する画像は、未補正画像または画像処理部9にてシェーディング補正を行って正規化した画像のどちらを用いても良い。   The image evaluation unit 20 calculates the noise level σ of the image of the harmless pattern occurrence state confirmation area 2a obtained at each L pitch as described above, and uses the angle 6 as the noise level σ of the analyzer 6 corresponding to each L pitch. Remember. As the image for calculating the noise level σ, either an uncorrected image or an image normalized by performing shading correction in the image processing unit 9 may be used.

図8は、上記のように算出したノイズレベルσを検光子6の各角度に関してグラフ化したグラフである。   FIG. 8 is a graph in which the noise level σ calculated as described above is graphed with respect to each angle of the analyzer 6.

図8に示されるグラフの例は、検光子6の角度が70度付近においてノイズレベルσが最小となっている。したがって、図8に示されるグラフの例では、検光子6の角度が70度の時に、無害模様のコントラストが最小化されることが解る。よって、この場合、画像評価部20は、検光子6の角度が70度になるように、偏光角調整部12を制御すればよいことになる。   In the example of the graph shown in FIG. 8, the noise level σ is minimum when the angle of the analyzer 6 is around 70 degrees. Therefore, in the example of the graph shown in FIG. 8, it can be seen that the harmless pattern contrast is minimized when the angle of the analyzer 6 is 70 degrees. Therefore, in this case, the image evaluation unit 20 may control the polarization angle adjustment unit 12 so that the angle of the analyzer 6 is 70 degrees.

なお、本発明の第2実施形態に係る検光子6の角度の探索アルゴリズムは、山登り法などの一般的な探索アルゴリズムを用いることできる。すなわち、一つ前のLピッチにおけるノイズレベルσと、今回のLピッチにおけるノイズレベルσとを比較して、ノイズレベルσが減少している場合は次のLピッチにおけるノイズレベルσを計算することを繰り返す処理を行い、ノイズレベルσが増加に転じるLピッチを探索するアルゴリズムを用いることができる。図8に示されるグラフの例では、n番目のLピッチまでノイズレベルσが減少し、n+1番目のLピッチからノイズレベルσが増加する。これにより、n番目のLピッチのノイズレベルσが最小値であることが解る。もちろん、n番目のLピッチとn+1番目のLピッチとの間をさらに細分して、精度を高める工夫をすることも可能である。   Note that the search algorithm for the angle of the analyzer 6 according to the second embodiment of the present invention can use a general search algorithm such as a hill-climbing method. That is, the noise level σ at the previous L pitch is compared with the noise level σ at the current L pitch, and if the noise level σ decreases, the noise level σ at the next L pitch is calculated. It is possible to use an algorithm that searches for the L pitch at which the noise level σ starts to increase by performing the process of repeating the above. In the example of the graph shown in FIG. 8, the noise level σ decreases to the nth L pitch, and the noise level σ increases from the (n + 1) th L pitch. This reveals that the noise level σ of the nth L pitch is the minimum value. Of course, it is possible to further divide the space between the nth L pitch and the (n + 1) th L pitch to improve the accuracy.

以上より、本発明の第2実施形態に係る表面欠陥検出装置は、被検査体2に照射された照明光の反射光を受光して、被検査体2の表面画像を撮像する撮像部4と、撮像部4が撮像を行う光学条件を規定する偏光子5および検光子6の相対的角度を変更する偏光角調整部12と、被検査体2の表面画像のノイズレベルを算出し、算出したノイズレベルが最小になる検光子6の角度を制御角度として探索する画像評価部20とを備え、検光子6の角度が探索された制御角度になるように偏光角調整部12が検光子6の角度を制御するので、無害模様の発生状況に変化が生じても、無害模様を誤検出することなく被検査体表面の欠陥を検出することが可能である。   As described above, the surface defect detection apparatus according to the second embodiment of the present invention receives the reflected light of the illumination light irradiated on the inspection object 2 and captures the surface image of the inspection object 2. The noise level of the surface image of the inspected object 2 is calculated by calculating the polarization angle adjusting unit 12 that changes the relative angle between the polarizer 5 and the analyzer 6 that define optical conditions for the imaging unit 4 to perform imaging. And an image evaluation unit 20 that searches for the angle of the analyzer 6 that minimizes the noise level as a control angle. The polarization angle adjustment unit 12 controls the analyzer 6 so that the angle of the analyzer 6 becomes the searched control angle. Since the angle is controlled, it is possible to detect a defect on the surface of the object to be inspected without erroneously detecting the harmless pattern even if the occurrence of the harmless pattern is changed.

