JP4045424B2 - Laser welding quality inspection method and apparatus - Google Patents

Laser welding quality inspection method and apparatus Download PDF

Info

Publication number
JP4045424B2
JP4045424B2 JP2002226135A JP2002226135A JP4045424B2 JP 4045424 B2 JP4045424 B2 JP 4045424B2 JP 2002226135 A JP2002226135 A JP 2002226135A JP 2002226135 A JP2002226135 A JP 2002226135A JP 4045424 B2 JP4045424 B2 JP 4045424B2
Authority
JP
Japan
Prior art keywords
light
welding
illumination
light receiving
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002226135A
Other languages
Japanese (ja)
Other versions
JP2004066266A (en
Inventor
清市 松本
芳朗 粟野
和久 三瓶
隆之 佐伯
綱次 北山
吾朗 渡辺
博純 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002226135A priority Critical patent/JP4045424B2/en
Publication of JP2004066266A publication Critical patent/JP2004066266A/en
Application granted granted Critical
Publication of JP4045424B2 publication Critical patent/JP4045424B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、被溶接物にレーザを照射して行うレーザ溶接において、溶接部からの光を検出して溶接の品質を検査するレーザ溶接品質検査方法及び装置に関するものである。
【0002】
【従来の技術】
従来のこの種のレーザ溶接品質検査方法には、特開2000−42769号公報に記載の方法がある。これは、溶接箇所からの光のうち、照射されたレーザ光の反射光を検出し、その強さに基づいて溶接箇所の欠陥を検出するというものである。
【0003】
【発明が解決しようとする課題】
上記従来技術は、レーザ光が照射された溶接箇所からの反射光が、溶接欠陥の発生に伴って強度変化することから、溶接箇所の欠陥検出に有効である。
しかし、溶接箇所(レーザ光照射箇所)からの反射光による欠陥検出は、実際には溶接品質による顕著な差の生じ難い部位からの検出となり、検査精度に、期待する程の有効性を見い出し得なかった。
一方、レーザ光による溶接は、近年、2枚の薄板材、例えば、自動車等の車体を構成する2枚のパネル材の重ね合わせ溶接に多用されてきているが、この種の製造加工ラインにおいては、最近では高品質のみならず、高速化の要求も高まってきている。このため、レーザ溶接の品質検査も、このようなラインにおいて耐え得るような、精度の高い、特に、薄板材の重ね合わせ高速溶接において精度の高いレーザ溶接の品質検査方法が望まれてきた。
本発明の目的は、上記のような要望に鑑みなされたもので、より精度の高い溶接品質の検査、特に薄板材の重ね合わせ高速溶接において精度の高いレーザ溶接品質検査方法及び装置を提供することにある。
【0004】
【課題を解決するための手段】
上記目的を達成するために、請求項1に記載のレーザ溶接品質検査方法に係る発明は、複数の被溶接部材が重ね合わされた被溶接物にレーザを照射しつつその被溶接物及び/又はレーザを所望の溶接方向に移動させ、前記被溶接物の重ね合わせ溶接を行うレーザ重ね合わせ溶接において、溶接時、前記被溶接物のキーホール周辺に形成される溶融池の後端部分に照明用の光を照射し、その溶融池の後端部分からの反射光の強度に基づいて溶接の品質検査をする方法であって、前記照明用の光を照射する手段として、照明用レーザ光を案内し前記溶融池の後端部分に向けて出射する照明用光ファイバを備えた光照射手段が用いられ、前記反射光の強度を得るための手段として、複数の受光用光ファイバと、この複数の受光用光ファイバに前記反射光を集光して入射させる集光レンズとを備えた受光手段が用いられ、前記照明用光ファイバは、前記複数の受光用光ファイバによって周囲を囲まれた状態で前記集光レンズと共に光出入射部において一体化され、かつ、前記集光レンズと同軸的に位置し、その集光レンズを貫通していることを特徴とする。
【0005】
請求項2に記載のレーザ溶接品質検査装置に係る発明は、複数の被溶接部材が重ね合わされた被溶接物にレーザを照射しつつその被溶接物及び/又はレーザを所望の溶接方向に移動させ、前記被溶接物の重ね合わせ溶接を行うレーザ重ね合わせ溶接において、
溶接時、前記被溶接物のキーホール周辺に形成される溶融池の後端部分に照明用の光を照射する光照射手段と、この光照射手段により光が照射された前記溶融池の後端部分からの反射光を受光し、この反射光の強度に応じた電気信号を出力する受光手段と、この受光手段からの電気信号の強度に基づいて所定の演算を行い、溶接の品質の良、不良を判定して結果を出力する処理手段とを具備し、前記光照射手段は、照明用レーザ光を案内し前記溶融池の後端部分に向けて出射する照明用光ファイバを備えて構成され、前記受光手段は、複数の受光用光ファイバと、この複数の受光用光ファイバに前記反射光を集光して入射させる集光レンズとを備えて構成され、前記照明用光ファイバは、前記複数の受光用光ファイバによって周囲を囲まれた状態で前記集光レンズと共に光出入射部において一体化され、かつ、前記集光レンズと同軸的に位置し、その集光レンズを貫通していることを特徴とする。
【0007】
【発明の実施の形態】
以下、本発明の実施の形態を説明する。
本発明者らは、レーザ溶接、特に薄板材の重ね合わせ高速溶接において、上記のような目的を達成するため鋭意、実験・検討を重ねた結果、本発明を完成するに至った。
すなわち本発明者らは、被溶接物のキーホール周辺に形成される溶融池の後端部分の表面(池面)が激しく波動していれば溶接品質不良、波動がなく穏やかであれば良品質(正常溶接)になるとの知見を得た。そしてこれによれば、レーザ光を照射している溶接箇所の現象に基づく従来技術以上に溶接品質の良、不良を高い確度で判定できることを見い出した。そこで本発明者らは、その判定の実現に当たり、溶融池の後端部分における表面の上記現象を、溶融池の後端部分に照明用の光(照明光)を照射し、その溶融池の後端部分から反射してくる光(反射光)の強度によって把握できるとの結論を得、本発明を完成するに至った。
【0008】
なお、照明光の出射部と反射光の受光部を光出入射部として一体化した場合、つまり、照明光の出射方向と反射光の受光方向とを180°逆方向に設定した場合には、反射光の強度と溶接品質の良否とは次の関係を有するようになる。すなわち、上記光出入射部が溶融池表面の真上(溶融池表面に垂直な方向)にあって、そこから照明光が出射された場合には、溶融池表面に波動がなく穏やかである程、反射光の受光強度が大きくなるので、反射光の受光強度が大のときに良品質(正常溶接)と判定される。上記光出入射部が溶融池表面の真上から傾斜した方向にあって、そこから照明光が出射された場合には、溶融池表面に波動がなく穏やかであると上記光出入射部側に光は反射せず、それとは反対側に反射する。したがって、この場合は、反射光の受光強度が小さい程、良品質(正常溶接)と判定される。溶融池表面が激しく波動していれば乱反射等により上記光出入射部側への光反射も頻繁に、ないし大きく生じるようになるので、反射光の受光強度が大きい程、溶接品質が不良と判定される。
後述実施形態においては、上記光出入射部を溶接用のトーチに一体に取り付け、トーチと共に溶接方向に移動させるようにしている。したがって、トーチによるレーザ照射位置よりも溶接方向後側に位置する溶融池の後端部分表面に対し、照明光・反射光の出入射をする上記光出入射部の向きは、溶融池表面の真上からは傾斜した方向となる。すなわち、後述実施形態においては、反射光の受光強度が大きい程、溶接品質が不良と判定される場合を例示する。
【0009】
図1は、本発明によるレーザ溶接品質検査方法が適用された装置(本発明装置)の一実施形態の説明図である。
図1において、1はレーザ溶接用のトーチで、このトーチ1から出射されるレーザビーム(光)1aを矢印イに示すように被溶接物2に照射して溶接を行う。被溶接物2は、複数の被溶接部材、ここでは2枚の薄鋼板2a,2bが上下に重ね合わされたものであり、重ね合わせ溶接は、このような被溶接物2(薄鋼板2a,2b)にレーザビーム1aを照射して行う。
レーザ装置には炭酸ガスレーザ装置やYAGレーザ装置があり、ここではYAGレーザ装置が用いられている。溶接は、トーチ1若しくは被溶接物2のいずれか一方、又はそれらの双方を移動させ、ここではトーチ1を矢印ロ方向に移動させて行う。
【0010】
光照射装置3は、溶接時、被溶接物2のキーホール4周辺に形成される溶融池5の後端部分6に照明用のビーム光、ここではレーザ光(照明用レーザ光7)を照射する装置である。なお図中、一点鎖線で囲む領域はキーホール領域、二点鎖線で囲む領域は溶融池領域、実線で囲む領域は照明用レーザ光7の照射領域を、各々示す。
この光照射装置3は、照明用レーザ装置3aと、この照明用レーザ装置3aからの照明用レーザ光7を案内し溶融池5の後端部分6に向けて出射する照明用光ファイバ3bとを備えて構成されている。
上記照明用光ファイバ3bは、その途中から後述受光用光ファイバとで光ファイバ束8を構成して光出入射部9に至り、この光出入射部9から照明用レーザ光7を出射する。実線矢印ハ−ハ間は照明用レーザ光7の照射範囲を示す。
【0011】
受光装置10は、溶接時、上記光照射装置3により光が照射された溶融池5の後端部分6からの反射光11を受光し、この反射光11の強度に応じた電気信号を出力する装置である。
この受光装置10は、ここでは複数の受光用光ファイバ10aと集光レンズ10b(図2参照)とフォトセンサ、例えばフォトダイオード10cとを備えて構成されている。
集光レンズ10bは、複数の受光用光ファイバ10aの受光端側で、上記溶融池5の後端部分6からの反射光11を集光して入射させる光学レンズである。フォトダイオード10cは、複数の受光用光ファイバ10aから上記反射光11を受けて電気信号に変換する光電変換素子で、受光強度に応じた強さの電気信号を出力する。なお図1中、破線で囲む領域は溶融池5の後端部分6からの反射光取込み領域12を示し、破線矢印二−二間は反射光11の受光範囲を示す。反射光取込み領域12は、溶融池5の後端部分6内であって、図中、実線で囲む照明用レーザ光7の照射領域内の、照度分布がより均一な領域に設定される。
【0012】
処理装置13は、受光装置10(フォトダイオード10c)からの電気信号の強度に基づいて所定の演算を行い、溶接の品質の良、不良を判定して結果を出力する装置である。処理装置13は、フォトダイオード10cからの電気信号に対して、ここでは一次微分処理、正規化処理及びしきい値処理を行い、溶接の品質の良(正常)、不良を判定するように構成されている。フォトダイオード10cからの電気信号に対して高速フーリエ変換(Fast Fourier Transform)等の周波数解析を行って溶接品質の良否を判定するように構成してもよいが、本例のような一次微分処理等を行う構成によれば、周波数解析を行う構成に比べて、簡易処理、高速演算を実現できる。
【0013】
画像表示装置14は、処理装置13による判定結果をリアルタイムで表示する装置で、例えば横方向に時間軸を採り、溶接の進行中、溶接不良が生じた場合に、その位置を他の位置(正常位置)と区別して表示されるように構成される。具体的には、時間の経過に伴い、溶接が正常ならば右方向に直線状に線が描かれ、溶接不良が生じた時点でその箇所を不良の程度に応じた振幅をもつ振動波形を描くように表示する。これによれば、溶接不良が生じた時点(溶接不良箇所)と、その不良の程度とが表示画面から観察できる。溶接不良の程度(振幅の大きさ)と、「引け」や「溶け落ち」等、溶接不良の種類との間に対応付けが可能ならば、溶接不良の発生時に、「引け」、「溶け落ち」等の溶接不良の種類をも同時表示するようにしてもよい。
なお、処理装置13による一次微分処理や正規化処理の結果(処理後の信号波形)を画像表示装置14に表示可能としてもよい。また、画像表示装置8の表示画像を録画し、溶接後において、溶接結果の解析や確認に利用できるようにしてもよい。
【0014】
図2は上記光出入射部9の拡大断面図である。
この図に示すように、照明用光ファイバ3bと、複数の受光用光ファイバ10a及び集光レンズ10bとは、光出入射部9において一体化されている。この場合、照明用光ファイバ3bと集光レンズ10bとは、それらが同軸的に位置(照明用光ファイバ3bの光軸21と集光レンズ10bの光軸22とが共通)し、また、上記複数の受光用光ファイバ10aは照明用光ファイバ3bの周囲を囲む状態で一体化されている。
【0015】
すなわち、光出入射部9の被溶接物2に対向する側の端部には、集光レンズ10bが配置され、その中心軸(光軸)21部分を照明用光ファイバ3bが貫通している。集光レンズ10bの裏面側の集光範囲には、複数の受光用光ファイバ10aが照明用光ファイバ3bを中心にしてその周囲を囲むように配置されている。
この場合、複数の受光用光ファイバ10a群は、照明用光ファイバ3bの光軸22(集光レンズ10bの光軸21)を中心にして同心円を描くように複数層、ここでは5層配置され、各層を形成する筒状の受光用光ファイバ10a束は照明用光ファイバ3bの光軸22と同軸的に位置して上記フォトダイオード10c至る。各層を形成する受光用光ファイバ10a束は、その一端面(受光端面)が集光レンズ10bの裏面に対向し、他端面がフォトダイオード10cの受光面に対向することは勿論である。
このような光出入射部9は、図1から分かるように、ここではトーチ1に取り付けられ、溶融池5の後端部分6に対する照明用レーザ光7の照射領域及び反射光取込み領域12等の位置関係を変えることなく、トーチ1と共に溶接方向(矢印ロ方向)に移動するように構成されている。
【0016】
次に、動作について図3を併用して説明する。
図3において、溶接が開始されると、処理装置13は、ステップ301で受光装置10(フォトダイオード10c)からの信号(電気信号)を取り込む。処理装置13に取り込まれる信号は、光照射装置3により光が照射された溶融池5の後端部分6からの反射光11の強度に応じた信号であり、溶融池5の後端部分6における表面の波動の程度を示す。
ステップ302では、取り込んだ信号に対して一次微分処理を行い、信号強度の変化量を抽出する。
図4は、このような一次微分処理の結果の一例を示すグラフで、縦軸は信号変化量、横軸は時間tを示す。
この一次微分処理の結果は、後述するように画像表示装置14により表示可能であり、表示画像において、時間軸上で一定値以上の変化量が生じている場合、その位置(時点)が不良発生箇所として特定できる。特定された不良発生箇所は、手直し等の後工程で有効利用できる。
【0017】
ステップ303では、ステップ301で取り込まれたフォトダイオード10cからの信号につき、正規化処理をする。ステップ301で取り込まれた信号が、検査時における外乱、例えば受光装置10の集光レンズ10bの曇りや汚れによってばらつきを生じさせないようにするためである。
正規化処理は、予め正常な溶接結果を得られるようにしたテスト溶接を種々の条件で各々複数回行い、各回毎に得られたフォトダイオード10cからの信号の強度の平均値を求めておき、実際の溶接時において、フォトダイオード10cからの信号の値を上記平均値で割算することにより行う。実際の溶接が正常な溶接であれば、正規化処理(割算)の結果は「1」となり、溶接不良の程度が大きい程、「1」から大きく外れた値を示す。
図5は、このような正規化処理の結果の一例を示すグラフである。この図において、縦軸は信号強度比、横軸は時間tを示す。縦軸上のU1,U2,L1,L2は各々しきい値を示す。この場合、U1〜L1間は正常溶接の範囲、U1〜U2間又はL1〜L2間は「引け」という溶接不良の範囲、U2以上又はL2以下は「溶け落ち」という溶接不良の範囲を示す。
この正規化処理の結果は、後述するように画像表示装置14により表示可能であり、表示画像において、時間軸t上で一定値以上の変化量が生じている場合、その位置(時点)が不良発生箇所として特定できる点は一次微分処理結果表示の場合と同様である。加えて、この正規化処理結果表示においては、時間軸t上での変化量の程度に応じて、「引け」や「溶け落ち」等のような溶接不良の種類も判別できる。特定された不良発生箇所や、判別された溶接不良の種類は、手直し等の後工程で有効利用できる。
【0018】
ステップ304では、ステップ303における正規化処理後の値に対してしきい値処理、すなわち、正規化処理後の値をしきい値U1,U2,L1,L2と比較し、その結果を出力する。具体的には、正規化処理後の値が、上記しきい値U1〜L1間にあればその時点における溶接品質が良(正常)であると判定し、それ以外の値であれば溶接品質が不良であると判定し、その結果を出力する。
ステップ305では、ステップ304におけるしきい値処理の結果を画像表示装置14が表示する。ステップ305においては、図4に示す一次微分処理結果や図5に示す正規化処理結果も画像表示装置14により表示可能である。正規化処理結果の表示を選択したときには、溶接不良の場合にその種類、例えば「引け」か「溶け落ち」かも付加表示される。具体的には、正規化処理後の値が、上記しきい値U1〜U2間又はL1〜L2間にあればその時点において「引け」が生じたことを、同じく上記しきい値U2以上又はL2以下あればその時点において「溶け落ち」が生じたことを、溶接品質が不良である旨に付加して表示される。図5の例では、加工開始から、おおよそ正常溶接→「引け」発生→正常溶接→「引け」発生→「溶け落ち」発生→「引け」発生というような、判定結果も付加表示される。
ステップ302〜304における処理も処理装置13が実行する。
以上の動作(ステップ301〜305)は、溶接終了まで繰り返される。
なお、上掲図1及び図2において、同一符号は同一又は相当部分を示す。
【0019】
【発明の効果】
以上述べたように本発明では、レーザ溶接において、溶接時、被溶接物のキーホール周辺に形成される溶融池の後端部分に照明用の光を照射し、その溶融池の後端部分からの反射光の強度に基づいて溶接の品質検査をするようにした。
溶融池の後端部分に照明用の光を照射したときに、その溶融池の後端部分から反射してくる光の強度が、溶接の品質の良、不良を高い確度で表わすことは本発明者らによって見い出されており、したがって、本発明によれば、従来技術に比べて正確な溶接品質の検査が可能になる。特に、薄板材の重ね合わせ高速溶接において、精度の高いレーザ溶接品質の検査が可能になる。
【図面の簡単な説明】
【図1】本発明によるレーザ溶接品質検査方法が適用された装置の一実施形態の説明図である。
【図2】図1中の光出入射部の拡大断面図である。
【図3】溶接品質の検査動作を示すフローチャートである。
【図4】図1中の処理装置による一次微分処理結果の一例を示すグラフである。
【図5】同じく正規化処理結果の一例を示すグラフである。
【符号の説明】
1a レーザビーム
2 被溶接物
2a,2b 薄鋼板(被溶接部材)
3 光照射装置(光照射手段)
4 キーホール
5 溶融池
6 溶融池の後端部分
7 照明用レーザ光
10 受光装置(受光手段)
11 反射光
13 処理装置(処理手段)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a laser welding quality inspection method and apparatus for detecting the quality of welding by detecting light from a welded part in laser welding performed by irradiating a workpiece with laser light .
[0002]
[Prior art]
As a conventional laser welding quality inspection method of this type, there is a method described in Japanese Patent Laid-Open No. 2000-42769. This is to detect the reflected light of the irradiated laser light out of the light from the welding location, and to detect the defect at the welding location based on its intensity.
[0003]
[Problems to be solved by the invention]
The above prior art is effective in detecting defects in welded portions because the intensity of reflected light from the welded portions irradiated with laser light changes with the occurrence of welding defects.
However, defect detection by reflected light from a welded spot (laser beam irradiated spot) is actually detected from a site where a significant difference due to welding quality is unlikely to occur, and the expected accuracy can be found in inspection accuracy. There wasn't.
On the other hand, welding with a laser beam has recently been widely used for lap welding of two thin plate materials, for example, two panel materials constituting a vehicle body such as an automobile. Recently, not only the high quality but also the demand for high speed is increasing. For this reason, there has been a demand for a high-quality laser welding quality inspection method that can withstand the laser welding quality inspection in such a line, particularly in high-precision welding of thin plate materials.
The object of the present invention has been made in view of the above-described demands, and provides a highly accurate laser welding quality inspection method and apparatus for highly accurate inspection of welding quality, particularly in high-speed welding of thin plate materials. It is in.
[0004]
[Means for Solving the Problems]