1 表面欠陥検出装置
2 被検査体
2a 無害模様発生状況確認エリア
2b 溶接部
3 照明部
4 撮像部
5 偏光子
6 検光子
7 光源
8 画像入力部
9 画像処理部
10 画像モニター
11 偏光角修正入力部
12 偏光角調整部
13 特徴量演算部
14 欠陥判定部
15 外部入出力部
16 上位計算機
17 光量制御部
18 コイル
19 巻取コイル
20 画像評価部
DESCRIPTION OF SYMBOLS 1 Surface defect detection apparatus 2 Inspected object 2a Harmless pattern generation condition confirmation area 2b Welding part 3 Illumination part 4 Imaging part 5 Polarizer 6 Analyzer 7 Light source 8 Image input part 9 Image processing part 10 Image monitor 11 Polarization angle correction input part DESCRIPTION OF SYMBOLS 12 Polarization angle adjustment part 13 Feature-value calculation part 14 Defect determination part 15 External input / output part 16 Host computer 17 Light quantity control part 18 Coil 19 Winding coil 20 Image evaluation part

Claims (5)

被検査体に照射された照明光の反射光を受光して、前記被検査体の表面画像を撮像する撮像手段と、
前記撮像手段が撮像を行う光学条件を変更する変更手段と、
前記撮像手段が撮像した前記被検査体の表面画像を評価する評価手段と、
前記評価手段の評価に従い前記変更手段を制御する調整手段と、
を備えることを特徴とする表面欠陥検出装置。
An imaging means for receiving a reflected light of the illumination light applied to the object to be inspected, and imaging a surface image of the object to be inspected;
Changing means for changing an optical condition under which the imaging means performs imaging;
Evaluation means for evaluating the surface image of the object to be inspected, which is imaged by the imaging means;
Adjusting means for controlling the changing means according to the evaluation of the evaluating means;
A surface defect detection apparatus comprising:
前記撮像手段は、前記照射光の光路に配置した偏光子と前記反射光の光路に配置した検光子とを備え、
前記変更手段は、前記偏光子と前記検光子との相対的角度を変更することにより前記光学条件を変更する、
ことを特徴とする請求項1に記載の表面欠陥検出装置。
The imaging means includes a polarizer disposed in the optical path of the irradiation light and an analyzer disposed in the optical path of the reflected light,
The changing means changes the optical condition by changing a relative angle between the polarizer and the analyzer.
The surface defect detection apparatus according to claim 1.
前記評価手段は、前記被検査体の表面画像を表示する画像モニターであり、
前記調整手段は、オペレータが、前記画像モニターを確認しながら前記検光子の角度を入力する入力装置である、
ことを特徴とする請求項2に記載の表面欠陥検出装置。
The evaluation means is an image monitor that displays a surface image of the object to be inspected,
The adjusting means is an input device for an operator to input the angle of the analyzer while checking the image monitor.
The surface defect detection apparatus according to claim 2.
前記評価手段は、前記被検査体の表面画像のノイズレベルを算出し、算出されたノイズレベルが最小になる前記検光子の角度を制御角度として探索する演算器であり、
前記調整手段は、前記検光子の角度が前記制御角度になるように前記変更手段を制御する、
ことを特徴とする請求項2に記載の表面欠陥検出装置。
The evaluation means is an arithmetic unit that calculates a noise level of a surface image of the object to be inspected, and searches for an angle of the analyzer that minimizes the calculated noise level as a control angle,
The adjusting means controls the changing means so that an angle of the analyzer becomes the control angle;
The surface defect detection apparatus according to claim 2.
前記被検査体は、酸洗ラインを搬送される鋼板であり、
前記調整手段は、前記鋼板の製造条件が切り替わるタイミングで前記変更手段を制御することを特徴とする請求項1〜4の何れかに記載の表面欠陥検出装置。
The object to be inspected is a steel plate conveyed through a pickling line,
5. The surface defect detection apparatus according to claim 1, wherein the adjustment unit controls the changing unit at a timing at which a manufacturing condition of the steel sheet is switched.
JP2011195389A 2011-09-07 2011-09-07 Surface flaw inspection device Pending JP2013057570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011195389A JP2013057570A (en) 2011-09-07 2011-09-07 Surface flaw inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011195389A JP2013057570A (en) 2011-09-07 2011-09-07 Surface flaw inspection device

Publications (1)

Publication Number Publication Date
JP2013057570A true JP2013057570A (en) 2013-03-28

Family

ID=48133579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011195389A Pending JP2013057570A (en) 2011-09-07 2011-09-07 Surface flaw inspection device

Country Status (1)