In order to achieve the above object, the invention according to the laser welding quality inspection method according to claim 1 is directed to a workpiece to be welded on which a plurality of members to be welded are irradiated with laser light , and / or In laser lap welding, in which laser beam is moved in a desired welding direction to perform lap welding of the workpiece, illumination is performed on the rear end portion of the weld pool formed around the keyhole of the workpiece during welding. Is a method for inspecting the quality of welding based on the intensity of reflected light from the rear end portion of the molten pool, and as means for irradiating the illumination light, an illumination laser beam is used. A light irradiating means including an illuminating optical fiber that guides and emits toward the rear end portion of the molten pool is used, and as means for obtaining the intensity of the reflected light, a plurality of light receiving optical fibers and the plurality of light receiving optical fibers are used. Before receiving optical fiber A light receiving means including a condensing lens for condensing and entering the reflected light is used, and the illumination optical fiber is lighted together with the condensing lens in a state surrounded by the plurality of light receiving optical fibers. It is characterized in that it is integrated at the exit / incident part, is coaxial with the condenser lens, and penetrates the condenser lens .
[0005]
The invention relating to the laser welding quality inspection apparatus according to claim 2 is directed to irradiating a laser beam to a workpiece on which a plurality of members to be welded are overlapped with each other and the laser beam in a desired welding direction. In laser overlay welding that moves and performs overlay welding of the workpiece,
A light irradiating means for irradiating light for illumination to a rear end portion of the molten pool formed around the keyhole of the workpiece during welding, and a rear end of the molten pool irradiated with light by the light irradiating means A light receiving means for receiving reflected light from the part and outputting an electric signal according to the intensity of the reflected light, and performing a predetermined calculation based on the intensity of the electric signal from the light receiving means, the quality of welding is good, Processing means for determining a defect and outputting the result, and the light irradiation means is configured to include an illumination optical fiber that guides the illumination laser light and emits it toward the rear end portion of the molten pool. The light receiving means includes a plurality of light receiving optical fibers, and a condensing lens for condensing and entering the reflected light into the plurality of light receiving optical fibers. Surrounded by multiple receiving optical fibers It is integrated in the light emitted incident portion with the condenser lens condition and the condenser lens and coaxially located, characterized in that through the condenser lens.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
The inventors of the present invention have completed the present invention as a result of intensive studies and experiments and studies in order to achieve the above-described object in laser welding, particularly, high-speed welding of thin plate materials.
In other words, the present inventors have found that if the surface (pond surface) of the rear end portion of the molten pool formed around the keyhole of the work piece is vibrated violently, the welding quality is poor, and if there is no wave, the quality is good. The knowledge that it becomes (normal welding) was obtained. And according to this, it discovered that the quality of a welding quality and a defect could be determined with high precision more than the prior art based on the phenomenon of the welding location which is irradiating the laser beam. Therefore, the present inventors irradiate the above-mentioned phenomenon of the surface at the rear end portion of the molten pool, and irradiate the illumination light (illumination light) to the rear end portion of the molten pool. The conclusion that it can be grasped by the intensity of the light reflected from the end portion (reflected light) has come to be completed.
[0008]
When the illumination light emitting part and the reflected light receiving part are integrated as a light incident / incident part, that is, when the emission direction of the illumination light and the light receiving direction of the reflected light are set to 180 ° opposite directions, The intensity of the reflected light and the quality of the welding quality have the following relationship. That is, when the light incident / incident part is directly above the molten pool surface (in a direction perpendicular to the molten pool surface) and illumination light is emitted from the molten pool surface, there is no wave on the molten pool surface and it is gentler. Since the received light intensity of the reflected light increases, it is determined that the quality is normal (normal welding) when the received light intensity of the reflected light is large. When the light exit / incident part is in a direction inclined from directly above the molten pool surface and illumination light is emitted from the surface, the light exit / incident part side should be gentle if there is no wave on the melt pool surface. Light does not reflect and reflects to the opposite side. Therefore, in this case, the smaller the received light intensity of the reflected light, the better the quality (normal welding) is determined. If the molten pool surface vibrates violently, light reflection to the light incident / incident part side will occur frequently or greatly due to irregular reflection, etc., so the higher the intensity of the reflected light, the worse the welding quality. Is done.
In the later-described embodiment, the light incident / incident part is integrally attached to a welding torch and moved in the welding direction together with the torch. Therefore, the direction of the light incident / incident part that emits and emits illumination light and reflected light with respect to the surface of the rear end portion of the molten pool located behind the welding direction of the laser irradiation position by the torch is true of the surface of the molten pool. From the top, the direction is inclined. That is, in the embodiment described later, a case where the welding quality is determined to be poor as the received light intensity of the reflected light is increased is illustrated.
[0009]
FIG. 1 is an explanatory diagram of an embodiment of an apparatus (invention apparatus) to which a laser welding quality inspection method according to the present invention is applied.
In FIG. 1, reference numeral 1 denotes a laser welding torch, which performs welding by irradiating a workpiece 2 with a laser beam (light) 1a emitted from the torch 1 as shown by an arrow A. The workpiece 2 is a plurality of members to be welded, in this case, two thin steel plates 2a and 2b, which are stacked one above the other, and the lap welding is performed using such a workpiece 2 (thin steel plates 2a and 2b). ) Is irradiated with the laser beam 1a.
The laser device includes a carbon dioxide laser device and a YAG laser device, and here, a YAG laser device is used. Welding is performed by moving either the torch 1 or the workpiece 2 or both of them, and moving the torch 1 in the direction indicated by the arrow B.
[0010]
The light irradiating device 3 irradiates the rear end portion 6 of the molten pool 5 formed around the keyhole 4 of the workpiece 2 during welding with a beam light for illumination, in this case, a laser beam (illumination laser beam 7). It is a device to do. In the figure, a region surrounded by a one-dot chain line indicates a keyhole region, a region surrounded by a two-dot chain line indicates a molten pool region, and a region surrounded by a solid line indicates an irradiation region of the illumination laser beam 7.
The light irradiation device 3 includes an illumination laser device 3a, and an illumination optical fiber 3b that guides the illumination laser light 7 from the illumination laser device 3a and emits it toward the rear end portion 6 of the molten pool 5. It is prepared for.
The illumination optical fiber 3b forms an optical fiber bundle 8 with a light receiving optical fiber, which will be described later, in the middle of the illumination optical fiber 3b, reaches the light exit / incident part 9, and emits the illumination laser light 7 from the light exit / incident part 9. The range between the solid line arrows haha indicates the irradiation range of the illumination laser beam 7.
[0011]
The light receiving device 10 receives the reflected light 11 from the rear end portion 6 of the molten pool 5 irradiated with light by the light irradiating device 3 during welding, and outputs an electrical signal corresponding to the intensity of the reflected light 11. Device.
Here, the light receiving device 10 includes a plurality of light receiving optical fibers 10a, a condensing lens 10b (see FIG. 2), and a photosensor, for example, a photodiode 10c.
The condensing lens 10b is an optical lens that condenses and enters the reflected light 11 from the rear end portion 6 of the molten pool 5 on the light receiving end side of the plurality of light receiving optical fibers 10a. The photodiode 10c is a photoelectric conversion element that receives the reflected light 11 from the plurality of light receiving optical fibers 10a and converts the reflected light 11 into an electric signal, and outputs an electric signal having a strength corresponding to the received light intensity. In FIG. 1, a region surrounded by a broken line indicates a reflected light capturing region 12 from the rear end portion 6 of the molten pool 5, and a region between the broken arrows 2 and 2 indicates a light receiving range of the reflected light 11. The reflected light capturing area 12 is set in the rear end portion 6 of the molten pool 5 and in the irradiation area of the illumination laser light 7 surrounded by the solid line in the drawing, in an area where the illuminance distribution is more uniform.
[0012]