Country Link
JP (1) JP2013057570A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113163106A (en) * 2020-01-22 2021-07-23 索尼半导体解决方案公司 Electronic device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58204353A (en) * 1982-05-24 1983-11-29 Kawasaki Steel Corp Method for detecting flaw on surface of metallic object
JP2000162151A (en) * 1998-11-27 2000-06-16 Nkk Corp Surface flaw inspecting device
JP2003287504A (en) * 2002-03-27 2003-10-10 Topcon Corp Method and device for surface inspection
JP2005189113A (en) * 2003-12-25 2005-07-14 Jfe Steel Kk Surface inspecting device and surface inspection method
JP2005221391A (en) * 2004-02-06 2005-08-18 Jfe Steel Kk Surface flaw inspection device
JP2006047308A (en) * 2004-07-29 2006-02-16 Applied Materials Israel Ltd Determination of radiation parameters for inspecting surface
JP2008058270A (en) * 2006-09-04 2008-03-13 Mitsubishi Electric Corp Inspection method of polycrystal silicon substrate, inspection method of photovoltaic cell, and infrared inspection apparatus
JP2010527008A (en) * 2007-05-07 2010-08-05 ケーエルエー−テンカー・コーポレーション Computer-implemented method, computer-readable medium, and apparatus for identifying one or more optical modes of an inspection apparatus as candidates for use in inspecting a layer of a wafer

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58204353A (en) * 1982-05-24 1983-11-29 Kawasaki Steel Corp Method for detecting flaw on surface of metallic object
JP2000162151A (en) * 1998-11-27 2000-06-16 Nkk Corp Surface flaw inspecting device
JP2003287504A (en) * 2002-03-27 2003-10-10 Topcon Corp Method and device for surface inspection
JP2005189113A (en) * 2003-12-25 2005-07-14 Jfe Steel Kk Surface inspecting device and surface inspection method
JP2005221391A (en) * 2004-02-06 2005-08-18 Jfe Steel Kk Surface flaw inspection device
JP2006047308A (en) * 2004-07-29 2006-02-16 Applied Materials Israel Ltd Determination of radiation parameters for inspecting surface
JP2008058270A (en) * 2006-09-04 2008-03-13 Mitsubishi Electric Corp Inspection method of polycrystal silicon substrate, inspection method of photovoltaic cell, and infrared inspection apparatus
JP2010527008A (en) * 2007-05-07 2010-08-05 ケーエルエー−テンカー・コーポレーション Computer-implemented method, computer-readable medium, and apparatus for identifying one or more optical modes of an inspection apparatus as candidates for use in inspecting a layer of a wafer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113163106A (en) * 2020-01-22 2021-07-23 索尼半导体解决方案公司 Electronic device

Similar Documents

Publication Publication Date Title
US10026162B2 (en) Method and device for sealant coating inspection
KR100953204B1 (en) Glass waviness inspection device and inspection method thereof
JP5384264B2 (en) Tire appearance inspection device
JP5170622B2 (en) Shape measuring method, program, and shape measuring apparatus
JP4901578B2 (en) Surface inspection system and diagnostic method for inspection performance of surface inspection system
JP4907428B2 (en) Surface inspection system and diagnostic method for inspection performance of surface inspection system
JP2013057570A (en) Surface flaw inspection device
CN111426696A (en) Rubber adhesion failure detection device for top-coated rubber sheet
JP4594833B2 (en) Defect inspection equipment
JP6081833B2 (en) Laser welding method and laser welding apparatus
JP2008279497A (en) Weld crack detecting method
JP4045424B2 (en) Laser welding quality inspection method and apparatus
JP2010112846A (en) Method and apparatus for adjusting surface inspecting device
JP5201014B2 (en) Scale remaining inspection equipment for pickled steel sheet
JP4023295B2 (en) Surface inspection method and surface inspection apparatus
JP2008196866A (en) Weld crack detection method and device
JP5768349B2 (en) Slit light intensity distribution design method and light cutting uneven surface wrinkle detecting device
US10746664B2 (en) Imaging apparatus for obtaining image of polarizing film, inspection apparatus, and inspection method
JP2010122155A (en) Method for detecting defect in plate-like body and defect detector
JP6597691B2 (en) Surface defect inspection method and surface defect inspection system
JP6285376B2 (en) Edge detection device
JP2005351825A (en) Defect inspection device
JP5245616B2 (en) Sheet width measuring method and sheet width measuring apparatus for cold rolled steel sheet for cans
JP2012159382A (en) Method for measuring weld bead cutting width
JPH04160304A (en) Detecting apparatus of warp in widthwise direction of plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160112

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160607