The processing device 13 is a device that performs a predetermined calculation based on the intensity of the electric signal from the light receiving device 10 (photodiode 10c), determines whether the welding quality is good or bad, and outputs the result. Here, the processing device 13 is configured to perform first-order differentiation processing, normalization processing, and threshold processing on the electrical signal from the photodiode 10c to determine whether the welding quality is good (normal) or not. ing. The electrical signal from the photodiode 10c may be configured to perform a frequency analysis such as a fast Fourier transform to determine whether the welding quality is good or not. According to the configuration for performing simple processing, simple processing and high-speed computation can be realized as compared with the configuration for performing frequency analysis.
[0013]
The image display device 14 is a device that displays the determination result of the processing device 13 in real time. For example, when a welding failure occurs during welding, the position is changed to another position (normal). The position is displayed separately from the position. Specifically, as time passes, if welding is normal, a straight line is drawn in the right direction, and when a welding failure occurs, a vibration waveform having an amplitude corresponding to the degree of the failure is drawn at that point. To display. According to this, it is possible to observe from the display screen the time when the welding failure occurs (welding failure location) and the degree of the failure. If it is possible to correlate between the degree of welding failure (amplitude magnitude) and the type of welding failure such as “squeezing” or “burning-out”, when the welding failure occurs, The type of defective welding such as “” may be displayed at the same time.
Note that the result of the primary differentiation processing and normalization processing by the processing device 13 (signal waveform after processing) may be displayed on the image display device 14. Moreover, the display image of the image display device 8 may be recorded and used for analysis and confirmation of the welding result after welding.
[0014]
FIG. 2 is an enlarged cross-sectional view of the light exit / incident part 9.
As shown in this figure, the illumination optical fiber 3b, the plurality of light receiving optical fibers 10a, and the condenser lens 10b are integrated in the light incident / incident part 9. In this case, the illumination optical fiber 3b and the condenser lens 10b are positioned coaxially (the optical axis 21 of the illumination optical fiber 3b and the optical axis 22 of the condenser lens 10b are common), and The plurality of light receiving optical fibers 10a are integrated so as to surround the periphery of the illumination optical fiber 3b.
[0015]
That is, the condensing lens 10b is disposed at the end of the light exit / incident portion 9 on the side facing the workpiece 2 and the illumination optical fiber 3b penetrates the central axis (optical axis) 21 portion. . A plurality of light receiving optical fibers 10a are arranged in a condensing range on the back side of the condensing lens 10b so as to surround the illumination optical fiber 3b as a center.
In this case, the plurality of light receiving optical fibers 10a are arranged in a plurality of layers, in this case, five layers so as to draw a concentric circle around the optical axis 22 of the illumination optical fiber 3b (the optical axis 21 of the condenser lens 10b). The cylindrical light receiving optical fiber 10a bundle forming each layer is positioned coaxially with the optical axis 22 of the illumination optical fiber 3b and reaches the photodiode 10c. Of course, one end face (light receiving end face) of the light receiving optical fiber 10a bundle forming each layer faces the back face of the condenser lens 10b, and the other end face faces the light receiving face of the photodiode 10c.
As can be seen from FIG. 1, such a light exit / incident part 9 is attached to the torch 1 here, such as the irradiation region of the illumination laser beam 7 on the rear end portion 6 of the molten pool 5 and the reflected light capturing region 12. It is comprised so that it may move to a welding direction (arrow B direction) with the torch 1 without changing a positional relationship.
[0016]
Next, the operation will be described with reference to FIG.
In FIG. 3, when welding is started, the processing device 13 takes in a signal (electric signal) from the light receiving device 10 (photodiode 10 c) in step 301. The signal taken into the processing device 13 is a signal corresponding to the intensity of the reflected light 11 from the rear end portion 6 of the molten pool 5 irradiated with light by the light irradiation device 3. Indicates the degree of surface wave.
In step 302, a first-order differentiation process is performed on the acquired signal to extract a change amount of the signal intensity.
FIG. 4 is a graph showing an example of the result of such primary differentiation processing, where the vertical axis indicates the signal change amount and the horizontal axis indicates time t.
The result of the primary differentiation process can be displayed by the image display device 14 as will be described later, and when the amount of change in the display image exceeds a certain value on the time axis, the position (time point) is defective. It can be specified as a location. The identified defect occurrence location can be effectively used in a subsequent process such as rework.
[0017]
In step 303, the signal from the photodiode 10c taken in in step 301 is normalized. This is to prevent the signal captured in step 301 from causing variations due to disturbances during inspection, for example, clouding or contamination of the condenser lens 10b of the light receiving device 10.
In the normalization process, test welding is performed in advance under various conditions so that normal welding results can be obtained in advance, and an average value of the intensity of the signal from the photodiode 10c obtained each time is obtained. In actual welding, the value of the signal from the photodiode 10c is divided by the average value. If the actual welding is normal welding, the result of normalization (division) is “1”, and the larger the degree of welding failure, the larger the value is from “1”.
FIG. 5 is a graph showing an example of the result of such normalization processing. In this figure, the vertical axis represents the signal intensity ratio, and the horizontal axis represents time t. U1, U2, L1, and L2 on the vertical axis each indicate a threshold value. In this case, the range between U1 and L1 indicates a range of normal welding, the range between U1 and U2 or between L1 and L2 indicates a range of welding failure that is “shrunk”, and the range between U2 and L2 or less indicates a range of welding failure that is “burned out”.
The result of this normalization process can be displayed by the image display device 14 as will be described later, and when the amount of change in the display image is greater than or equal to a certain value on the time axis t, the position (time point) is defective. The point that can be specified as the occurrence location is the same as in the case of the first-order differential processing result display. In addition, in this normalization processing result display, the type of welding failure such as “shrunk” or “burn-out” can be determined according to the degree of change on the time axis t. The identified defect occurrence location and the type of the determined welding defect can be effectively used in a subsequent process such as rework.
[0018]
In step 304, the value after the normalization process in step 303 is compared with the threshold value U1, U2, L1, and L2, and the result is output. Specifically, if the value after the normalization processing is between the threshold values U1 to L1, it is determined that the welding quality at that time is good (normal), and if it is any other value, the welding quality is high. It is determined to be defective, and the result is output.
In step 305, the image display device 14 displays the result of the threshold processing in step 304. In step 305, the primary differential processing result shown in FIG. 4 and the normalization processing result shown in FIG. When the display of the normalization processing result is selected, the type, for example, “shrunk” or “burned out” is additionally displayed in the case of poor welding. Specifically, if the value after the normalization processing is between the threshold values U1 and U2 or between L1 and L2, it means that “shrinkage” has occurred at that point in time. If it is less than that, the fact that “burn-out” has occurred at that time is displayed in addition to the fact that the welding quality is poor. In the example of FIG. 5, from the start of processing, a determination result such as approximately normal welding → “shrinking” → normal welding → “shrinking” → “burning out” → “shrinking” is additionally displayed.
The processing device 13 also executes the processing in steps 302 to 304.
The above operations (steps 301 to 305) are repeated until the end of welding.
1 and 2, the same reference numerals indicate the same or corresponding parts.
[0019]
【The invention's effect】
As described above, in the present invention, in laser welding, at the time of welding, the rear end portion of the molten pool formed around the keyhole of the workpiece is irradiated with illumination light, and from the rear end portion of the molten pool. Weld quality inspection based on the intensity of reflected light.
It is the present invention that when the rear end portion of the molten pool is irradiated with illumination light, the intensity of the light reflected from the rear end portion of the molten pool expresses good or bad welding quality with high accuracy. Therefore, according to the present invention, it is possible to inspect the welding quality more accurately than the prior art. In particular, it is possible to inspect laser welding quality with high accuracy in high-speed welding of thin plate materials.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of an embodiment of an apparatus to which a laser welding quality inspection method according to the present invention is applied.
FIG. 2 is an enlarged cross-sectional view of a light exit / incident part in FIG.
FIG. 3 is a flowchart showing a welding quality inspection operation.
FIG. 4 is a graph showing an example of a result of first-order differentiation processing by the processing device in FIG.
FIG. 5 is a graph showing an example of normalization processing results.
[Explanation of symbols]
1a Laser beam 2 Work piece 2a, 2b Thin steel plate (welded member)
3 Light irradiation device (light irradiation means)
4 Keyhole 5 Molten Pool 6 Back End 7 of the Molten Pool 7 Laser Light 10 for Illumination Light Receiving Device (Light Receiving Means)
11 reflected light 13 processing device (processing means)

Claims (2)

複数の被溶接部材が重ね合わされた被溶接物にレーザを照射しつつその被溶接物及び/又はレーザを所望の溶接方向に移動させ、前記被溶接物の重ね合わせ溶接を行うレーザ重ね合わせ溶接において、
溶接時、前記被溶接物のキーホール周辺に形成される溶融池の後端部分に照明用の光を照射し、その溶融池の後端部分からの反射光の強度に基づいて溶接の品質検査をする方法であって、
前記照明用の光を照射する手段として、照明用レーザ光を案内し前記溶融池の後端部分に向けて出射する照明用光ファイバを備えた光照射手段が用いられ、
前記反射光の強度を得るための手段として、複数の受光用光ファイバと、この複数の受光用光ファイバに前記反射光を集光して入射させる集光レンズとを備えた受光手段が用いられ、
前記照明用光ファイバは、前記複数の受光用光ファイバによって周囲を囲まれた状態で前記集光レンズと共に光出入射部において一体化され、かつ、前記集光レンズと同軸的に位置し、その集光レンズを貫通していることを特徴とするレーザ溶接品質検査方法。
Its welded object and / or the laser beam is moved to a desired welding direction while irradiating a laser beam to the welded object in which a plurality of weld members are overlapped, superimposed laser performing overlay welding of the welded object In welding,
During welding, the rear end portion of the weld pool formed around the keyhole of the workpiece is irradiated with illumination light, and the quality inspection of the weld is performed based on the intensity of reflected light from the rear end portion of the weld pool. A way to
As the means for irradiating the illumination light, a light irradiation means including an illumination optical fiber that guides the illumination laser light and emits it toward the rear end portion of the molten pool is used.
As a means for obtaining the intensity of the reflected light, a light receiving means including a plurality of light receiving optical fibers and a condensing lens for condensing and entering the reflected light to the plurality of light receiving optical fibers is used. ,
The illumination optical fiber is integrated with the condenser lens at the light incident / incident part in a state surrounded by the plurality of light receiving optical fibers, and is coaxially positioned with the condenser lens, A laser welding quality inspection method characterized by penetrating a condenser lens .
複数の被溶接部材が重ね合わされた被溶接物にレーザを照射しつつその被溶接物及び/又はレーザを所望の溶接方向に移動させ、前記被溶接物の重ね合わせ溶接を行うレーザ重ね合わせ溶接において、
溶接時、前記被溶接物のキーホール周辺に形成される溶融池の後端部分に照明用の光を照射する光照射手段と、
この光照射手段により光が照射された前記溶融池の後端部分からの反射光を受光し、この反射光の強度に応じた電気信号を出力する受光手段と、
この受光手段からの電気信号の強度に基づいて所定の演算を行い、溶接の品質の良、不良を判定して結果を出力する処理手段とを具備し、
前記光照射手段は、照明用レーザ光を案内し前記溶融池の後端部分に向けて出射する照明用光ファイバを備えて構成され、
前記受光手段は、複数の受光用光ファイバと、この複数の受光用光ファイバに前記反射光を集光して入射させる集光レンズとを備えて構成され、
前記照明用光ファイバは、前記複数の受光用光ファイバによって周囲を囲まれた状態で前記集光レンズと共に光出入射部において一体化され、かつ、前記集光レンズと同軸的に位置し、その集光レンズを貫通していることを特徴とするレーザ溶接品質検査装置。
Its welded object and / or the laser beam is moved to a desired welding direction while irradiating a laser beam to the welded object in which a plurality of weld members are overlapped, superimposed laser performing overlay welding of the welded object In welding,
A light irradiating means for irradiating light for illumination to a rear end portion of a molten pool formed around the keyhole of the workpiece during welding;
A light receiving means for receiving reflected light from a rear end portion of the molten pool irradiated with light by the light irradiating means, and outputting an electric signal according to the intensity of the reflected light;
A predetermined calculation is performed based on the intensity of the electrical signal from the light receiving means, and the processing means for determining whether the quality of the welding is good or bad and outputting the result ,
The light irradiation means is configured to include an illumination optical fiber that guides the illumination laser light and emits it toward the rear end portion of the molten pool,
The light receiving means includes a plurality of light receiving optical fibers, and a condensing lens that collects the reflected light and enters the light receiving optical fibers.
The illumination optical fiber is integrated with the condenser lens at the light incident / incident part in a state surrounded by the plurality of light receiving optical fibers, and is coaxially positioned with the condenser lens, A laser welding quality inspection apparatus characterized by passing through a condenser lens .
JP2002226135A 2002-08-02 2002-08-02 Laser welding quality inspection method and apparatus Expired - Fee Related JP4045424B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002226135A JP4045424B2 (en) 2002-08-02 2002-08-02 Laser welding quality inspection method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002226135A JP4045424B2 (en) 2002-08-02 2002-08-02 Laser welding quality inspection method and apparatus

Publications (2)

Publication Number Publication Date
JP2004066266A JP2004066266A (en) 2004-03-04
JP4045424B2 true JP4045424B2 (en) 2008-02-13

Family

ID=32013576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002226135A Expired - Fee Related JP4045424B2 (en) 2002-08-02 2002-08-02 Laser welding quality inspection method and apparatus

Country Status (1)

Country Link
JP (1) JP4045424B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8253062B2 (en) * 2005-06-10 2012-08-28 Chrysler Group Llc System and methodology for zero-gap welding
JP2008215879A (en) * 2007-02-28 2008-09-18 Toyota Motor Corp Cleanness judging device and method
WO2010007852A1 (en) * 2008-07-16 2010-01-21 住友電気工業株式会社 Laser processing apparatus and processing method employed therein
KR100971220B1 (en) * 2009-08-17 2010-07-20 주식회사 에프티랩 The inspection method of the capacitive touch screen panel using lc resonance frequency shift
JP5849985B2 (en) 2013-04-15 2016-02-03 トヨタ自動車株式会社 Welded part inspection device and inspection method
JP2020082184A (en) * 2018-11-30 2020-06-04 三菱電機株式会社 Weld defect detection method and welding device
CA3127831A1 (en) * 2019-02-13 2020-08-20 Coherent, Inc. Laser welding method

Also Published As

Publication number Publication date
JP2004066266A (en) 2004-03-04

Similar Documents

Publication Publication Date Title
JP3227650B2 (en) Laser welding machine and laser welding condition monitoring method
JPH03267745A (en) Surface property detecting method
JPH11221686A (en) Method and apparatus for monitoring quality of laser beam weld part by measuring plasma size
JP2005508759A (en) Method and apparatus for evaluating workpiece joints
JP4641143B2 (en) Surface inspection device
JP4045424B2 (en) Laser welding quality inspection method and apparatus
JP2006220498A (en) Lens inspection device
JP4240220B2 (en) Laser welding quality inspection method and apparatus
JP2003017536A (en) Pattern inspection method and inspection apparatus
JPS6340692A (en) Quality inspection instrument for laser butt welding
JP3994276B2 (en) Laser welding quality inspection method and apparatus
JP4498583B2 (en) Laser welding quality monitoring method and apparatus
JP4441129B2 (en) Method and apparatus for determining welding state in laser spot lap welding
JP5281815B2 (en) Optical device defect inspection method and optical device defect inspection apparatus
JP2005095942A (en) Laser welding quality inspection method and device
JPH08323477A (en) Device for detecting seam center in manufacturing welded tube and manufacture of welded tube
JP2000061672A (en) Laser welding state detecting method
JP3275988B2 (en) Butt welding monitoring method and butt welding monitoring device
JP2004257776A (en) Inspection device for light transmission body
JP4147390B2 (en) Laser welding quality inspection method and apparatus
JPH1183465A (en) Surface inspecting method and device therefor
JP3136556B2 (en) Laser welding machine
JP2001219287A (en) Monitoring method of laser beam welding
TWI718965B (en) Laser beam abnormality detection method and laser processing apparatus
JP3355546B2 (en) Laser welding defect detection device and defect detection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041109

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20041222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees